1
|
Alzate JF, González FA, Pabón-Mora N. Back together: Over 1000 single-copy nuclear loci and reproductive features support the holoendoparasitic Apodanthaceae and Rafflesiaceae as sister lineages in the order Malpighiales. Mol Phylogenet Evol 2024; 201:108217. [PMID: 39384124 DOI: 10.1016/j.ympev.2024.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
The systematics of the holoendoparasitic flowering plant families Apodanthaceae and Rafflesiaceae has been discussed for over two centuries. The morphological reduction of roots, shoots and leaves in all members of both families, resulting in a cryptic mycelium-like vegetative body, has been interpreted either as a key common feature, or as a result of convergent evolution due to full dependence upon their hosts. Historically, the two families have been placed together due to similar morphological features, but recent analyses based on few mitochondrial and ribosomal gene markers placed them in the distantly related orders Cucurbitales and Malpighiales. Here we reevaluate the affinities of the Apodanthaceae and the Rafflesiaceae using a phylogenomic approach. We present (1) a historical account on their affinities over the last 200 years; (2) phylogenetic analyses reinstating their sister group relationship as part of the order Malpighiales, based on over 1000 single-copy nuclear protein-coding loci; and (3) a comprehensive list of putative morphoanatomical and developmental synapomorphies in light of the phylogenomic results, with emphasis on shared reproductive traits regardless of dramatic differences in floral size.
Collapse
Affiliation(s)
- Juan F Alzate
- Universidad de Antioquia, Sede de Investigación Universitaria-SIU, Centro Nacional de Secuenciación Genómica-CNSG, Medellín, Colombia; Universidad de Antioquia, Facultad de Medicina, Grupo de Parasitología, Medellín, Colombia.
| | - Favio A González
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Instituto de Ciencias Naturales, Colombia
| | | |
Collapse
|
2
|
Guo X, Hu X, Li J, Shao B, Wang Y, Wang L, Li K, Lin D, Wang H, Gao Z, Jiao Y, Wen Y, Ji H, Ma C, Ge S, Jiang W, Jin X. The Sapria himalayana genome provides new insights into the lifestyle of endoparasitic plants. BMC Biol 2023; 21:134. [PMID: 37280593 DOI: 10.1186/s12915-023-01620-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Sapria himalayana (Rafflesiaceae) is an endoparasitic plant characterized by a greatly reduced vegetative body and giant flowers; however, the mechanisms underlying its special lifestyle and greatly altered plant form remain unknown. To illustrate the evolution and adaptation of S. himalayasna, we report its de novo assembled genome and key insights into the molecular basis of its floral development, flowering time, fatty acid biosynthesis, and defense responses. RESULTS The genome of S. himalayana is ~ 1.92 Gb with 13,670 protein-coding genes, indicating remarkable gene loss (~ 54%), especially genes involved in photosynthesis, plant body, nutrients, and defense response. Genes specifying floral organ identity and controlling organ size were identified in S. himalayana and Rafflesia cantleyi, and showed analogous spatiotemporal expression patterns in both plant species. Although the plastid genome had been lost, plastids likely biosynthesize essential fatty acids and amino acids (aromatic amino acids and lysine). A set of credible and functional horizontal gene transfer (HGT) events (involving genes and mRNAs) were identified in the nuclear and mitochondrial genomes of S. himalayana, most of which were under purifying selection. Convergent HGTs in Cuscuta, Orobanchaceae, and S. himalayana were mainly expressed at the parasite-host interface. Together, these results suggest that HGTs act as a bridge between the parasite and host, assisting the parasite in acquiring nutrients from the host. CONCLUSIONS Our results provide new insights into the flower development process and endoparasitic lifestyle of Rafflesiaceae plants. The amount of gene loss in S. himalayana is consistent with the degree of reduction in its body plan. HGT events are common among endoparasites and play an important role in their lifestyle adaptation.
Collapse
Affiliation(s)
- Xuelian Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Xiaodi Hu
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Jianwu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan, 666303, China
| | - Bingyi Shao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yajun Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Long Wang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Kui Li
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Dongliang Lin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hanchen Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Zhiyuan Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yingying Wen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hongyu Ji
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Chongbo Ma
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, 100083, China.
| | - Xiaohua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China.
| |
Collapse
|
3
|
Transcriptome analysis of Rafflesia cantleyi flower stages reveals insights into the regulation of senescence. Sci Rep 2021; 11:23661. [PMID: 34880337 PMCID: PMC8654902 DOI: 10.1038/s41598-021-03028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/26/2021] [Indexed: 11/08/2022] Open
Abstract
Rafflesia is a unique plant species existing as a single flower and produces the largest flower in the world. While Rafflesia buds take up to 21 months to develop, its flowers bloom and wither within about a week. In this study, transcriptome analysis was carried out to shed light on the molecular mechanism of senescence in Rafflesia. A total of 53.3 million high quality reads were obtained from two Rafflesia cantleyi flower developmental stages and assembled to generate 64,152 unigenes. Analysis of this dataset showed that 5,166 unigenes were differentially expressed, in which 1,073 unigenes were identified as genes involved in flower senescence. Results revealed that as the flowers progress to senescence, more genes related to flower senescence were significantly over-represented compared to those related to plant growth and development. Senescence of the R. cantleyi flower activates senescence-associated genes in the transcription activity (members of the transcription factor families MYB, bHLH, NAC, and WRKY), nutrient remobilization (autophagy-related protein and transporter genes), and redox regulation (CATALASE). Most of the senescence-related genes were found to be differentially regulated, perhaps for the fine-tuning of various responses in the senescing R. cantleyi flower. Additionally, pathway analysis showed the activation of genes such as ETHYLENE RECEPTOR, ETHYLENE-INSENSITIVE 2, ETHYLENE-INSENSITIVE 3, and ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR, indicating the possible involvement of the ethylene hormone response pathway in the regulation of R. cantleyi senescence. Our results provide a model of the molecular mechanism underlying R. cantleyi flower senescence, and contribute essential information towards further understanding the biology of the Rafflesiaceae family.
Collapse
|
4
|
Thorogood CJ, Teixeira-Costa L, Ceccantini G, Davis C, Hiscock SJ. Endoparasitic plants and fungi show evolutionary convergence across phylogenetic divisions. THE NEW PHYTOLOGIST 2021; 232:1159-1167. [PMID: 34251722 DOI: 10.1111/nph.17556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Endoparasitic plants are the most reduced flowering plants, spending most of their lives as a network of filaments within the tissues of their hosts. Despite their extraordinary life form, we know little about their biology. Research into a few species has revealed unexpected insights, such as the total loss of plastome, the reduction of the vegetative phase to a proembryonic stage, and elevated information exchange between host and parasite. To consolidate our understanding, we review life history, anatomy, and molecular genetics across the four independent lineages of endoparasitic plants. We highlight convergence across these clades and a striking trans-kingdom convergence in life history among endoparasitic plants and disparate lineages of fungi at the molecular and physiological levels. We hypothesize that parasitism of woody plants preselected for the endoparasitic life history, providing parasites a stable host environment and the necessary hydraulics to enable floral gigantism and/or high reproductive output. Finally, we propose a broader view of endoparasitic plants that connects research across disciplines, for example, pollen-pistil and graft incompatibility interactions and plant associations with various fungi. We shine a light on endoparasitic plants and their hosts as under-explored ecological microcosms ripe for identifying unexpected biological processes, interactions and evolutionary convergence.
Collapse
Affiliation(s)
- Chris J Thorogood
- University of Oxford Botanic Garden, Rose Lane, Oxford, OX1 4AZ, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | - Gregório Ceccantini
- Dp. of Botany, University of São Paulo, IB-USP, Rua do Matão 277, São Paulo, SP 05508-090, Brazil
| | - Charles Davis
- Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Simon J Hiscock
- University of Oxford Botanic Garden, Rose Lane, Oxford, OX1 4AZ, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
5
|
Teixeira-Costa L, Davis CC, Ceccantini G. Striking developmental convergence in angiosperm endoparasites. AMERICAN JOURNAL OF BOTANY 2021; 108:756-768. [PMID: 33988869 DOI: 10.1002/ajb2.1658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
PREMISE A subset of parasitic plants bear extremely reduced features and grow nearly entirely within their hosts. Until recently, most of these endoparasites were thought to represent a single clade united by their reduced morphology. Current phylogenetic understanding contradicts this assumption and indicates these plants represent distantly related clades, thus offering an opportunity to examine convergence among plants with this life history. METHODS We sampled species from Apodanthaceae, Cytinaceae, Mitrastemonaceae, and Rafflesiaceae spanning a range of developmental stages. To provide a broader comparative framework, Santalaceae mistletoes with a similar lifestyle were also analyzed. Microtomography and microscopy were used to analyze growth patterns and the ontogeny of host-parasite vascular connections. RESULTS Apodanthaceae, Cytinaceae, Mitrastemonaceae, and Rafflesiaceae species demonstrated a common development characterized by late cell differentiation. These species were also observed to form direct connections to host vessels and to cause severe alterations of host xylem development. Apodanthaceae and Rafflesiaceae species were additionally observed to form sieve elements, which connect with the host phloem. Endophytic Santalaceae species demonstrated a dramatically different developmental pattern, featuring early cell differentiation and tissue organization, and little effect on host anatomy and cambial activity. CONCLUSIONS Our results illuminate two distinct developmental trajectories in endoparasites. One involves the retention of embryonic characteristics and late connection with host vessels, as demonstrated in species of Apodanthaceae, Cytinaceae, Mitrastemonaceae, and Rafflesiaceae. The second involves tissue specialization and early connection with host xylem, as exemplified by Santalaceae species. These differences are hypothesized to be related to the absence/presence of photosynthesis in these plants.
Collapse
Affiliation(s)
- Luiza Teixeira-Costa
- Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil
- Harvard University Herbaria, Cambridge, MA, 02138, USA
| | | | - Gregorio Ceccantini
- Institute of Biosciences, University of Sao Paulo, Sao Paulo, 05508-090, Brazil
| |
Collapse
|
6
|
Cavallini-Speisser Q, Morel P, Monniaux M. Petal Cellular Identities. FRONTIERS IN PLANT SCIENCE 2021; 12:745507. [PMID: 34777425 PMCID: PMC8579033 DOI: 10.3389/fpls.2021.745507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 05/14/2023]
Abstract
Petals are typified by their conical epidermal cells that play a predominant role for the attraction and interaction with pollinators. However, cell identities in the petal can be very diverse, with different cell types in subdomains of the petal, in different cell layers, and depending on their adaxial-abaxial or proximo-distal position in the petal. In this mini-review, we give an overview of the main cell types that can be found in the petal and describe some of their functions. We review what is known about the genetic basis for the establishment of these cellular identities and their possible relation with petal identity and polarity specifiers expressed earlier during petal development, in an attempt to bridge the gap between organ identity and cell identity in the petal.
Collapse
|
7
|
Nikolov LA. My favourite flowering image: computed tomographic reconstruction of a crucifer flower. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:e4-e5. [PMID: 32393958 DOI: 10.1093/jxb/eraa223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Crucifer flowers have a stereotypical plan and much of the floral diversity in the family is revealed only by careful observation. This statement holds true for the flower of Stanleya elata, a relative of the model plant Arabidopsis thaliana, which exhibits a number of distinct features that highlight the value of crucifers in comparative studies. Such comparative approaches in combination with new imaging and genomic technologies provide novel insight into floral structure and diversity.
Collapse
Affiliation(s)
- Lachezar A Nikolov
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
González AD, Pabón-Mora N, Alzate JF, González F. Meristem Genes in the Highly Reduced Endoparasitic Pilostyles boyacensis (Apodanthaceae). Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
9
|
Mursidawati S, Wicaksono A, Teixeira da Silva JA. Rafflesia patma Blume flower organs: histology of the epidermis and vascular structures, and a search for stomata. PLANTA 2020; 251:112. [PMID: 32494866 DOI: 10.1007/s00425-020-03402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/18/2020] [Indexed: 05/27/2023]
Abstract
A histological study of Rafflesia patma revealed the simplicity of a flower's vascular tissue and epidermal features of flower organs, including their structures and pigmentation. Rafflesia is an endophytic holoparasitic plant that infects Tetrastigma. In a previous study, we characterized the shape of the strands of an endophyte (Rafflesia patma Blume) and hypothesized their distribution. In this study, we deepened our analysis by assessing parts of flower tissue sampled during anthesis, performed surface casting of the abaxial and adaxial sides of the perigone lobe to profile their surface features, and histologically characterized the perigone lobe, perigone tube, and central column base, including the anther and cupula region. The objective of these observations was to compare tissues from different organs and the distribution of cells staining positive for tannin, suberin, and lignin. Observable features in this study were vascular and epidermal tissue. We also observed reduced vascular tissue with xylem and vascular parenchyma in multiple organs. The adaxial epidermis found in the perigone lobes and tube had papillate cells, and their function might be to assist with the emission of odor through chemical evaporation. The abaxial epidermis, also found in perigone lobes and tube, had flattened cells. These, combined with the nearby flattened parenchyma cells, especially in the outermost, early perigone lobe, might provide a tougher (stiffer) outer protective barrier for the flower. The accumulation of tannin in perigone lobes might offer protection to the flower from herbivores prior to anthesis. Although a previous observation indicated the possibility of stomata on the surface of Rafflesia flowers, no stomata were found in this study.
Collapse
Affiliation(s)
- Sofi Mursidawati
- Center of Plant Conservation, Bogor Botanical Garden, Indonesian Institute of Science (LIPI), Jl. Ir. H. Juanda no.13, Bogor, 16003, Indonesia.
| | - Adhityo Wicaksono
- Division of Biotechnology, Generasi Biologi Indonesia (Genbinesia) Foundation, Jl. Swadaya Barat no. 4, Gresik Regency, 61171, Indonesia.
| | - Jaime A Teixeira da Silva
- Independent Researcher, Miki-cho post office, Ikenobe 3011-2, P.O. Box 7, Shikoku, Kagawa-ken, 761-0799, Japan
| |
Collapse
|
10
|
Amini S, Rosli K, Abu-Bakar MF, Alias H, Mat-Isa MN, Juhari MAA, Haji-Adam J, Goh HH, Wan KL. Transcriptome landscape of Rafflesia cantleyi floral buds reveals insights into the roles of transcription factors and phytohormones in flower development. PLoS One 2019; 14:e0226338. [PMID: 31851702 PMCID: PMC6919626 DOI: 10.1371/journal.pone.0226338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/25/2019] [Indexed: 11/19/2022] Open
Abstract
Rafflesia possesses unique biological features and known primarily for producing the world’s largest and existing as a single flower. However, to date, little is known about key regulators participating in Rafflesia flower development. In order to further understand the molecular mechanism that regulates Rafflesia cantleyi flower development, RNA-seq data from three developmental stages of floral bud, representing the floral organ primordia initiation, floral organ differentiation, and floral bud outgrowth, were analysed. A total of 89,890 transcripts were assembled of which up to 35% could be annotated based on homology search. Advanced transcriptome analysis using K-mean clustering on the differentially expressed genes (DEGs) was able to identify 12 expression clusters that reflect major trends and key transitional states, which correlate to specific developmental stages. Through this, comparative gene expression analysis of different floral bud stages identified various transcription factors related to flower development. The members of WRKY, NAC, bHLH, and MYB families are the most represented among the DEGs, suggesting their important function in flower development. Furthermore, pathway enrichment analysis also revealed DEGs that are involved in various phytohormone signal transduction events such as auxin and auxin transport, cytokinin and gibberellin biosynthesis. Results of this study imply that transcription factors and phytohormone signalling pathways play major role in Rafflesia floral bud development. This study provides an invaluable resource for molecular studies of the flower development process in Rafflesia and other plant species.
Collapse
Affiliation(s)
- Safoora Amini
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Khadijah Rosli
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | | | - Halimah Alias
- Malaysia Genome Institute, Jalan Bangi, Kajang, Selangor, Malaysia
| | | | - Mohd-Afiq-Aizat Juhari
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Jumaat Haji-Adam
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Kiew-Lian Wan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
11
|
A phylogenetic and biogeographic study of Rafflesia (Rafflesiaceae) in the Philippines: Limited dispersal and high island endemism. Mol Phylogenet Evol 2019; 139:106555. [DOI: 10.1016/j.ympev.2019.106555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 01/12/2023]
|
12
|
Plus ça change, plus c'est la même chose: The developmental evolution of flowers. Curr Top Dev Biol 2019; 131:211-238. [DOI: 10.1016/bs.ctdb.2018.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Amini S, Alias H, Aizat-Juhari MA, Mat-Isa MN, Adam JH, Goh HH, Wan KL. RNA-seq data from different developmental stages of Rafflesia cantleyi floral buds. GENOMICS DATA 2017; 14:5-6. [PMID: 28761813 PMCID: PMC5524293 DOI: 10.1016/j.gdata.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 11/16/2022]
Abstract
Rafflesia cantleyi, known as one of the world's largest flowers, is a specialised holoparasite due to dramatic morphological modifications. It possesses highly reduced vegetative structure and only appears as a flower for sexual reproduction. Moreover, it has an unusual life cycle in that its floral bud development takes up to nine months. In order to fully understand the highly modified floral organ structure and long life cycle of R. cantleyi, we used Illumina sequencing technology (HiSeq) for sequence generation followed by de novo assembly of sequence reads. We obtained the RNA-seq data from three different stages of floral bud, representing the early, mid and advanced developmental stages. These data are available via BioProject accession number PRJNA378435. More than 10.3 Gb raw sequence data were generated, corresponding to 102,203,042 raw reads. Following removal of low-quality reads and trimming of adapter sequences, a total of 91,638,836 reads were obtained. De novo assembly of these sequences using Trinity resulted in 89,690 unique transcripts with an N50 of 1653 bp. The obtained transcriptomic data will be useful for further study to understand the molecular interactions that result in R. cantleyi floral development.
Collapse
Affiliation(s)
- Safoora Amini
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Halimah Alias
- Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Mohd Afiq Aizat-Juhari
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohd-Noor Mat-Isa
- Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Jumaat Haji Adam
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Kiew-Lian Wan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
14
|
Strelin MM, Benitez-Vieyra S, Ackermann M, Cocucci AA. Flower reshaping in the transition to hummingbird pollination in Loasaceae subfam. Loasoideae despite absence of corolla tubes or spurs. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9826-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Prenner G, Cardoso D, Zartman CE, de Queiroz LP. Flowers of the early-branching papilionoid legume Petaladenium urceoliferum display unique morphological and ontogenetic features. AMERICAN JOURNAL OF BOTANY 2015; 102:1780-1793. [PMID: 26526814 DOI: 10.3732/ajb.1500348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Floral development can help to shed light on puzzling features across flowering plants. The enigmatic Amazonian monospecific genus Petaladenium of the legume family (Leguminosae) had rarely been collected and only recently became available for ontogenetic studies. The fimbriate-glandular wing petals of P. urceoliferum are unique among the more than 19000 legume species. Ontogenetic data illuminate the systematic position of the genus and foster our understanding on floral evolution during the early diversification of the papilionoid legumes. METHODS Flower buds were collected in the field, fixed in 70% ethanol, and investigated using scanning electron microscopy (SEM). Results were compared with existing material from early-diverging papilionoid legumes. KEY RESULTS Formation of sepals and petals shows bidirectional tendencies. Stamens arise in two whorls, and the single carpel arises concomitantly with the outer stamen whorl. Gland formation starts early on the edges of the wing petals. The carpel reopens for a short time when the initiation of ovules is visible. Stomata at the base of the hypanthium indicate that the flower functions like other standard flag blossoms. CONCLUSIONS The floral ontogeny confirms the close affinity of P. urceoliferum with the florally heterogeneous, early-diverging papilionoid Amburaneae clade. The results strengthen the theory of a distinct experimental phase among early-branching papilionoid legumes during which a wider range of floral morphologies arose. Polysymmetry, monosymmetry, variable organ numbers, and a wide range of ontogenetic patterns laid the foundation for a successful canalization toward the more restricted but well-adapted dorsiventral papilionoid flag blossom.
Collapse
Affiliation(s)
- Gerhard Prenner
- Royal Botanic Gardens, Kew, Jodrell Laboratory, Richmond, Surrey, TW9 3DS, UK
| | - Domingos Cardoso
- Departamento de Botânica, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Ondina 40170-115, Salvador, Bahia, Brazil Programa de Pós-Graduação em Botânica (PPGBot), Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, Novo Horizonte 44036-900, Feira de Santana, Bahia, Brazil
| | - Charles E Zartman
- Instituto Nacional de Pesquisas da Amazônia (INPA), Department of Biodiversity, Av. André Araújo, 2936, Petrópolis 69060-001, Manaus, Amazonas, Brazil
| | - Luciano P de Queiroz
- Programa de Pós-Graduação em Botânica (PPGBot), Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, Novo Horizonte 44036-900, Feira de Santana, Bahia, Brazil
| |
Collapse
|
16
|
Gasper ALD, Uhlmann A, Sevegnani L, Meyer L, Lingner DV, Verdi M, Stival-Santos A, Sobral M, Vibrans AC. Floristic and Forest Inventory of Santa Catarina: species of evergreen rainforest. RODRIGUÉSIA 2014. [DOI: 10.1590/2175-7860201465401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study presents the list of species of Evergreen Rainforest in Santa Catarina, based on 202 sample units established by the Floristic and Forest Inventory of Santa Catarina, in order to study the tree/shrub component and regeneration in addition to a floristic survey outside the sample units. We recorded 1,473 species: three gymnosperms and 1,470 angiosperms, that totalize 19% of all species quoted for this Brazilian forest type. The most species-rich families were Orchidaceae (143 species), Myrtaceae (142), Asteraceae (98), Melastomataceae (86), Fabaceae (78), Rubiaceae (65), Solanaceae (61), Bromeliaceae (57), Piperaceae (56), and Lauraceae (52). Among them are eight species listed in the Official List of Endangered Species of the Brazilian Flora: Aechmea blumenavii, Araucaria angustifolia, Billbergia alfonsijoannis, Euterpe edulis, Heliconia farinosa, Ocotea catharinensis, O. odorifera and, O. porosa.
Collapse
|
17
|
Nikolov LA, Tomlinson PB, Manickam S, Endress PK, Kramer EM, Davis CC. Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world's largest flowers. ANNALS OF BOTANY 2014; 114:233-42. [PMID: 24942001 PMCID: PMC4111398 DOI: 10.1093/aob/mcu114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/02/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Species in the holoparasitic plant family Rafflesiaceae exhibit one of the most highly modified vegetative bodies in flowering plants. Apart from the flower shoot and associated bracts, the parasite is a mycelium-like endophyte living inside their grapevine hosts. This study provides a comprehensive treatment of the endophytic vegetative body for all three genera of Rafflesiaceae (Rafflesia, Rhizanthes and Sapria), and reports on the cytology and development of the endophyte, including its structural connection to the host, shedding light on the poorly understood nature of this symbiosis. METHODS Serial sectioning and staining with non-specific dyes, periodic-Schiff's reagent and aniline blue were employed in order to characterize the structure of the endophyte across a phylogenetically diverse sampling. KEY RESULTS A previously identified difference in the nuclear size between Rafflesiaceae endophytes and their hosts was used to investigate the morphology and development of the endophytic body. The endophytes generally comprise uniseriate filaments oriented radially within the host root. The emergence of the parasite from the host during floral development is arrested in some cases by an apparent host response, but otherwise vegetative growth does not appear to elicit suppression by the host. CONCLUSIONS Rafflesiaceae produce greatly reduced and modified vegetative bodies even when compared with the other holoparasitic angiosperms once grouped with Rafflesiaceae, which possess some vegetative differentiation. Based on previous studies of seeds together with these findings, it is concluded that the endophyte probably develops directly from a proembryo, and not from an embryo proper. Similarly, the flowering shoot arises directly from the undifferentiated endophyte. These filaments produce a protocorm in which a shoot apex originates endogenously by formation of a secondary morphological surface. This degree of modification to the vegetative body is exceptional within angiosperms and warrants additional investigation. Furthermore, the study highlights a mechanical isolation mechanism by which the host may defend itself from the parasite.
Collapse
Affiliation(s)
- Lachezar A Nikolov
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA 02138, USA
| | - P B Tomlinson
- The Kampong, National Tropical Botanical Garden, 4013 Douglas Road, Miami, FL 33133, USA
| | - Sugumaran Manickam
- Rimba Ilmu Botanic Garden, Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia and
| | - Peter K Endress
- Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA 02138, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA 02138, USA
| |
Collapse
|
18
|
Nikolov LA, Staedler YM, Manickam S, Schönenberger J, Endress PK, Kramer EM, Davis CC. Floral structure and development in Rafflesiaceae with emphasis on their exceptional gynoecia. AMERICAN JOURNAL OF BOTANY 2014; 101:225-243. [PMID: 24509798 DOI: 10.3732/ajb.1400009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PREMISE OF THE STUDY The holoparasitic plant family Rafflesiaceae include the world's largest flowers. Despite their iconic status, relatively little is known about the morphology and development of their flowers. A recent study clarified the organization of the outer (sterile) floral organs, surprisingly revealing that their distinctive floral chambers arose via different developmental pathways in the two major genera of the family. Here, we expand that research to investigate the structure and development of the reproductive organs of Rafflesiaceae. METHODS Serial sectioning, scanning electron microscopy, and x-ray tomography of floral buds were employed to reconstruct the structure and development of all three Rafflesiaceae genera. KEY RESULTS Unlike most angiosperms, which form their shoot apex from the primary morphological surface, the shoot apex of Rafflesiaceae instead forms secondarily via internal cell separation (schizogeny) along the distal boundary of the host-parasite interface. Similarly, the radially directed ovarial clefts of the gynoecium forms via schizogeny within solid tissue, and no carpels are initiated from the floral apex. CONCLUSIONS The development of the shoot apex and gynoecium of Rafflesiaceae are highly unusual. Although secondary formation of the morphological surface from the shoot apex has been documented in other plant groups, secondary derivation of the inner gynoecium surface is otherwise unknown. Both features are likely synapomorphies of Rafflesiaceae. The secondary derivation of the shoot apex may protect the developing floral shoot as it emerges from within dense host tissue. The secondary formation of the ovarial clefts may generate the extensive placental area necessary to produce hundreds of thousands of ovules.
Collapse
Affiliation(s)
- Lachezar A Nikolov
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, Massachusetts 02138 USA
| | | | | | | | | | | | | |
Collapse
|