1
|
Foster MP, Benedek MJ, Billings TD, Montgomery JS. Dynamics in Cre-loxP site-specific recombination. Curr Opin Struct Biol 2024; 88:102878. [PMID: 39029281 PMCID: PMC11616326 DOI: 10.1016/j.sbi.2024.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/21/2024]
Abstract
Cre recombinase is a phage-derived enzyme that has found utility for precise manipulation of DNA sequences. Cre recognizes and recombines pairs of loxP sequences characterized by an inverted repeat and asymmetric spacer. Cre cleaves and religates its DNA targets such that error-prone repair pathways are not required to generate intact DNA products. Major obstacles to broader applications are lack of knowledge of how Cre recognizes its targets, and how its activity is controlled. The picture emerging from high resolution methods is that the dynamic properties of both the enzyme and its DNA target are important determinants of its activity in both sequence recognition and DNA cleavage. Improved understanding of the role of dynamics in the key steps along the pathway of Cre-loxP recombination should significantly advance our ability to both redirect Cre to new sequences and to control its DNA cleavage activity in the test tube and in cells.
Collapse
Affiliation(s)
- Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| | - Matthew J Benedek
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Tyler D Billings
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Joyeux M. Tethered Particle Motion Technique in Crowded Media: Compaction of DNA by Globular Macromolecules. J Phys Chem B 2024; 128:7227-7236. [PMID: 38986040 DOI: 10.1021/acs.jpcb.4c03033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Tethered Particle Motion (TPM) is a single molecule technique, which consists in tracking the motion of a nanoparticle (NP) immersed in a fluid and tethered to a glass surface by a DNA molecule. The present work addresses the question of the applicability of TPM to fluids which contain crowders at volume fractions ranging from that of the nucleoid of living bacteria (around 30%) up to the jamming threshold (around 66%). In particular, we were interested in determining whether TPM can be used to characterize the compaction of DNA by globular crowders. To this end, extensive Brownian Dynamics simulations were performed with a specifically built coarse-grained model. Analysis of the simulations reveals several effects not observed in dilute media, which impose constraints on the TPM setup. In particular, the Tethered Fluorophore Motion (TFM) technique, which consists in replacing the NP by a much smaller fluorophore, is probably better suited than standard TPM. Moreover, a sample preparation technique which does not involve hydrophilic patches may be required. Finally, the use of a DNA brush may be needed to achieve DNA concentrations close to in vivo ones.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique, CNRS and Université Grenoble Alpes, 38400 St Martin d'Hères, France
| |
Collapse
|
3
|
Cornet F, Blanchais C, Dusfour-Castan R, Meunier A, Quebre V, Sekkouri Alaoui H, Boudsoq F, Campos M, Crozat E, Guynet C, Pasta F, Rousseau P, Ton Hoang B, Bouet JY. DNA Segregation in Enterobacteria. EcoSal Plus 2023; 11:eesp00382020. [PMID: 37220081 PMCID: PMC10729935 DOI: 10.1128/ecosalplus.esp-0038-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/13/2023] [Indexed: 01/28/2024]
Abstract
DNA segregation ensures that cell offspring receive at least one copy of each DNA molecule, or replicon, after their replication. This important cellular process includes different phases leading to the physical separation of the replicons and their movement toward the future daughter cells. Here, we review these phases and processes in enterobacteria with emphasis on the molecular mechanisms at play and their controls.
Collapse
Affiliation(s)
- François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Corentin Blanchais
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Romane Dusfour-Castan
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Alix Meunier
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Valentin Quebre
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Hicham Sekkouri Alaoui
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - François Boudsoq
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Manuel Campos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Estelle Crozat
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Catherine Guynet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Franck Pasta
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Bao Ton Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| |
Collapse
|
4
|
Kopu̅stas A, Ivanovaitė Š, Rakickas T, Pocevičiu̅tė E, Paksaitė J, Karvelis T, Zaremba M, Manakova E, Tutkus M. Oriented Soft DNA Curtains for Single-Molecule Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3428-3437. [PMID: 33689355 PMCID: PMC8280724 DOI: 10.1021/acs.langmuir.1c00066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Over the past 20 years, single-molecule methods have become extremely important for biophysical studies. These methods, in combination with new nanotechnological platforms, can significantly facilitate experimental design and enable faster data acquisition. A nanotechnological platform, which utilizes a flow-stretch of immobilized DNA molecules, called DNA Curtains, is one of the best examples of such combinations. Here, we employed new strategies to fabricate a flow-stretch assay of stably immobilized and oriented DNA molecules using a protein template-directed assembly. In our assay, a protein template patterned on a glass coverslip served for directional assembly of biotinylated DNA molecules. In these arrays, DNA molecules were oriented to one another and maintained extended by either single- or both-end immobilization to the protein templates. For oriented both-end DNA immobilization, we employed heterologous DNA labeling and protein template coverage with the antidigoxigenin antibody. In contrast to single-end immobilization, both-end immobilization does not require constant buffer flow for keeping DNAs in an extended configuration, allowing us to study protein-DNA interactions at more controllable reaction conditions. Additionally, we increased the immobilization stability of the biotinylated DNA molecules using protein templates fabricated from traptavidin. Finally, we demonstrated that double-tethered Soft DNA Curtains can be used in nucleic acid-interacting protein (e.g., CRISPR-Cas9) binding assay that monitors the binding location and position of individual fluorescently labeled proteins on DNA.
Collapse
Affiliation(s)
- Aurimas Kopu̅stas
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Šaru̅nė Ivanovaitė
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
| | - Tomas Rakickas
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
| | - Ernesta Pocevičiu̅tė
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Justė Paksaitė
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Tautvydas Karvelis
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Mindaugas Zaremba
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Elena Manakova
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Marijonas Tutkus
- Departments
of Molecular Compound Physics, Nanoengineering, and Functional Materials and Electronics, Center for Physical Sciences and Technology, Savanoriu 231, Vilnius LT-02300, Lithuania
- Life
Sciences Center, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
5
|
Lin DL, Traglia GM, Baker R, Sherratt DJ, Ramirez MS, Tolmasky ME. Functional Analysis of the Acinetobacter baumannii XerC and XerD Site-Specific Recombinases: Potential Role in Dissemination of Resistance Genes. Antibiotics (Basel) 2020; 9:E405. [PMID: 32668667 PMCID: PMC7399989 DOI: 10.3390/antibiotics9070405] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022] Open
Abstract
Modules composed of a resistance gene flanked by Xer site-specific recombination sites, the vast majority of which were found in Acinetobacter baumannii, are thought to behave as elements that facilitate horizontal dissemination. The A. baumannii xerC and xerD genes were cloned, and the recombinant clones used to complement the cognate Escherichia coli mutants. The complemented strains supported the resolution of plasmid dimers, and, as is the case with E. coli and Klebsiella pneumoniae plasmids, the activity was enhanced when the cells were grown in a low osmolarity growth medium. Binding experiments showed that the partially purified A. baumannii XerC and XerD proteins (XerCAb and XerDAb) bound synthetic Xer site-specific recombination sites, some of them with a nucleotide sequence deduced from existing A. baumannii plasmids. Incubation with suicide substrates resulted in the covalent attachment of DNA to a recombinase, probably XerCAb, indicating that the first step in the recombination reaction took place. The results described show that XerCAb and XerDAb are functional proteins and support the hypothesis that they participate in horizontal dissemination of resistant genes among bacteria.
Collapse
Affiliation(s)
- David L. Lin
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA; (D.L.L.); (M.S.R.)
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (R.B.); (D.J.S.)
| | - German M. Traglia
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República (UDeLaR), Montevideo 11600, Uruguay;
| | - Rachel Baker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (R.B.); (D.J.S.)
| | - David J. Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (R.B.); (D.J.S.)
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA; (D.L.L.); (M.S.R.)
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA; (D.L.L.); (M.S.R.)
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; (R.B.); (D.J.S.)
| |
Collapse
|
6
|
Tutkus M, Rakickas T, Kopu Stas A, Ivanovaitė ŠN, Venckus O, Navikas V, Zaremba M, Manakova E, Valiokas RN. Fixed DNA Molecule Arrays for High-Throughput Single DNA-Protein Interaction Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5921-5930. [PMID: 30955328 DOI: 10.1021/acs.langmuir.8b03424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The DNA Curtains assay is a recently developed experimental platform for protein-DNA interaction studies at the single-molecule level that is based on anchoring and alignment of DNA fragments. The DNA Curtains so far have been made by using chromium barriers and fluid lipid bilayer membranes, which makes such a specialized assay technically challenging and relatively unstable. Herein, we report on an alternative strategy for DNA arraying for analysis of individual DNA-protein interactions. It relies on stable DNA tethering onto nanopatterned protein templates via high affinity molecular recognition. We describe fabrication of streptavidin templates (line features as narrow as 200 nm) onto modified glass coverslips by combining surface chemistry, atomic force microscopy (AFM), and soft lithography techniques with affinity-driven assembly. We have employed such chips for arraying single- and double-tethered DNA strands, and we characterized the obtained molecular architecture: we evaluated the structural characteristics and specific versus nonspecific binding of fluorescence-labeled DNA using AFM and total internal reflection fluorescence microscopy. We demonstrate the feasibility of our DNA molecule arrays for short single-tethered as well as for lambda single- and double-tethered DNA. The latter type of arrays proved very suitable for localization of single DNA-protein interactions employing restriction endonucleases. The presented molecular architecture and facile method of fabrication of our nanoscale platform does not require clean room equipment, and it offers advanced functional studies of DNA machineries and the development of future nanodevices.
Collapse
Affiliation(s)
| | | | - Aurimas Kopu Stas
- Vilnius University, Life Sciences Center, Institute of Biotechnology , Sauletekio av. 7 , Vilnius LT-10257 , Lithuania
| | | | | | | | - Mindaugas Zaremba
- Vilnius University, Life Sciences Center, Institute of Biotechnology , Sauletekio av. 7 , Vilnius LT-10257 , Lithuania
| | - Elena Manakova
- Vilnius University, Life Sciences Center, Institute of Biotechnology , Sauletekio av. 7 , Vilnius LT-10257 , Lithuania
| | | |
Collapse
|
7
|
Amado E, Muth G, Arechaga I, Cabezón E. The FtsK-like motor TraB is a DNA-dependent ATPase that forms higher-order assemblies. J Biol Chem 2019; 294:5050-5059. [PMID: 30723158 DOI: 10.1074/jbc.ra119.007459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/01/2019] [Indexed: 11/06/2022] Open
Abstract
TraB is an FtsK-like DNA translocase responsible for conjugative plasmid transfer in mycelial Streptomyces Unlike other conjugative systems, which depend on a type IV secretion system, Streptomyces requires only TraB protein to transfer the plasmid as dsDNA. The γ-domain of this protein specifically binds to repeated 8-bp motifs on the plasmid sequence, following a mechanism that is reminiscent of the FtsK/SpoIIIE chromosome segregation system. In this work, we purified and characterized the enzymatic activity of TraB, revealing that it is a DNA-dependent ATPase that is highly stimulated by dsDNA substrates. Interestingly, we found that unlike the SpoIIIE protein, the γ-domain of TraB does not confer sequence-specific ATPase stimulation. We also found that TraB binds G-quadruplex DNA structures with higher affinity than TraB-recognition sequences (TRSs). An EM-based structural analysis revealed that TraB tends to assemble as large complexes comprising four TraB hexamers, which might be a prerequisite for DNA translocation across cell membranes. In summary, our findings shed light on the molecular mechanism used by the DNA-translocating motor TraB, which may be shared by other membrane-associated machineries involved in DNA binding and translocation.
Collapse
Affiliation(s)
- Eric Amado
- From the Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain and
| | - Günther Muth
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, 72074 Tuebingen, Germany
| | - Ignacio Arechaga
- From the Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain and
| | - Elena Cabezón
- From the Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain and
| |
Collapse
|
8
|
Tethered multifluorophore motion reveals equilibrium transition kinetics of single DNA double helices. Proc Natl Acad Sci U S A 2018; 115:E7512-E7521. [PMID: 30037988 PMCID: PMC6094131 DOI: 10.1073/pnas.1800585115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding cellular functions and dysfunctions often begins with quantifying the interactions between the binding partners involved in the processes. Learning about the kinetics of the interactions is of particular importance to understand the dynamics of cellular processes. We created a tethered multifluorophore motion assay using DNA origami that enables over 1-hour-long recordings of the statistical binding and unbinding of single pairs of biomolecules directly in equilibrium. The experimental concept is simple and the data interpretation is very direct, which makes the system easy to use for a wide variety of researchers. Due to the modularity and addressability of the DNA origami-based assay, our system may be readily adapted to study various other molecular interactions. We describe a tethered multifluorophore motion assay based on DNA origami for revealing bimolecular reaction kinetics on the single-molecule level. Molecular binding partners may be placed at user-defined positions and in user-defined stoichiometry; and binding states are read out by tracking the motion of quickly diffusing fluorescent reporter units. Multiple dyes per reporter unit enable singe-particle observation for more than 1 hour. We applied the system to study in equilibrium reversible hybridization and dissociation of complementary DNA single strands as a function of tether length, cation concentration, and sequence. We observed up to hundreds of hybridization and dissociation events per single reactant pair and could produce cumulative statistics with tens of thousands of binding and unbinding events. Because the binding partners per particle do not exchange, we could also detect subtle heterogeneity from molecule to molecule, which enabled separating data reflecting the actual target strand pair binding kinetics from falsifying influences stemming from chemically truncated oligonucleotides. Our data reflected that mainly DNA strand hybridization, but not strand dissociation, is affected by cation concentration, in agreement with previous results from different assays. We studied 8-bp-long DNA duplexes with virtually identical thermodynamic stability, but different sequences, and observed strongly differing hybridization kinetics. Complementary full-atom molecular-dynamics simulations indicated two opposing sequence-dependent phenomena: helical templating in purine-rich single strands and secondary structures. These two effects can increase or decrease, respectively, the fraction of strand collisions leading to successful nucleation events for duplex formation.
Collapse
|
9
|
Fan HF, Ma CH, Jayaram M. Single-Molecule Tethered Particle Motion: Stepwise Analyses of Site-Specific DNA Recombination. MICROMACHINES 2018; 9:E216. [PMID: 30424148 PMCID: PMC6187709 DOI: 10.3390/mi9050216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/25/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Tethered particle motion/microscopy (TPM) is a biophysical tool used to analyze changes in the effective length of a polymer, tethered at one end, under changing conditions. The tether length is measured indirectly by recording the Brownian motion amplitude of a bead attached to the other end. In the biological realm, DNA, whose interactions with proteins are often accompanied by apparent or real changes in length, has almost exclusively been the subject of TPM studies. TPM has been employed to study DNA bending, looping and wrapping, DNA compaction, high-order DNA⁻protein assembly, and protein translocation along DNA. Our TPM analyses have focused on tyrosine and serine site-specific recombinases. Their pre-chemical interactions with DNA cause reversible changes in DNA length, detectable by TPM. The chemical steps of recombination, depending on the substrate and the type of recombinase, may result in a permanent length change. Single molecule TPM time traces provide thermodynamic and kinetic information on each step of the recombination pathway. They reveal how mechanistically related recombinases may differ in their early commitment to recombination, reversibility of individual steps, and in the rate-limiting step of the reaction. They shed light on the pre-chemical roles of catalytic residues, and on the mechanisms by which accessory proteins regulate recombination directionality.
Collapse
Affiliation(s)
- Hsiu-Fang Fan
- Biophotonics and Molecular Imaging Center, Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan.
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
10
|
Tardin C. The mechanics of DNA loops bridged by proteins unveiled by single-molecule experiments. Biochimie 2017; 142:80-92. [PMID: 28804000 DOI: 10.1016/j.biochi.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/06/2017] [Indexed: 12/28/2022]
Abstract
Protein-induced DNA bridging and looping is a common mechanism for various and essential processes in bacterial chromosomes. This mechanism is preserved despite the very different bacterial conditions and their expected influence on the thermodynamic and kinetic characteristics of the bridge formation and stability. Over the last two decades, single-molecule techniques carried out on in vitro DNA systems have yielded valuable results which, in combination with theoretical works, have clarified the effects of different parameters of nucleoprotein complexes on the protein-induced DNA bridging and looping process. In this review, I will outline the features that can be measured for such processes with various single-molecule techniques in use in the field. I will then describe both the experimental results and the theoretical models that illuminate the contribution of the DNA molecule itself as well as that of the bridging proteins in the DNA looping mechanism at play in the nucleoid of E. coli.
Collapse
Affiliation(s)
- Catherine Tardin
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
11
|
Castillo F, Benmohamed A, Szatmari G. Xer Site Specific Recombination: Double and Single Recombinase Systems. Front Microbiol 2017; 8:453. [PMID: 28373867 PMCID: PMC5357621 DOI: 10.3389/fmicb.2017.00453] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
The separation and segregation of newly replicated bacterial chromosomes can be constrained by the formation of circular chromosome dimers caused by crossing over during homologous recombination events. In Escherichia coli and most bacteria, dimers are resolved to monomers by site-specific recombination, a process performed by two Chromosomally Encoded tyrosine Recombinases (XerC and XerD). XerCD recombinases act at a 28 bp recombination site dif, which is located at the replication terminus region of the chromosome. The septal protein FtsK controls the initiation of the dimer resolution reaction, so that recombination occurs at the right time (immediately prior to cell division) and at the right place (cell division septum). XerCD and FtsK have been detected in nearly all sequenced eubacterial genomes including Proteobacteria, Archaea, and Firmicutes. However, in Streptococci and Lactococci, an alternative system has been found, composed of a single recombinase (XerS) genetically linked to an atypical 31 bp recombination site (difSL). A similar recombination system has also been found in 𝜀-proteobacteria such as Campylobacter and Helicobacter, where a single recombinase (XerH) acts at a resolution site called difH. Most Archaea contain a recombinase called XerA that acts on a highly conserved 28 bp sequence dif, which appears to act independently of FtsK. Additionally, several mobile elements have been found to exploit the dif/Xer system to integrate their genomes into the host chromosome in Vibrio cholerae, Neisseria gonorrhoeae, and Enterobacter cloacae. This review highlights the versatility of dif/Xer recombinase systems in prokaryotes and summarizes our current understanding of homologs of dif/Xer machineries.
Collapse
Affiliation(s)
- Fabio Castillo
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, MontréalQC, Canada
| | | | - George Szatmari
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, MontréalQC, Canada
| |
Collapse
|
12
|
Bebel A, Karaca E, Kumar B, Stark WM, Barabas O. Structural snapshots of Xer recombination reveal activation by synaptic complex remodeling and DNA bending. eLife 2016; 5. [PMID: 28009253 PMCID: PMC5241119 DOI: 10.7554/elife.19706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Bacterial Xer site-specific recombinases play an essential genome maintenance role by unlinking chromosome multimers, but their mechanism of action has remained structurally uncharacterized. Here, we present two high-resolution structures of Helicobacter pylori XerH with its recombination site DNA difH, representing pre-cleavage and post-cleavage synaptic intermediates in the recombination pathway. The structures reveal that activation of DNA strand cleavage and rejoining involves large conformational changes and DNA bending, suggesting how interaction with the cell division protein FtsK may license recombination at the septum. Together with biochemical and in vivo analysis, our structures also reveal how a small sequence asymmetry in difH defines protein conformation in the synaptic complex and orchestrates the order of DNA strand exchanges. Our results provide insights into the catalytic mechanism of Xer recombination and a model for regulation of recombination activity during cell division. DOI:http://dx.doi.org/10.7554/eLife.19706.001 Similar to humans, bacteria store their genetic material in the form of DNA and arrange it into structures called chromosomes. In fact, most bacteria have a single circular chromosome. Bacteria multiply by simply dividing in two, and before that happens they must replicate their DNA so that each of the newly formed cells receives one copy of the chromosome. Occasionally, mistakes during the DNA replication process can cause the two chromosomes to become tangled with each other; this prevents them from separating into the newly formed cells. For instance, the chromosomes can become physically connected like links in a chain, or merge into one long string. This kind of tangling can result in cell death, so bacteria encode enzymes called Xer recombinases that can untangle chromosomes. These enzymes separate the chromosomes by cutting and rejoining the DNA strands in a process known as Xer recombination. Although Xer recombinases have been studied in quite some detail, many questions remain unanswered about how they work. How do Xer recombinases interact with DNA? How do they ensure they only work on tangled chromosomes? And how does a protein called FtsK ensure that Xer recombination takes place at the correct time and place? Bebel et al. have now studied the Xer recombinase from a bacterium called Helicobacter pylori, which causes stomach ulcers, using a technique called X-ray crystallography. This enabled the three-dimensional structure of the Xer recombinase to be visualized as it interacted with DNA to form a Xer-DNA complex. Structures of the enzyme before and after it cut the DNA show that Xer-DNA complexes first assemble in an inactive state and are then activated by large conformational changes that make the DNA bend. Bebel et al. propose that the FtsK protein might trigger these changes and help to bend the DNA as it activates Xer recombination. Further work showed that the structures could be used to model and understand Xer recombinases from other species of bacteria. The next step is to analyze how FtsK activates Xer recombinases and to see if this process is universal amongst bacteria. Understanding how this process can be interrupted could help to develop new drugs that can kill harmful bacteria. DOI:http://dx.doi.org/10.7554/eLife.19706.002
Collapse
Affiliation(s)
- Aleksandra Bebel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ezgi Karaca
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Banushree Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Orsolya Barabas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
13
|
Abstract
Cre-lox of bacteriophage P1 has become one of the most widely used tools for genetic engineering in eukaryotes. The origins of this tool date to more than 30 years ago when Nat L. Sternberg discovered the recombinase, Cre, and its specific locus of crossover, lox, while studying the maintenance of bacteriophage P1 as a stable plasmid. Recombinations mediated by Cre assist in cyclization of the DNA of infecting phage and in resolution of prophage multimers created by generalized recombination. Early in vitro work demonstrated that, although it shares similarities with the well-characterized bacteriophage λ integration, Cre-lox is in many ways far simpler in its requirements for carrying out recombination. These features would prove critical for its development as a powerful and versatile tool in genetic engineering. We review the history of the discovery and characterization of Cre-lox and touch upon the present direction of Cre-lox research.
Collapse
Affiliation(s)
- Michael Yarmolinsky
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892;
| | | |
Collapse
|
14
|
Activation of Xer-recombination at dif: structural basis of the FtsKγ-XerD interaction. Sci Rep 2016; 6:33357. [PMID: 27708355 PMCID: PMC5052618 DOI: 10.1038/srep33357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/22/2016] [Indexed: 11/08/2022] Open
Abstract
Bacterial chromosomes are most often circular DNA molecules. This can produce a topological problem; a genetic crossover from homologous recombination results in dimerization of the chromosome. A chromosome dimer is lethal unless resolved. A site-specific recombination system catalyses this dimer-resolution reaction at the chromosomal site dif. In Escherichia coli, two tyrosine-family recombinases, XerC and XerD, bind to dif and carry out two pairs of sequential strand exchange reactions. However, what makes the reaction unique among site-specific recombination reactions is that the first step, XerD-mediated strand exchange, relies on interaction with the very C-terminus of the FtsK DNA translocase. FtsK is a powerful molecular motor that functions in cell division, co-ordinating division with clearing chromosomal DNA from the site of septation and also acts to position the dif sites for recombination. This is a model system for unlinking, separating and segregating large DNA molecules. Here we describe the molecular detail of the interaction between XerD and FtsK that leads to activation of recombination as deduced from a co-crystal structure, biochemical and in vivo experiments. FtsKγ interacts with the C-terminal domain of XerD, above a cleft where XerC is thought to bind. We present a model for activation of recombination based on structural data.
Collapse
|
15
|
|
16
|
Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information. Microbiol Spectr 2016; 2. [PMID: 26104463 DOI: 10.1128/microbiolspec.mdna3-0056-2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two related tyrosine recombinases, XerC and XerD, are encoded in the genome of most bacteria where they serve to resolve dimers of circular chromosomes by the addition of a crossover at a specific site, dif. From a structural and biochemical point of view they belong to the Cre resolvase family of tyrosine recombinases. Correspondingly, they are exploited for the resolution of multimers of numerous plasmids. In addition, they are exploited by mobile DNA elements to integrate into the genome of their host. Exploitation of Xer is likely to be advantageous to mobile elements because the conservation of the Xer recombinases and of the sequence of their chromosomal target should permit a quite easy extension of their host range. However, it requires means to overcome the cellular mechanisms that normally restrict recombination to dif sites harbored by a chromosome dimer and, in the case of integrative mobile elements, to convert dedicated tyrosine resolvases into integrases.
Collapse
|
17
|
Abstract
One of the disadvantages of circular plasmids and chromosomes is their high sensitivity to rearrangements caused by homologous recombination. Odd numbers of crossing-over occurring during or after replication of a circular replicon result in the formation of a dimeric molecule in which the two copies of the replicon are fused. If they are not converted back to monomers, the dimers of replicons may fail to correctly segregate at the time of cell division. Resolution of multimeric forms of circular plasmids and chromosomes is mediated by site-specific recombination, and the enzymes that catalyze this type of reaction fall into two families of proteins: the serine and tyrosine recombinase families. Here we give an overview of the variety of site-specific resolution systems found on circular plasmids and chromosomes.
Collapse
|
18
|
Tethered fluorophore motion: studying large DNA conformational changes by single-fluorophore imaging. Biophys J 2015; 107:1205-1216. [PMID: 25185556 DOI: 10.1016/j.bpj.2014.07.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/13/2014] [Accepted: 07/09/2014] [Indexed: 11/20/2022] Open
Abstract
We have previously introduced tethered fluorophore motion (TFM), a single-molecule fluorescence technique that monitors the effective length of a biopolymer such as DNA. TFM uses the same principles as tethered particle motion (TPM) but employs a single fluorophore in place of the bead, allowing TFM to be combined with existing fluorescence techniques on a standard fluorescence microscope. TFM has been previously been used to reveal the mechanism of two site-specific recombinase systems, Cre-loxP and XerCD-dif. In this work, we characterize TFM, focusing on the theoretical basis and potential applications of the technique. Since TFM is limited in observation time and photon count by photobleaching, we present a description of the sources of noise in TFM. Comparing this with Monte Carlo simulations and experimental data, we show that length changes of 100 bp of double-stranded DNA are readily distinguishable using TFM, making it comparable with TPM. We also show that the commonly recommended pixel size for single-molecule fluorescence approximately optimizes signal to noise for TFM experiments, thus enabling facile combination of TFM with other fluorescence techniques, such as Förster resonance energy transfer (FRET). Finally, we apply TFM to determine the polymerization rate of the Klenow fragment of DNA polymerase I, and we demonstrate its combination with FRET to observe synapsis formation by Cre using excitation by a single laser. We hope that TFM will be a useful addition to the single-molecule toolkit, providing excellent insight into protein-nucleic acid interactions.
Collapse
|
19
|
Assembly, translocation, and activation of XerCD-dif recombination by FtsK translocase analyzed in real-time by FRET and two-color tethered fluorophore motion. Proc Natl Acad Sci U S A 2015; 112:E5133-41. [PMID: 26324908 DOI: 10.1073/pnas.1510814112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The FtsK dsDNA translocase functions in bacterial chromosome unlinking by activating XerCD-dif recombination in the replication terminus region. To analyze FtsK assembly and translocation, and the subsequent activation of XerCD-dif recombination, we extended the tethered fluorophore motion technique, using two spectrally distinct fluorophores to monitor two effective lengths along the same tethered DNA molecule. We observed that FtsK assembled stepwise on DNA into a single hexamer, and began translocation rapidly (∼ 0.25 s). Without extruding DNA loops, single FtsK hexamers approached XerCD-dif and resided there for ∼ 0.5 s irrespective of whether XerCD-dif was synapsed or unsynapsed. FtsK then dissociated, rather than reversing. Infrequently, FtsK activated XerCD-dif recombination when it encountered a preformed synaptic complex, and dissociated before the completion of recombination, consistent with each FtsK-XerCD-dif encounter activating only one round of recombination.
Collapse
|
20
|
Crozat E, Rousseau P, Fournes F, Cornet F. The FtsK family of DNA translocases finds the ends of circles. J Mol Microbiol Biotechnol 2015; 24:396-408. [PMID: 25732341 DOI: 10.1159/000369213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A global view of bacterial chromosome choreography during the cell cycle is emerging, highlighting as a next challenge the description of the molecular mechanisms and factors involved. Here, we review one such factor, the FtsK family of DNA translocases. FtsK is a powerful and fast translocase that reads chromosome polarity. It couples segregation of the chromosome with cell division and controls the last steps of segregation in time and space. The second model protein of the family SpoIIIE acts in the transfer of the Bacillus subtilis chromosome during sporulation. This review focuses on the molecular mechanisms used by FtsK and SpoIIIE to segregate chromosomes with emphasis on the latest advances and open questions.
Collapse
Affiliation(s)
- Estelle Crozat
- Laboratoire de Microbiologie et de Génétique Moléculaires, CNRS, and Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | | | | |
Collapse
|
21
|
Bouet JY, Stouf M, Lebailly E, Cornet F. Mechanisms for chromosome segregation. Curr Opin Microbiol 2014; 22:60-5. [DOI: 10.1016/j.mib.2014.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022]
|
22
|
XerD-mediated FtsK-independent integration of TLCϕ into the Vibrio cholerae genome. Proc Natl Acad Sci U S A 2014; 111:16848-53. [PMID: 25385643 DOI: 10.1073/pnas.1404047111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As in most bacteria, topological problems arising from the circularity of the two Vibrio cholerae chromosomes, chrI and chrII, are resolved by the addition of a crossover at a specific site of each chromosome, dif, by two tyrosine recombinases, XerC and XerD. The reaction is under the control of a cell division protein, FtsK, which activates the formation of a Holliday Junction (HJ) intermediate by XerD catalysis that is resolved into product by XerC catalysis. Many plasmids and phages exploit Xer recombination for dimer resolution and for integration, respectively. In all cases so far described, they rely on an alternative recombination pathway in which XerC catalyzes the formation of a HJ independently of FtsK. This is notably the case for CTXϕ, the cholera toxin phage. Here, we show that in contrast, integration of TLCϕ, a toxin-linked cryptic satellite phage that is almost always found integrated at the chrI dif site before CTXϕ, depends on the formation of a HJ by XerD catalysis, which is then resolved by XerC catalysis. The reaction nevertheless escapes the normal cellular control exerted by FtsK on XerD. In addition, we show that the same reaction promotes the excision of TLCϕ, along with any CTXϕ copy present between dif and its left attachment site, providing a plausible mechanism for how chrI CTXϕ copies can be eliminated, as occurred in the second wave of the current cholera pandemic.
Collapse
|
23
|
Besprozvannaya M, Burton BM. Do the same traffic rules apply? Directional chromosome segregation by SpoIIIE and FtsK. Mol Microbiol 2014; 93:599-608. [PMID: 25040776 DOI: 10.1111/mmi.12708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2014] [Indexed: 11/28/2022]
Abstract
Over a decade of studies have tackled the question of how FtsK/SpoIIIE translocases establish and maintain directional DNA translocation during chromosome segregation in bacteria. FtsK/SpoIIIE translocases move DNA in a highly processive, directional manner, where directionality is facilitated by sequences on the substrate DNA molecules that are being transported. In recent years, structural, biochemical, single-molecule and high-resolution microscopic studies have provided new insight into the mechanistic details of directional DNA segregation. Out of this body of work, a series of models have emerged and, ultimately, yielded two seemingly opposing models: the loading model and the target search model. We review these recent mechanistic insights into directional DNA movement and discuss the data that may serve to unite these suggested models, as well as propose future directions that may ultimately solve the debate.
Collapse
Affiliation(s)
- Marina Besprozvannaya
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | | |
Collapse
|
24
|
Lee JY, Finkelstein IJ, Arciszewska LK, Sherratt DJ, Greene EC. Single-molecule imaging of FtsK translocation reveals mechanistic features of protein-protein collisions on DNA. Mol Cell 2014; 54:832-43. [PMID: 24768536 PMCID: PMC4048639 DOI: 10.1016/j.molcel.2014.03.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/06/2014] [Accepted: 03/14/2014] [Indexed: 11/21/2022]
Abstract
In physiological settings, DNA translocases will encounter DNA-bound proteins, which must be dislodged or bypassed to allow continued translocation. FtsK is a bacterial translocase that promotes chromosome dimer resolution and decatenation by activating XerCD-dif recombination. To better understand how translocases act in crowded environments, we used single-molecule imaging to visualize FtsK in real time as it collided with other proteins. We show that FtsK can push, evict, and even bypass DNA-bound proteins. The primary factor dictating the outcome of collisions was the relative affinity of the proteins for their specific binding sites. Importantly, protein-protein interactions between FtsK and XerD help prevent removal of XerCD from DNA by promoting rapid reversal of FtsK. Finally, we demonstrate that RecBCD always overwhelms FtsK when these two motor proteins collide while traveling along the same DNA molecule, indicating that RecBCD is capable of exerting a much greater force than FtsK when translocating along DNA.
Collapse
Affiliation(s)
- Ja Yil Lee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ilya J Finkelstein
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Lidia K Arciszewska
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
25
|
Farooq S, Fijen C, Hohlbein J. Studying DNA-protein interactions with single-molecule Förster resonance energy transfer. PROTOPLASMA 2014; 251:317-32. [PMID: 24374460 DOI: 10.1007/s00709-013-0596-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 05/21/2023]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) has emerged as a powerful tool for elucidating biological structure and mechanisms on the molecular level. Here, we focus on applications of smFRET to study interactions between DNA and enzymes such as DNA and RNA polymerases. SmFRET, used as a nanoscopic ruler, allows for the detection and precise characterisation of dynamic and rarely occurring events, which are otherwise averaged out in ensemble-based experiments. In this review, we will highlight some recent developments that provide new means of studying complex biological systems either by combining smFRET with force-based techniques or by using data obtained from smFRET experiments as constrains for computer-aided modelling.
Collapse
Affiliation(s)
- Shazia Farooq
- Laboratory of Biophysics, Wageningen UR, Wageningen, The Netherlands
| | | | | |
Collapse
|