1
|
Jakka SR, Mugesh G. Emerging Role of Noncovalent Interactions and Disulfide Bond Formation in the Cellular Uptake of Small Molecules and Proteins. Chem Asian J 2025; 20:e202401734. [PMID: 39831847 DOI: 10.1002/asia.202401734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Intracellular delivery of proteins and small molecules is an important barrier in the development of strategies to deliver functional proteins and therapeutics into the cells to realize their full potential in biotechnology, biomedicine, cell-based therapies, and gene editing protein systems. Most of the intracellular protein delivery strategies involve the conjugation of cell penetrating peptides to enable the permeability of plasma membrane of mammalian cells to allow proteins to enter cytosol. The conjugations of small molecules such as (p-methylphenyl) glycine, pyrenebutyrate and cysteines are used for the same purpose. Molecular level interactions are governed mostly by ionic (cationic/anionic), covalent and noncovalent interactions with various molecular entities of glycocalyx matrix on plasma membrane lipid bilayer. Although the role of noncovalent interactions in cellular uptake is not fully understood, several recent advances have focused on the noncovalent interaction-based strategies of intracellular delivery of small molecules and proteins into mammalian cells. These are achieved by simple modification of protein surfaces with chemical moieties which can form noncovalent interactions other than hydrogen bonding. In this review, we describe the recent advances and the mechanistic aspects of intracellular delivery and role of noncovalent interactions in the cellular uptake of proteins and small molecules.
Collapse
Affiliation(s)
- Surendar R Jakka
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
2
|
Zhang Z, Wang J, Hou L, Zhu D, Xiao HJ, Wang K. Graphene/carbohydrate polymer composites as emerging hybrid materials in tumor therapy and diagnosis. Int J Biol Macromol 2025; 287:138621. [PMID: 39667456 DOI: 10.1016/j.ijbiomac.2024.138621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Despite the introduction of various types of treatments for cancer control, cancer therapy faces several challenges such as aggressive behavior, heterogeneous characteristics, and the development of resistance. In contrast, the methods have depended on the creation and formulation of nanoparticles to impede tumor growth. Carbon nanoparticles have attracted considerable attention for cancer therapy, with graphene nanoparticles emerging as promising vehicles for delivering drugs and genes. Moreover, graphene composites can enhance immunotherapy, phototherapy, and combination therapies. Nonetheless, the biocompatibility and toxicity of graphene composites present difficulties. Consequently, this manuscript assesses the alteration of graphene nanocomposites using carbohydrate polymers. Altering graphene composites with carbohydrate polymers such as chitosan, hyaluronic acid, cellulose, and starch can enhance their efficacy in cancer treatment. Furthermore, graphene composites functionalized with carbohydrate polymers for tumor ablation induced by phototherapy. Graphene oxide and graphene quantum dots have been modified with carbohydrate polymers to enhance their therapeutic and diagnostic uses. These nanoparticles can transport gene therapy techniques like siRNA in the treatment of cancer. Despite the breakdown of these nanoparticles within the body, they maintain excellent biosafety and biocompatibility.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China
| | - Jinxiang Wang
- Scientific Research Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China.
| | - Hai-Juan Xiao
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Kaili Wang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
3
|
Sun F, Yan P, Xiao Y, Zhang H, Shapiro SD, Xiao G, Qu Z. Improving PD-1 blockade plus chemotherapy for complete remission of lung cancer by nanoPDLIM2. eLife 2024; 12:RP89638. [PMID: 39718207 DOI: 10.7554/elife.89638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) and their combination with other therapies such as chemotherapy, fail in most cancer patients. We previously identified the PDZ-LIM domain-containing protein 2 (PDLIM2) as a bona fide tumor suppressor that is repressed in lung cancer to drive cancer and its chemo and immunotherapy resistance, suggesting a new target for lung cancer therapy improvement. In this study, human clinical samples and data were used to investigate PDLIM2 genetic and epigenetic changes in lung cancer. Using an endogenous mouse lung cancer model faithfully recapitulating refractory human lung cancer and a clinically feasible nano-delivery system, we investigated the therapeutic efficacy, action mechanism, and safety of systemically administrated PDLIM2 expression plasmids encapsulated in nanoparticles (nanoPDLIM2) and its combination with PD-1 antibody and chemotherapeutic drugs. Our analysis indicate that PDLIM2 repression in human lung cancer involves both genetic deletion and epigenetic alteration. NanoPDLIM2 showed low toxicity, high tumor specificity, antitumor activity, and greatly improved the efficacy of anti-PD-1 and chemotherapeutic drugs, with complete tumor remission in most mice and substantial tumor reduction in the remaining mice by their triple combination. Mechanistically, nanoPDLIM2 increased major histocompatibility complex class I (MHC-I) expression, suppressed multi-drug resistance 1 (MDR1) induction and survival genes and other tumor-related genes expression in tumor cells, and enhanced lymphocyte tumor infiltration, turning the cold tumors hot and sensitive to ICIs and rendering them vulnerable to chemotherapeutic drugs and activated tumor-infiltrating lymphocytes (TILs) including those unleashed by ICIs. These studies established a clinically applicable PDLIM2-based combination therapy with great efficacy for lung cancer and possibly other cold cancers.
Collapse
Affiliation(s)
- Fan Sun
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Pengrong Yan
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Yadong Xiao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, United States
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, United States
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, United States
| | - Hongqiao Zhang
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, United States
| | - Steven D Shapiro
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, United States
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, United States
| | - Gutian Xiao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, United States
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, United States
- Norris Comprehensive Cancer Center, Hastings Center for Pulmonary Research, Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, United States
| |
Collapse
|
4
|
Ward C, Beharry A, Tennakoon R, Rozik P, Wilhelm SDP, Heinemann IU, O’Donoghue P. Mechanisms and Delivery of tRNA Therapeutics. Chem Rev 2024; 124:7976-8008. [PMID: 38801719 PMCID: PMC11212642 DOI: 10.1021/acs.chemrev.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.
Collapse
Affiliation(s)
- Cian Ward
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Aruun Beharry
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rasangi Tennakoon
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter Rozik
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sarah D. P. Wilhelm
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
5
|
Sun F, Yan P, Xiao Y, Zhang H, Shapiro SD, Xiao G, Qu Z. Improving PD-1 blockade plus chemotherapy for complete remission of lung cancer by nanoPDLIM2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.550248. [PMID: 37546791 PMCID: PMC10402062 DOI: 10.1101/2023.07.23.550248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background Immune checkpoint inhibitors (ICIs) and their combination with other therapies such as chemotherapy, fail in most cancer patients. We previously identified the PDZ-LIM domain-containing protein 2 (PDLIM2) as a bona fide tumor suppressor that is repressed in lung cancer to drive cancer and its chemo and immunotherapy resistance, suggesting a new target for lung cancer therapy improvement. Methods Human clinical samples and data were used to investigate PDLIM2 genetic and epigenetic changes in lung cancer. Using an endogenous mouse lung cancer model faithfully recapitulating refractory human lung cancer and a clinically feasible nano-delivery system, we investigated the therapeutic efficacy, action mechanism, and safety of systemically administrated PDLIM2 expression plasmids encapsulated in nanoparticles (nanoPDLIM2) and its combination with PD-1 antibody and chemotherapeutic drugs. Results PDLIM2 repression in human lung cancer involves both genetic deletion and epigenetic alteration. NanoPDLIM2 showed low toxicity, high tumor specificity, antitumor activity, and greatly improved the efficacy of anti-PD-1 and chemotherapeutic drugs, with complete tumor remission in most mice and substantial tumor reduction in the remaining mice by their triple combination. Mechanistically, nanoPDLIM2 increased major histocompatibility complex class I (MHC-I) expression, suppressed multi-drug resistance 1 (MDR1) induction and survival genes and other tumor-related genes expression in tumor cells, and enhanced lymphocyte tumor infiltration, turning the cold tumors hot and sensitive to ICIs and rendering them vulnerable to chemotherapeutic drugs and activated tumor-infiltrating lymphocytes (TILs) including those unleashed by ICIs. Conclusions These studies established a clinically applicable PDLIM2-based combination therapy with great efficacy for lung cancer and possibly other cold cancers.
Collapse
|
6
|
Maity B, Moorthy H, Govindaraju T. Intrinsically Disordered Ku Protein-Derived Cell-Penetrating Peptides. ACS BIO & MED CHEM AU 2023; 3:471-479. [PMID: 38144254 PMCID: PMC10739243 DOI: 10.1021/acsbiomedchemau.3c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 12/26/2023]
Abstract
Efficient delivery of bioactive ingredients into cells is a major challenge. Cell-penetrating peptides (CPPs) have emerged as promising vehicles for this purpose. We have developed novel CPPs derived from the flexible and disordered tail extensions of DNA-binding Ku proteins. Ku-P4, the lead CPP identified in this study, is biocompatible and displays high internalization efficacy. Biophysical studies show that the proline residue is crucial for preserving the intrinsically disordered state and biocompatibility. DNA binding studies showed effective DNA condensation to form a positively charged polyplex. The polyplex exhibited effective penetration through the cell membrane and delivered the plasmid DNA inside the cell. These novel CPPs have the potential to enhance the cellular uptake and therapeutic efficacy of peptide-drug or gene conjugates.
Collapse
Affiliation(s)
- Biswanath Maity
- Bioorganic Chemistry Laboratory, New
Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research
(JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka India
| | - Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New
Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research
(JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New
Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research
(JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka India
| |
Collapse
|
7
|
Hasbullah HH, Musa M. Gene Therapy Targeting p53 and KRAS for Colorectal Cancer Treatment: A Myth or the Way Forward? Int J Mol Sci 2021; 22:11941. [PMID: 34769370 PMCID: PMC8584926 DOI: 10.3390/ijms222111941] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy worldwide and is responsible as one of the main causes of mortality in both men and women. Despite massive efforts to raise public awareness on early screening and significant advancements in the treatment for CRC, the majority of cases are still being diagnosed at the advanced stage. This contributes to low survivability due to this cancer. CRC patients present various genetic changes and epigenetic modifications. The most common genetic alterations associated with CRC are p53 and KRAS mutations. Gene therapy targeting defect genes such as TP53 (tumor suppressor gene encodes for p53) and KRAS (oncogene) in CRC potentially serves as an alternative treatment avenue for the disease in addition to the standard therapy. For the last decade, significant developments have been seen in gene therapy for translational purposes in treating various cancers. This includes the development of vectors as delivery vehicles. Despite the optimism revolving around targeted gene therapy for cancer treatment, it also has various limitations, such as a lack of availability of related technology, high cost of the involved procedures, and ethical issues. This article will provide a review on the potentials and challenges of gene therapy targeting p53 and KRAS for the treatment of CRC.
Collapse
Affiliation(s)
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| |
Collapse
|
8
|
Summers HD, Gomes CP, Varela-Moreira A, Spencer AP, Gomez-Lazaro M, Pêgo AP, Rees P. Data-Driven Modeling of the Cellular Pharmacokinetics of Degradable Chitosan-Based Nanoparticles. NANOMATERIALS 2021; 11:nano11102606. [PMID: 34685047 PMCID: PMC8538870 DOI: 10.3390/nano11102606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023]
Abstract
Nanoparticle drug delivery vehicles introduce multiple pharmacokinetic processes, with the delivery, accumulation, and stability of the therapeutic molecule influenced by nanoscale processes. Therefore, considering the complexity of the multiple interactions, the use of data-driven models has critical importance in understanding the interplay between controlling processes. We demonstrate data simulation techniques to reproduce the time-dependent dose of trimethyl chitosan nanoparticles in an ND7/23 neuronal cell line, used as an in vitro model of native peripheral sensory neurons. Derived analytical expressions of the mean dose per cell accurately capture the pharmacokinetics by including a declining delivery rate and an intracellular particle degradation process. Comparison with experiment indicates a supply time constant, τ = 2 h. and a degradation rate constant, b = 0.71 h−1. Modeling the dose heterogeneity uses simulated data distributions, with time dependence incorporated by transforming data-bin values. The simulations mimic the dynamic nature of cell-to-cell dose variation and explain the observed trend of increasing numbers of high-dose cells at early time points, followed by a shift in distribution peak to lower dose between 4 to 8 h and a static dose profile beyond 8 h.
Collapse
Affiliation(s)
- Huw D. Summers
- Department of Biomedical Engineering, Swansea University, Swansea SA1 8QQ, UK;
- Correspondence:
| | - Carla P. Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.G.); (A.V.-M.); (A.P.S.); (M.G.-L.); (A.P.P.)
- Instituto de Engenharia Biomédica INEB, Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), Universidade do Porto, 4200-465 Porto, Portugal
| | - Aida Varela-Moreira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.G.); (A.V.-M.); (A.P.S.); (M.G.-L.); (A.P.P.)
- Instituto de Engenharia Biomédica INEB, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana P. Spencer
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.G.); (A.V.-M.); (A.P.S.); (M.G.-L.); (A.P.P.)
- Instituto de Engenharia Biomédica INEB, Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), Universidade do Porto, 4200-465 Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.G.); (A.V.-M.); (A.P.S.); (M.G.-L.); (A.P.P.)
- Instituto de Engenharia Biomédica INEB, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana P. Pêgo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.G.); (A.V.-M.); (A.P.S.); (M.G.-L.); (A.P.P.)
- Instituto de Engenharia Biomédica INEB, Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto (FEUP), Universidade do Porto, 4200-465 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Paul Rees
- Department of Biomedical Engineering, Swansea University, Swansea SA1 8QQ, UK;
| |
Collapse
|
9
|
Cationic polymer brush-coated bioglass nanoparticles for the design of bioresorbable RNA delivery vectors. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AA, Khadse SC, Satheeshkumar R, Satija S, Metha M, Chellappan DK, Shrivastava G, Gupta G, Negi P, Dua K, Zacconi FC. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B 2020; 10:2075-2109. [PMID: 33304780 PMCID: PMC7714980 DOI: 10.1016/j.apsb.2020.10.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.
Collapse
Key Words
- 1,3-propanediol, PEG-b-PDMAEMA-b-Ppy
- 2-propylacrylicacid, PAH-b-PDMAPMA-b-PAH
- APOB, apolipoprotein B
- AQP-5, aquaporin-5
- AZEMA, azidoethyl methacrylate
- Atufect01, β-l-arginyl-2,3-l-diaminopropionicacid-N-palmityl-N-oleyl-amide trihydrochloride
- AuNPs, gold nanoparticles
- B-PEI, branched polyethlenimine
- BMA, butyl methacrylate
- CFTR, cystic fibrosis transmembrane conductance regulator gene
- CHEMS, cholesteryl hemisuccinate
- CHOL, cholesterol
- CMC, critical micelles concentration
- Cancer
- DC-Chol, 3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]cholesterol
- DMAEMA, 2-dimethylaminoethyl methacrylate
- DNA, deoxyribonucleic acid
- DOPC, dioleylphosphatidyl choline
- DOPE, dioleylphosphatidyl ethanolamine
- DOTAP, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate
- DOTMA, N-[1-(2,3-dioleyloxy)propy]-N,N,N-trimethylammoniumchloride
- DOX, doxorubicin
- DSGLA, N,N-dis-tearyl-N-methyl-N-2[N′-(N2-guanidino-l-lysinyl)] aminoethylammonium chloride
- DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine
- DSPE, 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine
- DSPE-MPEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt)
- DSPE-PEG-Mal: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (mmmonium salt), EPR
- Liposomes
- Micelles
- N-acetylgalactosamine, HIF-1α
- Nanomedicine
- PE-PCL-b-PNVCL, pentaerythritol polycaprolactone-block-poly(N-vinylcaprolactam)
- PLA, poly-l-arginine
- PLGA, poly lactic-co-glycolic acid
- PLK-1, polo-like kinase 1
- PLL, poly-l-lysine
- PPES-b-PEO-b-PPES, poly(4-(phenylethynyl)styrene)-block-PEO-block-poly(4-(phenylethynyl)styrene)
- PTX, paclitaxel
- PiRNA, piwi-interacting RNA
- Polymer
- RES, reticuloendothelial system
- RGD, Arg-Gly-Asp peptide
- RISC, RNA-induced silencing complex
- RNA, ribonucleic acid
- RNAi, RNA interference
- RNAse III, ribonuclease III enzyme
- SEM, scanning electron microscope
- SNALP, stable nucleic acid-lipid particles
- SiRNA, short interfering rNA
- Small interfering RNA (siRNA)
- S–Au, thio‒gold
- TCC, transitional cell carcinoma
- TEM, transmission electron microscopy
- Tf, transferrin
- Trka, tropomyosin receptor kinase A
- USPIO, ultra-small superparamagnetic iron oxide nanoparticles
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- ZEBOV, Zaire ebola virus
- enhanced permeability and retention, Galnac
- hypoxia-inducible factor-1α, KSP
- kinesin spindle protein, LDI
- lipid-protamine-DNA/hyaluronic acid, MDR
- lysine ethyl ester diisocyanate, LPD/LPH
- messenger RNA, MTX
- methotrexate, NIR
- methoxy polyethylene glycol-polycaprolactone, mRNA
- methoxypoly(ethylene glycol), MPEG-PCL
- micro RNA, MPEG
- multiple drug resistance, MiRNA
- nanoparticle, NRP-1
- near-infrared, NP
- neuropilin-1, PAA
- poly(N,N-dimethylacrylamide), PDO
- poly(N-isopropyl acrylamide), pentaerythritol polycaprolactone-block-poly(N-isopropylacrylamide)
- poly(acrylhydrazine)-block-poly(3-dimethylaminopropyl methacrylamide)-block-poly(acrylhydrazine), PCL
- poly(ethylene glycol)-block-poly(2-dimethylaminoethyl methacrylate)-block poly(pyrenylmethyl methacrylate), PEG-b-PLL
- poly(ethylene glycol)-block-poly(l-lysine), PEI
- poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate)-stat-poly(methoxyethyl methacrylate), PEO-b-PCL
- poly(ethylene oxide)-block-poly(Ε-caprolactone), PE-PCL-b-PNIPAM
- poly(Ε-caprolactone), PCL-PEG
- poly(Ε-caprolactone)-polyethyleneglycol-poly(l-histidine), PCL-PEI
- polycaprolactone-polyethyleneglycol, PCL-PEG-PHIS
- polycaprolactone-polyethylenimine, PDMA
- polyethylenimine, PEO-b-P(DEA-Stat-MEMA
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Nikhil D. Amnerkar
- Adv V. R. Manohar Institute of Diploma in Pharmacy, Nagpur, Maharashtra 441110, India
| | - B. Ramesh
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Alaa A.A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Saurabh C. Khadse
- Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Maharashtra 425 405, India
| | - Rajendran Satheeshkumar
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Meenu Metha
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Garima Shrivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW 2308, Australia
| | - Flavia C. Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 4860, Chile
| |
Collapse
|
11
|
Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, Zahmatkeshan M, Tavakol S, Makvandi P, Khorsandi D, Pardakhty A, Ashrafizadeh M, Ghasemipour Afshar E, Zarrabi A. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release 2020; 325:249-275. [PMID: 32634464 PMCID: PMC7334939 DOI: 10.1016/j.jconrel.2020.06.038] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy by expression constructs or down-regulation of certain genes has shown great potential for the treatment of various diseases. The wide clinical application of nucleic acid materials dependents on the development of biocompatible gene carriers. There are enormous various compounds widely investigated to be used as non-viral gene carriers including lipids, polymers, carbon materials, and inorganic structures. In this review, we will discuss the recent discoveries on non-viral gene delivery systems. We will also highlight the in vivo gene delivery mediated by non-viral vectors to treat cancer in different tissue and organs including brain, breast, lung, liver, stomach, and prostate. Finally, we will delineate the state-of-the-art and promising perspective of in vivo gene editing using non-viral nano-vectors.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Danial Khorsandi
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran; Department of Biotechnology-Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey.
| |
Collapse
|
12
|
Jefremow A, Neurath MF. Nanoparticles in Gastrooncology. Visc Med 2020; 36:88-94. [PMID: 32355665 PMCID: PMC7184848 DOI: 10.1159/000506908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastrointestinal malignancies have the greatest incidence and cancer-associated death rates worldwide. Routine therapeutic modalities include surgery, chemotherapy and radiation but they often fail to reach the goal of cancer-free survival. SUMMARY In the light of this urgent medical need for the treatment of GI tumors, nanotech-nology-based approaches, i.e. nanomedicine, promise new therapeutic options. Using nanoparticles instead of classically designed drugs, targeting anticancer agents directly to the tumor site may revolutionize both diagnostic and therapeutic tools thereby facilitating the identification and elimination of malignant cells. Importantly, diagnostic insight and therapeutic effects can be achieved simultaneously through the same nanoparticle. Additionally, a nanoparticle may be loaded with more than one agent, thereby further increasing the value and power of the nanotechnology approach in oncologic therapeutic concepts. Although most insight into mechanisms of nanomedicine has been gained from in vitro and preclinical in vivo models, few clinical trials have been conducted, and nanomedicine-based concepts are already part of standard treatment algorithms. However, despite substantial progress it remains a challenge to design nanoparticles that feature all desirable characteristics at the same time. KEY MESSAGES This review seeks to provide substantial insight into the current status of nanomedicine-based approaches employed for diagnostic and/or therapeutic purposes in the field of gastrointestinal cancers by highlighting achievements and pointing out unresolved issues that need to be further addressed by future research attempts.
Collapse
Affiliation(s)
| | - Markus F. Neurath
- Department of Internal Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
13
|
Formulation of RNA interference-based drugs for pulmonary delivery: challenges and opportunities. Ther Deliv 2019; 9:731-749. [PMID: 30277138 DOI: 10.4155/tde-2018-0029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With recent advances in the field of RNAi-based therapeutics, it is possible to make any target gene 'druggable', at least in principle. The present review focuses on aspects critical for pulmonary delivery of formulations of nucleic acid-based drugs. The first part introduces the therapeutic potential of RNAi-based drugs for the treatment of lung diseases. Subsequently, we discuss opportunities for formulation-enabled pulmonary delivery of RNAi drugs in light of key physicochemical properties and physiological barriers. In the following section, an overview is included of methodologies for imparting inhalable characteristics to nucleic acid formulations. Finally, we review one of the bottlenecks in the early preclinical testing of inhalable nucleic acid-based formulations, in other words, devices suitable for pulmonary administration of powder-based formulations in rodents.
Collapse
|
14
|
Amphoteric poly(amido amine)s with adjustable balance between transfection efficiency and cytotoxicity for gene delivery. Colloids Surf B Biointerfaces 2019; 175:10-17. [DOI: 10.1016/j.colsurfb.2018.11.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/24/2018] [Accepted: 11/19/2018] [Indexed: 01/31/2023]
|
15
|
Jaleel JA, Ashraf SM, Rathinasamy K, Pramod K. Carbon dot festooned and surface passivated graphene-reinforced chitosan construct for tumor-targeted delivery of TNF-α gene. Int J Biol Macromol 2019; 127:628-636. [PMID: 30708020 DOI: 10.1016/j.ijbiomac.2019.01.174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Gene therapy is a promising alternative that ensures effective treatment and cure for cancer. Here, we report graphene-reinforced chitosan (CS) construct based non-viral vector for tumor-targeted gene therapy. The therapeutic gene, pDNA-TNF-α, was loaded on to chitosan-carboxylated graphene oxide (CS-CGO) construct via electrostatic interaction. The pDNA-TNF-α-CS-CGO thus obtained was further passivated with 4,7,10-trioxa-1,13-tridecanediamine for protecting the vector from the mononuclear phagocyte system that contributes to the prolongation of circulation half-life. The surface passivated carrier (PEG-pDNA-TNF-α-CS-CGO) then festooned with the folic acid derived carbon dots (C-dots) for targeting folate receptors that are overexpressed in most of the cancer cells. The results of TEM images and zeta potential values ensured the occurrence of desired changes in each stage of C-dot-PEG-pDNA-TNF-α-CS-CGO formulation. After 14 days of incubation, the anti-angiogenesis effect was observed for final formulation in the chorioallantoic membrane. The results of in vitro gene expression study in cancer cell line show a comparatively higher transfection efficacy of the developed system (C-dot-PEG-pDNA-TNF-α-CS-CGO) than pDNA-TNF-α. The efficiency of the developed gene delivery system was further confirmed using a developed and validated artificial tumor cell apparatus.
Collapse
Affiliation(s)
- Jumana Abdul Jaleel
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - Shabeeba M Ashraf
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - K Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India.
| |
Collapse
|
16
|
Lv J, He B, Yu J, Wang Y, Wang C, Zhang S, Wang H, Hu J, Zhang Q, Cheng Y. Fluoropolymers for intracellular and in vivo protein delivery. Biomaterials 2018; 182:167-175. [DOI: 10.1016/j.biomaterials.2018.08.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 01/31/2023]
|
17
|
Liang X, Wu B, Shang H, Han X, Jing H, Sun Y, Cheng W. VTIQ evaluates antitumor effects of NET-1 siRNA by UTMD in HCC xenograft models. Oncol Lett 2018; 16:2893-2902. [PMID: 30127877 PMCID: PMC6096142 DOI: 10.3892/ol.2018.8994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/27/2018] [Indexed: 12/15/2022] Open
Abstract
The present study used a virtual touch tissue imaging and quantification (VTIQ) method to investigate the change in elasticity in xenograft tumor tissue models following silencing of the neuroepithelial-transforming protein 1 (NET-1) gene by ultrasound-targeted microbubble destruction (UTMD). A total of 24 xenograft models were established by subcutaneous injection of human hepatocellular carcinoma SMMC-7721 cells in BALB/c female nude mice. Then, NET-1 small interfering RNA (siRNA)-conjugated nanobubbles and a glypican-3 antibody were synthesized. The mean and maximum shear wave speed (SWSmean and SWSmax) in the tumor tissue were measured prior to, during, and following therapy using VTIQ. The growth of the tumor size and survival time were recorded. The levels of NET-1 protein were evaluated by immunohistochemical staining. In addition, tumor, liver and kidney tissues of the nude mice were collected to confirm whether gene transfection treatment was toxic in vivo. In the UTMD delivery gene group, SWSmean was correlated with the maximum diameter of the tumor (r=0.9806, P=0.0194). The immunohistochemical staining data indicated that the level of NET-1 protein in the treated groups was significantly decreased compared with those in the control groups. Additionally, no structural damage was observed in the nude mice liver and kidney tissues following treatment. Therefore, VTIQ measurement identified potential changes in the elastic properties of the tumors, which in turn may be associated with the stages of tumor development. The delivery method, UTMD, improves the antitumor effects of NET-1 siRNA and supports gene transfection as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Xitian Liang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, Nangang, Harbin, Heilongjiang 150000, P.R. China
| | - Bolin Wu
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, Nangang, Harbin, Heilongjiang 150000, P.R. China
| | - Haitao Shang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, Nangang, Harbin, Heilongjiang 150000, P.R. China
| | - Xue Han
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, Nangang, Harbin, Heilongjiang 150000, P.R. China
| | - Hui Jing
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, Nangang, Harbin, Heilongjiang 150000, P.R. China
| | - Yixin Sun
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, Nangang, Harbin, Heilongjiang 150000, P.R. China
| | - Wen Cheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, Nangang, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
18
|
Zhang QY, Ho PY, Tu MJ, Jilek JL, Chen QX, Zeng S, Yu AM. Lipidation of polyethylenimine-based polyplex increases serum stability of bioengineered RNAi agents and offers more consistent tumoral gene knockdown in vivo. Int J Pharm 2018; 547:537-544. [PMID: 29894758 DOI: 10.1016/j.ijpharm.2018.06.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 01/30/2023]
Abstract
Recently we have established a novel approach to produce bioengineered noncoding RNA agents (BERAs) in living cells that carry target RNAi molecules (e.g., siRNA and miRNA) and thus act as "prodrugs". Using GFP-siRNA-loaded BERA (BERA/GFP-siRNA) as a model molecule, this study was to define the in vitro and in vivo knockdown efficiency of BERAs delivered by liposome-polyethylenimine nanocomplex (lipopolyplex or LPP). Compared to in vivo-jetPEI® (IVJ-PEI) and polyplex formulations, LPP offered greater protection of BERA/GFP-siRNA against degradation by serum RNases. Particle sizes and zeta potentials of LPP nanocomplex remained stable over 28 days when stored at 4 °C. Furthermore, comparable levels of BERA/GFP-siRNA were delivered by LPP and IVJ-PEI to luciferase/GFP-expressing human SK-Hep1-Luc-GFP or A549-Luc-GFP cells, which were selectively processed into target GFP-siRNA and subsequently knocked down GFP mRNA and protein levels. In addition, LPP-carried BERA/GFP-siRNA was successfully delivered into xenograft tumors and offered more consistent knockdown of tumoral GFP mRNA level in an orthotopic hepatocellular carcinoma (HCC) SK-Hep1-Luc-GFP xenograft mouse model, while IVJ-PEI formulation showed larger variation. These findings demonstrated that lipidation of polyplexes improved serum stability of biologic RNAi molecules, which was efficiently delivered to orthotopic HCC tissues to knock down target gene expression.
Collapse
Affiliation(s)
- Qian-Yu Zhang
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Pui Yan Ho
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Joseph L Jilek
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Qiu-Xia Chen
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
19
|
Zuo G, Xie A, Pan X, Su T, Li J, Dong W. Fluorine-Doped Cationic Carbon Dots for Efficient Gene Delivery. ACS APPLIED NANO MATERIALS 2018; 1:2376-2385. [DOI: 10.1021/acsanm.8b00521] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Qiu N, Gao J, Liu Q, Wang J, Shen Y. Enzyme-Responsive Charge-Reversal Polymer-Mediated Effective Gene Therapy for Intraperitoneal Tumors. Biomacromolecules 2018; 19:2308-2319. [DOI: 10.1021/acs.biomac.8b00440] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nasha Qiu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jinqiang Wang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
21
|
Wang H, Miao W, Wang F, Cheng Y. A Self-Assembled Coumarin-Anchored Dendrimer for Efficient Gene Delivery and Light-Responsive Drug Delivery. Biomacromolecules 2018; 19:2194-2201. [PMID: 29684275 DOI: 10.1021/acs.biomac.8b00246] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The assembly of low molecular weight polymers into highly efficient and nontoxic nanostructures has broad applicability in gene delivery. In this study, we reported the assembly of coumarin-anchored low generation dendrimers in aqueous solution via hydrophobic interactions. The synthesized material showed significantly improved DNA binding and gene delivery, and minimal toxicity on the transfected cells. Moreover, the coumarin moieties in the assembled nanostructures endow the materials with light-responsive drug delivery behaviors. The coumarin substitutes in the assembled nanostructures were cross-linked with each other upon irradiation at 365 nm, and the cross-linked assemblies were degraded upon further irradiation at 254 nm. As a result, the drug-loaded nanoparticle showed a light-responsive drug release behavior and light-enhanced anticancer activity. The assembled nanoparticle also exhibited a complementary anticancer activity through the codelivery of 5-fluorouracil and a therapeutic gene encoding tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This study provided a facile strategy to develop light-responsive polymers for the codelivery of therapeutic genes and anticancer drugs.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai , 200241 , P. R. China
| | - Wujun Miao
- Changzheng Hospital , Department of Orthopedic Oncology , Shanghai , P. R. China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics , Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai , 200241 , P. R. China
| |
Collapse
|
22
|
Xiao YP, Zhang J, Liu YH, Chen XC, Yu QY, Luan CR, Zhang JH, Wei X, Yu XQ. Ring-opening polymerization of diepoxides as an alternative method to overcome PEG dilemma in gene delivery. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.11.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X, Qiu N, Chen X, Shen Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev 2017; 115:115-154. [PMID: 28778715 DOI: 10.1016/j.addr.2017.07.021] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Gene therapy represents a promising cancer treatment featuring high efficacy and limited side effects, but it is stymied by a lack of safe and efficient gene-delivery vectors. Cationic polymers and lipid-based nonviral gene vectors have many advantages and have been extensively explored for cancer gene delivery, but their low gene-expression efficiencies relative to viral vectors limit their clinical translations. Great efforts have thus been devoted to developing new carrier materials and fabricating functional vectors aimed at improving gene expression, but the overall efficiencies are still more or less at the same level. This review analyzes the cancer gene-delivery cascade and the barriers, the needed nanoproperties and the current strategies for overcoming these barriers, and outlines PEGylation, surface-charge, size, and stability dilemmas in vector nanoproperties to efficiently accomplish the cancer gene-delivery cascade. Stability, surface, and size transitions (3S Transitions) are proposed to resolve those dilemmas and strategies to realize these transitions are comprehensively summarized. The review concludes with a discussion of the future research directions to design high-performance nonviral gene vectors.
Collapse
Affiliation(s)
- Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Yue Wang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Zhen Zhang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuefei Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Key Lab of Polymer Ecomaterials, Changchun, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
| |
Collapse
|
24
|
Chang H, Lv J, Gao X, Wang X, Wang H, Chen H, He X, Li L, Cheng Y. Rational Design of a Polymer with Robust Efficacy for Intracellular Protein and Peptide Delivery. NANO LETTERS 2017; 17:1678-1684. [PMID: 28206763 DOI: 10.1021/acs.nanolett.6b04955] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The efficient delivery of biopharmaceutical drugs such as proteins and peptides into the cytosol of target cells poses substantial challenges owing to their large size and susceptibility to degradation. Current protein delivery vehicles have limitations such as the need for protein modification, insufficient delivery of large-size proteins or small peptides, and loss of protein function after the delivery. Here, we adopted a rational approach to design a polymer with robust efficacy for intracellular protein and peptide delivery. The polymer is composed of a dendrimer scaffold, a hydrophobic membrane-disruptive region, and a multivalent protein binding surface. It allows efficient protein/peptide binding, endocytosis, and endosomal disruption and is capable of efficiently delivering various biomacromolecules including bovine serum albumin, R-phycoerythrin, p53, saporin, β-galactosidase, and peptides into the cytosol of living cells. Transduction of apoptotic proteins and peptides successfully induces apoptosis in cancer cells, suggesting that the activities of proteins and peptides are maintained during the delivery. This technology represents an efficient and useful tool for intracellular protein and peptide delivery and has broad applicability for basic research and clinical applications.
Collapse
Affiliation(s)
- Hong Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| | - Jia Lv
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| | - Xin Gao
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University , Shanghai, 200003, P. R. China
| | - Xing Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| | - Hui Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| | - Hui Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| | - Xu He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University , Shanghai 200241, P. R. China
| |
Collapse
|
25
|
Wang S, Wang F, Zhang Q, Cheng Y. A core–shell structured polyplex for efficient and non-toxic gene delivery. J Mater Chem B 2017; 5:5101-5108. [DOI: 10.1039/c7tb00690j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We developed a core–shell polyplex with minimal high generation dendrimer to condense DNA and low-molecular-weight linear polyethylenimine coated on the core. The polyplex represented both high transfection efficacy and low toxicity.
Collapse
Affiliation(s)
- Saisai Wang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Fei Wang
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine
- Ruijin Hospital
- Jiao Tong University School of Medicine
- Shanghai 200025
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
26
|
Santos JL, Ren Y, Vandermark J, Archang MM, Williford JM, Liu HW, Lee J, Wang TH, Mao HQ. Continuous Production of Discrete Plasmid DNA-Polycation Nanoparticles Using Flash Nanocomplexation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6214-6222. [PMID: 27717227 PMCID: PMC5149445 DOI: 10.1002/smll.201601425] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/27/2016] [Indexed: 05/27/2023]
Abstract
Despite successful demonstration of linear polyethyleneimine (lPEI) as an effective carrier for a wide range of gene medicine, including DNA plasmids, small interfering RNAs, mRNAs, etc., and continuous improvement of the physical properties and biological performance of the polyelectrolyte complex nanoparticles prepared from lPEI and nucleic acids, there still exist major challenges to produce these nanocomplexes in a scalable manner, particularly for lPEI/DNA nanoparticles. This has significantly hindered the progress toward clinical translation of these nanoparticle-based gene medicine. Here the authors report a flash nanocomplexation (FNC) method that achieves continuous production of lPEI/plasmid DNA nanoparticles with narrow size distribution using a confined impinging jet device. The method involves the complex coacervation of negatively charged DNA plasmid and positive charged lPEI under rapid, highly dynamic, and homogeneous mixing conditions, producing polyelectrolyte complex nanoparticles with narrow distribution of particle size and shape. The average number of plasmid DNA packaged per nanoparticles and its distribution are similar between the FNC method and the small-scale batch mixing method. In addition, the nanoparticles prepared by these two methods exhibit similar cell transfection efficiency. These results confirm that FNC is an effective and scalable method that can produce well-controlled lPEI/plasmid DNA nanoparticles.
Collapse
Affiliation(s)
- Jose Luis Santos
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yong Ren
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John Vandermark
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Maani M. Archang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - John-Michael Williford
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Heng-wen Liu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason Lee
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tza-Huei Wang
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Translational Tissue Engineering Center and Whitaker Biomedical Engineering Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
27
|
Wang M, Cheng Y. Structure-activity relationships of fluorinated dendrimers in DNA and siRNA delivery. Acta Biomater 2016; 46:204-210. [PMID: 27662807 DOI: 10.1016/j.actbio.2016.09.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/05/2016] [Accepted: 09/19/2016] [Indexed: 12/25/2022]
Abstract
Fluorinated dendrimers have shown great promise in gene delivery due to their high transfection efficacy and low cytotoxicity, however, the structure-activity relationships of these polymers still remain unknown. Herein, we synthesized a library of fluorinated dendrimers with different dendrimer generations and fluorination degrees and investigated their behaviors in both DNA and siRNA delivery. The results show that fluorination significantly improves the transfection efficacy of G4-G7 polyamidoamine dendrimers in DNA and siRNA delivery. Fluorination on generation 5 dendrimer yields the most efficient polymers in gene delivery, and the transfection efficacy of fluorinated dendrimers depends on fluorination degree. All the fluorinated dendrimers cause minimal toxicity on the transfected cells at their optimal transfection conditions. This study provides a general and facile strategy to prepare high efficient and low cytotoxic gene carriers based on fluorinated polymers. STATEMENT OF SIGNIFICANCE The structure-activity relationships of fluorinated dendrimers in gene delivery is still unknown and the behavior of fluorinated dendrimers in siRNA delivery has not yet been investigated. Herein, we synthesized a library of fluorinated PAMAM dendrimers with different dendrimer generations and fluorination degrees and investigated their behaviors in both DNA and siRNA delivery. The results clearly indicate that fluorination significantly improves the transfection efficacy of dendrimers in both DNA and siRNA delivery without causing additional toxicity. G5 PAMAM dendrimer is best scaffold to synthesize fluorinated dendrimers and the transfection efficacy of fluorinated dendrimers depends on fluorination degree. This systematic study provides a general and facile strategy to prepare high efficient and low cytotoxic gene carriers based on fluorinated polymers.
Collapse
Affiliation(s)
- Mingming Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, People's Republic of China.
| |
Collapse
|
28
|
Qiu N, Liu X, Zhong Y, Zhou Z, Piao Y, Miao L, Zhang Q, Tang J, Huang L, Shen Y. Esterase-Activated Charge-Reversal Polymer for Fibroblast-Exempt Cancer Gene Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10613-10622. [PMID: 27786373 DOI: 10.1002/adma.201603095] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/31/2016] [Indexed: 06/06/2023]
Abstract
Selective gene expression in tumors via responsive dissociation of polyplexes triggered by intracellular signals is demonstrated. An esterase-responsive charge-reversal polymer mediates selective gene expression in the cancer cells high in esterases over fibroblasts low in esterase activity. Its gene therapy with the TRAIL suicide gene effectively induces apoptosis of HeLa cells but does not activate fibroblasts to secrete WNT16B, enabling potent cancer gene therapy with few side effects.
Collapse
Affiliation(s)
- Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yin Zhong
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ying Piao
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lei Miao
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Qianzhi Zhang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianbin Tang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Leaf Huang
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
29
|
Cisterna BA, Kamaly N, Choi WI, Tavakkoli A, Farokhzad OC, Vilos C. Targeted nanoparticles for colorectal cancer. Nanomedicine (Lond) 2016; 11:2443-56. [PMID: 27529192 DOI: 10.2217/nnm-2016-0194] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is highly prevalent worldwide, and despite notable progress in treatment still leads to significant morbidity and mortality. The use of nanoparticles as a drug delivery system has become one of the most promising strategies for cancer therapy. Targeted nanoparticles could take advantage of differentially expressed molecules on the surface of tumor cells, providing effective release of cytotoxic drugs. Several efforts have recently reported the use of diverse molecules as ligands on the surface of nanoparticles to interact with the tumor cells, enabling the effective delivery of antitumor agents. Here, we present recent advances in targeted nanoparticles against CRC and discuss the promising use of ligands and cellular targets in potential strategies for the treatment of CRCs.
Collapse
Affiliation(s)
- Bruno A Cisterna
- Laboratory of Nanomedicine & Targeted Delivery, Center for Integrative Medicine & Innovative Science, Faculty of Medicine, & Center for Bioinformatics & Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile
| | - Nazila Kamaly
- Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,Department of Micro & Nanotechnology, Technical University of Denmark, DTU Nanotech, 2800 Kgs. Lyngby, Denmark
| | - Won Il Choi
- Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-ro, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea
| | - Ali Tavakkoli
- Department of Surgery, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Omid C Farokhzad
- Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Cristian Vilos
- Laboratory of Nanomedicine & Targeted Delivery, Center for Integrative Medicine & Innovative Science, Faculty of Medicine, & Center for Bioinformatics & Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile.,Laboratory of Nanomedicine & Biomaterials, Harvard Medical School, Department of Anesthesiology, Brigham & Women's Hospital, Boston, MA 02115, USA.,Center for the Development of Nanoscience & Nanotechnology, CEDENNA, 9170124 Santiago, Chile
| |
Collapse
|
30
|
Lü JM, Liang Z, Wang X, Gu J, Yao Q, Chen C. New polymer of lactic-co-glycolic acid-modified polyethylenimine for nucleic acid delivery. Nanomedicine (Lond) 2016; 11:1971-91. [PMID: 27456396 DOI: 10.2217/nnm-2016-0128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop an improved delivery system for nucleic acids. MATERIALS & METHODS We designed, synthesized and characterized a new polymer of lactic-co-glycolic acid-modified polyethylenimine (LGA-PEI). Functions of LGA-PEI polymer were determined. RESULTS The new LGA-PEI polymer spontaneously formed nanoparticles (NPs) with DNA or RNA, and showed higher DNA or RNA loading efficiency, higher or comparable transfection efficacy, and lower cytotoxicity in several cell types including PANC-1, Jurkat and HEK293 cells, when compared with lipofectamine 2000, branched or linear PEI (25 kDa). In nude mouse models, LGA-PEI showed higher delivery efficiency of plasmid DNA or miRNA mimic into pancreatic and ovarian xenograft tumors. LGA-PEI/DNA NPs showed much lower toxicity than control PEI NPs in mouse models. CONCLUSION The new LGA-PEI polymer is a safer and more effective system to deliver DNA or RNA than PEI.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| | - Zhengdong Liang
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| | - Xiaoxiao Wang
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| | - Jianhua Gu
- AFM/SEM Core Facility, The Methodist Hospital Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Qizhi Yao
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Changyi Chen
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| |
Collapse
|
31
|
Liu C, Shao N, Wang Y, Cheng Y. Clustering Small Dendrimers into Nanoaggregates for Efficient DNA and siRNA Delivery with Minimal Toxicity. Adv Healthc Mater 2016; 5:584-92. [PMID: 26789529 DOI: 10.1002/adhm.201500679] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/02/2015] [Indexed: 01/02/2023]
Abstract
Cationic dendrimers are widely used as nonviral gene vectors, however, current gene materials based on dendrimers are either little effective or too toxic on the transfected cells. Here, a facile strategy is presented to prepare high efficient dendrimers with low transfection toxicity. Small dendrimers with 2 nm are clustered into nanoaggregates (≈100 nm) via phenylboronic acid modification and the self-assembled materials enable efficient DNA and siRNA delivery on several cell lines. The clustered nanostructures can disassemble into small dendrimers in acidic conditions thus exerting significantly less toxicity on the transfected cells. Further structure-function relationship studies reveal that both the phenyl group and boronic acid group play essential roles in the self-assembly and gene delivery processes. The transfection efficacy of phenylboronic acid-modified dendrimers can be down-regulated by blocking the boronic acid groups on dendrimers with diols or degrading the groups with hydrogen peroxide. This study provides a facile strategy in the development of efficient and biocompatible gene vectors based on low molecular weight polymers and clearly demonstrates the structure-function relationship of phenylboronic acid-modified polymers in gene delivery.
Collapse
Affiliation(s)
- Chongyi Liu
- Shanghai Key Laboratory of Regulatory Biology; School of Life Sciences; East China Normal University; Shanghai 200241 P. R. China
| | - Naimin Shao
- Shanghai Key Laboratory of Regulatory Biology; School of Life Sciences; East China Normal University; Shanghai 200241 P. R. China
| | - Yitong Wang
- Shanghai Key Laboratory of Regulatory Biology; School of Life Sciences; East China Normal University; Shanghai 200241 P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology; School of Life Sciences; East China Normal University; Shanghai 200241 P. R. China
| |
Collapse
|
32
|
Williford JM, Archang MM, Minn I, Ren Y, Wo M, Vandermark J, Fisher PB, Pomper MG, Mao HQ. Critical Length of PEG Grafts on lPEI/DNA Nanoparticles for Efficient in Vivo Delivery. ACS Biomater Sci Eng 2016; 2:567-578. [PMID: 27088129 PMCID: PMC4829937 DOI: 10.1021/acsbiomaterials.5b00551] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/02/2016] [Indexed: 12/03/2022]
Abstract
![]()
Nanoparticle-mediated
gene delivery is a promising alternative
to viral methods; however, its use in vivo, particularly following
systemic injection, has suffered from poor delivery efficiency. Although
PEGylation of nanoparticles has been successfully demonstrated as
a strategy to enhance colloidal stability, its success in improving
delivery efficiency has been limited, largely due to reduced cell
binding and uptake, leading to poor transfection efficiency. Here
we identified an optimized PEGylation scheme for DNA micellar nanoparticles
that delivers balanced colloidal stability and transfection activity.
Using linear polyethylenimine (lPEI)-g-PEG as a carrier,
we characterized the effect of graft length and density of polyethylene
glycol (PEG) on nanoparticle assembly, micelle stability, and gene
delivery efficiency. Through variation of PEG grafting degree, lPEI
with short PEG grafts (molecular weight, MW 500–700 Da) generated
micellar nanoparticles with various shapes including spherical, rodlike,
and wormlike nanoparticles. DNA micellar nanoparticles prepared with
short PEG grafts showed comparable colloidal stability in salt and
serum-containing media to those prepared with longer PEG grafts (MW
2 kDa). Corresponding to this trend, nanoparticles prepared with short
PEG grafts displayed significantly higher in vitro transfection efficiency
compared to those with longer PEG grafts. More importantly, short
PEG grafts permitted marked increase in transfection efficiency following
ligand conjugation to the PEG terminal in metastatic prostate cancer-bearing
mice. This study identifies that lPEI-g-PEG with
short PEG grafts (MW 500–700 Da) is the most effective to ensure
shape control and deliver high colloidal stability, transfection activity,
and ligand effect for DNA nanoparticles in vitro and in vivo following
intravenous administration.
Collapse
Affiliation(s)
- John-Michael Williford
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Maani M Archang
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions , 601 N. Caroline Street, Baltimore, Maryland 21287, United States
| | - Yong Ren
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Mark Wo
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - John Vandermark
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, Virginia 23298, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, 1220 East Broad Street, Richmond, Virginia 23298, United States; VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298, United States
| | - Martin G Pomper
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, 601 N. Caroline Street, Baltimore, Maryland 21287, United States
| | - Hai-Quan Mao
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Translational Tissue Engineering Center and Whitaker Biomedical Engineering Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, Maryland 21287, United States
| |
Collapse
|
33
|
Wang F, Deng L, Hu J, Cheng Y. Being Two Is Better than Being One: A Facile Strategy to Fabricate Multicomponent Nanoparticles for Efficient Gene Delivery. Bioconjug Chem 2016; 27:638-46. [DOI: 10.1021/acs.bioconjchem.5b00643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fei Wang
- Shanghai
Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Shanghai
Key Laboratory for Bone and Joint Diseases, Shanghai Institute of
Traumatology and Orthopaedics, Shanghai Ruijin Hospital, School of
Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Lianfu Deng
- Shanghai
Key Laboratory for Bone and Joint Diseases, Shanghai Institute of
Traumatology and Orthopaedics, Shanghai Ruijin Hospital, School of
Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Jingjing Hu
- Shanghai
Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yiyun Cheng
- Shanghai
Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
34
|
Wang F, Hu K, Cheng Y. Structure-activity relationship of dendrimers engineered with twenty common amino acids in gene delivery. Acta Biomater 2016; 29:94-102. [PMID: 26525113 DOI: 10.1016/j.actbio.2015.10.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 01/25/2023]
Abstract
Systematic explorations on the structure-activity relationship of surface-engineered dendrimers are essential to design high efficient and safe gene vectors. The chemical diversity of residues in naturally occurring amino acids allows us to generate a library of dendrimers with various surface properties. Here, we synthesized a total number of 40 dendrimers engineered with the twenty common amino acids and investigated their performances in gene delivery. The results show that gene transfection efficacy of the synthesized materials depends on both the type of amino acid and the conjugation ratio. Dendrimers engineered with cationic and hydrophobic amino acids possess relatively higher transfection efficacies. Engineering dendrimers with cationic amino acids such as arginine and lysine facilitates polyplex formation and cellular uptake, with histidine improves endosomal escape of the polyplexes, and with hydrophobic amino acids such as tyrosine and phenylalanine modulates the balance between hydrophobicity and hydrophilicity on dendrimer surface, which is beneficial for efficient cellular internalization. Dendrimers engineered with anionic or hydrophilic amino acids show limited transfection efficacy due to poor DNA binding capacity and/or limited cellular uptake. In the aspect of cytotoxicity, dendrimers engineered with arginine, lysine, tyrosine, phenylalanine and tryptophan show much higher cytotoxicity than other engineered dendrimers. These results are helpful for us to tailor the surface chemistry of dendrimers for efficient gene delivery. STATEMENT OF SIGNIFICANCE Cationic polymers such as dendrimers were widely used as gene vectors but are limited by relatively low delivery efficacy and high toxicity. To achieve efficient and low toxic gene delivery, the polymers were modified with various ligands. However, these ligand-modified polymers in gene delivery are reported by independent researchers using different polymer scaffolds and cell lines. It is hard to provide structure-function information of these materials based on current knowledge and experience, which are essential for the design of ideal polymeric vectors for gene delivery. Here, we prepared a small library of amino acid-modified dendrimers, which is used as a screening pool to discover efficient gene vectors. The results obtained from this study, especially the structure-activity relationship of the screened materials are helpful for us to further design efficient and biocompatible polymers for gene delivery. This manuscript will appeal to a wide readership such as nanomaterial chemist, dendrimer chemist, biological chemist, pharmaceutical scientist, and biomedical researchers.
Collapse
|
35
|
Shen W, Wang H, Ling-hu Y, Lv J, Chang H, Cheng Y. Screening of efficient polymers for siRNA delivery in a library of hydrophobically modified polyethyleneimines. J Mater Chem B 2016; 4:6468-6474. [DOI: 10.1039/c6tb01929c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fluoroalkylated polymers are superior to alkylated and cycloalkylated analogs in siRNA delivery.
Collapse
Affiliation(s)
- Wanwan Shen
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Hui Wang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Ye Ling-hu
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Hong Chang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
36
|
Wang H, Wei H, Huang Q, Liu H, Hu J, Cheng Y, Xiao J. Nucleobase-modified dendrimers as nonviral vectors for efficient and low cytotoxic gene delivery. Colloids Surf B Biointerfaces 2015; 136:1148-55. [DOI: 10.1016/j.colsurfb.2015.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/10/2015] [Accepted: 11/07/2015] [Indexed: 12/30/2022]
|
37
|
Wang H, Wang Y, Wang Y, Hu J, Li T, Liu H, Zhang Q, Cheng Y. Self-Assembled Fluorodendrimers Combine the Features of Lipid and Polymeric Vectors in Gene Delivery. Angew Chem Int Ed Engl 2015; 54:11647-51. [PMID: 26260847 DOI: 10.1002/anie.201501461] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/30/2015] [Indexed: 01/08/2023]
Abstract
An ideal vector in gene therapy should exhibit high serum stability, excellent biocompatibility, a desired transfection efficacy and permeability into targeted tissues. Here, we describe a class of low-molecular-weight fluorodendrimers for efficient gene delivery. These materials self-assemble into uniform nanospheres and allow for efficient transfection at low charge ratios and very low DNA doses with minimal cytotoxicity. Our results demonstrate that these vectors combine the features of synthetic gene vectors such as liposomes and cationic polymers and present promising potential for clinical gene therapy.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai (China)
| | - Yitong Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai (China)
| | - Yu Wang
- Changzheng Hospital, Department of Orthopedic Oncology, Shanghai (China)
| | - Jingjing Hu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai (China)
| | - Tianfu Li
- China Institute of Atomic Energy, Beijing (China)
| | - Hongmei Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai (China)
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai (China)
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai (China).
| |
Collapse
|
38
|
Wang H, Wang Y, Wang Y, Hu J, Li T, Liu H, Zhang Q, Cheng Y. Self-Assembled Fluorodendrimers Combine the Features of Lipid and Polymeric Vectors in Gene Delivery. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
He B, Wang Y, Shao N, Chang H, Cheng Y. Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery. Acta Biomater 2015; 22:111-9. [PMID: 25937003 DOI: 10.1016/j.actbio.2015.04.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/17/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022]
Abstract
Cationic polymers are widely used as gene carriers, however, these polymers are usually associated with low transfection efficacy and non-negligible toxicity. Fluorination on polymers significantly improves their performances in gene delivery, but a high density of fluorous chains must be conjugated on a single polymer. Here we present a new strategy to construct fluorinated polymers with minimal fluorous chains for efficient DNA and siRNA delivery. A double-tailed fluorous compound 2-chloro-4,6-bis[(perfluorohexyl)propyloxy]-1,3,5-triazine (CBT) was conjugated on dendrimers of different generations and low molecular weight polyethylenimine via a facile synthesis. The yielding products with average numbers of 1-2 conjugated CBT moieties showed much improved EGFP and luciferase transfection efficacy compared to unmodified polymers. In addition, these polymers show high siRNA delivery efficacy on different cell lines. Among the synthesized polymers, generation 1 (G1) dendrimer modified with an average number of 1.9 CBT moieties (G1-CBT1.9) shows the highest efficacy when delivering both DNA and siRNA and its efficacy approaches that of Lipofectamine 2000. G1-CBT1.9 also shows efficient gene silencing in vivo. All of the CBT-modified polymers exhibit minimal toxicity on the cells at their optimal transfection conditions. This study provides a new strategy to design efficient fluorous polymers for DNA and siRNA delivery.
Collapse
|
40
|
Chu Z, Miu K, Lung P, Zhang S, Zhao S, Chang HC, Lin G, Li Q. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery. Sci Rep 2015; 5:11661. [PMID: 26123532 PMCID: PMC4485068 DOI: 10.1038/srep11661] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/21/2015] [Indexed: 12/22/2022] Open
Abstract
The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.
Collapse
Affiliation(s)
- Zhiqin Chu
- 1] Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong [2] 3rd Institute of Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Kaikei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Pingsai Lung
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Silu Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Saisai Zhao
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Quan Li
- 1] Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong [2] The Chinese University of Hong Kong ShenZhen Research Institute, ShenZhen, China
| |
Collapse
|
41
|
Yang J, Zhang Q, Chang H, Cheng Y. Surface-Engineered Dendrimers in Gene Delivery. Chem Rev 2015; 115:5274-300. [PMID: 25944558 DOI: 10.1021/cr500542t] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiepin Yang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Qiang Zhang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Hong Chang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yiyun Cheng
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
42
|
Mastorakos P, Zhang C, Berry S, Oh Y, Lee S, Eberhart CG, Woodworth GF, Suk JS, Hanes J. Highly PEGylated DNA Nanoparticles Provide Uniform and Widespread Gene Transfer in the Brain. Adv Healthc Mater 2015; 4:1023-33. [PMID: 25761435 DOI: 10.1002/adhm.201400800] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/15/2015] [Indexed: 12/13/2022]
Abstract
Gene delivery to the central nervous system (CNS) has potential as a means for treating numerous debilitating neurological diseases. Nonviral gene vector platforms are tailorable and can overcome key limitations intrinsic to virus-mediated delivery; however, lack of clinical efficacy with nonviral systems to date may be attributed to limited gene vector dispersion and transfection in vivo. It is shown that the brain extracellular matrix (ECM) strongly limits penetration of polymer-based gene vector nanoparticles (NP) through the brain parenchyma, even when they are very small (<60 nm) and coated with a polyethylene glycol (PEG) corona of typical density. Following convection enhanced delivery (CED), conventional gene vectors are confined to the injection site, presumably by adhesive interactions with the brain ECM and do not provide gene expression beyond the point of administration. In contrast, it is found that incorporating highly PEGylated polymers allows the production of compacted (≈43 nm) and colloidally stable DNA NP that avoid adhesive trapping within the brain parenchyma. When administered by CED into the rat striatum, highly PEGylated DNA NP distribute throughout and provide broad transgene expression without vector-induced toxicity. The use of these brain-penetrating gene vectors, in conjunction with CED, offers an avenue to improve gene therapy for CNS diseases.
Collapse
Affiliation(s)
- Panagiotis Mastorakos
- Center for Nanomedicine; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 400 N. Broadway Baltimore MD 21231 USA
- Department of Ophthalmology; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 600 N. Wolfe Street Baltimore MD 21297 USA
| | - Clark Zhang
- Center for Nanomedicine; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 400 N. Broadway Baltimore MD 21231 USA
- Department of Biomedical Engineering; Johns Hopkins University School of Medicine; 720 Rutland Avenue Baltimore MD 21205 USA
| | - Sneha Berry
- Center for Nanomedicine; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 400 N. Broadway Baltimore MD 21231 USA
- Center for Biotechnology Education; Krieger School of Arts and Sciences; Johns Hopkins University; 3400 N. Charles Street Baltimore MD 21218 USA
| | - Yumin Oh
- Center for Nanomedicine; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 400 N. Broadway Baltimore MD 21231 USA
- Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University; 601 N. Caroline Street Baltimore MD 21287 USA
| | - Seulki Lee
- Center for Nanomedicine; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 400 N. Broadway Baltimore MD 21231 USA
- Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University; 601 N. Caroline Street Baltimore MD 21287 USA
| | - Charles G. Eberhart
- Department of Pathology; Johns Hopkins University School of Medicine; 600 N. Wolfe Street Baltimore MD 21287 USA
| | - Graeme F. Woodworth
- Departments of Neurological Surgery Anatomy and Neurobiology; University of Maryland School of Medicine; 22 S. Greene Street Baltimore MD 21201 USA
| | - Jung Soo Suk
- Center for Nanomedicine; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 400 N. Broadway Baltimore MD 21231 USA
- Department of Ophthalmology; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 600 N. Wolfe Street Baltimore MD 21297 USA
| | - Justin Hanes
- Center for Nanomedicine; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 400 N. Broadway Baltimore MD 21231 USA
- Department of Ophthalmology; The Wilmer Eye Institute; Johns Hopkins University School of Medicine; 600 N. Wolfe Street Baltimore MD 21297 USA
- Department of Biomedical Engineering; Johns Hopkins University School of Medicine; 720 Rutland Avenue Baltimore MD 21205 USA
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 N. Charles Street Baltimore MD 21218 USA
| |
Collapse
|
43
|
Hendricks WPD, Yang J, Sur S, Zhou S. Formulating the magic bullet: barriers to clinical translation of nanoparticle cancer gene therapy. Nanomedicine (Lond) 2015; 9:1121-4. [PMID: 25118704 DOI: 10.2217/nnm.14.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
44
|
Hong CA, Eltoukhy AA, Lee H, Langer R, Anderson DG, Nam YS. Dendrimeric siRNA for Efficient Gene Silencing. Angew Chem Int Ed Engl 2015; 54:6740-4. [PMID: 25892329 DOI: 10.1002/anie.201412493] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/09/2015] [Indexed: 11/09/2022]
Abstract
Programmable molecular self-assembly of siRNA molecules provides precisely controlled generation of dendrimeric siRNA nanostructures. The second-generation dendrimers of siRNA can be effectively complexed with a low-molecular-weight, cationic polymer (poly(β-amino ester), PBAE) to generate stable nanostructures about 160 nm in diameter via strong electrostatic interactions. Condensation and gene silencing efficiencies increase with the increased generation of siRNA dendrimers due to a high charge density and structural flexibility.
Collapse
Affiliation(s)
- Cheol Am Hong
- Department of Biological Sciences, Department of Materials Science and Engineering, KI for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea)
| | - Ahmed A Eltoukhy
- Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Hyukjin Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul (Republic of Korea)
| | - Robert Langer
- Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Daniel G Anderson
- Department of Biological Engineering, The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA).
| | - Yoon Sung Nam
- Department of Biological Sciences, Department of Materials Science and Engineering, KI for NanoCentury (KINC CNiT), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Republic of Korea).
| |
Collapse
|
45
|
Hong CA, Eltoukhy AA, Lee H, Langer R, Anderson DG, Nam YS. Dendrimeric siRNA for Efficient Gene Silencing. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Wang Y, Li L, Shao N, Hu Z, Chen H, Xu L, Wang C, Cheng Y, Xiao J. Triazine-modified dendrimer for efficient TRAIL gene therapy in osteosarcoma. Acta Biomater 2015; 17:115-24. [PMID: 25595474 DOI: 10.1016/j.actbio.2015.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/26/2014] [Accepted: 01/06/2015] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is a high-grade malignant bone tumor that usually develops in the teenagers. Despite improvement in therapy, the five-year survival rate is poor for patients not responding to treatment or with metastases. Tumor necrosis factor (TNF) related apoptosis inducing ligand (TRAIL) gene therapy is a new strategy in the treatment of cancers, however, the lack of efficient and low toxic vectors remains the major obstacle in TRAIL gene therapy. In this study, a triazine-modified dendrimer G5-DAT66 was synthesized and used as a vector for TRAIL gene therapy in vitro and in vivo. The material shows much higher transfection efficacy on osteosarcoma MG-63 cell line than commercial transfection reagents such as Lipofectamine 2000 and SuperFect. It effectively induces apoptosis in MG-63 cells and three-dimensional MG-63 cell cultures when delivering a TRAIL plasmid. In vivo studies further prove that G5-DAT66 efficiently transfects TRAIL plasmid in tumors and inhibits tumor growth in osteosarcoma-bearing mice. These results suggest that triazine-modified dendrimer has promising potential for TRAIL gene therapy in osteosarcoma.
Collapse
|
47
|
Detecting cancers through tumor-activatable minicircles that lead to a detectable blood biomarker. Proc Natl Acad Sci U S A 2015; 112:3068-73. [PMID: 25713388 DOI: 10.1073/pnas.1414156112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Earlier detection of cancers can dramatically improve the efficacy of available treatment strategies. However, despite decades of effort on blood-based biomarker cancer detection, many promising endogenous biomarkers have failed clinically because of intractable problems such as highly variable background expression from nonmalignant tissues and tumor heterogeneity. In this work we present a tumor-detection strategy based on systemic administration of tumor-activatable minicircles that use the pan-tumor-specific Survivin promoter to drive expression of a secretable reporter that is detectable in the blood nearly exclusively in tumor-bearing subjects. After systemic administration we demonstrate a robust ability to differentiate mice bearing human melanoma metastases from tumor-free subjects for up to 2 wk simply by measuring blood reporter levels. Cumulative change in reporter levels also identified tumor-bearing subjects, and a receiver operator-characteristic curve analysis highlighted this test's performance with an area of 0.918 ± 0.084. Lung tumor burden additionally correlated (r(2) = 0.714; P < 0.05) with cumulative reporter levels, indicating that determination of disease extent was possible. Continued development of our system could improve tumor detectability dramatically because of the temporally controlled, high reporter expression in tumors and nearly zero background from healthy tissues. Our strategy's highly modular nature also allows it to be iteratively optimized over time to improve the test's sensitivity and specificity. We envision this system could be used first in patients at high risk for tumor recurrence, followed by screening high-risk populations before tumor diagnosis, and, if proven safe and effective, eventually may have potential as a powerful cancer-screening tool for the general population.
Collapse
|
48
|
Zhang T, Song X, Kang D, Zhang L, Zhang C, Jin S, Wang C, Tian J, Xing J, Liang XJ. Modified bovine serum albumin as an effective charge-reversal platform for simultaneously improving the transfection efficiency and biocompatibility of polyplexes. J Mater Chem B 2015; 3:4698-4706. [DOI: 10.1039/c5tb00548e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
49
|
Lv J, Chang H, Wang Y, Wang M, Xiao J, Zhang Q, Cheng Y. Fluorination on polyethylenimine allows efficient 2D and 3D cell culture gene delivery. J Mater Chem B 2014; 3:642-650. [PMID: 32262347 DOI: 10.1039/c4tb01447b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polyethylenimine (PEI) is one of the most promising polymeric gene vectors, however its applications are limited by serious cytotoxicity and moderate transfection efficacy. Fluorination is an efficient strategy to improve the transfection efficacy of cationic polymers while reducing their cytotoxicity. Here we grafted different fluoroalkyl chains to PEI via oxirane and anhydride reactions. The fluorinated PEIs show superior transfection efficacy on both 2D and 3D cell cultures to unmodified PEI. These fluorinated polymers allow efficient gene transfection at relatively low nitrogen to phosphorus ratios and thereby ensure low cytotoxicity on the transfected cells. Fluorinated PEIs prepared via the oxirane reaction are much more stable in aqueous solutions than the ones prepared by the anhydride reaction and show reproducible gene transfection during a period of 6 months. This study extends the applicable scope of fluorination on improving the transfection efficacy of polymers and generates a list of gene vectors for efficient 2D and 3D cell culture gene transfection.
Collapse
Affiliation(s)
- Jia Lv
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Tholey RM, Lal S, Jimbo M, Burkhart RA, Blanco FF, Cozzitorto JA, Eisenberg JD, Jiang W, Iacobuzio-Donahue CA, Witkiewicz AK, Glbert M, Yeo CJ, Brody JR, Sawicki JA, Winter JM. MUC1 Promoter-Driven DTA as a Targeted Therapeutic Strategy against Pancreatic Cancer. Mol Cancer Res 2014; 13:439-48. [PMID: 25336517 DOI: 10.1158/1541-7786.mcr-14-0199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Mucin1 (MUC1) is overexpressed in pancreatic ductal adenocarcinoma (PDA) and is associated with tumor aggressiveness, suggesting that MUC1 is a promising therapeutic target for promoter-driven diphtheria toxin A (DTA). Endogenous MUC1 transcript levels were analyzed by quantitative PCR (qPCR) in multiple PDA cells (Capan1, HPAFII, Su.86.86, Capan2, Hs766T, MiaPaCa2, and Panc1). Expression levels were correlated with luciferase activity and cell death after transfection with MUC1 promoter-driven luciferase and DTA constructs. MUC1-positive (+) cells had significantly elevated MUC1 mRNA expression compared with MUC1-negative (-) cells. Luciferase activity was significantly higher in MUC1(+) cells when transfected with MUC1 promoter-driven luciferase and MUC1(+) cells underwent enhanced cell death after transfection with a single dose of MUC1 promoter-driven DTA. IFNγ pretreatment enhanced MUC1 expression in MUC1(-) cells and induced sensitivity to MUC1-DTA therapy. Matched primary and metastatic tumor lesions from clinical specimens revealed similar MUC1 IHC labeling patterns, and a tissue microarray of human PDA biopsies revealed increased immunolabeling with a combination of MUC1 and mesothelin (MSLN) antibodies, compared with either antibody alone. Combining MUC1 with MSLN-targeted DTA enhanced drug efficacy in an in vitro model of heterogeneous PDA. These data demonstrate that MUC1 promoter-driven DTA preferentially kills MUC1-expressing PDA cells and drugs that enhance MUC1 expression sensitize PDA cells with low MUC1 expression. IMPLICATIONS MUC1 expression in primary and metastatic lesions provides a rationale for the development of a systemic MUC1 promoter-driven DTA therapy that may be further enhanced by combination with other promoter-driven DTA constructs.
Collapse
Affiliation(s)
- Renee M Tholey
- Department of Surgery and the Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shruti Lal
- Department of Surgery and the Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Masaya Jimbo
- Department of Surgery and the Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Richard A Burkhart
- Department of Surgery and the Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Fernando F Blanco
- Department of Surgery and the Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joseph A Cozzitorto
- Department of Surgery and the Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Josh D Eisenberg
- Department of Surgery and the Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Wei Jiang
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christine A Iacobuzio-Donahue
- Department of Pathology and the David Rubenstein Pancreatic Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Melissa Glbert
- Department of Surgery and the Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Charles J Yeo
- Department of Surgery and the Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jonathan R Brody
- Department of Surgery and the Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Janet A Sawicki
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.
| | - Jordan M Winter
- Department of Surgery and the Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|