1
|
Li CY, Cao HY, Payet RD, Todd JD, Zhang YZ. Dimethylsulfoniopropionate (DMSP): From Biochemistry to Global Ecological Significance. Annu Rev Microbiol 2024; 78:513-532. [PMID: 39231449 DOI: 10.1146/annurev-micro-041222-024055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Dimethylsulfoniopropionate (DMSP) is one of Earth's most abundant organosulfur compounds with important roles in stress tolerance, chemotaxis, global carbon and sulfur cycling, and climate-active gas production. Diverse marine prokaryotes and eukaryotes produce DMSP via three known pathways (methylation, transamination, and decarboxylation) and metabolize DMSP via three further pathways (demethylation, cleavage, and oxidation). Over 20 key enzymes from these pathways have been identified that demonstrate the biodiversity and importance of DMSP cycling. The last dozen years have seen significant changes in our understanding of the enzymology and molecular mechanisms of these DMSP cycling enzymes through the application of biochemistry and structural biology. This has yielded more than 10 crystal structures and, in many cases, detailed explanations as to how and why organisms synthesis and metabolize DMSP. In this review, we describe recent progress in biochemical and mechanistic understandings of DMSP synthesis and metabolism, highlighting the important knowledge gleaned and current challenges that warrant further exploration.
Collapse
Affiliation(s)
- Chun-Yang Li
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
- MOE Key Laboratory of Evolution and Marine Biodiversity; Frontiers Science Center for Deep Ocean Multispheres and Earth System; and College of Marine Life Sciences, Ocean University of China, Qingdao, China;
| | - Hai-Yan Cao
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
- MOE Key Laboratory of Evolution and Marine Biodiversity; Frontiers Science Center for Deep Ocean Multispheres and Earth System; and College of Marine Life Sciences, Ocean University of China, Qingdao, China;
| | - Rocky D Payet
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- MOE Key Laboratory of Evolution and Marine Biodiversity; Frontiers Science Center for Deep Ocean Multispheres and Earth System; and College of Marine Life Sciences, Ocean University of China, Qingdao, China;
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China;
- MOE Key Laboratory of Evolution and Marine Biodiversity; Frontiers Science Center for Deep Ocean Multispheres and Earth System; and College of Marine Life Sciences, Ocean University of China, Qingdao, China;
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
2
|
Li J, Todd J, Yu Z. The production of dimethylsulfoniopropionate by bacteria with mmtN linked to non-ribosomal peptide synthase gene. ENVIRONMENTAL TECHNOLOGY 2024; 45:5016-5024. [PMID: 37970872 DOI: 10.1080/09593330.2023.2283792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Dimethylsulfoniopropionate (DMSP) is a vital sulfur-containing compound with worldwide significance, serving as the primary precursor for dimethyl sulfide (DMS), a volatile sulfur compound that plays a role in atmospheric chemistry and influences the Earth's climate on a global scale. The study investigated the ability of four bacterial strains, namely Acidimangrovimonas sediminis MS2-2 (MS2-2), Hartmannibacter diazotrophicus E18T (E18T), Rhizobium lusitanum 22705 (22705), and Nitrospirillum iridis DSM22198 (DSM22198), to produce and degrade DMSP. These strains were assessed for their DMSP synthesis ability with the mmtN linked to non-ribosomal peptide synthase (NRPS) gene. The results showed that MS2-2, and E18T bacteria, which contained the mmtN but not linked to an NRPS gene, increased DMSP production with increasing salinity. The highest production of DMSP was achieved at 25 PSU when either methionine was added or low nitrogen conditions were present, yielding 1656.03 ± 41.04 and 265.59 ± 9.17 nmol/mg protein, respectively, and subsequently under the conditions of methionine addition or low nitrogen, both strains reached their maximum DMSP production at 25 PSU. Furthermore, the strains MS2-2, E18T, and 22705 with the mmtN gene but not linked to an NRPS gene were found to be involved in DMS production. This research contributes to the understanding of the genes involved in DMSP biosynthesis in bacteria that produce DMSP.
Collapse
Affiliation(s)
- Jinmei Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Biological Sciences, University of East Anglia, Norwich, UK
- RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, People's Republic of China
| | - Jonathan Todd
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, People's Republic of China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City People's Republic of China
| |
Collapse
|
3
|
Lin Y, Zhang M, Lai YX, Liu T, Meng M, Sun Y, Wang Y, Dong QY, Li CX, Yu MX, Cheng J, Liu SJ, Shao X, Zhang N, Li CY. Genomic analysis of Alteromonas sp. M12 isolated from the Mariana Trench reveals its role in dimethylsulfoniopropionate cycling. Mar Genomics 2024; 76:101112. [PMID: 39009493 DOI: 10.1016/j.margen.2024.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 07/17/2024]
Abstract
Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur molecule in marine environments with important roles in stress tolerance, global carbon and sulfur cycling, and chemotaxis. It is the main precursor of the climate active gas dimethyl sulfide (DMS), which is the greatest natural source of bio‑sulfur transferred from ocean to atmosphere. Alteromonas sp. M12, a Gram-negative and aerobic bacterium, was isolated from the seawater samples collected from the Mariana Trench at the depth of 2500 m. Here, we report the complete genome sequence of strain M12 and its genomic characteristics to import and utilize DMSP. The genome of strain M12 contains one circular chromosome (5,012,782 bp) with the GC content of 40.88%. Alteromonas sp. M12 can grow with DMSP as a sole carbon source, and produced DMS with DMSP as a precursor. Genomic analysis showed that strain M12 contained a set of genes involved in the downstream steps of DMSP cleavage, but no known genes encoding DMSP transporters or DMSP lyases. The results indicated that this strain contained novel DMSP transport and cleavage genes in its genome which warrants further investigation. The import of DMSP into cells may be a strategy of strain M12 to adapt the hydrostatic pressure environment in the Mariana Trench, as DMSP can be used as a hydrostatic pressure protectant. This study sheds light on the catabolism of DMSP by deep-sea bacteria.
Collapse
Affiliation(s)
- Yue Lin
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Min Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yu-Xiang Lai
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Teng Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Meng Meng
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Sun
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yu Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Qing-Yu Dong
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chen-Xi Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Meng-Xue Yu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jin Cheng
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shu-Jun Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xuan Shao
- Key Laboratory on Agricultural Microorganism Resources Development of Shangqiu, Shangqiu Normal University, Shangqiu 476000, China
| | - Nan Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chun-Yang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Carrión O, Li CY, Peng M, Wang J, Pohnert G, Azizah M, Zhu XY, Curson ARJ, Wang Q, Walsham KS, Zhang XH, Monaco S, Harvey JM, Chen XL, Gao C, Wang N, Wang XJ, Wang P, Giovanonni SJ, Lee CP, Suffridge CP, Zhang Y, Luo Z, Wang D, Todd JD, Zhang YZ. DMSOP-cleaving enzymes are diverse and widely distributed in marine microorganisms. Nat Microbiol 2023; 8:2326-2337. [PMID: 38030907 PMCID: PMC10686828 DOI: 10.1038/s41564-023-01526-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Dimethylsulfoxonium propionate (DMSOP) is a recently identified and abundant marine organosulfur compound with roles in oxidative stress protection, global carbon and sulfur cycling and, as shown here, potentially in osmotolerance. Microbial DMSOP cleavage yields dimethyl sulfoxide, a ubiquitous marine metabolite, and acrylate, but the enzymes responsible, and their environmental importance, were unknown. Here we report DMSOP cleavage mechanisms in diverse heterotrophic bacteria, fungi and phototrophic algae not previously known to have this activity, and highlight the unappreciated importance of this process in marine sediment environments. These diverse organisms, including Roseobacter, SAR11 bacteria and Emiliania huxleyi, utilized their dimethylsulfoniopropionate lyase 'Ddd' or 'Alma' enzymes to cleave DMSOP via similar catalytic mechanisms to those for dimethylsulfoniopropionate. Given the annual teragram predictions for DMSOP production and its prevalence in marine sediments, our results highlight that DMSOP cleavage is likely a globally significant process influencing carbon and sulfur fluxes and ecological interactions.
Collapse
Affiliation(s)
- Ornella Carrión
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Chun-Yang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Ming Peng
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Jinyan Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, Jena, Germany
| | - Muhaiminatul Azizah
- Institute of Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, Jena, Germany
| | - Xiao-Yu Zhu
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Andrew R J Curson
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Qing Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Keanu S Walsham
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Xiao-Hua Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - James M Harvey
- Department of Chemistry, King's College London, London, UK
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Juan Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | - Chih-Ping Lee
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | | | - Yu Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ziqi Luo
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jonathan D Todd
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Qingdao, China.
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao, China.
| |
Collapse
|
5
|
Wang S, Zhang N, Teng Z, Wang X, Todd JD, Zhang Y, Cao H, Li C. A new dimethylsulfoniopropionate lyase of the cupin superfamily in marine bacteria. Environ Microbiol 2023; 25:1238-1249. [PMID: 36808192 PMCID: PMC11497337 DOI: 10.1111/1462-2920.16355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Dimethylsulfoniopropionate (DMSP) is a marine organosulfur compound with important roles in stress protection, marine biogeochemical cycling, chemical signalling and atmospheric chemistry. Diverse marine microorganisms catabolize DMSP via DMSP lyases to generate the climate-cooling gas and info-chemical dimethyl sulphide. Abundant marine heterotrophs of the Roseobacter group (MRG) are well known for their ability to catabolize DMSP via diverse DMSP lyases. Here, a new DMSP lyase DddU within the MRG strain Amylibacter cionae H-12 and other related bacteria was identified. DddU is a cupin superfamily DMSP lyase like DddL, DddQ, DddW, DddK and DddY, but shares <15% amino acid sequence identity with these enzymes. Moreover, DddU proteins forms a distinct clade from these other cupin-containing DMSP lyases. Structural prediction and mutational analyses suggested that a conserved tyrosine residue is the key catalytic amino acid residue in DddU. Bioinformatic analysis indicated that the dddU gene, mainly from Alphaproteobacteria, is widely distributed in the Atlantic, Pacific, Indian and polar oceans. For reference, dddU is less abundant than dddP, dddQ and dddK, but much more frequent than dddW, dddY and dddL in marine environments. This study broadens our knowledge on the diversity of DMSP lyases, and enhances our understanding of marine DMSP biotransformation.
Collapse
Affiliation(s)
- Shu‐Yan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research CenterShandong UniversityQingdaoChina
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Nan Zhang
- School of BioengineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Zhao‐Jie Teng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research CenterShandong UniversityQingdaoChina
| | - Xiao‐Di Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | | | - Yu‐Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research CenterShandong UniversityQingdaoChina
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Hai‐Yan Cao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research CenterShandong UniversityQingdaoChina
| | - Chun‐Yang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
6
|
Transcriptome response of Antarctic Phaeodactylum tricornutum ICE-H producing dimethylsulphoniopropionate to hypersaline stress. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
7
|
Mo S, He S, Sang Y, Li J, Kashif M, Zhang Z, Su G, Jiang C. Integration of Microbial Transformation Mechanism of Polyphosphate Accumulation and Sulfur Cycle in Subtropical Marine Mangrove Ecosystems with Spartina alterniflora Invasion. MICROBIAL ECOLOGY 2023; 85:478-494. [PMID: 35157108 DOI: 10.1007/s00248-022-01979-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Excessive phosphorus can lead to eutrophication in marine and coastal ecosystems. Sulfur metabolism-associated microorganisms stimulate biological phosphorous removal. However, the integrating co-biotransformation mechanism of phosphorus and sulfur in subtropical marine mangrove ecosystems with Spartina alterniflora invasion is poorly understood. In this study, an ecological model of the coupling biotransformation of sulfur and phosphorus is constructed using metagenomic analysis and quantitative polymerase chain reaction strategies. Phylogenetic analysis profiling, a distinctive microbiome with high frequencies of Gammaproteobacteria and Deltaproteobacteria, appears to be an adaptive characteristic of microbial structures in subtropical mangrove ecosystems. Functional analysis reveals that the levels of sulfate reduction, sulfur oxidation, and poly-phosphate (Poly-P) aggregation decrease with increasing depth. However, at depths of 25-50 cm in the mangrove ecosystems with S. alterniflora invasion, the abundance of sulfate reduction genes, sulfur oxidation genes, and polyphosphate kinase (ppk) significantly increased. A strong positive correlation was found among ppk, sulfate reduction, sulfur oxidation, and sulfur metabolizing microorganisms, and the content of sulfide was significantly and positively correlated with the abundance of ppk. Further microbial identification suggested that Desulfobacterales, Anaerolineales, and Chromatiales potentially drove the coupling biotransformation of phosphorus and sulfur cycling. In particular, Desulfobacterales exhibited dominance in the microbial community structure. Our findings provided insights into the simultaneous co-biotransformation of phosphorus and sulfur bioconversions in subtropical marine mangrove ecosystems with S. alterniflora invasion.
Collapse
Affiliation(s)
- Shuming Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Sheng He
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defect prevention, Guangxi Zhuang Autonomous Region Women and Children Health Care Hospital, Nanning, 530033, China
| | - Yimeng Sang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jinhui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Muhammad Kashif
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zufan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Guijiao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
8
|
Wang Y, Chen SL. Reaction mechanism of the PuDddK dimethylsulfoniopropionate lyase and cofactor effects of various transition metal ions. Dalton Trans 2022; 51:14664-14672. [PMID: 36098064 DOI: 10.1039/d2dt02133a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The microbial cleavage of dimethylsulfoniopropionate (DMSP) produces volatile dimethyl sulfide (DMS) via the lyase pathway, playing a crucial role in the global sulfur cycle. Herein, the DMSP decomposition catalyzed by PuDddK (a DMSP lyase) devised with various transition metal ion cofactors are investigated using density functional calculations. The PuDddK reaction has been demonstrated to employ a concerted β-elimination mechanism, where the substrate α-proton abstraction by the deprotonated Tyr64 occurs simultaneously with the Cβ-S bond cleavage and Cα = Cβ double bond formation. The PuDddK enzymes with diverse divalent metal ions (Ni2+, Mn2+, Fe2+, Co2+, Zn2+, and Cu2+) incorporated prefer DMSP as a monodentate ligand. The cases of Ni2+, Mn2+, Fe2+, Co2+, and Zn2+ with the same 3His-1Glu ligands have close reaction energy barriers, indicating that the lyase activity may be hardly affected by the divalent transition metal type with the same ligand type and number. The coordination loss of one histidine in Cu2+, forming a 2His-1Glu architecture, leads to a lower activity, revealing that the 3His-1Glu ligand set used by DddK appears to be a scaffold capable of more efficiently catalyzing the DMSP decomposition. Further analysis reveals that the inactivation of Fe3+-dependent PuDddK is derived from an electron transfer from the Tyr64 phenolate to Fe3+, with the implication that the PuDddK activity may be primarily affected by the redox effects induced by a strongly oxidizing transition metal ion (like Fe3+).
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
9
|
Shaw DK, Sekar J, Ramalingam PV. Recent insights into oceanic dimethylsulfoniopropionate biosynthesis and catabolism. Environ Microbiol 2022; 24:2669-2700. [PMID: 35611751 DOI: 10.1111/1462-2920.16045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Abstract
Dimethylsulfoniopropionate (DMSP), a globally important organosulfur compound is produced in prodigious amounts (2.0 Pg sulfur) annually in the marine environment by phytoplankton, macroalgae, heterotrophic bacteria, some corals and certain higher plants. It is an important marine osmolyte and a major precursor molecule for the production of climate-active volatile gas dimethyl sulfide (DMS). DMSP synthesis take place via three pathways: a transamination 'pathway-' in some marine bacteria and algae, a Met-methylation 'pathway-' in angiosperms and bacteria and a decarboxylation 'pathway-' in the dinoflagellate, Crypthecodinium. The enzymes DSYB and TpMMT are involved in the DMSP biosynthesis in eukaryotes while marine heterotrophic bacteria engage key enzymes such as DsyB and MmtN. Several marine bacterial communities import DMSP and degrade it via cleavage or demethylation pathways or oxidation pathway, thereby generating DMS, methanethiol, and dimethylsulfoxonium propionate, respectively. DMSP is cleaved through diverse DMSP lyase enzymes in bacteria and via Alma1 enzyme in phytoplankton. The demethylation pathway involves four different enzymes, namely DmdA, DmdB, DmdC and DmdD/AcuH. However, enzymes involved in the oxidation pathway have not been yet identified. We reviewed the recent advances on the synthesis and catabolism of DMSP and enzymes that are involved in these processes.
Collapse
Affiliation(s)
- Deepak Kumar Shaw
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Jegan Sekar
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| | - Prabavathy Vaiyapuri Ramalingam
- Microbiology Lab, Department of Biotechnology, M. S. Swaminathan Research Foundation, Taramani, Chennai, 600113, Tamil Nadu, India
| |
Collapse
|
10
|
Acrylate protects a marine bacterium from grazing by a ciliate predator. Nat Microbiol 2021; 6:1351-1356. [PMID: 34697458 DOI: 10.1038/s41564-021-00981-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/16/2021] [Indexed: 12/26/2022]
Abstract
Cleavage of dimethylsulfoniopropionate (DMSP) can deter herbivores in DMSP-producing eukaryotic algae; however, it is unclear whether a parallel defence mechanism operates in marine bacteria. Here we demonstrate that the marine bacterium Puniceibacterium antarcticum SM1211, which does not use DMSP as a carbon source, has a membrane-associated DMSP lyase, DddL. At high concentrations of DMSP, DddL causes an accumulation of acrylate around cells through the degradation of DMSP, which protects against predation by the marine ciliate Uronema marinum. The presence of acrylate can alter the grazing preference of U. marinum to other bacteria in the community, thereby influencing community structure.
Collapse
|
11
|
Teng ZJ, Qin QL, Zhang W, Li J, Fu HH, Wang P, Lan M, Luo G, He J, McMinn A, Wang M, Chen XL, Zhang YZ, Chen Y, Li CY. Biogeographic traits of dimethyl sulfide and dimethylsulfoniopropionate cycling in polar oceans. MICROBIOME 2021; 9:207. [PMID: 34654476 PMCID: PMC8520302 DOI: 10.1186/s40168-021-01153-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Dimethyl sulfide (DMS) is the dominant volatile organic sulfur in global oceans. The predominant source of oceanic DMS is the cleavage of dimethylsulfoniopropionate (DMSP), which can be produced by marine bacteria and phytoplankton. Polar oceans, which represent about one fifth of Earth's surface, contribute significantly to the global oceanic DMS sea-air flux. However, a global overview of DMS and DMSP cycling in polar oceans is still lacking and the key genes and the microbial assemblages involved in DMSP/DMS transformation remain to be fully unveiled. RESULTS Here, we systematically investigated the biogeographic traits of 16 key microbial enzymes involved in DMS/DMSP cycling in 60 metagenomic samples from polar waters, together with 174 metagenome and 151 metatranscriptomes from non-polar Tara Ocean dataset. Our analyses suggest that intense DMS/DMSP cycling occurs in the polar oceans. DMSP demethylase (DmdA), DMSP lyases (DddD, DddP, and DddK), and trimethylamine monooxygenase (Tmm, which oxidizes DMS to dimethylsulfoxide) were the most prevalent bacterial genes involved in global DMS/DMSP cycling. Alphaproteobacteria (Pelagibacterales) and Gammaproteobacteria appear to play prominent roles in DMS/DMSP cycling in polar oceans. The phenomenon that multiple DMS/DMSP cycling genes co-occurred in the same bacterial genome was also observed in metagenome assembled genomes (MAGs) from polar oceans. The microbial assemblages from the polar oceans were significantly correlated with water depth rather than geographic distance, suggesting the differences of habitats between surface and deep waters rather than dispersal limitation are the key factors shaping microbial assemblages involved in DMS/DMSP cycling in polar oceans. CONCLUSIONS Overall, this study provides a global overview of the biogeographic traits of known bacterial genes involved in DMS/DMSP cycling from the Arctic and Antarctic oceans, laying a solid foundation for further studies of DMS/DMSP cycling in polar ocean microbiome at the enzymatic, metabolic, and processual levels. Video Abstract.
Collapse
Affiliation(s)
- Zhao-Jie Teng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
| | - Jian Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China
| | - Peng Wang
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China
| | - Musheng Lan
- The Key Laboratory for Polar Science MNR, Polar Research Institute of China, Shanghai, 200136, China
| | - Guangfu Luo
- The Key Laboratory for Polar Science MNR, Polar Research Institute of China, Shanghai, 200136, China
| | - Jianfeng He
- The Key Laboratory for Polar Science MNR, Polar Research Institute of China, Shanghai, 200136, China
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
| | - Xiu-Lan Chen
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China
| | - Yin Chen
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China.
- School of Life Sciences, University of Warwick, Coventry, UK.
| | - Chun-Yang Li
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266373, China.
| |
Collapse
|
12
|
Gonçalves DDS, Ghosh A, Chaudhuri P. Vibrational Spectra of Atmospherically Relevant Hydrogen-Bonded MSA···(H 2SO 4) n ( n = 1-3) Clusters. J Phys Chem A 2021; 125:8791-8802. [PMID: 34605656 DOI: 10.1021/acs.jpca.1c05214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methanesulfonic acid (CH3SO3H), also known as MSA, has been found to be capable of forming a strong hydrogen-bonded interaction with sulfuric acid (H2SO4) under ambient conditions. The energetic stability of the MSA···H2SO4 clusters increases with decreasing temperature at higher altitudes in the troposphere, which is relevant in the context of atmospheric aerosol formation. We have performed, in the present work, a detailed and systematic quantum-chemical calculation with high-level density functional theory to characterize the hydrogen bond formation in the binary MSA···H2SO4, ternary MSA···(H2SO4)2, and quaternary MSA···(H2SO4)3 clusters. The five different conformations of MSA···(H2SO4)2 and six conformations of MSA···(H2SO4)3, considered in the present work for the spectroscopic analysis, have been taken from our previous work [J. Phys. Chem. A. 2020, 124, 11072-11085]. The hydrogen bonds were analyzed on the basis of infrared vibrational frequencies of different O-H stretching modes and quantum theory of atoms in molecules (QTAIM). A strong positive correlation has been observed between the red shift of the OH groups in MSA and H2SO4 and the corresponding O-H elongation as a result of hydrogen bond formation. Topological analysis employing QTAIM shows that most of the charge density and the Laplacian values at bond critical points (BCPs) of the hydrogen bonds of the MSA···(H2SO4)n (n = 1-3) complexes fall within the standard hydrogen-bond criteria. However, those outside these criteria fall in the category of a very strong hydrogen bond with a hydrogen bond length as low as 1.41 Å and an O-H bond elongation as high as 0.096 Å. In general, the charge densities of the BCPs located on hydrogen bonds increase as the hydrogen-bond lengths decrease. Proportionately, a larger number of hydrogen bonds in ternary MSA···(H2SO4)2 demonstrate a partial covalent character when compared with the quaternary clusters.
Collapse
Affiliation(s)
| | - Angsula Ghosh
- Department of Physics, Federal University of Amazonas, 69077-000 Manaus, Amazonas, Brazil
| | | |
Collapse
|
13
|
Li CY, Wang XJ, Chen XL, Sheng Q, Zhang S, Wang P, Quareshy M, Rihtman B, Shao X, Gao C, Li F, Li S, Zhang W, Zhang XH, Yang GP, Todd JD, Chen Y, Zhang YZ. A novel ATP dependent dimethylsulfoniopropionate lyase in bacteria that releases dimethyl sulfide and acryloyl-CoA. eLife 2021; 10:64045. [PMID: 33970104 PMCID: PMC8163506 DOI: 10.7554/elife.64045] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/09/2021] [Indexed: 11/13/2022] Open
Abstract
Dimethylsulfoniopropionate (DMSP) is an abundant and ubiquitous organosulfur molecule in marine environments with important roles in global sulfur and nutrient cycling. Diverse DMSP lyases in some algae, bacteria, and fungi cleave DMSP to yield gaseous dimethyl sulfide (DMS), an infochemical with important roles in atmospheric chemistry. Here, we identified a novel ATP-dependent DMSP lyase, DddX. DddX belongs to the acyl-CoA synthetase superfamily and is distinct from the eight other known DMSP lyases. DddX catalyses the conversion of DMSP to DMS via a two-step reaction: the ligation of DMSP with CoA to form the intermediate DMSP-CoA, which is then cleaved to DMS and acryloyl-CoA. The novel catalytic mechanism was elucidated by structural and biochemical analyses. DddX is found in several Alphaproteobacteria, Gammaproteobacteria, and Firmicutes, suggesting that this new DMSP lyase may play an overlooked role in DMSP/DMS cycles. The global sulfur cycle is a collection of geological and biological processes that circulate sulfur-containing compounds through the oceans, rocks and atmosphere. Sulfur itself is essential for life and important for plant growth, hence its widespread use in fertilizers. Marine organisms such as bacteria, algae and phytoplankton produce one particular sulfur compound, called dimethylsulfoniopropionate, or DMSP, in massive amounts. DMSP made in the oceans gets readily converted into a gas called dimethyl sulfide (DMS), which is the largest natural source of sulfur entering the atmosphere. In the air, DMS is converted to sulfate and other by-products that can act as cloud condensation nuclei, which, as the name suggests, are involved in cloud formation. In this way, DMS can influence weather and climate, so it is often referred to as ‘climate-active’ gas. At least eight enzymes are known to cleave DMSP into DMS gas with a few by-products. These enzymes are found in algae, bacteria and fungi, and are referred to as lyases, for the way they breakdown their target compounds (DMSP, in this case). Recently, researchers have identified some bacteria that produce DMS from DMSP without using known DMSP lyases. This suggests there are other, unidentified enzymes that act on DMSP in nature, and likely contribute to global sulfur cycling. Li, Wang et al. set out to uncover new enzymes responsible for converting the DMSP that marine bacteria produce into gaseous DMS. One new enzyme called DddX was identified and found to belong to a superfamily of enzymes quite separate to other known DMSP lyases. Li, Wang et al. also showed how DddX drives the conversion of DMSP to DMS in a two-step reaction, and that the enzyme is found across several classes of bacteria. Further experiments to characterise the protein structure of DddX also revealed the molecular mechanism for its catalytic action. This study offers important insights into how marine bacteria generate the climatically important gas DMS from DMSP, leading to a better understanding of the global sulfur cycle. It gives microbial ecologists a more comprehensive perspective of these environmental processes, and provides biochemists with data on a family of enzymes not previously known to act on sulfur-containing compounds.
Collapse
Affiliation(s)
- Chun-Yang Li
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiu-Juan Wang
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qi Sheng
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Shan Zhang
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Peng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Branko Rihtman
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Xuan Shao
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Chao Gao
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Shengying Li
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Yin Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
14
|
The Influence of Ocean Acidification and Warming on DMSP & DMS in New Zealand Coastal Water. ATMOSPHERE 2021. [DOI: 10.3390/atmos12020181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The cycling of the trace gas dimethyl sulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) may be affected by future ocean acidification and warming. DMSP and DMS concentrations were monitored over 20-days in four mesocosm experiments in which the temperature and pH of coastal water were manipulated to projected values for the year 2100 and 2150. This had no effect on DMSP in the two-initial nutrient-depleted experiments; however, in the two nutrient-amended experiments, warmer temperature combined with lower pH had a more significant effect on DMSP & DMS concentrations than lower pH alone. Overall, this indicates that future warming may have greater influence on DMS production than ocean acidification. The observed reduction in DMSP at warmer temperatures was associated with changes in phytoplankton community and in particular with small flagellate biomass. A small decrease in DMS concentration was measured in the treatments relative to other studies, from −2% in the nutrient-amended low pH treatment to −16% in the year 2150 pH and temperature conditions. Temporal variation was also observed with DMS concentration increasing earlier in the higher temperature treatment. Nutrient availability and community composition should be considered in models of future DMS.
Collapse
|
15
|
Yu X, Zhou J, Song W, Xu M, He Q, Peng Y, Tian Y, Wang C, Shu L, Wang S, Yan Q, Liu J, Tu Q, He Z. SCycDB: A curated functional gene database for metagenomic profiling of sulphur cycling pathways. Mol Ecol Resour 2020. [DOI: 10.1111/1755-0998.13306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaoli Yu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Jiayin Zhou
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Wen Song
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Mengzhao Xu
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Qiang He
- Department of Civil and Environmental Engineering The University of Tennessee Knoxville TN USA
| | - Yisheng Peng
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems School of Life Sciences Xiamen University Xiamen China
| | - Cheng Wang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Longfei Shu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Shanquan Wang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Qingyun Yan
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
| | - Jihua Liu
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Qichao Tu
- Institute of Marine Science and Technology Shandong University Qingdao China
| | - Zhili He
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou China
- College of Agronomy Hunan Agricultural University Changsha China
| |
Collapse
|
16
|
Estep ML, Moore KB, Schaefer HF. Assessing the Viability of the Methylsulfinyl Radical‐Ozone Reaction. Chemphyschem 2020; 21:1289-1294. [DOI: 10.1002/cphc.202000188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/21/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Marissa L. Estep
- Center for Computational Quantum Chemistry University of Georgia Athens GA 30602 USA
- Department of Applied Liberal Arts Patrick Henry College Purcellville VA 20132 USA
| | - Kevin B. Moore
- Center for Computational Quantum Chemistry University of Georgia Athens GA 30602 USA
| | - H. F. Schaefer
- Center for Computational Quantum Chemistry University of Georgia Athens GA 30602 USA
| |
Collapse
|
17
|
Gebser B, Thume K, Steinke M, Pohnert G. Phytoplankton-derived zwitterionic gonyol and dimethylsulfonioacetate interfere with microbial dimethylsulfoniopropionate sulfur cycling. Microbiologyopen 2020; 9:e1014. [PMID: 32113191 PMCID: PMC7221440 DOI: 10.1002/mbo3.1014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 11/29/2022] Open
Abstract
The marine sulfur cycle is substantially fueled by the phytoplankton osmolyte dimethylsulfoniopropionate (DMSP). This metabolite can be metabolized by bacteria, which results in the emission of the volatile sulfur species methanethiol (MeSH) and the climate‐cooling dimethylsulfide (DMS). It is generally accepted that bacteria contribute significantly to DMSP turnover. We show that the other low molecular weight zwitterionic dimethylsulfonio compounds dimethylsulfonioacetate (DMSA) and gonyol are also widely distributed in phytoplankton and can serve as alternative substrates for volatile production. DMSA was found in 11 of the 16 surveyed phytoplankton species, and gonyol was detected in all haptophytes and dinoflagellates. These prevalent zwitterions are also metabolized by marine bacteria. The patterns of bacterial MeSH and DMS release were dependent on the zwitterions present. Certain bacteria metabolize DMSA and gonyol and release MeSH, in others gonyol inhibited DMS‐producing enzymes. If added in addition to DMSP, gonyol entirely inhibited the formation of volatiles in Ruegeria pomeroyi. In contrast, no substantial effect of this compound was observed in the DMSP metabolism of Halomonas sp. We argue that the production of DMSA and gonyol and their inhibitory properties on the release of volatiles from DMSP has the potential to modulate planktonic sulfur cycling between species.
Collapse
Affiliation(s)
- Björn Gebser
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Kathleen Thume
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Steinke
- School of Life Sciences, University of Essex, Colchester, UK
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
18
|
Zhang XH, Liu J, Liu J, Yang G, Xue CX, Curson ARJ, Todd JD. Biogenic production of DMSP and its degradation to DMS-their roles in the global sulfur cycle. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1296-1319. [PMID: 31231779 DOI: 10.1007/s11427-018-9524-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/16/2019] [Indexed: 01/08/2023]
Abstract
Dimethyl sulfide (DMS) is the most abundant form of volatile sulfur in Earth's oceans, and is mainly produced by the enzymatic clevage of dimethylsulfoniopropionate (DMSP). DMS and DMSP play important roles in driving the global sulfur cycle and may affect climate. DMSP is proposed to serve as an osmolyte, a grazing deterrent, a signaling molecule, an antioxidant, a cryoprotectant and/or as a sink for excess sulfur. It was long believed that only marine eukaryotes such as phytoplankton produce DMSP. However, we recently discovered that marine heterotrophic bacteria can also produce DMSP, making them a potentially important source of DMSP. At present, one prokaryotic and two eukaryotic DMSP synthesis enzymes have been identified. Marine heterotrophic bacteria are likely the major degraders of DMSP, using two known pathways: demethylation and cleavage. Many phytoplankton and some fungi can also cleave DMSP. So far seven different prokaryotic and one eukaryotic DMSP lyases have been identified. This review describes the global distribution pattern of DMSP and DMS, the known genes for biosynthesis and cleavage of DMSP, and the physiological and ecological functions of these important organosulfur molecules, which will improve understanding of the mechanisms of DMSP and DMS production and their roles in the environment.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Ji Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jingli Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Guipeng Yang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266071, China
| | - Chun-Xu Xue
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Andrew R J Curson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
19
|
Lv G, Zhang H, Wang Z, Wang N, Sun X, Zhang C, Li M. Understanding the properties of methanesulfinic acid at the air-water interface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:524-530. [PMID: 30856564 DOI: 10.1016/j.scitotenv.2019.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Methanesulfinic acid (MSIA), an organic sulfur compound, is mainly produced in the oxidation process of dimethyl sulfide in the atmosphere. The properties of MSIA at the air-water interface were studied using molecular dynamics (MD) simulations. The result shows that the lowest system free energy is located at the interface. Because the free energy difference between the interface and water phase is 3.2 kJ mol-1, the MSIA molecule can easily get out of the free energy well and travel to water phase by the thermal motion, leading to only a 21% probability of its occurrence at the interface. The MSIA molecule tends to tilt at the interface with the sulfino group (-S(O)-OH) pointing toward the water phase. The feature of hydration status at the air-water interface may be favorable to the heterogeneous oxidation of MSIA.
Collapse
Affiliation(s)
- Guochun Lv
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Heng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zehua Wang
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Ning Wang
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Jinan 250100, China.
| | - Chenxi Zhang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China
| | - Mei Li
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China; Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou 510632, China.
| |
Collapse
|
20
|
Abstract
The organosulfur metabolite dimethylsulfoniopropionate (DMSP) and its enzymatic breakdown product dimethyl sulfide (DMS) have important implications in the global sulfur cycle and in marine microbial food webs. Enormous amounts of DMSP are produced in marine environments where microbial communities import and catabolize it via either the demethylation or the cleavage pathways. The enzymes that cleave DMSP are termed "DMSP lyases" and generate acrylate or hydroxypropionate, and ~107tons of DMS annually. An important environmental factor affecting DMS generation by the DMSP lyases is the availability of metal ions as these enzymes use various cofactors for catalysis. This chapter summarizes advances on bacterial DMSP catabolism, with an emphasis on various biochemical methods employed for the isolation and characterization of bacterial DMSP lyases. Strategies are presented for the purification of DMSP lyases expressed in bacterial cells. Specific conditions for the efficient isolation of apoproteins in Escherichia coli are detailed. DMSP cleavage is effectively inferred, utilizing the described HPLC-based acrylate detection assay. Finally, substrate and metal binding interactions are examined using fluorescence and UV-visible assays. Together, these methods are rapid and well suited for the biochemical and structural characterization of DMSP lyases and in the assessment of uncharacterized DMSP catabolic enzymes, and new metalloenzymes in general.
Collapse
|
21
|
Structure-Function Analysis Indicates that an Active-Site Water Molecule Participates in Dimethylsulfoniopropionate Cleavage by DddK. Appl Environ Microbiol 2019; 85:AEM.03127-18. [PMID: 30770407 DOI: 10.1128/aem.03127-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 02/13/2019] [Indexed: 11/20/2022] Open
Abstract
The osmolyte dimethylsulfoniopropionate (DMSP) is produced in petagram quantities in marine environments and has important roles in global sulfur and carbon cycling. Many marine microorganisms catabolize DMSP via DMSP lyases, generating the climate-active gas dimethyl sulfide (DMS). DMS oxidation products participate in forming cloud condensation nuclei and, thus, may influence weather and climate. SAR11 bacteria are the most abundant marine heterotrophic bacteria; many of them contain the DMSP lyase DddK, and their dddK transcripts are relatively abundant in seawater. In a recently described catalytic mechanism for DddK, Tyr64 is predicted to act as the catalytic base initiating the β-elimination reaction of DMSP. Tyr64 was proposed to be deprotonated by coordination to the metal cofactor or its neighboring His96. To further probe this mechanism, we purified and characterized the DddK protein from Pelagibacter ubique strain HTCC1062 and determined the crystal structures of wild-type DddK and its Y64A and Y122A mutants (bearing a change of Y to A at position 64 or 122, respectively), where the Y122A mutant is complexed with DMSP. The structural and mutational analyses largely support the catalytic role of Tyr64, but not the method of its deprotonation. Our data indicate that an active water molecule in the active site of DddK plays an important role in the deprotonation of Tyr64 and that this is far more likely than coordination to the metal or His96. Sequence alignment and phylogenetic analysis suggest that the proposed catalytic mechanism of DddK has universal significance. Our results provide new mechanistic insights into DddK and enrich our understanding of DMS generation by SAR11 bacteria.IMPORTANCE The climate-active gas dimethyl sulfide (DMS) plays an important role in global sulfur cycling and atmospheric chemistry. DMS is mainly produced through the bacterial cleavage of marine dimethylsulfoniopropionate (DMSP). When released into the atmosphere from the oceans, DMS can be photochemically oxidized into DMSO or sulfate aerosols, which form cloud condensation nuclei that influence the reflectivity of clouds and, thereby, global temperature. SAR11 bacteria are the most abundant marine heterotrophic bacteria, and many of them contain DMSP lyase DddK to cleave DMSP, generating DMS. In this study, based on structural analyses and mutational assays, we revealed the catalytic mechanism of DddK, which has universal significance in SAR11 bacteria. This study provides new insights into the catalytic mechanism of DddK, leading to a better understanding of how SAR11 bacteria generate DMS.
Collapse
|
22
|
Shao X, Cao HY, Zhao F, Peng M, Wang P, Li CY, Shi WL, Wei TD, Yuan Z, Zhang XH, Chen XL, Todd JD, Zhang YZ. Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria. Mol Microbiol 2019; 111:1057-1073. [PMID: 30677184 PMCID: PMC6850173 DOI: 10.1111/mmi.14211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2019] [Indexed: 01/25/2023]
Abstract
The vast majority of oceanic dimethylsulfoniopropionate (DMSP) is thought to be catabolized by bacteria via the DMSP demethylation pathway. This pathway contains four enzymes termed DmdA, DmdB, DmdC and DmdD/AcuH, which together catabolize DMSP to acetylaldehyde and methanethiol as carbon and sulfur sources respectively. While molecular mechanisms for DmdA and DmdD have been proposed, little is known of the catalytic mechanisms of DmdB and DmdC, which are central to this pathway. Here, we undertake physiological, structural and biochemical analyses to elucidate the catalytic mechanisms of DmdB and DmdC. DmdB, a 3-methylmercaptopropionate (MMPA)-coenzyme A (CoA) ligase, undergoes two sequential conformational changes to catalyze the ligation of MMPA and CoA. DmdC, a MMPA-CoA dehydrogenase, catalyzes the dehydrogenation of MMPA-CoA to generate MTA-CoA with Glu435 as the catalytic base. Sequence alignment suggests that the proposed catalytic mechanisms of DmdB and DmdC are likely widely adopted by bacteria using the DMSP demethylation pathway. Analysis of the substrate affinities of involved enzymes indicates that Roseobacters kinetically regulate the DMSP demethylation pathway to ensure DMSP functioning and catabolism in their cells. Altogether, this study sheds novel lights on the catalytic and regulative mechanisms of bacterial DMSP demethylation, leading to a better understanding of bacterial DMSP catabolism.
Collapse
Affiliation(s)
- Xuan Shao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Fang Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Ming Peng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Peng Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Chun-Yang Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.,Suzhou Institute of Shandong University, Suzhou, 215123, China
| | - Wei-Ling Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Tian-Di Wei
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
23
|
Chen Y, Schäfer H. Towards a systematic understanding of structure-function relationship of dimethylsulfoniopropionate-catabolizing enzymes. Mol Microbiol 2019; 111:1399-1403. [PMID: 30802340 DOI: 10.1111/mmi.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2019] [Indexed: 11/28/2022]
Abstract
Each year, several million tons of dimethylsulfoniopropionate (DMSP) are produced by marine phytoplankton and bacteria as an important osmolyte to regulate their cellular osmosis. Microbial breakdown of DMSP to the volatile gas dimethylsulfide (DMS) plays an important role in global biogeochemical cycles of the sulphur element between land and the sea. Understanding the enzymes involved in the transformation of DMSP and DMS holds the key to a better understanding of oceanic DMSP cycles. Recent work by Shao et al. (2019) has resolved the crystal structure of two important enzymes, DmdB and DmdC, involved in DMSP transformation through the demethylation pathway. Their work represents an important step towards a systematic understanding of the structure-function relationships of DMSP-catabolizing enzymes in marine microbes.
Collapse
Affiliation(s)
- Yin Chen
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
24
|
Lei L, Alcolombri U, Tawfik DS. Biochemical Profiling of DMSP Lyases. Methods Enzymol 2018; 605:269-289. [PMID: 29909827 DOI: 10.1016/bs.mie.2018.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dimethyl sulfide (DMS) is released at rates of >107 tons annually and plays a key role in the oceanic sulfur cycle and ecology. Marine bacteria, algae, and possibly other organisms release DMS via cleavage of dimethylsulfoniopropionate (DMSP). DMSP lyases have been identified in various organisms, including bacteria, coral, and algae, thus comprising a range of gene families putatively assigned as DMSP lyases. Metagenomics may therefore provide insight regarding the presence of DMSP lyases in various marine environments, thereby promoting a better understanding of global DMS emission. However, gene counts, and even mRNA levels, do not necessarily reflect the level of DMSP cleavage activity in a given environmental sample, especially because some of the families assigned as DMSP lyases may merely exhibit promiscuous lyase activity. Here, we describe a range of biochemical profiling methods that can assign an observed DMSP lysis activity to a specific gene family. These methods include selective inhibitors and DMSP substrate analogues. Combined with genomics and metagenomics, biochemical profiling may enable a more reliable identification of the origins of DMS release in specific organisms and in crude environmental samples.
Collapse
Affiliation(s)
- Lei Lei
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uria Alcolombri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
25
|
Burkhardt I, Lauterbach L, Brock NL, Dickschat JS. Chemical differentiation of three DMSP lyases from the marine Roseobacter group. Org Biomol Chem 2018; 15:4432-4439. [PMID: 28485454 DOI: 10.1039/c7ob00913e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) catabolism of marine bacteria plays an important role in marine and global ecology. The genome of Ruegeria pomeroyi DSS-3, a model organism from the Roseobacter group, harbours no less than three genes for different DMSP lyases (DddW, DddP and DddQ) that catalyse the degradation of DMSP to dimethyl sulfide (DMS) and acrylate. Despite their apparent similar function these enzymes show no significant overall sequence identity. In this work DddQ and DddW from R. pomeroyi and the DddP homolog from Phaeobacter inhibens DSM 17395 were functionally characterised and their substrate scope was tested using several synthetic DMSP analogues. Comparative kinetic assays revealed differences in the conversion of DMSP and its analogues in terms of selectivity and overall velocity, giving additional insights into the molecular mechanisms of DMSP lyases and into their putatively different biological functions.
Collapse
Affiliation(s)
- Immo Burkhardt
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | | | | | | |
Collapse
|
26
|
Lei L, Cherukuri KP, Alcolombri U, Meltzer D, Tawfik DS. The Dimethylsulfoniopropionate (DMSP) Lyase and Lyase-Like Cupin Family Consists of Bona Fide DMSP lyases as Well as Other Enzymes with Unknown Function. Biochemistry 2018; 57:3364-3377. [DOI: 10.1021/acs.biochem.8b00097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Lei
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Uria Alcolombri
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Diana Meltzer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
27
|
Mardyukov A, Schreiner PR. Atmospherically Relevant Radicals Derived from the Oxidation of Dimethyl Sulfide. Acc Chem Res 2018; 51:475-483. [PMID: 29393624 DOI: 10.1021/acs.accounts.7b00536] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The large number and amounts of volatile organosulfur compounds emitted to the atmosphere and the enormous variety of their reactions in various oxidation states make experimental measurements of even a small fraction of them a daunting task. Dimethyl sulfide (DMS) is a product of biological processes involving marine phytoplankton, and it is estimated to account for approximately 60% of the total natural sulfur gases released to the atmosphere. Ocean-emitted DMS has been suggested to play a role in atmospheric aerosol formation and thereby cloud formation. The reaction of ·OH with DMS is known to proceed by two independent channels: abstraction and addition. The oxidation of DMS is believed to be initiated by the reaction with ·OH and NO3· radicals, which eventually leads to the formation of sulfuric acid (H2SO4) and methanesulfonic acid (CH3SO3H). The reaction of DMS with NO3· appears to proceed exclusively by hydrogen abstraction. The oxidation of DMS consists of a complex sequence of reactions. Depending on the time of the day or altitude, it may take a variety of pathways. In general, however, the oxidation proceeds via chains of radical reactions. Dimethyl sulfoxide (DMSO) has been reported to be a major product of the addition channel. Dimethyl sulfone (DMSO2), SO2, CH3SO3H, and methanesulfinic acid (CH3S(O)OH) have been observed as products of further oxidation of DMSO. Understanding the details of DMS oxidation requires in-depth knowledge of the elementary steps of this seemingly simple transformation, which in turn requires a combination of experimental and theoretical methods. The methylthiyl (CH3S·), methylsulfinyl (CH3SO·), methylsulfonyl (CH3SO2·), and methylsulfonyloxyl (CH3SO3·) radicals have been postulated as intermediates in the oxidation of DMS. Therefore, studying the chemistry of sulfur-containing free radicals in the laboratory also is the basis for understanding the mechanism of DMS oxidation in the atmosphere. The application of matrix-isolation techniques in combination with quantum-mechanical calculations on the generation and structural elucidation of CH3SOx (x = 0-3) radicals is reviewed in the present Account. Experimental matrix IR and UV/vis data for all known species of this substance class are summarized together with data obtained using other spectroscopic techniques, including time-resolved spectroscopy, electron paramagnetic resonance spectroscopy, and others. We also discuss the reactivity and experimental characterization of these species to illustrate their practical relevance and highlight spectroscopic techniques available for the elucidation of their geometric and electronic structures. The present Account summarizes recent results regarding the preparation, characterization, and reactivity of various radical species with the formula CH3SOx (x = 0-3).
Collapse
Affiliation(s)
- Artur Mardyukov
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
28
|
Li CY, Zhang D, Chen XL, Wang P, Shi WL, Li PY, Zhang XY, Qin QL, Todd JD, Zhang YZ. Mechanistic Insights into Dimethylsulfoniopropionate Lyase DddY, a New Member of the Cupin Superfamily. J Mol Biol 2017; 429:3850-3862. [DOI: 10.1016/j.jmb.2017.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/08/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022]
|
29
|
Cao HY, Wang P, Xu F, Li PY, Xie BB, Qin QL, Zhang YZ, Li CY, Chen XL. Molecular Insight into the Acryloyl-CoA Hydration by AcuH for Acrylate Detoxification in Dimethylsulfoniopropionate-Catabolizing Bacteria. Front Microbiol 2017; 8:2034. [PMID: 29089943 PMCID: PMC5651017 DOI: 10.3389/fmicb.2017.02034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/05/2017] [Indexed: 11/13/2022] Open
Abstract
Microbial cleavage of dimethylsulfoniopropionate (DMSP) producing dimethyl sulfide (DMS) and acrylate is an important step in global sulfur cycling. Acrylate is toxic for cells, and thus should be metabolized effectively for detoxification. There are two proposed pathways for acrylate metabolism in DMSP-catabolizing bacteria, the AcuN-AcuK pathway and the PrpE-AcuI pathway. AcuH is an acryloyl-CoA hydratase in DMSP-catabolizing bacteria and can catalyze the hydration of toxic acryloyl-CoA to produce 3-hydroxypropionyl-CoA (3-HP-CoA) in both the AcuN-AcuK pathway and the side path of the PrpE-AcuI pathway. However, the structure and catalytic mechanism of AcuH remain unknown. Here, we cloned a putative acuH gene from Roseovarius nubinhibens ISM, a typical DMSP-catabolizing bacterium, and expressed it (RdAcuH) in Escherichia coli. The activity of RdAcuH toward acryloyl-CoA was detected by liquid chromatography-mass spectrometry (LC-MS), which suggests that RdAcuH is a functional acryloyl-CoA hydratase. Then we solved the crystal structure of RdAcuH. Each asymmetric unit in the crystal of RdAcuH contains a dimer of trimers and each RdAcuH monomer contains an N-terminal domain (NTD) and a C-terminal domain (CTD). There are three active centers in each trimer and each active center is located between the NTD of a subunit and the CTD of the neighboring subunit. Site-directed mutagenesis analysis indicates that two highly conserved glutamates, Glu112 and Glu132, in the active center are essential for catalysis. Based on our results and previous research, we analyzed the catalytic mechanism of AcuH to hydrate acryloyl-CoA, in which Glu132 acts as the catalytic base. This study sheds light on the mechanism of acrylate detoxification in DMSP-catabolizing bacteria.
Collapse
Affiliation(s)
- Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, China
| | - Peng Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chun-Yang Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong University, Jinan, China
| |
Collapse
|
30
|
Wang P, Cao HY, Chen XL, Li CY, Li PY, Zhang XY, Qin QL, Todd JD, Zhang YZ. Mechanistic insight into acrylate metabolism and detoxification in marine dimethylsulfoniopropionate-catabolizing bacteria. Mol Microbiol 2017; 105:674-688. [PMID: 28598523 DOI: 10.1111/mmi.13727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2017] [Indexed: 12/24/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) cleavage, yielding dimethyl sulfide (DMS) and acrylate, provides vital carbon sources to marine bacteria, is a key component of the global sulfur cycle and effects atmospheric chemistry and potentially climate. Acrylate and its metabolite acryloyl-CoA are toxic if allowed to accumulate within cells. Thus, organisms cleaving DMSP require effective systems for both the utilization and detoxification of acrylate. Here, we examine the mechanism of acrylate utilization and detoxification in Roseobacters. We propose propionate-CoA ligase (PrpE) and acryloyl-CoA reductase (AcuI) as the key enzymes involved and through structural and mutagenesis analyses, provide explanations of their catalytic mechanisms. In most cases, DMSP lyases and DMSP demethylases (DmdAs) have low substrate affinities, but AcuIs have very high substrate affinities, suggesting that an effective detoxification system for acylate catabolism exists in DMSP-catabolizing Roseobacters. This study provides insight on acrylate metabolism and detoxification and a possible explanation for the high Km values that have been noted for some DMSP lyases. Since acrylate/acryloyl-CoA is probably produced by other metabolism, and AcuI and PrpE are conserved in many organisms across all domains of life, the detoxification system is likely relevant to many metabolic processes and environments beyond DMSP catabolism.
Collapse
Affiliation(s)
- Peng Wang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Hai-Yan Cao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Chun-Yang Li
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Ping-Yi Li
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Xi-Ying Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Qi-Long Qin
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
31
|
Schnicker NJ, De Silva SM, Todd JD, Dey M. Structural and Biochemical Insights into Dimethylsulfoniopropionate Cleavage by Cofactor-Bound DddK from the Prolific Marine Bacterium Pelagibacter. Biochemistry 2017; 56:2873-2885. [DOI: 10.1021/acs.biochem.7b00099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nicholas J. Schnicker
- Department
of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Saumya M. De Silva
- Department
of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Jonathan D. Todd
- School
of Biological Sciences, University of East Anglia, Norwich Research
Park, Norwich NR4 7TJ, United Kingdom
| | - Mishtu Dey
- Department
of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
32
|
Bullock HA, Luo H, Whitman WB. Evolution of Dimethylsulfoniopropionate Metabolism in Marine Phytoplankton and Bacteria. Front Microbiol 2017; 8:637. [PMID: 28469605 PMCID: PMC5395565 DOI: 10.3389/fmicb.2017.00637] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/28/2017] [Indexed: 11/13/2022] Open
Abstract
The elucidation of the pathways for dimethylsulfoniopropionate (DMSP) synthesis and metabolism and the ecological impact of DMSP have been studied for nearly 70 years. Much of this interest stems from the fact that DMSP metabolism produces the climatically active gas dimethyl sulfide (DMS), the primary natural source of sulfur to the atmosphere. DMSP plays many important roles for marine life, including use as an osmolyte, antioxidant, predator deterrent, and cryoprotectant for phytoplankton and as a reduced carbon and sulfur source for marine bacteria. DMSP is hypothesized to have become abundant in oceans approximately 250 million years ago with the diversification of the strong DMSP producers, the dinoflagellates. This event coincides with the first genome expansion of the Roseobacter clade, known DMSP degraders. Structural and mechanistic studies of the enzymes of the bacterial DMSP demethylation and cleavage pathways suggest that exposure to DMSP led to the recruitment of enzymes from preexisting metabolic pathways. In some cases, such as DmdA, DmdD, and DddP, these enzymes appear to have evolved to become more specific for DMSP metabolism. By contrast, many of the other enzymes, DmdB, DmdC, and the acrylate utilization hydratase AcuH, have maintained broad functionality and substrate specificities, allowing them to carry out a range of reactions within the cell. This review will cover the experimental evidence supporting the hypothesis that, as DMSP became more readily available in the marine environment, marine bacteria adapted enzymes already encoded in their genomes to utilize this new compound.
Collapse
Affiliation(s)
- Hannah A Bullock
- Department of Microbiology, University of Georgia, AthensGA, USA
| | - Haiwei Luo
- School of Life Sciences, The Chinese University of Hong KongHong Kong, Hong Kong
| | | |
Collapse
|
33
|
Enzymology of Microbial Dimethylsulfoniopropionate Catabolism. STRUCTURAL AND MECHANISTIC ENZYMOLOGY 2017; 109:195-222. [DOI: 10.1016/bs.apcsb.2017.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Brummett AE, Dey M. New Mechanistic Insight from Substrate- and Product-Bound Structures of the Metal-Dependent Dimethylsulfoniopropionate Lyase DddQ. Biochemistry 2016; 55:6162-6174. [PMID: 27755868 DOI: 10.1021/acs.biochem.6b00585] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The marine microbial catabolism of dimethylsulfoniopropionate (DMSP) by the lyase pathway liberates ∼300 million tons of dimethyl sulfide (DMS) per year, which plays a major role in the biogeochemical cycling of sulfur. Recent biochemical and structural studies of some DMSP lyases, including DddQ, reveal the importance of divalent transition metal ions in assisting DMSP cleavage. While DddQ is believed to be zinc-dependent primarily on the basis of structural studies, excess zinc inhibits the enzyme. We examine the importance of iron in regulating the DMSP β-elimination reaction catalyzed by DddQ as our as-isolated purple-colored enzyme possesses ∼0.5 Fe/subunit. The UV-visible spectrum exhibited a feature at 550 nm, consistent with a tyrosinate-Fe(III) ligand-to-metal charge transfer transition. Incubation of as-isolated DddQ with added iron increases the intensity of the 550 nm peak, whereas addition of dithionite causes a bleaching as Fe(III) is reduced. Both the Fe(III) oxidized and Fe(II) reduced species are active, with similar kcat values and 2-fold differences in their Km values for DMSP. The slow turnover of Fe(III)-bound DddQ allowed us to capture a substrate-bound form of the enzyme. Our DMSP-Fe(III)-DddQ structure reveals conformational changes associated with substrate binding and shows that DMSP is positioned optimally to bind iron and is in the proximity of Tyr 120 that acts as a Lewis base to initiate catalysis. The structures of Tris-, DMSP-, and acrylate-bound forms of Fe(III)-DddQ reported here illustrate various states of the enzyme along the reaction pathway. These results provide new insights into DMSP lyase catalysis and have broader significance for understanding the mechanism of oceanic DMS production.
Collapse
Affiliation(s)
- Adam E Brummett
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Mishtu Dey
- Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
35
|
Nadar VS, Yoshinaga M, Pawitwar SS, Kandavelu P, Sankaran B, Rosen BP. Structure of the ArsI C-As Lyase: Insights into the Mechanism of Degradation of Organoarsenical Herbicides and Growth Promoters. J Mol Biol 2016; 428:2462-2473. [PMID: 27107642 PMCID: PMC4989922 DOI: 10.1016/j.jmb.2016.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/10/2016] [Accepted: 04/14/2016] [Indexed: 11/25/2022]
Abstract
Arsenic is a ubiquitous and carcinogenic environmental element that enters the biosphere primarily from geochemical sources, but also through anthropogenic activities. Microorganisms play an important role in the arsenic biogeochemical cycle by biotransformation of inorganic arsenic into organic arsenicals and vice versa. ArsI is a microbial non-heme, ferrous-dependent dioxygenase that transforms toxic methylarsenite [MAs(III)] to less toxic and carcinogenic inorganic arsenite [As(III)] by C-As bond cleavage. An ArsI ortholog, TcArsI, from the thermophilic bacterium Thermomonospora curvata was expressed, purified, and crystallized. The structure was solved in both the apo form and with Ni(II), Co(II), or Fe(III). The MAs(III) binding site is a vicinal cysteine pair in a flexible loop. A structure with the loop occupied with β-mercaptoethanol mimics binding of MAs(III). The structure of a mutant protein (Y100H/V102F) was solved in two different crystal forms with two other orientations of the flexible loop. These results suggest that a loop-gating mechanism controls the catalytic reaction. In the ligand-free open state, the loop is exposed to solvent, where it can bind MAs(III). The loop moves toward the active site, where it forms a closed state that orients the C-As bond for dioxygen addition and cleavage. Elucidation of the enzymatic mechanism of this unprecedented C-As lyase reaction will enhance our understanding of recycling of environmental organoarsenicals.
Collapse
Affiliation(s)
- Venkadesh Sarkarai Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.
| | - Shashank S Pawitwar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Palani Kandavelu
- SER-CAT and the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley Center for Structural Biology, Berkeley, CA 94720, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
36
|
Enzymatic breakage of dimethylsulfoniopropionate — a signature molecule for life at sea. Curr Opin Chem Biol 2016; 31:58-65. [DOI: 10.1016/j.cbpa.2016.01.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 11/18/2022]
|
37
|
Abstract
Our computational investigations broaden the scope of currently available experimental results on the methylsulfinyl radical, a key atmospheric species.
Collapse
Affiliation(s)
- Marissa L. Estep
- Center for Computational Quantum Chemistry
- University of Georgia
- Athens
- Georgia
| | | |
Collapse
|
38
|
Wang P, Chen X, Li C, Gao X, Zhu D, Xie B, Qin Q, Zhang X, Su H, Zhou B, Xun L, Zhang Y. Structural and molecular basis for the novel catalytic mechanism and evolution of
DddP
, an abundant peptidase‐like bacterial Dimethylsulfoniopropionate lyase: a new enzyme from an old fold. Mol Microbiol 2015; 98:289-301. [DOI: 10.1111/mmi.13119] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Wang
- State Key Laboratory of Microbial Technology Shandong University Jinan 250100 China
- Marine Biotechnology Research Center Shandong University Jinan 250100 China
| | - Xiu‐Lan Chen
- State Key Laboratory of Microbial Technology Shandong University Jinan 250100 China
- Marine Biotechnology Research Center Shandong University Jinan 250100 China
| | - Chun‐Yang Li
- State Key Laboratory of Microbial Technology Shandong University Jinan 250100 China
- Marine Biotechnology Research Center Shandong University Jinan 250100 China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology Shandong University Jinan 250100 China
- Marine Biotechnology Research Center Shandong University Jinan 250100 China
| | - De‐yu Zhu
- State Key Laboratory of Microbial Technology Shandong University Jinan 250100 China
- Marine Biotechnology Research Center Shandong University Jinan 250100 China
| | - Bin‐Bin Xie
- State Key Laboratory of Microbial Technology Shandong University Jinan 250100 China
- Marine Biotechnology Research Center Shandong University Jinan 250100 China
| | - Qi‐Long Qin
- State Key Laboratory of Microbial Technology Shandong University Jinan 250100 China
- Marine Biotechnology Research Center Shandong University Jinan 250100 China
| | - Xi‐Ying Zhang
- State Key Laboratory of Microbial Technology Shandong University Jinan 250100 China
- Marine Biotechnology Research Center Shandong University Jinan 250100 China
| | - Hai‐Nan Su
- State Key Laboratory of Microbial Technology Shandong University Jinan 250100 China
- Marine Biotechnology Research Center Shandong University Jinan 250100 China
| | - Bai‐Cheng Zhou
- State Key Laboratory of Microbial Technology Shandong University Jinan 250100 China
- Marine Biotechnology Research Center Shandong University Jinan 250100 China
| | - Lu‐ying Xun
- State Key Laboratory of Microbial Technology Shandong University Jinan 250100 China
| | - Yu‐Zhong Zhang
- State Key Laboratory of Microbial Technology Shandong University Jinan 250100 China
- Marine Biotechnology Research Center Shandong University Jinan 250100 China
| |
Collapse
|
39
|
Brummett AE, Schnicker NJ, Crider A, Todd JD, Dey M. Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW--A Mononuclear Iron-Dependent DMSP Lyase. PLoS One 2015; 10:e0127288. [PMID: 25993446 PMCID: PMC4437653 DOI: 10.1371/journal.pone.0127288] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/13/2015] [Indexed: 11/19/2022] Open
Abstract
The osmolyte dimethylsulfoniopropionate (DMSP) is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS), a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121). Measurements of metal binding affinity and catalytic activity indicate that Fe(II) is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II) per monomer. Electronic absorption and electron paramagnetic resonance (EPR) studies show an interaction between NO and Fe(II)-DddW, with NO binding to the EPR silent Fe(II) site giving rise to an EPR active species (g = 4.29, 3.95, 2.00). The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW.
Collapse
Affiliation(s)
- Adam E. Brummett
- Department of Chemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Nicholas J. Schnicker
- Department of Chemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Alexander Crider
- Department of Chemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, United Kingdom
| | - Mishtu Dey
- Department of Chemistry, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
40
|
Brock NL, Menke M, Klapschinski TA, Dickschat JS. Marine bacteria from the Roseobacter clade produce sulfur volatiles via amino acid and dimethylsulfoniopropionate catabolism. Org Biomol Chem 2015; 12:4318-23. [PMID: 24848489 DOI: 10.1039/c4ob00719k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) is a versatile sulfur source for the production of sulfur-containing secondary metabolites by marine bacteria from the Roseobacter clade. (34)S-labelled DMSP and cysteine, and several DMSP derivatives with modified S-alkyl groups were synthesised and used in feeding experiments that gave insights into the biosynthesis of sulfur volatiles from these bacteria.
Collapse
Affiliation(s)
- Nelson L Brock
- Institut für Organische Chemie, Hagenring 30, 38106 Braunschweig, Germany.
| | | | | | | |
Collapse
|
41
|
Dickschat JS, Rabe P, Citron CA. The chemical biology of dimethylsulfoniopropionate. Org Biomol Chem 2015; 13:1954-68. [DOI: 10.1039/c4ob02407a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review addresses synthesis, biosynthesis, transport and degradation of dimethylsulfoniopropionate and its derivatives.
Collapse
Affiliation(s)
- Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
- Institut für Organische Chemie
| | - Patrick Rabe
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
- Institut für Organische Chemie
| | - Christian A. Citron
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
- Institut für Organische Chemie
| |
Collapse
|
42
|
Broy S, Chen C, Hoffmann T, Brock NL, Nau-Wagner G, Jebbar M, Smits SHJ, Dickschat JS, Bremer E. Abiotic stress protection by ecologically abundant dimethylsulfoniopropionate and its natural and synthetic derivatives: insights from Bacillus subtilis. Environ Microbiol 2014; 17:2362-78. [PMID: 25384455 DOI: 10.1111/1462-2920.12698] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 12/01/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) is an abundant osmolyte and anti-stress compound produced primarily in marine ecosystems. After its release into the environment, microorganisms can exploit DMSP as a source of sulfur and carbon, or accumulate it as an osmoprotectant. However, import systems for this ecophysiologically important compatible solute, and its stress-protective properties for microorganisms that do not produce it are insufficiently understood. Here we address these questions using a well-characterized set of Bacillus subtilis mutants to chemically profile the influence of DMSP import on stress resistance, the osmostress-adaptive proline pool and on osmotically controlled gene expression. We included in this study the naturally occurring selenium analogue of DMSP, dimethylseleniopropionate (DMSeP), as well as a set of synthetic DMSP derivatives. We found that DMSP is not a nutrient for B. subtilis, but it serves as an excellent stress protectant against challenges conferred by sustained high salinity or lasting extremes in both low and high growth temperatures. DMSeP and synthetic DMSP derivatives retain part of these stress protective attributes, but DMSP is clearly the more effective stress protectant. We identified the promiscuous and widely distributed ABC transporter OpuC as a high-affinity uptake system not only for DMSP, but also for its natural and synthetic derivatives.
Collapse
Affiliation(s)
- Sebastian Broy
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany
| | - Chiliang Chen
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str., D-35043, Marburg, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str., D-35043, Marburg, Germany
| | - Nelson L Brock
- Institute of Organic Chemistry, Technical University of Braunschweig, Hagenring 30, D-38106, Braunschweig, Germany
| | - Gabriele Nau-Wagner
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany
| | - Mohamed Jebbar
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany.,Laboratory of Microbiology of Extreme Environments, UMR 6197 (CNRS - Ifremer - UBO), European Institute of Marine Studies, University of West Brittany (Brest), Technopole Brest-Iroise, F-29280, Plouzané, France
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitäts Str. 1, D-40225, Düsseldorf, Germany
| | - Jeroen S Dickschat
- Institute of Organic Chemistry, Technical University of Braunschweig, Hagenring 30, D-38106, Braunschweig, Germany.,Kekule-Institute for Organic Chemistry and Biochemistry, Friedrich Wilhelms-University Bonn, Gerhard-Domagk-Str. 1, D-53121, Bonn, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str., D-35043, Marburg, Germany
| |
Collapse
|
43
|
Hehemann JH, Law A, Redecke L, Boraston AB. The structure of RdDddP from Roseobacter denitrificans reveals that DMSP lyases in the DddP-family are metalloenzymes. PLoS One 2014; 9:e103128. [PMID: 25054772 PMCID: PMC4108388 DOI: 10.1371/journal.pone.0103128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
Marine microbes degrade dimethylsulfoniopropionate (DMSP), which is produced in large quantities by marine algae and plants, with DMSP lyases into acrylate and the gas dimethyl sulfide (DMS). Approximately 10% of the DMS vents from the sea into the atmosphere and this emission returns sulfur, which arrives in the sea through rivers and runoff, back to terrestrial systems via clouds and rain. Despite their key role in this sulfur cycle DMSP lyases are poorly understood at the molecular level. Here we report the first X-ray crystal structure of the putative DMSP lyase RdDddP from Roseobacter denitrificans, which belongs to the abundant DddP family. This structure, determined to 2.15 Å resolution, shows that RdDddP is a homodimeric metalloprotein with a binuclear center of two metal ions located 2.7 Å apart in the active site of the enzyme. Consistent with the crystallographic data, inductively coupled plasma mass spectrometry (ICP-MS) and total reflection X-ray fluorescence (TRXF) revealed the bound metal species to be primarily iron. A 3D structure guided analysis of environmental DddP lyase sequences elucidated the critical residues for metal binding are invariant, suggesting all proteins in the DddP family are metalloenzymes.
Collapse
Affiliation(s)
- Jan-Hendrik Hehemann
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Adrienne Law
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Lars Redecke
- Joint Laboratory for Structural Biology of Infection and Inflammation of the Universities of Hamburg and Lübeck, c/o DESY, Hamburg, Germany
| | - Alisdair B. Boraston
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
44
|
Reply to Tawfik et al.: DddQ is a dimethylsulfoniopropionate lyase involved in dimethylsulfoniopropionate catabolism in marine bacterial cells. Proc Natl Acad Sci U S A 2014; 111:E2080. [PMID: 24967457 DOI: 10.1073/pnas.1403460111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Ambiguous evidence for assigning DddQ as a dimethylsulfoniopropionate lyase and oceanic dimethylsulfide producer. Proc Natl Acad Sci U S A 2014; 111:E2078-9. [PMID: 24760823 DOI: 10.1073/pnas.1401685111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|