1
|
Chandru K, Potiszil C, Jia TZ. Alternative Pathways in Astrobiology: Reviewing and Synthesizing Contingency and Non-Biomolecular Origins of Terrestrial and Extraterrestrial Life. Life (Basel) 2024; 14:1069. [PMID: 39337854 PMCID: PMC11433091 DOI: 10.3390/life14091069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The pursuit of understanding the origins of life (OoL) on and off Earth and the search for extraterrestrial life (ET) are central aspects of astrobiology. Despite the considerable efforts in both areas, more novel and multifaceted approaches are needed to address these profound questions with greater detail and with certainty. The complexity of the chemical milieu within ancient geological environments presents a diverse landscape where biomolecules and non-biomolecules interact. This interaction could lead to life as we know it, dominated by biomolecules, or to alternative forms of life where non-biomolecules could play a pivotal role. Such alternative forms of life could be found beyond Earth, i.e., on exoplanets and the moons of Jupiter and Saturn. Challenging the notion that all life, including ET life, must use the same building blocks as life on Earth, the concept of contingency-when expanded beyond its macroevolution interpretation-suggests that non-biomolecules may have played essential roles at the OoL. Here, we review the possible role of contingency and non-biomolecules at the OoL and synthesize a conceptual model formally linking contingency with non-biomolecular OoL theories. This model emphasizes the significance of considering the role of non-biomolecules both at the OoL on Earth or beyond, as well as their potential as agnostic biosignatures indicative of ET Life.
Collapse
Affiliation(s)
- Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor 43600, Malaysia
- Polymer Research Center (PORCE), Faculty of Science and Technology, National University of Malaysia, Selangor 43600, Malaysia
- Institute of Physical Chemistry, CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa 682-0193, Tottori, Japan
| | - Tony Z Jia
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku 152-8550, Tokyo, Japan
| |
Collapse
|
2
|
Schmitt-Kopplin P, Matzka M, Ruf A, Menez B, Chennaoui Aoudjehane H, Harir M, Lucio M, Hertzog J, Hertkorn N, Gougeon RD, Hoffmann V, Hinman NW, Ferrière L, Greshake A, Gabelica Z, Trif L, Steele A. Complex carbonaceous matter in Tissint martian meteorites give insights into the diversity of organic geochemistry on Mars. SCIENCE ADVANCES 2023; 9:eadd6439. [PMID: 36630504 PMCID: PMC9833655 DOI: 10.1126/sciadv.add6439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
We report a huge organic diversity in the Tissint Mars meteorite and the sampling of several mineralogical lithologies, which revealed that the organic molecules were nonuniformly distributed in functionality and abundance. The range of organics in Tissint meteorite were abundant C3-7 aliphatic branched carboxylic acids and aldehydes, olefins, and polyaromatics with and without heteroatoms in a homologous oxidation structural continuum. Organomagnesium compounds were extremely abundant in olivine macrocrystals and in the melt veins, reflecting specific organo-synsthesis processes in close interaction with the magnesium silicates and temperature stresses, as previously observed. The diverse chemistry and abundance in complex molecules reveal heterogeneity in organic speciation within the minerals grown in the martian mantle and crust that may have evolved over geological time.
Collapse
Affiliation(s)
- Philippe Schmitt-Kopplin
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 85354, Germany
- Max Planck Institute for Extraterrestrial Physics, Center for Astrochemical Studies, Garching 85748, Germany
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Marco Matzka
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Alexander Ruf
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 85354, Germany
- Excellence Cluster ORIGINS, Boltzmannstraße 2, Garching 85748, Germany
- Ludwig-Maximilians-University, Department of Chemistry and Pharmacy, Butenandtstr. 5-13, Munich 81377, Germany
| | - Benedicte Menez
- Université de Paris, Institut de Physique du Globe de Paris, CNRS - 1, rue Jussieu, Paris Cedex 05 75238, France
| | - Hasnaa Chennaoui Aoudjehane
- Faculty of Sciences Ain Chock, GAIA Laboratory, Hassan II University of Casablanca, km 8 Route d’El Jadida, Casablanca 20150, Morocco
| | - Mourad Harir
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Marianna Lucio
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Jasmine Hertzog
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 85354, Germany
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Norbert Hertkorn
- Helmholtz München, Analytical BioGeoChemistry, Neuherberg 85764, Germany
| | - Régis D. Gougeon
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne/AgroSupDijon, Institut Universitaire de la Vigne et du Vin Jules Guyot, Dijon 21000, France
| | - Victor Hoffmann
- Faculty of Geosciences, Dep. Geo- and Environmental Sciences, LMU, Muenchen, Germany
| | | | | | | | - Zelimir Gabelica
- Université de Haute Alsace, École Nationale Supérieure de Chimie de Mulhouse, F-68094 Mulhouse Cedex, France
| | - László Trif
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Budapest, Hungary
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, 5251 Broad Branch Rd., Washington, DC 20015, USA
| |
Collapse
|
3
|
Fioroni M, DeYonker NJ. Nitrile regio-synthesis by Ni centers on a siliceous surface: implications in prebiotic chemistry. Chem Commun (Camb) 2022; 58:11579-11582. [PMID: 36168891 DOI: 10.1039/d2cc04361k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By means of quantum chemistry (PBE0/def2-TZVPP; DLPNO-CCSD(T)/cc-pVTZ) and small, but reliable models of Polyhedral Oligomeric Silsesquioxanes (POSS), an array of astrochemically-relevant catalysis products, related to prebiotic and origin of life chemistry, has been theoretically explored. In this work, the heterogeneous phase hydrocyanation reaction of an unsaturated CC bond (propene) catalyzed by a Ni center complexed to a silica surface is analyzed. Of the two possible regioisomers, the branched iso-propyl-cyanide is thermodynamically and kinetically preferred over the linear n-propyl-cyanide (T = 200 K). The formation of nitriles based on a regioselective process has profound implications on prebiotic and origin of life chemistry, as well as deep connections to terrestrial surface chemistry and geochemistry.
Collapse
Affiliation(s)
- Marco Fioroni
- Department of Chemistry, 213 Smith Chemistry Building, The University of Memphis, Memphis, TN, USA, 38152.
| | - Nathan J DeYonker
- Department of Chemistry, 213 Smith Chemistry Building, The University of Memphis, Memphis, TN, USA, 38152.
| |
Collapse
|
4
|
Ertem G. The Role of Minerals in Events That Led to the Origin of Life. ASTROBIOLOGY 2021; 21:137-150. [PMID: 33544652 DOI: 10.1089/ast.2020.2245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The role of minerals in the events that led to the origin of life is discussed with regard to (1) their catalytic role for the formation of RNA-like oligomers from their monomers and (2) their protective role for organic molecules formed in space that were delivered to planetary surfaces. Results obtained in the laboratory demonstrate that minerals do catalyze the oligomerization of ribonucleic acid (RNA) monomers to produce short RNA chains. Furthermore, and more importantly, these synthetic RNA chains formed by mineral catalysis serve as a template for the formation of complementary RNA chains, which is a significant finding that demonstrates the role of minerals in the origin of life. Simulation experiments run under Mars-like conditions have also shown that Mars analog minerals can shield the precursors of RNA and proteins against the harmful effects of UV and gamma radiation at the martian surface and 5 cm below the surface.
Collapse
Affiliation(s)
- Gözen Ertem
- Carl Sagan Center, SETI Institute, Mountain View, California, USA
- University of Maryland, College Park, Maryland, USA
| |
Collapse
|
5
|
Volkov DS, Rogova OB, Proskurnin MA. Photoacoustic and photothermal methods in spectroscopy and characterization of soils and soil organic matter. PHOTOACOUSTICS 2020; 17:100151. [PMID: 31956483 PMCID: PMC6957834 DOI: 10.1016/j.pacs.2019.100151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 05/05/2023]
Abstract
Review sums up the application of photoacoustic and photothermal spectroscopies for the analysis and characterization of soils and soil organic matter and discusses the outlooks in this area.
Collapse
Affiliation(s)
- Dmitry S. Volkov
- Department of Chemistry and Physical Chemistry of Soils, V.V. Dokuchaev Soil Science Institute, Pyzhevsky per., 7/2, Moscow 119017, Russia
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow, 119991, Russia
| | - Olga B. Rogova
- Department of Chemistry and Physical Chemistry of Soils, V.V. Dokuchaev Soil Science Institute, Pyzhevsky per., 7/2, Moscow 119017, Russia
| | - Mikhail A. Proskurnin
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-3, GSP-1, Moscow, 119991, Russia
| |
Collapse
|
6
|
Olson KR. Hydrogen sulfide, reactive sulfur species and coping with reactive oxygen species. Free Radic Biol Med 2019; 140:74-83. [PMID: 30703482 DOI: 10.1016/j.freeradbiomed.2019.01.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/19/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
Life began in a ferruginous (anoxic and Fe2+ dominated) world around 3.8 billion years ago (bya). Hydrogen sulfide (H2S) and other sulfur molecules from hydrothermal vents and other fissures provided many key necessities for life's origin including catalytic platforms (primordial enzymes) that also served as primitive boundaries (cell walls), substrates for organic synthesis and a continuous source of energy in the form of reducing equivalents. Anoxigenic photosynthesis oxidizing H2S followed within a few hundred million years and laid the metabolic groundwork for oxidative photosynthesis some half-billion years later that slightly and episodically increased atmospheric oxygen around 2.3 bya. This oxidized terrestrial sulfur to sulfate which was washed to the sea where it was reduced creating vast euxinic (anoxic and sulfidic) areas. It was in this environment that eukaryotic cells appeared around 1.5 bya and where they evolved for nearly 1 billion additional years. Oxidative photosynthesis finally oxidized the oceans and around 0.6 bya oxygen levels in the atmosphere and oceans began to rise toward present day levels. This is purported to have been a life-threatening event due to the prevalence of reactive oxygen species (ROS) and thus necessitated the elaboration of chemical and enzymatic antioxidant mechanisms. However, these antioxidants initially appeared around the time of anoxigenic photosynthesis suggesting a commitment to metabolism of reactive sulfur species (RSS). This review examines these events and suggests that many of the biological attributes assigned to ROS may, in fact, be due to RSS. This is underscored by observations that ROS and RSS are chemically similar, often indistinguishable by analytical methods and the fact that the bulk of biochemical and physiological experiments are performed in unphysiologically oxic environments where ROS are artifactually favored over RSS.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, Raclin Carmichael Hall, 1234 Notre Dame Ave, South Bend, IN 46617, USA.
| |
Collapse
|
7
|
Fioroni M, Tartera AK, DeYonker NJ. Propylene Oxide Formation on a Silica Surface with Peroxo Defects: Implications in Astrochemistry. J Phys Chem A 2018; 122:9100-9106. [PMID: 30372070 DOI: 10.1021/acs.jpca.8b04955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The formation of the chiral molecule propylene oxide (CH3CHCH2O) recently detected in the interstellar medium (ISM) is proposed to take place on an amorphous silicate grain surface where peroxo defects are present. A computational analysis conducted at the DFT and MP2-F12 levels of theory on a neat amorphous silica model supports such a hypothesis resulting in (a) strong thermodynamic driving forces and low activation energies allowing the synthesis of CH3CHCH2O at low temperatures, (b) chemical defects on silica surfaces promoting heterogeneous catalysis of the increasing molecular complexity found in interstellar and circumstellar medium, and (c) chemical defects that have implications on understanding how processing phases modify the nature of the reactive groups on a silica surface affecting the surface catalytic activity.
Collapse
Affiliation(s)
- Marco Fioroni
- Department of Chemistry , The University of Memphis , 213 Smith Chemistry Building, Memphis , Tennessee 38152 , United States
| | - A Kelly Tartera
- Department of Chemistry , The University of Memphis , 213 Smith Chemistry Building, Memphis , Tennessee 38152 , United States
| | - Nathan J DeYonker
- Department of Chemistry , The University of Memphis , 213 Smith Chemistry Building, Memphis , Tennessee 38152 , United States
| |
Collapse
|
8
|
Data-Driven Astrochemistry: One Step Further within the Origin of Life Puzzle. Life (Basel) 2018; 8:life8020018. [PMID: 29857564 PMCID: PMC6027145 DOI: 10.3390/life8020018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023] Open
Abstract
Astrochemistry, meteoritics and chemical analytics represent a manifold scientific field, including various disciplines. In this review, clarifications on astrochemistry, comet chemistry, laboratory astrophysics and meteoritic research with respect to organic and metalorganic chemistry will be given. The seemingly large number of observed astrochemical molecules necessarily requires explanations on molecular complexity and chemical evolution, which will be discussed. Special emphasis should be placed on data-driven analytical methods including ultrahigh-resolving instruments and their interplay with quantum chemical computations. These methods enable remarkable insights into the complex chemical spaces that exist in meteorites and maximize the level of information on the huge astrochemical molecular diversity. In addition, they allow one to study even yet undescribed chemistry as the one involving organomagnesium compounds in meteorites. Both targeted and non-targeted analytical strategies will be explained and may touch upon epistemological problems. In addition, implications of (metal)organic matter toward prebiotic chemistry leading to the emergence of life will be discussed. The precise description of astrochemical organic and metalorganic matter as seeds for life and their interactions within various astrophysical environments may appear essential to further study questions regarding the emergence of life on a most fundamental level that is within the molecular world and its self-organization properties.
Collapse
|
9
|
Krishnan Y, Vincent A, Paranjothy M. Classical dynamics simulations of interstellar glycine formation via $$\hbox {CH}_{2} = \hbox {NH} + \hbox {CO} + \hbox {H}_{2}\hbox {O}$$ CH 2 = NH + CO + H 2 O reaction. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1367-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
De Sanctis MC, Ammannito E, McSween HY, Raponi A, Marchi S, Capaccioni F, Capria MT, Carrozzo FG, Ciarniello M, Fonte S, Formisano M, Frigeri A, Giardino M, Longobardo A, Magni G, McFadden LA, Palomba E, Pieters CM, Tosi F, Zambon F, Raymond CA, Russell CT. Localized aliphatic organic material on the surface of Ceres. Science 2017; 355:719-722. [PMID: 28209893 DOI: 10.1126/science.aaj2305] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/17/2017] [Indexed: 11/02/2022]
Abstract
Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.
Collapse
Affiliation(s)
- M C De Sanctis
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - E Ammannito
- Earth Planetary and Space Sciences, University of California-Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095-1567, USA.,Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - H Y McSween
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996-1410, USA
| | - A Raponi
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - S Marchi
- Southwest Research Institute, Boulder, CO 80302, USA.,Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - F Capaccioni
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - M T Capria
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - F G Carrozzo
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - M Ciarniello
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - S Fonte
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - M Formisano
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - A Frigeri
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - M Giardino
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - A Longobardo
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - G Magni
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - L A McFadden
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - E Palomba
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - C M Pieters
- Brown University, Department of Earth, Environmental, and Planetary Sciences, Providence, RI 02912, USA
| | - F Tosi
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - F Zambon
- Istituto di Astrofisica e Planetologia Spaziali-Istituto Nazionale di Astrofisica, 00133 Roma, Italy
| | - C A Raymond
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA
| | - C T Russell
- Earth Planetary and Space Sciences, University of California-Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095-1567, USA
| |
Collapse
|
11
|
Pizzarello S, Shock E. Carbonaceous Chondrite Meteorites: the Chronicle of a Potential Evolutionary Path between Stars and Life. ORIGINS LIFE EVOL B 2017; 47:249-260. [PMID: 28078499 DOI: 10.1007/s11084-016-9530-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
The biogenic elements, H, C, N, O, P and S, have a long cosmic history, whose evolution can still be observed in diverse locales of the known universe, from interstellar clouds of gas and dust, to pre-stellar cores, nebulas, protoplanetary discs, planets and planetesimals. The best analytical window into this cosmochemical evolution as it neared Earth has been provided so far by the small bodies of the Solar System, some of which were not significantly altered by the high gravitational pressures and temperatures that accompanied the formation of larger planets and may carry a pristine record of early nebular chemistry. Asteroids have delivered such records, as their fragments reach the Earth frequently and become available for laboratory analyses. The Carbonaceous Chondrite meteorites (CC) are a group of such fragments with the further distinction of containing abundant organic materials with structures as diverse as kerogen-like macromolecules and simpler compounds with identical counterparts in Earth's biosphere. All have revealed a lineage to cosmochemical synthetic regimes. Several CC show that asteroids underwent aqueous alteration of their minerals or rock metamorphism but may yet yield clues to the reactivity of organic compounds during parent-body processes, on asteroids as well as larger ocean worlds and planets. Whether the exogenous delivery by meteorites held an advantage in Earth's molecular evolution remains an open question as many others regarding the origins of life are. Nonetheless, the natural samples of meteorites allow exploring the physical and chemical processes that might have led to a selected chemical pool amenable to the onset of life. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sandra Pizzarello
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
| | - Everett Shock
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
- School of Earth & Space Exploration, Arizona State University, Tempe, AZ, 85218, USA
| |
Collapse
|
12
|
Mao J, Cao X, Olk DC, Chu W, Schmidt-Rohr K. Advanced solid-state NMR spectroscopy of natural organic matter. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 100:17-51. [PMID: 28552171 DOI: 10.1016/j.pnmrs.2016.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 06/07/2023]
Abstract
Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided.
Collapse
Affiliation(s)
- Jingdong Mao
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Blvd., Norfolk, VA 23529, United States.
| | - Xiaoyan Cao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, United States.
| | - Dan C Olk
- National Laboratory for Agriculture and the Environment, 1015 N. University Blvd., Ames, IA 50011, United States.
| | - Wenying Chu
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Blvd., Norfolk, VA 23529, United States.
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, United States.
| |
Collapse
|
13
|
Kerisit N, Rouxel C, Colombel-Rouen S, Toupet L, Guillemin JC, Trolez Y. Synthesis, Chemistry, and Photochemistry of Methylcyanobutadiyne in the Context of Space Science. J Org Chem 2016; 81:3560-7. [DOI: 10.1021/acs.joc.6b00205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicolas Kerisit
- Ecole Nationale
Supérieure de Chimie de Rennes, UMR 6226, CNRS, 11 allée de Beaulieu, CS
50837, 35708 Rennes cedex
7, France
| | - Cédric Rouxel
- Ecole Nationale
Supérieure de Chimie de Rennes, UMR 6226, CNRS, 11 allée de Beaulieu, CS
50837, 35708 Rennes cedex
7, France
| | - Sophie Colombel-Rouen
- Ecole Nationale
Supérieure de Chimie de Rennes, UMR 6226, CNRS, 11 allée de Beaulieu, CS
50837, 35708 Rennes cedex
7, France
| | - Loïc Toupet
- Institut de Physique
de Rennes, UMR 6251, CNRS, Université de Rennes 1, 263 avenue du Général
Leclerc, 35042 Rennes cedex, France
| | - Jean-Claude Guillemin
- Ecole Nationale
Supérieure de Chimie de Rennes, UMR 6226, CNRS, 11 allée de Beaulieu, CS
50837, 35708 Rennes cedex
7, France
| | - Yann Trolez
- Ecole Nationale
Supérieure de Chimie de Rennes, UMR 6226, CNRS, 11 allée de Beaulieu, CS
50837, 35708 Rennes cedex
7, France
| |
Collapse
|
14
|
Hertkorn N, Harir M, Schmitt-Kopplin P. Nontarget analysis of Murchison soluble organic matter by high-field NMR spectroscopy and FTICR mass spectrometry. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:754-68. [PMID: 26275226 DOI: 10.1002/mrc.4249] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 05/26/2023]
Abstract
High-field NMR spectra of Murchison meteorite methanolic extracts revealed primarily aliphatic extraterrestrial organic matter (EOM) with near statistical branching of commonly C(3-5) units separated by heteroatoms and aromatic units. The ratios of CCH, OCH and C(sp2)H units were 89 : 8 : 3, whereas carbon-based aliphatic chain termination was in the order methyl > -COOH > -CH(CH3)COOH. Aliphatic methine carbon was abundant, but its weak NMR signatures were primarily deduced from JRES (J-resolved) NMR spectra. Carbon NMR spectra were dominated by methylene and methyl carbon; strong apodization revealed methine carbon, of which about 20% was aromatic. Extrapolation provided 5-7% aromatic carbon present in Murchison soluble EOM. Compositional heterogeneity in Murchison methanolic extracts was visible in NMR and Fourier transform ion cyclotron (FTICR) mass spectra obtained from a few cubic millimeters of solid Murchison meteorite; increasing sample size enhanced uniformity of NMR spectra. Intrinsic chemical diversity and pH-dependent chemical shift variance contributed to the disparity of NMR spectra. FTICR mass spectra provided distinct clustering of CHO/CHOS and CHNO/CHNOS molecular series and confirmed the prevalence of aliphatic/alicyclic (73%) over single aromatic (21%) and polyaromatic (6%) molecular compositions, suggesting extensive aliphatic substitution of aromatic units as proposed by NMR. Murchison soluble EOM molecules feature a center with enhanced aromatic and heteroatom content, which provides rather diffuse and weak NMR signatures resulting from a huge overall chemical diversity. The periphery of Murchison EOM molecules comprises flexible branched aliphatic chains and aliphatic carboxylic acids. These project on narrow ranges of chemical shift, facilitating observation in one-dimensional and two-dimensional NMR spectra. The conformational entropy provided by these flexible surface moieties facilitates the solubility of EOM.
Collapse
Affiliation(s)
- N Hertkorn
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Research Unit Analytical Biogeochemistry (BGC), Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - M Harir
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Research Unit Analytical Biogeochemistry (BGC), Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Ph Schmitt-Kopplin
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Research Unit Analytical Biogeochemistry (BGC), Ingolstaedter Landstrasse 1, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, Freising-Weihenstephan, Germany
| |
Collapse
|
15
|
|
16
|
Damer B, Deamer D. Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life (Basel) 2015; 5:872-87. [PMID: 25780958 PMCID: PMC4390883 DOI: 10.3390/life5010872] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 02/17/2015] [Accepted: 03/06/2015] [Indexed: 11/16/2022] Open
Abstract
Hydrothermal fields on the prebiotic Earth are candidate environments for biogenesis. We propose a model in which molecular systems driven by cycles of hydration and dehydration in such sites undergo chemical evolution in dehydrated films on mineral surfaces followed by encapsulation and combinatorial selection in a hydrated bulk phase. The dehydrated phase can consist of concentrated eutectic mixtures or multilamellar liquid crystalline matrices. Both conditions organize and concentrate potential monomers and thereby promote polymerization reactions that are driven by reduced water activity in the dehydrated phase. In the case of multilamellar lipid matrices, polymers that have been synthesized are captured in lipid vesicles upon rehydration to produce a variety of molecular systems. Each vesicle represents a protocell, an “experiment” in a natural version of combinatorial chemistry. Two kinds of selective processes can then occur. The first is a physical process in which relatively stable molecular systems will be preferentially selected. The second is a chemical process in which rare combinations of encapsulated polymers form systems capable of capturing energy and nutrients to undergo growth by catalyzed polymerization. Given continued cycling over extended time spans, such combinatorial processes will give rise to molecular systems having the fundamental properties of life.
Collapse
Affiliation(s)
- Bruce Damer
- Department of Biomolecular Engineering.
- DigitalSpace Research, Boulder Creek, CA 95006, USA.
| | | |
Collapse
|
17
|
Kaiser RI, Maity S, Jones BM. Synthesis of Prebiotic Glycerol in Interstellar Ices. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ralf I. Kaiser
- Department of Chemistry, W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822 (USA)
| | - Surajit Maity
- Department of Chemistry, W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822 (USA)
| | - Brant M. Jones
- Department of Chemistry, W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822 (USA)
| |
Collapse
|
18
|
Kaiser RI, Maity S, Jones BM. Synthesis of prebiotic glycerol in interstellar ices. Angew Chem Int Ed Engl 2014; 54:195-200. [PMID: 25363714 DOI: 10.1002/anie.201408729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Indexed: 11/06/2022]
Abstract
Contemporary mechanisms for the spontaneous formation of glycerol have not been able to explain its existence on early Earth. The exogenous origin and delivery of organic molecules to early Earth presents an alternative route to their terrestrial in situ formation since biorelevant molecules like amino acids, carboxylic acids, and alkylphosphonic acids have been recovered from carbonaceous chondrites. Reported herein is the first in situ identification of glycerol, the key building block of all cellular membranes, formed by exposure of methanol-based - interstellar model ices to ionizing radiation in the form of energetic electrons. These results provide compelling evidence that the radiation-induced formation of glycerol in low-temperature interstellar model ices is facile. Synthesized on interstellar grains and eventually incorporated into the "building material" of solar systems, biorelevant molecules such as glycerol could have been dispensed to habitable planets such as early Earth by comets and meteorites.
Collapse
Affiliation(s)
- Ralf I Kaiser
- Department of Chemistry, W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822 (USA).
| | | | | |
Collapse
|
19
|
Abstract
Hydrophobic polymer amide (HPA) could have been one of the first normal density materials to accrete in space. We present ab initio calculations of the energetics of amino acid polymerization via gas phase collisions. The initial hydrogen-bonded di-peptide is sufficiently stable to proceed in many cases via a transition state into a di-peptide with an associated bound water molecule of condensation. The energetics of polymerization are only favorable when the water remains bound. Further polymerization leads to a hydrophobic surface that is phase-separated from, but hydrogen bonded to, a small bulk water complex. The kinetics of the collision and subsequent polymerization are discussed for the low-density conditions of a molecular cloud. This polymer in the gas phase has the properties to make a topology, viz. hydrophobicity allowing phase separation from bulk water, capability to withstand large temperature ranges, versatility of form and charge separation. Its flexible tetrahedral carbon atoms that alternate with more rigid amide groups allow it to deform and reform in hazardous conditions and its density of hydrogen bonds provides adhesion that would support accretion to it of silicon and metal elements to form a stellar dust material.
Collapse
Affiliation(s)
- Julie E. M. McGeoch
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | |
Collapse
|