1
|
Van Etten JL, Agarkova IV, Dunigan DD, Shao Q, Fang Q. Emerging structure of chlorovirus PBCV-1. Virology 2025; 608:110552. [PMID: 40286469 DOI: 10.1016/j.virol.2025.110552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
The large plaque-forming chloroviruses infect isolates of eukaryotic chlorella-like green algae. Initial cryo-electron microscopy (cryo-EM) studies revealed that PBCV-1 was icosahedral, with a multilaminate shell surrounding an electron-dense core, and that PBCV-1 particles measured about 1900 Å in diameter with a triangulation number of 169d. However, as described in this review cryo-EM procedures have improved and PBCV-1 is more complex than originally described. A five-fold symmetry reconstruction of cryo-EM images at 8.5 Å revealed that the virus contains a unique vertex with a spike-structure and an internal single lipid bi-layered membrane. Improvement to 3.5 Å resolution revealed that the capsid contains 30 virus-encoded proteins and that it contains six different types of capsomers. The outer surface of three of the six types of capsomers are attached to fiber structures.
Collapse
Affiliation(s)
- James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA, 68583-0900.
| | - Irina V Agarkova
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA, 68583-0900
| | - David D Dunigan
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA, 68583-0900
| | - Qianqian Shao
- School of Public Health (Shenzhen) Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Qianglin Fang
- School of Public Health (Shenzhen) Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
2
|
Speciale I, Notaro A, Bruijns S, van Kooyk Y, Esmael A, Molinaro A, Balzarini F, Rodriguez E, Petro TM, Agarkova IV, Pattee GL, Van Etten JL, De Castro C, Chiodo F. Carbohydrate-mediated interactions between chloroviruses and the immune system. Commun Biol 2024; 7:1670. [PMID: 39702824 DOI: 10.1038/s42003-024-07244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 11/10/2024] [Indexed: 12/21/2024] Open
Abstract
Understanding the molecular mechanisms which drive and modulate host-pathogen interactions are essential when designing effective therapeutic and diagnostic approaches aimed at controlling infectious diseases. Certain large and giant viruses have recently been discovered as components of the human virome, yet little is known about their interactions with the host immune system. We have dissected the role of viral N-linked glycans during the interaction between the glycoproteins from six chloroviruses (belonging to three chlorovirus classes: NC64A, SAG, and Osy viruses) and the representative carbohydrate-binding receptors of the innate immune system. Using solid-phase assays we have identified the binding of viral glycoproteins to different C-type lectins in a carbohydrate-dependent manner. These experiments verified the importance of D-rhamnose in modulating their binding to C-type lectins DC-SIGN and Langerin. In vitro assays further determined the ability of the chlorovirus glycoproteins to trigger secretion of cytokines Interleukins 6 and 10 (IL-6 and IL-10) in human monocyte-derived dendritic cells and mouse macrophages. Additionally, IgG from healthy human controls recognized certain chlorovirus glycoproteins, indicating the significance of human environmental viral exposures. Collectively, these results demonstrate the ability of the innate and adaptive immune systems to recognize chlorovirus glycoproteins, a process dependent on their specific N-glycan structures.
Collapse
Affiliation(s)
| | - Anna Notaro
- Department of Chemical Sciences, University of Napoli, Napoli, Italy
| | - Sven Bruijns
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ahmed Esmael
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli, Napoli, Italy
| | - Fabio Balzarini
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ernesto Rodriguez
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thomas M Petro
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Irina V Agarkova
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Gary L Pattee
- Bryan Health Network, Lincoln, NE, USA
- University of Nebraska Medical Center, Omaha, NE, USA
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Napoli, Italy.
| |
Collapse
|
3
|
Moniruzzaman M, Erazo Garcia MP, Farzad R, Ha AD, Jivaji A, Karki S, Sheyn U, Stanton J, Minch B, Stephens D, Hancks DC, Rodrigues RAL, Abrahao JS, Vardi A, Aylward FO. Virologs, viral mimicry, and virocell metabolism: the expanding scale of cellular functions encoded in the complex genomes of giant viruses. FEMS Microbiol Rev 2023; 47:fuad053. [PMID: 37740576 PMCID: PMC10583209 DOI: 10.1093/femsre/fuad053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The phylum Nucleocytoviricota includes the largest and most complex viruses known. These "giant viruses" have a long evolutionary history that dates back to the early diversification of eukaryotes, and over time they have evolved elaborate strategies for manipulating the physiology of their hosts during infection. One of the most captivating of these mechanisms involves the use of genes acquired from the host-referred to here as viral homologs or "virologs"-as a means of promoting viral propagation. The best-known examples of these are involved in mimicry, in which viral machinery "imitates" immunomodulatory elements in the vertebrate defense system. But recent findings have highlighted a vast and rapidly expanding array of other virologs that include many genes not typically found in viruses, such as those involved in translation, central carbon metabolism, cytoskeletal structure, nutrient transport, vesicular trafficking, and light harvesting. Unraveling the roles of virologs during infection as well as the evolutionary pathways through which complex functional repertoires are acquired by viruses are important frontiers at the forefront of giant virus research.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Maria Paula Erazo Garcia
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Roxanna Farzad
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Anh D Ha
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Abdeali Jivaji
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Sangita Karki
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Uri Sheyn
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Joshua Stanton
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
| | - Benjamin Minch
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Danae Stephens
- Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Coral Gables, FL 33149, United States
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, United States
| | - Rodrigo A L Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Jonatas S Abrahao
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Frank O Aylward
- Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA 24061, United States
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
4
|
Guo Y, Liu B, Huang T, Qi X, Li S. HOTAIR modulates hepatocellular carcinoma progression by activating FUT8/core-fucosylated Hsp90/MUC1/STAT3 feedback loop via JAK1/STAT3 cascade. Dig Liver Dis 2023; 55:113-122. [PMID: 35504805 DOI: 10.1016/j.dld.2022.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Glycosylation exhibits crucial effect on hepatocellular carcinoma (HCC) progression. Long non-coding RNAs (lncRNAs) are involved in multilevel regulation of gene transcription during tumor development. The purpose of this study is to clarify the potential mechanism that HOTAIR modulates hepatocellular carcinoma progression by activating FUT8/core-fucosylated Hsp90/MUC1/STAT3 feedback loop via JAK1/STAT3 cascade. METHODS qRT-PCR was used to show the differential expression of genes. Functional experiments were used to measure the malignancy of HCC cells. ChIP and co-IP assays showed the directly interaction of the key molecules. Xenografts was conducted to show the in vivo effects. RESULTS Upregulation of FUT8 showed closely correlation with HCC progression. Core-fucosylation of Hsp90 stabilized MUC1 binding to the downstream p-STAT3, which involved in the activation of JAK1/STAT3 cascade. STAT3 was identified as the regulator of FUT8 and MUC1 transcription, while FUT8 and MUC1 impacted STAT3 level both in nuclear and cytoplasm. HOTAIR recruited P300 to efficiently bind with STAT3. The transcript complex co-modulated the transcrption of FUT8 and MUC1. Moreover, highly HOTAIR expression also exhibited closely correlation with HCC progression. CONCLUSIONS FUT8 triggered core-fucosylated-Hsp90/MUC1/P300-HOTAIR-STAT3 cascade via JAK1/STAT3 pathway, which exhibited as positive feedback loop during HCC progression.
Collapse
Affiliation(s)
- Yanru Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Tong Huang
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xia Qi
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Shijun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China; College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
5
|
Speciale I, Notaro A, Abergel C, Lanzetta R, Lowary TL, Molinaro A, Tonetti M, Van Etten JL, De Castro C. The Astounding World of Glycans from Giant Viruses. Chem Rev 2022; 122:15717-15766. [PMID: 35820164 PMCID: PMC9614988 DOI: 10.1021/acs.chemrev.2c00118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Viruses are a heterogeneous ensemble of entities, all sharing the need for a suitable host to replicate. They are extremely diverse, varying in morphology, size, nature, and complexity of their genomic content. Typically, viruses use host-encoded glycosyltransferases and glycosidases to add and remove sugar residues from their glycoproteins. Thus, the structure of the glycans on the viral proteins have, to date, typically been considered to mimick those of the host. However, the more recently discovered large and giant viruses differ from this paradigm. At least some of these viruses code for an (almost) autonomous glycosylation pathway. These viral genes include those that encode the production of activated sugars, glycosyltransferases, and other enzymes able to manipulate sugars at various levels. This review focuses on large and giant viruses that produce carbohydrate-processing enzymes. A brief description of those harboring these features at the genomic level will be discussed, followed by the achievements reached with regard to the elucidation of the glycan structures, the activity of the proteins able to manipulate sugars, and the organic synthesis of some of these virus-encoded glycans. During this progression, we will also comment on many of the challenging questions on this subject that remain to be addressed.
Collapse
Affiliation(s)
- Immacolata Speciale
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
| | - Anna Notaro
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
- Centre
National de la Recherche Scientifique, Information Génomique
& Structurale, Aix-Marseille University, Unité Mixte de Recherche
7256, IMM, IM2B, 13288 Marseille, Cedex 9, France
| | - Chantal Abergel
- Centre
National de la Recherche Scientifique, Information Génomique
& Structurale, Aix-Marseille University, Unité Mixte de Recherche
7256, IMM, IM2B, 13288 Marseille, Cedex 9, France
| | - Rosa Lanzetta
- Department
of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy
| | - Todd L. Lowary
- Institute
of Biological Chemistry, Academia Sinica, Academia Road, Section 2, Nangang 11529, Taipei, Taiwan
| | - Antonio Molinaro
- Department
of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli, Italy
| | - Michela Tonetti
- Department
of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| | - James L. Van Etten
- Nebraska
Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900, United States
- Department
of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722, United States
| | - Cristina De Castro
- Department
of Agricultural Sciences, University of
Napoli, Via Università
100, 80055 Portici, Italy
| |
Collapse
|
6
|
Li S, Chen F, Li Y, Wang L, Li H, Gu G, Li E. Rhamnose-Containing Compounds: Biosynthesis and Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165315. [PMID: 36014553 PMCID: PMC9415975 DOI: 10.3390/molecules27165315] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Rhamnose-associated molecules are attracting attention because they are present in bacteria but not mammals, making them potentially useful as antibacterial agents. Additionally, they are also valuable for tumor immunotherapy. Thus, studies on the functions and biosynthetic pathways of rhamnose-containing compounds are in progress. In this paper, studies on the biosynthetic pathways of three rhamnose donors, i.e., deoxythymidinediphosphate-L-rhamnose (dTDP-Rha), uridine diphosphate-rhamnose (UDP-Rha), and guanosine diphosphate rhamnose (GDP-Rha), are firstly reviewed, together with the functions and crystal structures of those associated enzymes. Among them, dTDP-Rha is the most common rhamnose donor, and four enzymes, including glucose-1-phosphate thymidylyltransferase RmlA, dTDP-Glc-4,6-dehydratase RmlB, dTDP-4-keto-6-deoxy-Glc-3,5-epimerase RmlC, and dTDP-4-keto-Rha reductase RmlD, are involved in its biosynthesis. Secondly, several known rhamnosyltransferases from Geobacillus stearothermophilus, Saccharopolyspora spinosa, Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Streptococcus pneumoniae are discussed. In these studies, however, the functions of rhamnosyltransferases were verified by employing gene knockout and radiolabeled substrates, which were almost impossible to obtain and characterize the products of enzymatic reactions. Finally, the application of rhamnose-containing compounds in disease treatments is briefly described.
Collapse
Affiliation(s)
- Siqiang Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
- Institute of Agricultural Products Fermentation Engineering and Application, Huanghuai University, Zhumadian 463000, China
| | - Fujia Chen
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
- Institute of Agricultural Products Fermentation Engineering and Application, Huanghuai University, Zhumadian 463000, China
| | - Yun Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
- Institute of Agricultural Products Fermentation Engineering and Application, Huanghuai University, Zhumadian 463000, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250100, China
| | - Hongyan Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Guofeng Gu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Correspondence: (G.G.); (E.L.)
| | - Enzhong Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
- Institute of Agricultural Products Fermentation Engineering and Application, Huanghuai University, Zhumadian 463000, China
- Correspondence: (G.G.); (E.L.)
| |
Collapse
|
7
|
Retel C, Kowallik V, Becks L, Feulner PGD. Strong Selection and High Mutation Supply Characterize Experimental Chlorovirus Evolution. Virus Evol 2022; 8:veac003. [PMID: 35169490 PMCID: PMC8838748 DOI: 10.1093/ve/veac003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Characterizing how viruses evolve expands our understanding of the underlying fundamental processes, such as mutation, selection and drift. One group of viruses whose evolution has not yet been extensively studied is the Phycodnaviridae, a globally abundant family of aquatic large double-stranded (ds) DNA viruses. Here we studied the evolutionary change of Paramecium bursaria chlorella virus 1 during experimental coevolution with its algal host. We used pooled genome sequencing of six independently evolved populations to characterize genomic change over five time points. Across six experimental replicates involving either strong or weak demographic fluctuations, we found single nucleotide polymorphisms (SNPs) at sixty-seven sites. The occurrence of genetic variants was highly repeatable, with just two of the SNPs found in only a single experimental replicate. Three genes A122/123R, A140/145R and A540L showed an excess of variable sites, providing new information about potential targets of selection during Chlorella–Chlorovirus coevolution. Our data indicated that the studied populations were not mutation-limited and experienced strong positive selection. Our investigation highlighted relevant processes governing the evolution of aquatic large dsDNA viruses, which ultimately contributes to a better understanding of the functioning of natural aquatic ecosystems.
Collapse
Affiliation(s)
- Cas Retel
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Bio-geochemistry, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, Kastanienbaum 6047, Switzerland
- Division of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | | | | | | |
Collapse
|
8
|
Garcia-Vello P, Speciale I, Di Lorenzo F, Molinaro A, De Castro C. Dissecting Lipopolysaccharide Composition and Structure by GC-MS and MALDI Spectrometry. Methods Mol Biol 2022; 2548:181-209. [PMID: 36151499 DOI: 10.1007/978-1-0716-2581-1_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lipopolysaccharides (LPSs) are the main components of the external leaflet of the outer membrane of Gram-negative bacteria. They exert multiple functions, starting from conferring stability to the bacterial membrane to mediating the interaction of the microbe with the external environment. The composition and the structure of LPSs present tremendous diversity even within bacteria of the same species, and for this reason, the determination of the structure of these molecules is crucial because it can provide information on the motifs key for the virulence of a pathogen or that are associated to a bacterium of the commensal or beneficial microbiota. In addition, structural data disclose the effects triggered from a mutation or from the use of an antibiotic, or they can be used as tools to check the quality of adjuvants and/or medications, as vaccines, that make use of LPS.The structural study of LPSs is complex, and it can be achieved with the right combination of different techniques. In this frame, this chapter focuses on the two MS-based approaches, the gas chromatography-mass spectrometry (GC-MS) and the matrix-assisted laser desorption/ionization (MALDI).
Collapse
Affiliation(s)
| | - Immacolata Speciale
- Department of Chemical Sciences, University of Naples, Naples, Italy
- Department of Agricultural Sciences, University of Naples, Portici, Italy
| | | | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples, Naples, Italy
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples, Portici, Italy.
| |
Collapse
|
9
|
Speciale I, Di Lorenzo F, Notaro A, Noel E, Agarkova I, Molinaro A, Van Etten JL, De Castro C. N-glycans from Paramecium bursaria chlorella virus MA-1D: Re-evaluation of the oligosaccharide common core structure. Glycobiology 2021; 32:260-273. [DOI: 10.1093/glycob/cwab113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Paramecium bursaria chlorella virus MA-1D is a chlorovirus that infects Chlorella variabilis strain NC64A, a symbiont of the protozoan Paramecium bursaria. MA-1D has a 339-kb genome encoding ca. 366 proteins and 11 tRNAs. Like other chloroviruses, its major capsid protein (MCP) is decorated with N-glycans, whose structures have been solved in this work by using nuclear magnetic (NMR) spectroscopy and MALDI-TOF mass spectrometry along with MS/MS experiments. This analysis identified three N-linked oligosaccharides that differ in the non-stoichiometric presence of three monosaccharides, with the largest oligosaccharide composed of eight residues organized in a highly branched fashion. The N-glycans described here share several features with those of the other chloroviruses except that they lack a distal xylose unit that was believed to be part of a conserved core region for all the chloroviruses. Examination of the MA-1D genome detected a gene with strong homology to the putative xylosyltransferase in the reference chlorovirus PBCV-1 and in virus NY-2A, albeit mutated with a premature stop codon. This discovery means that we need to reconsider the essential features of the common core glycan region in the chloroviruses.
Collapse
Affiliation(s)
- Immacolata Speciale
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055, Portici, Italy
| | - Flaviana Di Lorenzo
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055, Portici, Italy
| | - Anna Notaro
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055, Portici, Italy
| | - Eric Noel
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0900, USA
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588-0118, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Irina Agarkova
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0900, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68583-0722, USA
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 26, 80126, Napoli, Italy
| | - James L Van Etten
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, 68583-0900, USA
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68583-0722, USA
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055, Portici, Italy
| |
Collapse
|
10
|
Notaro A, Couté Y, Belmudes L, Laugeri ME, Salis A, Damonte G, Molinaro A, Tonetti MG, Abergel C, De Castro C. Expanding the Occurrence of Polysaccharides to the Viral World: The Case of Mimivirus. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anna Notaro
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 21 80126 Naples Italy
- Information Génomique & Structurale Unité Mixte de Recherche 7256 Aix-Marseille University Centre National de la Recherche Scientifique, IMM, IM2B 13288 Marseille Cedex 9 France
| | - Yohann Couté
- INSERM, CEA, UMR BioSanté U1292 Univ. Grenoble Alpes CNRS, CEA, FR2048 38000 Grenoble France
| | - Lucid Belmudes
- INSERM, CEA, UMR BioSanté U1292 Univ. Grenoble Alpes CNRS, CEA, FR2048 38000 Grenoble France
| | - Maria Elena Laugeri
- Department of Experimental Medicine and Center of Excellence for Biomedical Research University of Genova Genova Italy
| | - Annalisa Salis
- Department of Experimental Medicine and Center of Excellence for Biomedical Research University of Genova Genova Italy
| | - Gianluca Damonte
- Department of Experimental Medicine and Center of Excellence for Biomedical Research University of Genova Genova Italy
| | - Antonio Molinaro
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 21 80126 Naples Italy
| | - Michela G. Tonetti
- Department of Experimental Medicine and Center of Excellence for Biomedical Research University of Genova Genova Italy
| | - Chantal Abergel
- Information Génomique & Structurale Unité Mixte de Recherche 7256 Aix-Marseille University Centre National de la Recherche Scientifique, IMM, IM2B 13288 Marseille Cedex 9 France
| | - Cristina De Castro
- Department of Agricultural Sciences University of Naples Federico II Via Università, 100 80055 Portici (NA) Italy
| |
Collapse
|
11
|
Notaro A, Couté Y, Belmudes L, Laugieri ME, Salis A, Damonte G, Molinaro A, Tonetti MG, Abergel C, De Castro C. Expanding the Occurrence of Polysaccharides to the Viral World: The Case of Mimivirus. Angew Chem Int Ed Engl 2021; 60:19897-19904. [PMID: 34241943 PMCID: PMC8456856 DOI: 10.1002/anie.202106671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/05/2022]
Abstract
The general perception of viruses is that they are small in terms of size and genome, and that they hijack the host machinery to glycosylate their capsid. Giant viruses subvert all these concepts: their particles are not small, and their genome is more complex than that of some bacteria. Regarding glycosylation, this concept has been already challenged by the finding that Chloroviruses have an autonomous glycosylation machinery that produces oligosaccharides similar in size to those of small viruses (6-12 units), albeit different in structure compared to the viral counterparts. We report herein that Mimivirus possesses a glycocalyx made of two different polysaccharides, now challenging the concept that all viruses coat their capsids with oligosaccharides of discrete size. This discovery contradicts the paradigm that such macromolecules are absent in viruses, blurring the boundaries between giant viruses and the cellular world and opening new avenues in the field of viral glycobiology.
Collapse
Affiliation(s)
- Anna Notaro
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cinthia 2180126NaplesItaly
- Information Génomique & StructuraleUnité Mixte de Recherche 7256Aix-Marseille UniversityCentre National de la Recherche Scientifique, IMM, IM2B13288Marseille Cedex 9France
| | - Yohann Couté
- INSERM, CEA, UMR BioSanté U1292Univ. Grenoble AlpesCNRS, CEA, FR204838000GrenobleFrance
| | - Lucid Belmudes
- INSERM, CEA, UMR BioSanté U1292Univ. Grenoble AlpesCNRS, CEA, FR204838000GrenobleFrance
| | - Maria Elena Laugieri
- Department of Experimental Medicine and Center of Excellence for Biomedical ResearchUniversity of GenovaGenovaItaly
| | - Annalisa Salis
- Department of Experimental Medicine and Center of Excellence for Biomedical ResearchUniversity of GenovaGenovaItaly
| | - Gianluca Damonte
- Department of Experimental Medicine and Center of Excellence for Biomedical ResearchUniversity of GenovaGenovaItaly
| | - Antonio Molinaro
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cinthia 2180126NaplesItaly
| | - Michela G. Tonetti
- Department of Experimental Medicine and Center of Excellence for Biomedical ResearchUniversity of GenovaGenovaItaly
| | - Chantal Abergel
- Information Génomique & StructuraleUnité Mixte de Recherche 7256Aix-Marseille UniversityCentre National de la Recherche Scientifique, IMM, IM2B13288Marseille Cedex 9France
| | - Cristina De Castro
- Department of Agricultural SciencesUniversity of Naples Federico IIVia Università, 10080055Portici (NA)Italy
| |
Collapse
|
12
|
Mishra B, Manmode S, Walke G, Chakraborty S, Neralkar M, Hotha S. Synthesis of the hyper-branched core tetrasaccharide motif of chloroviruses. Org Biomol Chem 2021; 19:1315-1328. [PMID: 33459320 DOI: 10.1039/d0ob02176h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemical synthesis of complex oligosaccharides, especially those possessing hyper-branched structures with one or multiple 1,2-cis glycosidic bonds, is a challenging task. Complementary reactivity of glycosyl donors and acceptors and proper tuning of the solvent/temperature/activator coupled with compromised glycosylation yields for sterically congested glycosyl acceptors are among several factors that make such syntheses daunting. Herein, we report the synthesis of a semi-conserved hyper-branched core tetrasaccharide motif from chloroviruses which are associated with reduced cognitive function in humans as well as in mouse models. The target tetrasaccharide contains four different sugar residues in which l-fucose is connected to d-xylose and l-rhamnose via a 1,2-trans glycosidic bond, whereas with the d-galactose residue is connected through a 1,2-cis glycosidic bond. A thorough and comprehensive study of various accountable factors enabled us to install a 1,2-cis galactopyranosidic linkage in a stereoselective fashion under [Au]/[Ag]-catalyzed glycosidation conditions en route to the target tetrasaccharide motif in 14 steps.
Collapse
Affiliation(s)
- Bijoyananda Mishra
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Sujit Manmode
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Gulab Walke
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Saptashwa Chakraborty
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Mahesh Neralkar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science Education and Research, Pune - 411 008, MH, India.
| |
Collapse
|
13
|
Wagstaff BA, Zorzoli A, Dorfmueller HC. NDP-rhamnose biosynthesis and rhamnosyltransferases: building diverse glycoconjugates in nature. Biochem J 2021; 478:685-701. [PMID: 33599745 DOI: 10.1042/bcj20200505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
Rhamnose is an important 6-deoxy sugar present in many natural products, glycoproteins, and structural polysaccharides. Whilst predominantly found as the l-enantiomer, instances of d-rhamnose are also found in nature, particularly in the Pseudomonads bacteria. Interestingly, rhamnose is notably absent from humans and other animals, which poses unique opportunities for drug discovery targeted towards rhamnose utilizing enzymes from pathogenic bacteria. Whilst the biosynthesis of nucleotide-activated rhamnose (NDP-rhamnose) is well studied, the study of rhamnosyltransferases that synthesize rhamnose-containing glycoconjugates is the current focus amongst the scientific community. In this review, we describe where rhamnose has been found in nature, as well as what is known about TDP-β-l-rhamnose, UDP-β-l-rhamnose, and GDP-α-d-rhamnose biosynthesis. We then focus on examples of rhamnosyltransferases that have been characterized using both in vivo and in vitro approaches from plants and bacteria, highlighting enzymes where 3D structures have been obtained. The ongoing study of rhamnose and rhamnosyltransferases, in particular in pathogenic organisms, is important to inform future drug discovery projects and vaccine development.
Collapse
Affiliation(s)
- Ben A Wagstaff
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, U.K
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Azul Zorzoli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
14
|
Chlorovirus PBCV-1 Multidomain Protein A111/114R Has Three Glycosyltransferase Functions Involved in the Synthesis of Atypical N-Glycans. Viruses 2021; 13:v13010087. [PMID: 33435207 PMCID: PMC7826918 DOI: 10.3390/v13010087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 12/04/2022] Open
Abstract
The structures of the four N-linked glycans from the prototype chlorovirus PBCV-1 major capsid protein do not resemble any other glycans in the three domains of life. All known chloroviruses and antigenic variants (or mutants) share a unique conserved central glycan core consisting of five sugars, except for antigenic mutant virus P1L6, which has four of the five sugars. A combination of genetic and structural analyses indicates that the protein coded by PBCV-1 gene a111/114r, conserved in all chloroviruses, is a glycosyltransferase with three putative domains of approximately 300 amino acids each. Here, in addition to in silico sequence analysis and protein modeling, we measured the hydrolytic activity of protein A111/114R. The results suggest that domain 1 is a galactosyltransferase, domain 2 is a xylosyltransferase and domain 3 is a fucosyltransferase. Thus, A111/114R is the protein likely responsible for the attachment of three of the five conserved residues of the core region of this complex glycan, and, if biochemically corroborated, it would be the second three-domain protein coded by PBCV-1 that is involved in glycan synthesis. Importantly, these findings provide additional support that the chloroviruses do not use the canonical host endoplasmic reticulum–Golgi glycosylation pathway to glycosylate their glycoproteins; instead, they perform glycosylation independent of cellular organelles using virus-encoded enzymes.
Collapse
|
15
|
Speciale I, Laugieri ME, Noel E, Lin S, Lowary TL, Molinaro A, Duncan GA, Agarkova IV, Garozzo D, Tonetti MG, Van Etten JL, De Castro C. Chlorovirus PBCV-1 protein A064R has three of the transferase activities necessary to synthesize its capsid protein N-linked glycans. Proc Natl Acad Sci U S A 2020; 117:28735-28742. [PMID: 33139538 PMCID: PMC7682578 DOI: 10.1073/pnas.2016626117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Paramecium bursaria chlorella virus-1 (PBCV-1) is a large double-stranded DNA (dsDNA) virus that infects the unicellular green alga Chlorella variabilis NC64A. Unlike many other viruses, PBCV-1 encodes most, if not all, of the enzymes involved in the synthesis of the glycans attached to its major capsid protein. Importantly, these glycans differ from those reported from the three domains of life in terms of structure and asparagine location in the sequon of the protein. Previous data collected from 20 PBCV-1 spontaneous mutants (or antigenic variants) suggested that the a064r gene encodes a glycosyltransferase (GT) with three domains, each with a different function. Here, we demonstrate that: domain 1 is a β-l-rhamnosyltransferase; domain 2 is an α-l-rhamnosyltransferase resembling only bacterial proteins of unknown function, and domain 3 is a methyltransferase that methylates the C-2 hydroxyl group of the terminal α-l-rhamnose (Rha) unit. We also establish that methylation of the C-3 hydroxyl group of the terminal α-l-Rha is achieved by another virus-encoded protein A061L, which requires an O-2 methylated substrate. This study, thus, identifies two of the glycosyltransferase activities involved in the synthesis of the N-glycan of the viral major capsid protein in PBCV-1 and establishes that a single protein A064R possesses the three activities needed to synthetize the 2-OMe-α-l-Rha-(1→2)-β-l-Rha fragment. Remarkably, this fragment can be attached to any xylose unit.
Collapse
Affiliation(s)
- Immacolata Speciale
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
- Department of Agricultural Sciences, University of Napoli Federico II, 80055 Portici NA, Italy
| | - Maria Elena Laugieri
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| | - Eric Noel
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118
| | - Sicheng Lin
- Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, AB T6G 2G2 , Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, AB T6G 2G2 , Canada
- Institute of Biological Chemistry, Academia Sinica, Nangang, 11529 Taipei, Taiwan
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Garry A Duncan
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900
| | - Irina V Agarkova
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0722
| | - Domenico Garozzo
- CNR, Institute for Polymers, Composites and Biomaterials, 95126 Catania, Italy
| | - Michela G Tonetti
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy;
| | - James L Van Etten
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900;
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0722
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Napoli Federico II, 80055 Portici NA, Italy;
| |
Collapse
|
16
|
Lin S, Lowary TL. Synthesis of a Highly Branched Nonasaccharide Chlorella Virus N-Glycan Using a "Counterclockwise" Assembly Approach. Org Lett 2020; 22:7645-7649. [PMID: 32940477 DOI: 10.1021/acs.orglett.0c02839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chloroviruses produce a capsid protein containing N-linked glycans differing in structure from those found in all other organisms. These species feature a core "hyper-branched" fucose residue in which every hydroxyl group is glycosylated. We describe the synthesis of a nonasaccharide from Paramecium bursaria chlorella virus 1, one of most complex chlorovirus N-glycans reported, using a "counterclockwise" strategy involving the sequential addition of trisaccharide, disaccharide, and monosaccharide motifs to a trisaccharide containing the core fucose residue.
Collapse
Affiliation(s)
- Sicheng Lin
- Department of Chemistry, The University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Todd L Lowary
- Department of Chemistry, The University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.,Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128, Nangang, Taipei 11529, Taiwan
| |
Collapse
|
17
|
Harvey DJ. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS. MASS SPECTROMETRY REVIEWS 2020; 39:586-679. [PMID: 32329121 DOI: 10.1002/mas.21622] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 05/03/2023]
Abstract
N-glycans from glycoproteins are complex, branched structures whose structural determination presents many analytical problems. Mass spectrometry, usually conducted in positive ion mode, often requires extensive sample manipulation, usually by derivatization such as permethylation, to provide the necessary structure-revealing fragment ions. The newer but, so far, lesser used negative ion techniques, on the contrary, provide a wealth of structural information not present in positive ion spectra that greatly simplify the analysis of these compounds and can usually be conducted without the need for derivatization. This review describes the use of negative ion mass spectrometry for the structural analysis of N-linked glycans and emphasises the many advantages that can be gained by this mode of operation. Biosynthesis and structures of the compounds are described followed by methods for release of the glycans from the protein. Methods for ionization are discussed with emphasis on matrix-assisted laser desorption/ionization (MALDI) and methods for producing negative ions from neutral compounds. Acidic glycans naturally give deprotonated species under most ionization conditions. Fragmentation of negative ions is discussed next with particular reference to those ions that are diagnostic for specific features such as the branching topology of the glycans and substitution positions of moieties such as fucose and sulfate, features that are often difficult to identify easily by conventional techniques such as positive ion fragmentation and exoglycosidase digestions. The advantages of negative over positive ions for this structural work are emphasised with an example of a series of glycans where all other methods failed to produce a structure. Fragmentation of derivatized glycans is discussed next, both with respect to derivatives at the reducing terminus of the molecules, and to methods for neutralization of the acidic groups on sialic acids to both stabilize them for MALDI analysis and to produce the diagnostic fragments seen with the neutral glycans. The use of ion mobility, combined with conventional mass spectrometry is described with emphasis on its use to extract clean glycan spectra both before and after fragmentation, to separate isomers and its use to extract additional information from separated fragment ions. A section on applications follows with examples of the identification of novel structures from lower organisms and tables listing the use of negative ions for structural identification of specific glycoproteins, glycans from viruses and uses in the biopharmaceutical industry and in medicine. The review concludes with a summary of the advantages and disadvantages of the technique. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
18
|
Cipollo JF, Parsons LM. Glycomics and glycoproteomics of viruses: Mass spectrometry applications and insights toward structure-function relationships. MASS SPECTROMETRY REVIEWS 2020; 39:371-409. [PMID: 32350911 PMCID: PMC7318305 DOI: 10.1002/mas.21629] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 05/21/2023]
Abstract
The advancement of viral glycomics has paralleled that of the mass spectrometry glycomics toolbox. In some regard the glycoproteins studied have provided the impetus for this advancement. Viral proteins are often highly glycosylated, especially those targeted by the host immune system. Glycosylation tends to be dynamic over time as viruses propagate in host populations leading to increased number of and/or "movement" of glycosylation sites in response to the immune system and other pressures. This relationship can lead to highly glycosylated, difficult to analyze glycoproteins that challenge the capabilities of modern mass spectrometry. In this review, we briefly discuss five general areas where glycosylation is important in the viral niche and how mass spectrometry has been used to reveal key information regarding structure-function relationships between viral glycoproteins and host cells. We describe the recent past and current glycomics toolbox used in these analyses and give examples of how the requirement to analyze these complex glycoproteins has provided the incentive for some advances seen in glycomics mass spectrometry. A general overview of viral glycomics, special cases, mass spectrometry methods and work-flows, informatics and complementary chemical techniques currently used are discussed. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- John F. Cipollo
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMaryland
| | - Lisa M. Parsons
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMaryland
| |
Collapse
|
19
|
Gajdos L, Forsyth VT, Blakeley MP, Haertlein M, Imberty A, Samain E, Devos JM. Production of perdeuterated fucose from glyco-engineered bacteria. Glycobiology 2020; 31:151-158. [PMID: 32601663 PMCID: PMC7874385 DOI: 10.1093/glycob/cwaa059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022] Open
Abstract
l-Fucose and l-fucose-containing polysaccharides, glycoproteins or glycolipids play an important role in a variety of biological processes. l-Fucose-containing glycoconjugates have been implicated in many diseases including cancer and rheumatoid arthritis. Interest in fucose and its derivatives is growing in cancer research, glyco-immunology, and the study of host–pathogen interactions. l-Fucose can be extracted from bacterial and algal polysaccharides or produced (bio)synthetically. While deuterated glucose and galactose are available, and are of high interest for metabolic studies and biophysical studies, deuterated fucose is not easily available. Here, we describe the production of perdeuterated l-fucose, using glyco-engineered Escherichia coli in a bioreactor with the use of a deuterium oxide-based growth medium and a deuterated carbon source. The final yield was 0.2 g L−1 of deuterated sugar, which was fully characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. We anticipate that the perdeuterated fucose produced in this way will have numerous applications in structural biology where techniques such as NMR, solution neutron scattering and neutron crystallography are widely used. In the case of neutron macromolecular crystallography, the availability of perdeuterated fucose can be exploited in identifying the details of its interaction with protein receptors and notably the hydrogen bonding network around the carbohydrate binding site.
Collapse
Affiliation(s)
- Lukas Gajdos
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France.,Université Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France.,Faculty of Natural Sciences, Keele University, Staffordshire ST5 5BG, UK
| | - Matthew P Blakeley
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Michael Haertlein
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - Eric Samain
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - Juliette M Devos
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France
| |
Collapse
|
20
|
Mouafo HT, Mbawala A, Somashekar D, Tchougang HM, Harohally NV, Ndjouenkeu R. Biological properties and structural characterization of a novel rhamnolipid like-biosurfactants produced by Lactobacillus casei subsp. casei TM1B. Biotechnol Appl Biochem 2020; 68:585-596. [PMID: 32497351 DOI: 10.1002/bab.1966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/30/2020] [Indexed: 11/08/2022]
Abstract
Biosurfactants are microbial surface-active compounds with antimicrobial and antioxidant activities that display a range of physiological functions. In this study, a strain isolated from a Cameroonian fermented milk "pendidam" and identified as Lactobacillus casei subsp. casei TM1B was used for biosurfactants production. The biosurfactants produced by L. casei TM1B with molasses as the substrate had a good surface (40.77 mN/m) and emulsifying (84.50%) activities. The scavenging of the ABTS+• radical (IC50 value of 0.60 ± 0.03 mg/mL) by the biosurfactants was found to be higher than that of DPPH• radical (IC50 value of 0.97 ± 0.13 mg/mL). The maximum chelating activity of biosurfactants (82.29%) was observed at 3.5 mg/mL. The biologically active compound of the biosurfactants produced by L. casei TM1B was identified as 2,5-O-methylrhamnofuranosyl-palmitate, a novel rhamnolipid-like biosurfactant by using chemical, Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry, and NMR analysis. The biosurfactants were bactericidal against several Gram-negative and Gram-positive pathogens (minimum inhibitory concentration values ranged from 3.22 to 12.83 mg/mL), and scanning electron microscope analysis revealed bacterial cell walls and membranes as main targets.
Collapse
Affiliation(s)
- Hippolyte T Mouafo
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon.,Centre for Food and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - Augustin Mbawala
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Devappa Somashekar
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Hervé M Tchougang
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Nanishankar V Harohally
- Spice and Flavour Science Department, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Robert Ndjouenkeu
- Department of Food Sciences and Nutrition, National School of Agro-Industrial Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| |
Collapse
|
21
|
Wei J, Tang Y, Bai Y, Zaia J, Costello CE, Hong P, Lin C. Toward Automatic and Comprehensive Glycan Characterization by Online PGC-LC-EED MS/MS. Anal Chem 2020; 92:782-791. [PMID: 31829560 PMCID: PMC7082718 DOI: 10.1021/acs.analchem.9b03183] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite the recent advances in mass spectrometry (MS)-based methods for glycan structural analysis, characterization of glycomes remains a significant analytical challenge, in part due to the widespread presence of isomeric structures and the need to define the many structural variables for each glycan. Interpretation of the complex tandem mass spectra of glycans is often laborious and requires substantial expertise. Broad adoption of MS methods for glycomics, within and outside the glycoscience community, has been hindered by the shortage of bioinformatics tools for rapid and accurate glycan sequencing. Here, we developed an online porous graphitic carbon liquid chromatography (PGC-LC)-electronic excitation dissociation (EED) MS/MS method that takes advantage of the superior isomer resolving power of PGC and the structural details provided by EED MS/MS for characterization of glycan mixtures. We also made improvements to GlycoDeNovo, our de novo glycan sequencing algorithm, so that it can automatically and accurately identify glycan topologies from EED tandem mass spectra acquired online. The majority of linkages can also be determined de novo, although in some cases, biological insight may be needed to fully define the glycan structure. Application of this method to the analysis of N-glycans released from ribonuclease B not only revealed the presence of 18 high-mannose structures, including new isomers not previously reported, but also provided relative quantification for each isomeric structure. With fully automated data acquisition and topology analysis, the approach presented here holds great potential for automated and comprehensive glycan characterization.
Collapse
Affiliation(s)
- Juan Wei
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Yang Tang
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Catherine E. Costello
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Pengyu Hong
- Department of Computer Science, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| |
Collapse
|
22
|
Van Etten JL, Agarkova IV, Dunigan DD. Chloroviruses. Viruses 2019; 12:E20. [PMID: 31878033 PMCID: PMC7019647 DOI: 10.3390/v12010020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Chloroviruses are large dsDNA, plaque-forming viruses that infect certain chlorella-like green algae; the algae are normally mutualistic endosymbionts of protists and metazoans and are often referred to as zoochlorellae. The viruses are ubiquitous in inland aqueous environments throughout the world and occasionally single types reach titers of thousands of plaque-forming units per ml of native water. The viruses are icosahedral in shape with a spike structure located at one of the vertices. They contain an internal membrane that is required for infectivity. The viral genomes are 290 to 370 kb in size, which encode up to 16 tRNAs and 330 to ~415 proteins, including many not previously seen in viruses. Examples include genes encoding DNA restriction and modification enzymes, hyaluronan and chitin biosynthetic enzymes, polyamine biosynthetic enzymes, ion channel and transport proteins, and enzymes involved in the glycan synthesis of the virus major capsid glycoproteins. The proteins encoded by many of these viruses are often the smallest or among the smallest proteins of their class. Consequently, some of the viral proteins are the subject of intensive biochemical and structural investigation.
Collapse
Affiliation(s)
- James L. Van Etten
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA; (I.V.A.); (D.D.D.)
| | | | | |
Collapse
|
23
|
West CM, Kim HW. Nucleocytoplasmic O-glycosylation in protists. Curr Opin Struct Biol 2019; 56:204-212. [PMID: 31128470 DOI: 10.1016/j.sbi.2019.03.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/19/2019] [Accepted: 03/31/2019] [Indexed: 12/17/2022]
Abstract
O-Glycosylation is an increasingly recognized modification of intracellular proteins in all kingdoms of life, and its occurrence in protists has been investigated to understand its evolution and its roles in the virulence of unicellular pathogens. We focus here on two kinds of glycoregulation found in unicellular eukaryotes: one is a simple O-fucose modification of dozens if not hundreds of Ser/Thr-rich proteins, and the other a complex pentasaccharide devoted to a single protein associated with oxygen sensing and the assembly of polyubiquitin chains. These modifications are not required for life but contingently modulate biological processes in the social amoeba Dictyostelium and the human pathogen Toxoplasma gondii, and likely occur in diverse unicellular protists. O-Glycosylation that is co-localized in the cytoplasm allows for glycoregulation over the entire life of the protein, contrary to the secretory pathway where glycosylation usually occurs before its delivery to its site of function. Here, we interpret cellular roles of nucleocytoplasmic glycans in terms of current evidence for their effects on the conformation and dynamics of protist proteins, to serve as a guide for future studies to examine their broader significance.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602 USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602 USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA.
| | - Hyun W Kim
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
24
|
Speciale I, Duncan GA, Unione L, Agarkova IV, Garozzo D, Jimenez-Barbero J, Lin S, Lowary TL, Molinaro A, Noel E, Laugieri ME, Tonetti MG, Van Etten JL, De Castro C. The N-glycan structures of the antigenic variants of chlorovirus PBCV-1 major capsid protein help to identify the virus-encoded glycosyltransferases. J Biol Chem 2019; 294:5688-5699. [PMID: 30737276 DOI: 10.1074/jbc.ra118.007182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
The chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) is a large dsDNA virus that infects the microalga Chlorella variabilis NC64A. Unlike most other viruses, PBCV-1 encodes most, if not all, of the machinery required to glycosylate its major capsid protein (MCP). The structures of the four N-linked glycans from the PBCV-1 MCP consist of nonasaccharides, and similar glycans are not found elsewhere in the three domains of life. Here, we identified the roles of three virus-encoded glycosyltransferases (GTs) that have four distinct GT activities in glycan synthesis. Two of the three GTs were previously annotated as GTs, but the third GT was identified in this study. We determined the GT functions by comparing the WT glycan structures from PBCV-1 with those from a set of PBCV-1 spontaneous GT gene mutants resulting in antigenic variants having truncated glycan structures. According to our working model, the virus gene a064r encodes a GT with three domains: domain 1 has a β-l-rhamnosyltransferase activity, domain 2 has an α-l-rhamnosyltransferase activity, and domain 3 is a methyltransferase that decorates two positions in the terminal α-l-rhamnose (Rha) unit. The a075l gene encodes a β-xylosyltransferase that attaches the distal d-xylose (Xyl) unit to the l-fucose (Fuc) that is part of the conserved N-glycan core region. Last, gene a071r encodes a GT that is involved in the attachment of a semiconserved element, α-d-Rha, to the same l-Fuc in the core region. Our results uncover GT activities that assemble four of the nine residues of the PBCV-1 MCP N-glycans.
Collapse
Affiliation(s)
- Immacolata Speciale
- From the Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055 Portici NA, Italy
| | - Garry A Duncan
- the Department of Biology, Nebraska Wesleyan University, Lincoln, Nebraska 68504-2794
| | - Luca Unione
- the Chemical Glycobiology Lab, CIC bioGUNE, Bizkaia Technology Park, Bld 800, 48170 Derio, Spain
| | - Irina V Agarkova
- the Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900.,the Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722
| | - Domenico Garozzo
- Institute for Polymers, Composites, and Biomaterials, CNR, Via P. Gaifami 18, 95126 Catania, Italy
| | - Jesus Jimenez-Barbero
- the Chemical Glycobiology Lab, CIC bioGUNE, Bizkaia Technology Park, Bld 800, 48170 Derio, Spain.,the Basque Foundation for Science (IKERBASQUE), 48940 Bilbao, Spain.,the Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Spain
| | - Sicheng Lin
- the Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- the Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| | - Antonio Molinaro
- the Department of Chemical Sciences, Università of Napoli Federico II, 80126 Napoli, Italy
| | - Eric Noel
- the Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900.,the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0118, and
| | - Maria Elena Laugieri
- the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova, Italy
| | - Michela G Tonetti
- the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova, Italy
| | - James L Van Etten
- the Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68583-0900, .,the Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583-0722
| | - Cristina De Castro
- From the Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055 Portici NA, Italy,
| |
Collapse
|
25
|
Wang Y, Wu Y, Xiong D, Ye X. Total Synthesis of a Hyperbranched
N
‐Linked Hexasaccharide Attached to ATCV‐1 Major Capsid Protein without Precedent. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yong‐Shi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking University Xue Yuan Road No. 38, Beijing 100191 China
| | - Yong Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking University Xue Yuan Road No. 38, Beijing 100191 China
| | - De‐Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking University Xue Yuan Road No. 38, Beijing 100191 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 200031 China
| | - Xin‐Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical SciencesPeking University Xue Yuan Road No. 38, Beijing 100191 China
| |
Collapse
|
26
|
Lin S, Lowary TL. Synthesis of the Highly Branched Hexasaccharide Core of Chlorella Virus N-Linked Glycans. Chemistry 2018; 24:16992-16996. [PMID: 30280442 DOI: 10.1002/chem.201804795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Indexed: 01/09/2023]
Abstract
Chlorella viruses produce N-linked glycoproteins with carbohydrate moieties that differ in structure from all other N-linked glycans. In addition, unlike most viruses, these organisms do not hijack the biosynthetic machinery of the host to make glycocoproteins; instead, they produce their own carbohydrate-processing enzymes. A better understanding of the function and assembly of these fascinating and structurally-unprecedented glycans requires access to probe molecules. This work describes the first synthesis of a chlorella virus N-linked glycan, a highly branched hexasaccharide that contains the pentasaccharide present in all of the >15 structures reported to date. The target molecule includes a glucosyl-asparagine linkage and a "hyperbranched" fucose residue in which all of the hydroxyl groups are glycosylated. Both convergent and linear approaches were investigated with the latter being successful in providing the target in 16 steps and 13 % overall yield.
Collapse
Affiliation(s)
- Sicheng Lin
- Alberta Glycomics Centre and Department of Chemistry, The University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, The University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
27
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
28
|
Affiliation(s)
- David J. Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
29
|
De Castro C, Klose T, Speciale I, Lanzetta R, Molinaro A, Van Etten JL, Rossmann MG. Structure of the chlorovirus PBCV-1 major capsid glycoprotein determined by combining crystallographic and carbohydrate molecular modeling approaches. Proc Natl Acad Sci U S A 2018; 115:E44-E52. [PMID: 29255015 PMCID: PMC5776783 DOI: 10.1073/pnas.1613432115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The glycans of the major capsid protein (Vp54) of Paramecium bursaria chlorella virus (PBCV-1) were recently described and found to be unusual. This prompted a reexamination of the previously reported Vp54 X-ray structure. A detailed description of the complete glycoprotein was achieved by combining crystallographic data with molecular modeling. The crystallographic data identified most of the monosaccharides located close to the protein backbone, but failed to detect those further from the glycosylation sites. Molecular modeling complemented this model by adding the missing monosaccharides and examined the conformational preference of the whole molecule, alone or within the crystallographic environment. Thus, combining X-ray crystallography with carbohydrate molecular modeling resulted in determining the complete glycosylated structure of a glycoprotein. In this case, it is the chlorovirus PBCV-1 major capsid protein.
Collapse
Affiliation(s)
- Cristina De Castro
- Department of Agricultural Sciences, University of Napoli, 80055 Portici, Italy;
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2032
| | | | - Rosa Lanzetta
- Department of Chemical Sciences, University of Napoli, 80126, Napoli, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli, 80126, Napoli, Italy
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2032;
| |
Collapse
|
30
|
De Castro C, Duncan GA, Garozzo D, Molinaro A, Sturiale L, Tonetti M, Van Etten JL. Biophysical Approaches to Solve the Structures of the Complex Glycan Shield of Chloroviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:237-257. [PMID: 30484252 DOI: 10.1007/978-981-13-2158-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The capsid of Paramecium bursaria chlorella virus (PBCV-1) contains a heavily glycosylated major capsid protein, Vp54. The capsid protein contains four glycans, each N-linked to Asn. The glycan structures are unusual in many aspects: (1) they are attached by a β-glucose linkage, which is rare in nature; (2) they are highly branched and consist of 8-10 neutral monosaccharides; (3) all four glycoforms contain a dimethylated rhamnose as the capping residue of the main chain, a hyper-branched fucose residue and two rhamnose residues ''with opposite absolute configurations; (4) the four glycoforms differ by the nonstoichiometric presence of two monosaccharides, L-arabinose and D-mannose ; (5) the N-glycans from all of the chloroviruses have a strictly conserved core structure; and (6) these glycans do not resemble any structures previously reported in the three domains of life.The structures of these N-glycoforms remained elusive for years because initial attempts to solve their structures used tools developed for eukaryotic-like systems, which we now know are not suitable for this noncanonical glycosylation pattern. This chapter summarizes the methods used to solve the chlorovirus complex glycan structures with the hope that these methodologies can be used by scientists facing similar problems.
Collapse
Affiliation(s)
- Cristina De Castro
- Department of Agricultural Sciences, University of Napoli, Portici, NA, Italy.
| | - Garry A Duncan
- Department of Biology, Nebraska Wesleyan University, Lincoln, NE, USA
| | - Domenico Garozzo
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli, Napoli, Italy
| | - Luisa Sturiale
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Michela Tonetti
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
31
|
Van Etten JL, Agarkova I, Dunigan DD, Tonetti M, De Castro C, Duncan GA. Chloroviruses Have a Sweet Tooth. Viruses 2017; 9:E88. [PMID: 28441734 PMCID: PMC5408694 DOI: 10.3390/v9040088] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 01/16/2023] Open
Abstract
Chloroviruses are large double-stranded DNA (dsDNA) viruses that infect certain isolates of chlorella-like green algae. They contain up to approximately 400 protein-encoding genes and 16 transfer RNA (tRNA) genes. This review summarizes the unexpected finding that many of the chlorovirus genes encode proteins involved in manipulating carbohydrates. These include enzymes involved in making extracellular polysaccharides, such as hyaluronan and chitin, enzymes that make nucleotide sugars, such as GDP-L-fucose and GDP-D-rhamnose and enzymes involved in the synthesis of glycans attached to the virus major capsid proteins. This latter process differs from that of all other glycoprotein containing viruses that traditionally use the host endoplasmic reticulum and Golgi machinery to synthesize and transfer the glycans.
Collapse
Affiliation(s)
- James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| | - Irina Agarkova
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| | - David D Dunigan
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA.
| | - Michela Tonetti
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova Viale Benedetto XV/1, 16132 Genova, Italy.
| | - Christina De Castro
- Department of Agricultural Sciences, University of Napoli, Via Università 100, 80055 Portici, NA, Italy.
| | - Garry A Duncan
- Department of Biology, Nebraska Wesleyan University, Lincoln, NE 68504-2796, USA.
| |
Collapse
|
32
|
Structure of the N-glycans from the chlorovirus NE-JV-1. Antonie van Leeuwenhoek 2017; 110:1391-1399. [PMID: 28331984 DOI: 10.1007/s10482-017-0861-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
Results from recent studies are breaking the paradigm that all viruses depend on their host machinery to glycosylate their proteins. Chloroviruses encode several genes involved in glycan biosynthesis and some of their capsid proteins are decorated with N-linked oligosaccharides with unique features. Here we describe the elucidation of the N-glycan structure of an unusual chlorovirus, NE-JV-1, that belongs to the Pbi group. The host for NE-JV-1 is the zoochlorella Micractinium conductrix. Spectroscopic analyses established that this N-glycan consists of a core region that is conserved in all of the chloroviruses. The one difference is that the residue 3OMe-L-rhamnose is acetylated at the O-2 position in a non-stoichiometric fashion.
Collapse
|
33
|
Piacente F, De Castro C, Jeudy S, Gaglianone M, Laugieri ME, Notaro A, Salis A, Damonte G, Abergel C, Tonetti MG. The rare sugar N-acetylated viosamine is a major component of Mimivirus fibers. J Biol Chem 2017; 292:7385-7394. [PMID: 28314774 DOI: 10.1074/jbc.m117.783217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
The giant virus Mimivirus encodes an autonomous glycosylation system that is thought to be responsible for the formation of complex and unusual glycans composing the fibers surrounding its icosahedral capsid, including the dideoxyhexose viosamine. Previous studies have identified a gene cluster in the virus genome, encoding enzymes involved in nucleotide-sugar production and glycan formation, but the functional characterization of these enzymes and the full identification of the glycans found in viral fibers remain incomplete. Because viosamine is typically found in acylated forms, we suspected that one of the genes might encode an acyltransferase, providing directions to our functional annotations. Bioinformatic analyses indicated that the L142 protein contains an N-terminal acyltransferase domain and a predicted C-terminal glycosyltransferase. Sequence analysis of the structural model of the L142 N-terminal domain indicated significant homology with some characterized sugar acetyltransferases that modify the C-4 amino group in the bacillosamine or perosamine biosynthetic pathways. Using mass spectrometry and NMR analyses, we confirmed that the L142 N-terminal domain is a sugar acetyltransferase, catalyzing the transfer of an acetyl moiety from acetyl-CoA to the C-4 amino group of UDP-d-viosamine. The presence of acetylated viosamine in vivo has also been confirmed on the glycosylated viral fibers, using GC-MS and NMR. This study represents the first report of a virally encoded sugar acetyltransferase.
Collapse
Affiliation(s)
- Francesco Piacente
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | | | - Sandra Jeudy
- the Aix-Marseille Université, Centre National de la Recherche Scientifique, Information Génomique et Structurale, UMR 7256, IMM FR3479, 13288 Marseille Cedex 9, France
| | - Matteo Gaglianone
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Maria Elena Laugieri
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Anna Notaro
- the Aix-Marseille Université, Centre National de la Recherche Scientifique, Information Génomique et Structurale, UMR 7256, IMM FR3479, 13288 Marseille Cedex 9, France.,Chemical Sciences, University of Napoli, 80138 Napoli, Italy, and
| | - Annalisa Salis
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Gianluca Damonte
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy
| | - Chantal Abergel
- the Aix-Marseille Université, Centre National de la Recherche Scientifique, Information Génomique et Structurale, UMR 7256, IMM FR3479, 13288 Marseille Cedex 9, France
| | - Michela G Tonetti
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy,
| |
Collapse
|
34
|
Xiang T, Yang G, Liu X, Zhou Y, Fu Z, Lu F, Gu J, Taniguchi N, Tan Z, Chen X, Xie Y, Guan F, Zhang XL. Alteration of N-glycan expression profile and glycan pattern of glycoproteins in human hepatoma cells after HCV infection. Biochim Biophys Acta Gen Subj 2017; 1861:1036-1045. [PMID: 28229927 DOI: 10.1016/j.bbagen.2017.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection causes chronic liver diseases, liver fibrosis and even hepatocellular carcinoma (HCC). However little is known about any information of N-glycan pattern in human liver cell after HCV infection. METHODS The altered profiles of N-glycans in HCV-infected Huh7.5.1 cell were analyzed by using mass spectrometry. Then, lectin microarray, lectin pull-down assay, reverse transcription-quantitative real time PCR (RT-qPCR) and western-blotting were used to identify the altered N-glycosylated proteins and glycosyltransferases. RESULTS Compared to uninfected cells, significantly elevated levels of fucosylated, sialylated and complex N-glycans were found in HCV infected cells. Furthermore, Lens culinaris agglutinin (LCA)-binding glycoconjugates were increased most. Then, the LCA-agarose was used to precipitate the specific glycosylated proteins and identify that fucosylated modified annexin A2 (ANXA2) and heat shock protein 90 beta family member 1 (HSP90B1) was greatly increased in HCV-infected cells. However, the total ANXA2 and HSP90B1 protein levels remained unchanged. Additionally, we screened the mRNA expressions of 47 types of different glycosyltransferases and found that α1,6-fucosyltransferase 8 (FUT8) was the most up-regulated and contributed to strengthen the LCA binding capability to fucosylated modified ANXA2 and HSP90B1 after HCV infection. CONCLUSIONS HCV infection caused the altered N-glycans profiles, increased expressions of FUT8, fucosylated ANXA2 and HSP90B1 as well as enhanced LCA binding to Huh7.5.1. GENERAL SIGNIFICANCE Our results may lay the foundation for clarifying the role of N-glycans and facilitate the development of novel diagnostic biomarkers and therapeutic targets based on the increased FUT8, fucosylated ANXA2 and HSP90B1 after HCV infection.
Collapse
Affiliation(s)
- Tian Xiang
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ganglong Yang
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyu Liu
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yidan Zhou
- University of Illinois at Urbana-Champaign, School of Molecular and Cellular Biology, Department of Microbiology, IL 61801, USA
| | - Zhongxiao Fu
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Fangfang Lu
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi 981-8558, Japan
| | - Naoyuki Taniguchi
- Systems Glycobiology Group, Global Research Cluster, RIKEN and RIKEN-Max Planck Joint Research Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zengqi Tan
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xi Chen
- Wuhan Institute of Biotechnology, Medical Research Institute of Wuhan University, Wuhan 430071, China
| | - Yan Xie
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Feng Guan
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology. Hubei province Key Laboratory of Allergy and Immune-related diseases, Medical Research Institute, Department of Immunology of Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
35
|
Agirre J, Davies GJ, Wilson KS, Cowtan KD. Carbohydrate structure: the rocky road to automation. Curr Opin Struct Biol 2016; 44:39-47. [PMID: 27940408 DOI: 10.1016/j.sbi.2016.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
Abstract
With the introduction of intuitive graphical software, structural biologists who are not experts in crystallography are now able to build complete protein or nucleic acid models rapidly. In contrast, carbohydrates are in a wholly different situation: scant automation exists, with manual building attempts being sometimes toppled by incorrect dictionaries or refinement problems. Sugars are the most stereochemically complex family of biomolecules and, as pyranose rings, have clear conformational preferences. Despite this, all refinement programs may produce high-energy conformations at medium to low resolution, without any support from the electron density. This problem renders the affected structures unusable in glyco-chemical terms. Bringing structural glycobiology up to 'protein standards' will require a total overhaul of the methodology. Time is of the essence, as the community is steadily increasing the production rate of glycoproteins, and electron cryo-microscopy has just started to image them in precisely that resolution range where crystallographic methods falter most.
Collapse
Affiliation(s)
- Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK.
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Keith S Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Kevin D Cowtan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK.
| |
Collapse
|
36
|
Yau S, Hemon C, Derelle E, Moreau H, Piganeau G, Grimsley N. A Viral Immunity Chromosome in the Marine Picoeukaryote, Ostreococcus tauri. PLoS Pathog 2016; 12:e1005965. [PMID: 27788272 PMCID: PMC5082852 DOI: 10.1371/journal.ppat.1005965] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Micro-algae of the genus Ostreococcus and related species of the order Mamiellales are globally distributed in the photic zone of world's oceans where they contribute to fixation of atmospheric carbon and production of oxygen, besides providing a primary source of nutrition in the food web. Their tiny size, simple cells, ease of culture, compact genomes and susceptibility to the most abundant large DNA viruses in the sea render them attractive as models for integrative marine biology. In culture, spontaneous resistance to viruses occurs frequently. Here, we show that virus-producing resistant cell lines arise in many independent cell lines during lytic infections, but over two years, more and more of these lines stop producing viruses. We observed sweeping over-expression of all genes in more than half of chromosome 19 in resistant lines, and karyotypic analyses showed physical rearrangements of this chromosome. Chromosome 19 has an unusual genetic structure whose equivalent is found in all of the sequenced genomes in this ecologically important group of green algae. We propose that chromosome 19 of O. tauri is specialized in defence against viral attack, a constant threat for all planktonic life, and that the most likely cause of resistance is the over-expression of numerous predicted glycosyltransferase genes. O. tauri thus provides an amenable model for molecular analysis of genome evolution under environmental stress and for investigating glycan-mediated host-virus interactions, such as those seen in herpes, influenza, HIV, PBCV and mimivirus.
Collapse
Affiliation(s)
- Sheree Yau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Claire Hemon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Evelyne Derelle
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Hervé Moreau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Gwenaël Piganeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
| | - Nigel Grimsley
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM, UMR 7232), Observatoire Océanologique, Banyuls sur Mer, France
- * E-mail:
| |
Collapse
|
37
|
Quispe CF, Esmael A, Sonderman O, McQuinn M, Agarkova I, Battah M, Duncan GA, Dunigan DD, Smith TPL, De Castro C, Speciale I, Ma F, Van Etten JL. Characterization of a new chlorovirus type with permissive and non-permissive features on phylogenetically related algal strains. Virology 2016; 500:103-113. [PMID: 27816636 DOI: 10.1016/j.virol.2016.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 11/26/2022]
Abstract
A previous report indicated that prototype chlorovirus PBCV-1 replicated in two Chlorella variabilis algal strains, NC64A and Syngen 2-3, that are ex-endosymbionts isolated from the protozoan Paramecium bursaria. Surprisingly, plaque-forming viruses on Syngen 2-3 lawns were often higher than on NC64A lawns from indigenous water samples. These differences led to the discovery of viruses that exclusively replicate in Syngen 2-3 cells, named Only Syngen (OSy) viruses. OSy-NE5, the prototype virus for the proposed new species, had a linear dsDNA genome of 327kb with 44-nucleotide-long, incompletely base-paired, covalently closed hairpin ends. Each hairpin structure was followed by an identical 2612 base-paired inverted sequence after which the DNA sequence diverged. OSy-NE5 encoded 357 predicted CDSs and 13 tRNAs. Interestingly, OSy-NE5 attached to and initiated infection in NC64A cells but infectious progeny viruses were not produced; thus OSy-NE5 replication in NC64A is blocked at some later stage of replication.
Collapse
Affiliation(s)
- Cristian F Quispe
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583-0900, USA; School of Biological Science, University of Nebraska-Lincoln, NE 68588-0118, USA
| | - Ahmed Esmael
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583-0900, USA; Botany Department, Faculty of Science, Benha University, Qalubiya Governorate, 13511, Egypt
| | - Olivia Sonderman
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583-0900, USA; School of Biological Science, University of Nebraska-Lincoln, NE 68588-0118, USA
| | - Michelle McQuinn
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583-0900, USA
| | - Irina Agarkova
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583-0900, USA; Department of Plant Pathology and University of Nebraska-Lincoln, NE 68583-0722, USA
| | - Mohammed Battah
- Botany Department, Faculty of Science, Benha University, Qalubiya Governorate, 13511, Egypt
| | - Garry A Duncan
- Department of Biology, Nebraska Wesleyan University, Lincoln, NE 68504-2794, USA
| | - David D Dunigan
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583-0900, USA; Department of Plant Pathology and University of Nebraska-Lincoln, NE 68583-0722, USA
| | - Timothy P L Smith
- Agricultural Research Service, United States Department of Agriculture, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Napoli, Via Universita 100, 80055 Portici, NA, Italy
| | | | - Fangrui Ma
- Center for Biotechnology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | - James L Van Etten
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583-0900, USA; Department of Plant Pathology and University of Nebraska-Lincoln, NE 68583-0722, USA.
| |
Collapse
|
38
|
Andriolo JM, Rossi RJ, McConnell CA, Connors BI, Trout KL, Hailer MK, Pedulla ML, Skinner JL. Influence of Iron-Doped Apatite Nanoparticles on Viral Infection Examined in Bacterial Versus Algal Systems. IEEE Trans Nanobioscience 2016; 15:908-916. [PMID: 27775532 DOI: 10.1109/tnb.2016.2619349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Centers for Disease Control and Prevention have estimated that each year, two million people in the United States become infected with antibiotic-resistant bacteria, of which, approximately 23000 die as a direct result of these infections. Phage therapy, or the treatment of bacterial infection by specific, antagonistic viruses, provides one alternative to traditional antibiotics. Bacteriophages, or phages, are bacteria-specific viruses that possess biological traits that allow for not only the removal of bacterial infection, but also the evasion of bacterial resistance, which renders antibiotics ineffective. Previous research has shown the addition of iron-doped apatite nanoparticles (IDANPs) to bacteria prior to phage exposure results in increased bacterial plaques in vitro. Coupled with the biocompatible nature of apatite, these results provide promise for future use of IDANPs as adjuvants to phage therapy along with anti-bacterial applications yet to be explored. Although IDANP enhancement of phage infection has been replicated many times in gram-positive and gram-negative prokaryotic hosts as well as with the utilization of both RNA and DNA viruses, the specific mechanisms involved remain elusive. To further understand increased phage infections in a prokaryotic system, and to evaluate the safety of IDANPs as a treatment used in a eukaryotic system, we have replicated plaque assay experiments in an algal system using Chlorella variabilis NC64A and its virus, Paramecium bursaria chlorella virus 1 (PBCV-1). Statistical modeling was used to evaluate alteration in numbers of plaques observed after viral introduction in IDANP-exposed versus non-IDANP-exposed bacterial and algal cell cultures. While IDANPs synthesized between 25°C-45°C and doped with 30% iron have been shown to influence dramatic increases in phage-induced bacterial death, experiments replicated in an algal system indicated viral infections do not increase when C. variabilis cells are pre-exposed to IDANPs. It is essential to potential use of IDANPs as an antibacterial adjuvant that IDANPs do not increase viral infection of eukaryotic host cells during treatment.
Collapse
|
39
|
Giant mimivirus R707 encodes a glycogenin paralogue polymerizing glucose through α- and β-glycosidic linkages. Biochem J 2016; 473:3451-3462. [PMID: 27433018 DOI: 10.1042/bcj20160280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/18/2016] [Indexed: 11/17/2022]
Abstract
Acanthamoeba polyphaga mimivirus is a giant virus encoding 1262 genes among which many were previously thought to be exclusive to cellular life. For example, mimivirus genes encode enzymes involved in the biosynthesis of nucleotide sugars and putative glycosyltransferases. We identified in mimivirus a glycogenin-1 homologous gene encoded by the open reading frame R707. The R707 protein was found to be active as a polymerizing glucosyltransferase enzyme. Like glycogenin-1, R707 activity was divalent-metal-ion-dependent and relied on an intact DXD motif. In contrast with glycogenin-1, R707 was, however, not self-glucosylating. Interestingly, the product of R707 catalysis featured α1-6, β1-6 and α1-4 glycosidic linkages. Mimivirus R707 is the first reported glycosyltransferase able to catalyse the formation of both α and β linkages. Mimivirus-encoded glycans play a role in the infection of host amoebae. Co-infection of Acanthamoeba with mimivirus and amylose and chitin hydrolysate reduced the number of infected amoebae, thus supporting the importance of polysaccharide chains in the uptake of mimivirus by amoebae. The identification of a glycosyltransferase capable of forming α and β linkages underlines the peculiarity of mimivirus and enforces the concept of a host-independent glycosylation machinery in mimivirus.
Collapse
|
40
|
De Castro C, Speciale I, Duncan G, Dunigan DD, Agarkova I, Lanzetta R, Sturiale L, Palmigiano A, Garozzo D, Molinaro A, Tonetti M, Van Etten JL. N-Linked Glycans of Chloroviruses Sharing a Core Architecture without Precedent. Angew Chem Int Ed Engl 2016; 55:654-8. [PMID: 26582281 PMCID: PMC4836869 DOI: 10.1002/anie.201509150] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 01/26/2023]
Abstract
N-glycosylation is a fundamental modification of proteins and exists in the three domains of life and in some viruses, including the chloroviruses, for which a new type of core N-glycan is herein described. This N-glycan core structure, common to all chloroviruses, is a pentasaccharide with a β-glucose linked to an asparagine residue which is not located in the typical sequon N-X-T/S. The glucose is linked to a terminal xylose unit and a hyperbranched fucose, which is in turn substituted with a terminal galactose and a second xylose residue. The third position of the fucose unit is always linked to a rhamnose, which is a semiconserved element because its absolute configuration is virus-dependent. Additional decorations occur on this core N-glycan and represent a molecular signature for each chlorovirus.
Collapse
Affiliation(s)
- Cristina De Castro
- Department of Agricultural Sciences, University of Napoli, Via Università 100, 80055 Portici (NA) (Italy).
| | - Immacolata Speciale
- Department of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli (Italy)
| | - Garry Duncan
- Department of Biology, Nebraska Wesleyan University, Lincoln, NE (USA)
| | - David D Dunigan
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900 (USA)
| | - Irina Agarkova
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900 (USA)
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli (Italy)
| | - Luisa Sturiale
- CNR, Institute for Polymers, Composites and Biomaterials, 95126 Catania (Italy)
| | - Angelo Palmigiano
- CNR, Institute for Polymers, Composites and Biomaterials, 95126 Catania (Italy)
| | - Domenico Garozzo
- CNR, Institute for Polymers, Composites and Biomaterials, 95126 Catania (Italy)
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli, Via Cintia 4, 80126 Napoli (Italy)
| | - Michela Tonetti
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV/1, 16132 Genova (Italy)
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900 (USA)
| |
Collapse
|
41
|
The Autonomous Glycosylation of Large DNA Viruses. Int J Mol Sci 2015; 16:29315-28. [PMID: 26690138 PMCID: PMC4691112 DOI: 10.3390/ijms161226169] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022] Open
Abstract
Glycosylation of surface molecules is a key feature of several eukaryotic viruses, which use the host endoplasmic reticulum/Golgi apparatus to add carbohydrates to their nascent glycoproteins. In recent years, a newly discovered group of eukaryotic viruses, belonging to the Nucleo-Cytoplasmic Large DNA Virus (NCLDV) group, was shown to have several features that are typical of cellular organisms, including the presence of components of the glycosylation machinery. Starting from initial observations with the chlorovirus PBCV-1, enzymes for glycan biosynthesis have been later identified in other viruses; in particular in members of the Mimiviridae family. They include both the glycosyltransferases and other carbohydrate-modifying enzymes and the pathways for the biosynthesis of the rare monosaccharides that are found in the viral glycan structures. These findings, together with genome analysis of the newly-identified giant DNA viruses, indicate that the presence of glycogenes is widespread in several NCLDV families. The identification of autonomous viral glycosylation machinery leads to many questions about the origin of these pathways, the mechanisms of glycan production, and eventually their function in the viral replication cycle. The scope of this review is to highlight some of the recent results that have been obtained on the glycosylation systems of the large DNA viruses, with a special focus on the enzymes involved in nucleotide-sugar production.
Collapse
|
42
|
De Castro C, Speciale I, Duncan G, Dunigan DD, Agarkova I, Lanzetta R, Sturiale L, Palmigiano A, Garozzo D, Molinaro A, Tonetti M, Van Etten JL. N-Linked Glycans of Chloroviruses Sharing a Core Architecture without Precedent. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Kim HH, Yun SS, Oh CH, Yoon SS. Galactooligosaccharide and Sialyllactose Content in Commercial Lactose Powders from Goat and Cow Milk. Korean J Food Sci Anim Resour 2015; 35:572-6. [PMID: 26761881 PMCID: PMC4662142 DOI: 10.5851/kosfa.2015.35.4.572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 12/01/2022] Open
Abstract
The most commonly used infant formulas contain lactose originating from cow milk. Goat milk has recently been claimed to be nutritionally more effective for infants than other milks. In baby foods, much emphasis is placed on the concentrations of intestinal microflora-promoting oligosaccharides, which are generally transferred into lactose from milk during crystallization process. Here we show that higher level of free sialic acid is present in goat lactose powder compared to cow lactose powder. Without proteinase K treatment, the amount of 3-sialyllactose and 6-sialyllactose were similar in goat and cow lactose powders. However, after proteolysis, 6-sialyllactose was present at higher levels in goat than in cow lactose powder. Galactooligosaccharides, a group of prebiotics, are present in milk in the form of glycoproteins. Galactooligosaccharide content was also higher in goat lactose powder than in cow lactose powder.
Collapse
Affiliation(s)
- Hyo-Hee Kim
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 220-710, Korea
| | - Sung-Seob Yun
- Ivenet Nutritional Science Institute, Seoul 138-050, Korea
| | - Chang-Hwan Oh
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon 390-711, Korea
| | - Sung-Sik Yoon
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 220-710, Korea
| |
Collapse
|
44
|
Abstract
N-acetylquinovosamine (2-acetamido-2,6-di-deoxy-d-glucose, QuiNAc) is a relatively rare amino sugar residue found in glycans of few pathogenic gram-negative bacteria where it can play a role in infection. However, little is known about QuiNAc-related polysaccharides in gram-positive bacteria. In a routine screen for bacillus glycan grown at defined medium, it was surprising to identify a QuiNAc residue in polysaccharides isolated from this gram-positive bacterium. To gain insight into the biosynthesis of these glycans, we report the identification of an operon in Bacillus cereus ATCC 14579 that contains two genes encoding activities not previously described in gram-positive bacteria. One gene encodes a UDP-N-acetylglucosamine C4,6-dehydratase, (abbreviated Pdeg) that converts UDP-GlcNAc to UDP-4-keto-4,6-d-deoxy-GlcNAc (UDP-2-acetamido-2,6-dideoxy-α-d-xylo-4-hexulose); and the second encodes a UDP-4-reductase (abbr. Preq) that converts UDP-4-keto-4,6-d-deoxy-GlcNAc to UDP-N-acetyl-quinovosamine in the presence of NADPH. Biochemical studies established that the sequential Pdeg and Preq reaction product is UDP-d-QuiNAc as determined by mass spectrometry and one- and two-dimensional NMR experiments. Also, unambiguous evidence for the conversions of the dehydratase product, UDP-α-d-4-keto-4,6-deoxy-GlcNAc, to UDP-α-d-QuiNAc was obtained using real-time 1H-NMR spectroscopy and mass spectrometry. The two genes overlap by 4 nucleotides and similar operon organization and identical gene sequences were also identified in a few other Bacillus species suggesting they may have similar roles in the lifecycle of this class of bacteria important to human health. Our results provide new information about the ability of Bacilli to form UDP-QuiNAc and will provide insight to evaluate their role in the biology of Bacillus.
Collapse
Affiliation(s)
- Soyoun Hwang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Avi Aronov
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Maor Bar-Peled
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America; Departments of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
45
|
Klose T, Herbst DA, Zhu H, Max JP, Kenttämaa HI, Rossmann MG. A Mimivirus Enzyme that Participates in Viral Entry. Structure 2015; 23:1058-65. [PMID: 25982526 DOI: 10.1016/j.str.2015.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
Mimivirus was initially identified as a bacterium because its dense, 125-nm-long fibers stained Gram-positively. These fibers probably play a role during the infection of some host cells. The normal hosts of Mimivirus are unknown, but in the laboratory Mimivirus is usually propagated in amoeba. The structure of R135, a major component of the fibrous outer layer of Mimivirus, has been determined to 2-Å resolution. The protein's structure is similar to that of members of the glucose-methanol-choline oxidoreductase family, which have an N-terminal FAD binding domain and a C-terminal substrate recognition domain. The closest homolog to R135 is an aryl-alcohol oxidase that participates in lignin biodegradation of plant cell walls. Thus R135 might participate in the degradation of their normal hosts, including some lignin-containing algae.
Collapse
Affiliation(s)
- Thomas Klose
- Department of Biological Sciences, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-2032, USA
| | - Dominik A Herbst
- Department of Biological Sciences, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-2032, USA
| | - Hanyu Zhu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Joann P Max
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Hilkka I Kenttämaa
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, 240 South Martin Jischke Drive, West Lafayette, IN 47907-2032, USA.
| |
Collapse
|
46
|
Piacente F, De Castro C, Jeudy S, Molinaro A, Salis A, Damonte G, Bernardi C, Abergel C, Tonetti MG. Giant virus Megavirus chilensis encodes the biosynthetic pathway for uncommon acetamido sugars. J Biol Chem 2014; 289:24428-39. [PMID: 25035429 DOI: 10.1074/jbc.m114.588947] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Giant viruses mimicking microbes, by the sizes of their particles and the heavily glycosylated fibrils surrounding their capsids, infect Acanthamoeba sp., which are ubiquitous unicellular eukaryotes. The glycans on fibrils are produced by virally encoded enzymes, organized in gene clusters. Like Mimivirus, Megavirus glycans are mainly composed of virally synthesized N-acetylglucosamine (GlcNAc). They also contain N-acetylrhamnosamine (RhaNAc), a rare sugar; the enzymes involved in its synthesis are encoded by a gene cluster specific to Megavirus close relatives. We combined activity assays on two enzymes of the pathway with mass spectrometry and NMR studies to characterize their specificities. Mg534 is a 4,6-dehydratase 5-epimerase; its three-dimensional structure suggests that it belongs to a third subfamily of inverting dehydratases. Mg535, next in the pathway, is a bifunctional 3-epimerase 4-reductase. The sequential activity of the two enzymes leads to the formation of UDP-l-RhaNAc. This study is another example of giant viruses performing their glycan synthesis using enzymes different from their cellular counterparts, raising again the question of the origin of these pathways.
Collapse
Affiliation(s)
- Francesco Piacente
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV,1 16132 Genova, Italy
| | - Cristina De Castro
- the Department of Chemical Sciences, University of Napoli "Federico II", Via Cintia 4, Italy
| | - Sandra Jeudy
- the Structural and Genomic Information Laboratory, CNRS, Aix-Marseille Université UMR7256, IMM, Parc Scientifique de Luminy, FR-13288 Marseille, France, and
| | - Antonio Molinaro
- the Department of Chemical Sciences, University of Napoli "Federico II", Via Cintia 4, Italy
| | - Annalisa Salis
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV,1 16132 Genova, Italy, the Department of Hearth Environmental and Life Science (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Gianluca Damonte
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV,1 16132 Genova, Italy
| | - Cinzia Bernardi
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV,1 16132 Genova, Italy
| | - Chantal Abergel
- the Structural and Genomic Information Laboratory, CNRS, Aix-Marseille Université UMR7256, IMM, Parc Scientifique de Luminy, FR-13288 Marseille, France, and
| | - Michela G Tonetti
- From the Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV,1 16132 Genova, Italy,
| |
Collapse
|
47
|
Abstract
Acanthamoeba polyphaga mimivirus is a member of the giant nucleocytoplasmic large DNA viruses, infecting various Acanthamoeba spp. The genomes of giant viruses encode components previously thought to be exclusive to cellular life, such as proteins involved in nucleic acid and protein synthesis. Recent work on enzymes involved in carbohydrate biosynthesis and metabolism show that instead of utilizing host cell resources, Mimivirus produces its own glycosylation machinery. To obtain a more detailed view of glycosylation in Mimivirus, we developed a periodate oxidation-based method to selectively enrich Mimivirus surface glycoproteins. O-Glycosylation in Mimivirus glycoproteins was identified by permethylation and matrix-assisted laser desorption/ionization-mass spectrometry analyses of beta-eliminated glycans. We sequenced 26 previously undescribed O-glycans, most of which contain glucose as their reducing end saccharide. These data will facilitate future studies on the functional significance of glycosylation in Mimivirus.
Collapse
Affiliation(s)
- Andreas J Hülsmeier
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
48
|
Piacente F, Bernardi C, Marin M, Blanc G, Abergel C, Tonetti MG. Characterization of a UDP-N-acetylglucosamine biosynthetic pathway encoded by the giant DNA virus Mimivirus. Glycobiology 2013; 24:51-61. [PMID: 24107487 DOI: 10.1093/glycob/cwt089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mimivirus is a giant DNA virus belonging to the Megaviridae family and infecting unicellular Eukaryotes of the genus Acanthamoeba. The viral particles are characterized by heavily glycosylated surface fibers. Several experiments suggest that Mimivirus and other related viruses encode an autonomous glycosylation system, forming viral glycoproteins independently of their host. In this study, we have characterized three Mimivirus proteins involved in the de novo uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) production: a glutamine-fructose-6-phosphate transaminase (CDS L619), a glucosamine-6-phosphate N-acetyltransferase (CDS L316) and a UDP-GlcNAc pyrophosphorylase (CDS R689). Sequence and enzymatic analyses have revealed some unique features of the viral pathway. While it follows the eukaryotic-like strategy, it also shares some properties of the prokaryotic pathway. Phylogenetic analyses revealed that the Megaviridae enzymes cluster in monophyletic groups, indicating that they share common ancestors, but did not support the hypothesis of recent acquisitions from one of the known hosts. Rather, viral clades branched at deep nodes in phylogenetic trees, forming independent clades outside sequenced cellular organisms. The intermediate properties between the eukaryotic and prokaryotic pathways, the phylogenetic analyses and the fact that these enzymes are shared between most of the known members of the Megaviridae family altogether suggest that the viral pathway has an ancient origin, resulting from lateral transfers of cellular genes early in the Megaviridae evolution, or from vertical inheritance from a more complex cellular ancestor (reductive evolution hypothesis). The identification of a virus-encoded UDP-GlcNAc pathway reinforces the concept that GlcNAc is a ubiquitous sugar representing a universal and fundamental process in all organisms.
Collapse
Affiliation(s)
- Francesco Piacente
- Department of Experimental Medicine, Center of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 1 Genova 16132, Italy
| | | | | | | | | | | |
Collapse
|