1
|
Zhao R, Ge W, Xue W, Deng Z, Liu J, Wang K, Jin YN, Yu YV. CaMK modulates sensory neural activity to control longevity and proteostasis. Proc Natl Acad Sci U S A 2025; 122:e2423428122. [PMID: 40359038 PMCID: PMC12107105 DOI: 10.1073/pnas.2423428122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
The impact of neural activity on aging and longevity remains poorly understood, with limited understanding of the specific neuron groups and molecular mechanisms that regulate lifespan. In this study, we uncover a correlation between human longevity and reduced CaMK4 expression in the frontal cortex. We further show that this link is conserved in Caenorhabditis elegans, where the loss of the homolog CMK-1 leads to increased longevity and enhanced proteostasis. These beneficial effects are primarily driven by suppressed excitation in the primary thermosensory AFD neurons, particularly at elevated temperatures that trigger hyperactivation. In the thermosensory neural circuit, suppression of AFD neuron activity promotes the release of INS-1/insulin from AIZ, which in turn activates DAF-16/FOXO in the intestine. Our findings reveal a causal mechanism through which sensory neural activity governs lifespan and organismal proteostasis, highlighting the significance of CaMK in shaping these processes through the regulation of neural activity.
Collapse
Affiliation(s)
- Ranran Zhao
- Department of Neurology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
| | - Weiqi Ge
- Department of Nuclear Medicine, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
| | - Weikang Xue
- Department of Neurology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
| | - Zaidong Deng
- Department of Neurology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
| | - Jiaze Liu
- Department of Neurology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
| | - Kaiqi Wang
- Department of Neurology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
| | - Youngnam N. Jin
- Department of Nuclear Medicine, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
| | - Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Hubei Provincial Clinical Research Center for Dementia and Cognitive Impairment, Wuhan430071, China
| |
Collapse
|
2
|
Pontillo N, Lyu Y. Perception and Longevity Control in Invertebrate Model Organisms-A Mini-Review of Recent Advances. Biomolecules 2025; 15:187. [PMID: 40001490 PMCID: PMC11852803 DOI: 10.3390/biom15020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Perception alone can, in some cases, be sufficient to modulate aging and longevity. These influences on aging are perhaps mediated by changes in motivational states that regulate metabolism and physiology to impact health. Simple invertebrate models uniquely enable detailed dissection of integrative pathways linking perceptions to aging and remain the leading systems for advancing this field. Over the past 25 years, studies using the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans have demonstrated that sensory cues, such as those related to food or mating, can influence aging independently of the physical acts associated with them. In this review, we highlight recent advancements in these invertebrate models, focusing on two key areas of progress: (i) the discovery of lifespan modulation driven by novel sensory cues across multiple modalities, including non-sexual social experience, light, and dietary choices; and (ii) the assignment of new aging-regulation functions to specific neurons downstream of sensory perception. The latter offers an exciting first glimpse at the neuronal circuits integrating sensory cues, motivational states, physiology, and aging.
Collapse
Affiliation(s)
| | - Yang Lyu
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8000, USA;
| |
Collapse
|
3
|
Li C, Liang S, Huang Q, Zhou Z, Ding Z, Long N, Wi K, Li L, Jiang X, Fan Y, Xu Y. Minor Spliceosomal 65K/RNPC3 Interacts with ANKRD11 and Mediates HDAC3-Regulated Histone Deacetylation and Transcription. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307804. [PMID: 38837887 PMCID: PMC11304329 DOI: 10.1002/advs.202307804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Indexed: 06/07/2024]
Abstract
RNA splicing is crucial in the multilayer regulatory networks for gene expression, making functional interactions with DNA- and other RNA-processing machineries in the nucleus. However, these established couplings are all major spliceosome-related; whether the minor spliceosome is involved remains unclear. Here, through affinity purification using Drosophila lysates, an interaction is identified between the minor spliceosomal 65K/RNPC3 and ANKRD11, a cofactor of histone deacetylase 3 (HDAC3). Using a CRISPR/Cas9 system, Deletion strains are constructed and found that both Dm65KΔ/Δ and Dmankrd11Δ/Δ mutants have reduced histone deacetylation at Lys9 of histone H3 (H3K9) and Lys5 of histone H4 (H4K5) in their heads, exhibiting various neural-related defects. The 65K-ANKRD11 interaction is also conserved in human cells, and the HsANKRD11 middle-uncharacterized domain mediates Hs65K association with HDAC3. Cleavage under targets and tagmentation (CUT&Tag) assays revealed that HsANKRD11 is a bridging factor, which facilitates the synergistic common chromatin-binding of HDAC3 and Hs65K. Knockdown (KD) of HsANKRD11 simultaneously decreased their common binding, resulting in reduced deacetylation of nearby H3K9. Ultimately, this study demonstrates that expression changes of many genes caused by HsANKRD11-KD are due to the decreased common chromatin-binding of HDAC3 and Hs65K and subsequently reduced deacetylation of H3K9, illustrating a novel and conserved coupling mechanism that links the histone deacetylation with minor spliceosome for the regulation of gene expression.
Collapse
Affiliation(s)
- Chen‐Hui Li
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Shao‐Bo Liang
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Qi‐Wei Huang
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Zhen‐Zhen Zhou
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Zhan Ding
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
- Key Laboratory of Insect Developmental and Evolutionary BiologyCenter for Excellence in Molecular Plant SciencesChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200032China
| | - Ni Long
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Kwang‐Chon Wi
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Liang Li
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Xi‐Ping Jiang
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Yu‐Jie Fan
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| | - Yong‐Zhen Xu
- RNA InstituteState Key Laboratory of VirologyHubei Key Laboratory of Cell HomeostasisCollege of Life ScienceTaiKang Center for Life and Medical SciencesWuhan UniversityHubei430072China
| |
Collapse
|
4
|
Wang M, Liang AM, Zhou ZZ, Pang TL, Fan YJ, Xu YZ. Deletions of singular U1 snRNA gene significantly interfere with transcription and 3'-end mRNA formation. PLoS Genet 2023; 19:e1011021. [PMID: 37917726 PMCID: PMC10645366 DOI: 10.1371/journal.pgen.1011021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/14/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Small nuclear RNAs (snRNAs) are structural and functional cores of the spliceosome. In metazoan genomes, each snRNA has multiple copies/variants, up to hundreds in mammals. However, the expressions and functions of each copy/variant in one organism have not been systematically studied. Focus on U1 snRNA genes, we investigated all five copies in Drosophila melanogaster using two series of constructed strains. Analyses of transgenic flies that each have a U1 promoter-driven gfp revealed that U1:21D is the major and ubiquitously expressed copy, and the other four copies have specificities in developmental stages and tissues. Mutant strains that each have a precisely deleted copy of U1-gene exhibited various extents of defects in fly morphology or mobility, especially deletion of U1:82Eb. Interestingly, splicing was changed at limited levels in the deletion strains, while large amounts of differentially-expressed genes and alternative polyadenylation events were identified, showing preferences in the down-regulation of genes with 1-2 introns and selection of proximal sites for 3'-end polyadenylation. In vitro assays suggested that Drosophila U1 variants pulled down fewer SmD2 proteins compared to the canonical U1. This study demonstrates that all five U1-genes in Drosophila have physiological functions in development and play regulatory roles in transcription and 3'-end formation.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China, University of Chinese Academy of Sciences, China
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei, China
- Shanghai Institute of Biological Products, Shanghai, China
| | - An-Min Liang
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei, China
| | - Zhen-Zhen Zhou
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei, China
| | - Ting-Lin Pang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China, University of Chinese Academy of Sciences, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Hubei, China
| |
Collapse
|
5
|
Weaver KJ, Holt RA, Henry E, Lyu Y, Pletcher SD. Effects of hunger on neuronal histone modifications slow aging in Drosophila. Science 2023; 380:625-632. [PMID: 37167393 PMCID: PMC11837410 DOI: 10.1126/science.ade1662] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Hunger is an ancient drive, yet the molecular nature of pressures of this sort and how they modulate physiology are unknown. We find that hunger modulates aging in Drosophila. Limitation of branched-chain amino acids (BCAAs) or activation of hunger-promoting neurons induced a hunger state that extended life span despite increased feeding. Alteration of the neuronal histone acetylome was associated with BCAA limitation, and preventing these alterations abrogated the effect of BCAA limitation to increase feeding and extend life span. Hunger acutely increased feeding through usage of the histone variant H3.3, whereas prolonged hunger seemed to decrease a hunger set point, resulting in beneficial consequences for aging. Demonstration of the sufficiency of hunger to extend life span reveals that motivational states alone can be deterministic drivers of aging.
Collapse
Affiliation(s)
- KJ Weaver
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan; Ann Arbor, MI 48109, U.S.A
| | - RA Holt
- College of Literature, Science, and the Arts, Biomedical Sciences and Research Building, University of Michigan; Ann Arbor, MI 48109, U.S.A
| | - E Henry
- Program in Cellular and Molecular Biology, University of Michigan; Ann Arbor, MI 48109, U.S.A
| | - Y Lyu
- Department of Molecular Biology & Biochemistry, Rutgers University; Piscataway, NJ 08855, U.S.A
| | - SD Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan; Ann Arbor, MI 48109, U.S.A
| |
Collapse
|
6
|
Zhang M, Hu Y, Liu J, Guan Z, Zhang W. CRISPR/Cas9-mediated genome editing of gustatory receptor NlugGr23a causes male sterility in the brown planthopper Nilaparvata lugens. Int J Biol Macromol 2023; 241:124612. [PMID: 37119891 DOI: 10.1016/j.ijbiomac.2023.124612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Gustatory receptors (Grs) have an essential role in chemical recognition so as to evaluate food quality. Insect Grs also participate in non-gustatory functions, such as olfaction, temperature sensing, and mating. In this study, we knocked out NlugGr23a, a putative fecundity-related Gr, using the CRISPR/Cas9 system in the brown planthopper Nilaparvata lugens, a serious insect pest of rice. Surprisingly, homozygous NlugGr23a mutant (NlugGr23a-/-) males were sterile but their sperm were motile and morphologically normal. DAPI staining of mutant sperm inseminated eggs showed that most of NlugGr23a-/- sperm failed to fertilize eggs, even if they were capable of entering into the egg as a result of their arrested development prior to male pronucleus formation. Immunohistochemistry demonstrated the expression of NlugGr23a in testis. Moreover, prior mating by NlugGr23a-/- males suppressed female fertility. To our knowledge, it is the first report that a chemoreceptor is implicated in male sterility and provides a potential molecular target for genetic pest control alternatives.
Collapse
Affiliation(s)
- Mengyi Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yutao Hu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiahui Liu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhanwen Guan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
7
|
Munneke AS, Chakraborty TS, Porter SS, Gendron CM, Pletcher SD. The serotonin receptor 5-HT2A modulates lifespan and protein feeding in Drosophila melanogaster. FRONTIERS IN AGING 2022; 3:1068455. [PMID: 36531741 PMCID: PMC9751412 DOI: 10.3389/fragi.2022.1068455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022]
Abstract
The conserved neurotransmitter serotonin has been shown to be an important modulator of lifespan in specific nutritional contexts; however, it remained unclear how serotonin signaling influences lifespan under normal conditions. Here, we show that serotonin signaling through the 5-HT2A receptor influences lifespan, behavior, and physiology in Drosophila. Loss of the 5-HT2A receptor extends lifespan and induces a resistance to changes in dietary protein that are normally detrimental to lifespan. 5-HT2A -/- null mutant flies also display decreased protein feeding and protein content in the body. Therefore, serotonin signaling through receptor 5-HT2A is likely recruited to promote motivation for protein intake, and chronic reduction of protein-drive through loss of 5-HT2A signaling leads to a lower protein set-point adaptation, which influences physiology, decreases feeding, and increases lifespan. Our findings reveal insights into the mechanisms by which organisms physiologically adapt in response to perceived inability to satisfy demand.
Collapse
Affiliation(s)
- Allyson S. Munneke
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States
| | - Tuhin S. Chakraborty
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Saige S. Porter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Christi M. Gendron
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Scott D. Pletcher
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Gertiatrics Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Hutfilz C. Endocrine Regulation of Lifespan in Insect Diapause. Front Physiol 2022; 13:825057. [PMID: 35242054 PMCID: PMC8886022 DOI: 10.3389/fphys.2022.825057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Diapause is a physiological adaptation to conditions that are unfavorable for growth or reproduction. During diapause, animals become long-lived, stress-resistant, developmentally static, and non-reproductive, in the case of diapausing adults. Diapause has been observed at all developmental stages in both vertebrates and invertebrates. In adults, diapause traits weaken into adaptations such as hibernation, estivation, dormancy, or torpor, which represent evolutionarily diverse versions of the traditional diapause traits. These traits are regulated through modifications of the endocrine program guiding development. In insects, this typically includes changes in molting hormones, as well as metabolic signals that limit growth while skewing the organism's energetic demands toward conservation. While much work has been done to characterize these modifications, the interactions between hormones and their downstream consequences are incompletely understood. The current state of diapause endocrinology is reviewed here to highlight the relevance of diapause beyond its use as a model to study seasonality and development. Specifically, insect diapause is an emerging model to study mechanisms that determine lifespan. The induction of diapause represents a dramatic change in the normal progression of age. Hormones such as juvenile hormone, 20-hydroxyecdysone, and prothoracicotropic hormone are well-known to modulate this plasticity. The induction of diapause-and by extension, the cessation of normal aging-is coordinated by interactions between these pathways. However, research directly connecting diapause endocrinology to the biology of aging is lacking. This review explores connections between diapause and aging through the perspective of endocrine signaling. The current state of research in both fields suggests appreciable overlap that will greatly contribute to our understanding of diapause and lifespan determination.
Collapse
|
9
|
Zhang B, Ding Z, Li L, Xie LK, Fan YJ, Xu YZ. Two oppositely-charged sf3b1 mutations cause defective development, impaired immune response, and aberrant selection of intronic branch sites in Drosophila. PLoS Genet 2021; 17:e1009861. [PMID: 34723968 PMCID: PMC8559932 DOI: 10.1371/journal.pgen.1009861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
SF3B1 mutations occur in many cancers, and the highly conserved His662 residue is one of the hotspot mutation sites. To address effects on splicing and development, we constructed strains carrying point mutations at the corresponding residue His698 in Drosophila using the CRISPR-Cas9 technique. Two mutations, H698D and H698R, were selected due to their frequent presence in patients and notable opposite charges. Both the sf3b1-H698D and–H698R mutant flies exhibit developmental defects, including less egg-laying, decreased hatching rates, delayed morphogenesis and shorter lifespans. Interestingly, the H698D mutant has decreased resistance to fungal infection, while the H698R mutant shows impaired climbing ability. Consistent with these phenotypes, further analysis of RNA-seq data finds altered expression of immune response genes and changed alternative splicing of muscle and neural-related genes in the two mutants, respectively. Expression of Mef2-RB, an isoform of Mef2 gene that was downregulated due to splicing changes caused by H698R, partly rescues the climbing defects of the sf3b1-H698R mutant. Lariat sequencing reveals that the two sf3b1-H698 mutations cause aberrant selection of multiple intronic branch sites, with the H698R mutant using far upstream branch sites in the changed alternative splicing events. This study provides in vivo evidence from Drosophila that elucidates how these SF3B1 hotspot mutations alter splicing and their consequences in development and in the immune system. In the past decade, one of the important findings in the RNA splicing field has been that somatic SF3B1 mutations widely occur in many cancers. Including R625, H662, K666, K700 and E902, there are five hotspot mutation sites in the highly conserved HEAT repeats of SF3B1. Several kinds of H662 mutations have been found widely in MDS, AML, CLL and breast cancers; however, it remains unclear how these H662 mutations alter splicing and whether they have in vivo effects on development. To address these questions, in this manuscript, we first summarized the H662 mutations in human diseases and constructed two corresponding Drosophila mutant strains, sf3b1-H698D and -H698R using CRISPR-Cas9. Analyses of these two fly strains find that the two oppositely charged Sf3b1-H698 mutants are defective in development. In addition, one mutant has decreased climbing ability, whereas the other mutant has impaired immune response. Further RNA-seq allows us to find responsible genes in each mutant strain, and lariat sequencing reveals that both mutations cause aberrant selection of the intronic branch sites. Our findings provide the first in vivo evidence that Sf3b1 mutations result in defective development, and also reveal a molecular mechanism of these hotspot histidine mutations that enhance the use of cryptic branch sites to alter splicing. Importantly, we demonstrate that the H698R mutant prefers to use far upstream branch sites.
Collapse
Affiliation(s)
- Bei Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Zhan Ding
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Liang Li
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Ling-Kun Xie
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
- * E-mail:
| |
Collapse
|
10
|
Kim DH, Bang E, Ha S, Jung HJ, Choi YJ, Yu BP, Chung HY. Organ-differential Roles of Akt/FoxOs Axis as a Key Metabolic Modulator during Aging. Aging Dis 2021; 12:1713-1728. [PMID: 34631216 PMCID: PMC8460295 DOI: 10.14336/ad.2021.0225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
FoxOs and their post-translational modification by phosphorylation, acetylation, and methylation can affect epigenetic modifications and promote the expression of downstream target genes. Therefore, they ultimately affect cellular and biological functions during aging or occurrence of age-related diseases including cancer, diabetes, and kidney diseases. As known for its key role in aging, FoxOs play various biological roles in the aging process by regulating reactive oxygen species, lipid accumulation, and inflammation. FoxOs regulated by PI3K/Akt pathway modulate the expression of various target genes encoding MnSOD, catalases, PPARγ, and IL-1β during aging, which are associated with age-related diseases. This review highlights the age-dependent differential regulatory mechanism of Akt/FoxOs axis in metabolic and non-metabolic organs. We demonstrated that age-dependent suppression of Akt increases the activity of FoxOs (Akt/FoxOs axis upregulation) in metabolic organs such as liver and muscle. This Akt/FoxOs axis could be modulated and reversed by antiaging paradigm calorie restriction (CR). In contrast, hyperinsulinemia-mediated PI3K/Akt activation inhibited FoxOs activity (Akt/FoxOs axis downregulation) leading to decrease of antioxidant genes expression in non-metabolic organs such as kidneys and lungs during aging. These phenomena are reversed by CR. The results of studies on the process of aging and CR indicate that the Akt/FoxOs axis plays a critical role in regulating metabolic homeostasis, redox stress, and inflammation in various organs during aging process. The benefical actions of CR on the Akt/FoxOs axis in metabolic and non-metabolic organs provide further insights into the molecular mechanisms of organ-differential roles of Akt/FoxOs axis during aging.
Collapse
Affiliation(s)
- Dae Hyun Kim
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - EunJin Bang
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Sugyeong Ha
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Hee Jin Jung
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| | - Yeon Ja Choi
- 2Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea
| | - Byung Pal Yu
- 3Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Hae Young Chung
- 1Department of Pharmacy, College of Pharmacy, Pusan National University, Gumjung-gu, Busan 46241, Korea
| |
Collapse
|
11
|
Lyu Y, Weaver KJ, Shaukat HA, Plumoff ML, Tjilos M, Promislow DE, Pletcher SD. Drosophila serotonin 2A receptor signaling coordinates central metabolic processes to modulate aging in response to nutrient choice. eLife 2021; 10:59399. [PMID: 33463526 PMCID: PMC7909950 DOI: 10.7554/elife.59399] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
It has been recognized for nearly a century that diet modulates aging. Despite early experiments suggesting that reduced caloric intake augmented lifespan, accumulating evidence indicates that other characteristics of the diet may be equally or more influential in modulating aging. We demonstrate that behavior, metabolism, and lifespan in Drosophila are affected by whether flies are provided a choice of different nutrients or a single, complete medium, largely independent of the amount of nutrients that are consumed. Meal choice elicits a rapid metabolic reprogramming that indicates a potentiation of TCA cycle and amino acid metabolism, which requires serotonin 2A receptor. Knockdown of glutamate dehydrogenase, a key TCA pathway component, abrogates the effect of dietary choice on lifespan. Our results reveal a mechanism of aging that applies in natural conditions, including our own, in which organisms continuously perceive and evaluate nutrient availability to promote fitness and well-being. The foods we eat can affect our lifespan, but it is also possible that thinking about food may have effects on our health. Choosing what to eat is one of the main ways we think about food, and most animals, including the fruit fly Drosophila melanogaster, choose their foods. The effects of these choices can affect health via a chemical in the brain called serotonin. This chemical interacts with proteins called serotonin 2A receptors in the brain, which then likely primes the body to process nutrients. To understand how serotonin affected the lifespan and health of fruit flies, Lyu et al. compared flies that were offered a single food to those that could choose between several foods. The flies that had a choice of foods lived shorter lives and produced more serotonin, but these effects were reversed when Lyu et al. limited the amount of a protein called glutamate dehydrogenase, which helps cells process nutrients. These results suggest that choosing what we eat can impact lifespan, ageing and health. Human and fly brains share many similarities, but human brain chemistry is more complex, as is our experience of food. This work demonstrates that food choices can affect lifespan. More research into this phenomenon may shed further light onto how our thoughts and decision-making impact our health.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, United States
| | - Kristina J Weaver
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, United States
| | - Humza A Shaukat
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, United States
| | - Marta L Plumoff
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, United States
| | - Maria Tjilos
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, United States
| | - Daniel El Promislow
- Department of Lab Medicine & Pathology, University of Washington School of Medicine, Seattle, United States.,Department of Biology, University of Washington, Seattle, United States
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, United States
| |
Collapse
|
12
|
Miller HA, Dean ES, Pletcher SD, Leiser SF. Cell non-autonomous regulation of health and longevity. eLife 2020; 9:62659. [PMID: 33300870 PMCID: PMC7728442 DOI: 10.7554/elife.62659] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022] Open
Abstract
As the demographics of the modern world skew older, understanding and mitigating the effects of aging is increasingly important within biomedical research. Recent studies in model organisms demonstrate that the aging process is frequently modified by an organism’s ability to perceive and respond to changes in its environment. Many well-studied pathways that influence aging involve sensory cells, frequently neurons, that signal to peripheral tissues and promote survival during the presence of stress. Importantly, this activation of stress response pathways is often sufficient to improve health and longevity even in the absence of stress. Here, we review the current landscape of research highlighting the importance of cell non-autonomous signaling in modulating aging from C. elegans to mammals. We also discuss emerging concepts including retrograde signaling, approaches to mapping these networks, and development of potential therapeutics.
Collapse
Affiliation(s)
- Hillary A Miller
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, United States
| | - Elizabeth S Dean
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States
| | - Scott D Pletcher
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States
| | - Scott F Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| |
Collapse
|
13
|
Behavioral and Transcriptional Response to Selection for Olfactory Behavior in Drosophila. G3-GENES GENOMES GENETICS 2020; 10:1283-1296. [PMID: 32024668 PMCID: PMC7144070 DOI: 10.1534/g3.120.401117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The detection, discrimination, and behavioral responses to chemical cues in the environment can have marked effects on organismal survival and reproduction, eliciting attractive or aversive behavior. To gain insight into mechanisms mediating this hedonic valence, we applied thirty generations of divergent artificial selection for Drosophila melanogaster olfactory behavior. We independently selected for positive and negative behavioral responses to two ecologically relevant chemical compounds: 2,3-butanedione and cyclohexanone. We also tested the correlated responses to selection by testing behavioral responses to other odorants and life history traits. Measurements of behavioral responses of the selected lines and unselected controls to additional odorants showed that the mechanisms underlying responses to these odorants are, in some cases, differentially affected by selection regime and generalization of the response to other odorants was only detected in the 2,3-butanedione selection lines. Food consumption and lifespan varied with selection regime and, at times, sex. An analysis of gene expression of both selection regimes identified multiple differentially expressed genes. New genes and genes previously identified in mediating olfactory behavior were identified. In particular, we found functional enrichment of several gene ontology terms, including cell-cell adhesion and sulfur compound metabolic process, the latter including genes belonging to the glutathione S-transferase family. These findings highlight a potential role for glutathione S-transferases in the evolution of hedonic valence to ecologically relevant volatile compounds and set the stage for a detailed investigation into mechanisms by which these genes mediate attraction and aversion.
Collapse
|
14
|
PGC1α Controls Sucrose Taste Sensitization in Drosophila. Cell Rep 2020; 31:107480. [DOI: 10.1016/j.celrep.2020.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 02/12/2020] [Accepted: 03/13/2020] [Indexed: 11/19/2022] Open
|
15
|
Gendron CM, Chakraborty TS, Chung BY, Harvanek ZM, Holme KJ, Johnson JC, Lyu Y, Munneke AS, Pletcher SD. Neuronal Mechanisms that Drive Organismal Aging Through the Lens of Perception. Annu Rev Physiol 2019; 82:227-249. [PMID: 31635526 DOI: 10.1146/annurev-physiol-021119-034440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sensory neurons provide organisms with data about the world in which they live, for the purpose of successfully exploiting their environment. The consequences of sensory perception are not simply limited to decision-making behaviors; evidence suggests that sensory perception directly influences physiology and aging, a phenomenon that has been observed in animals across taxa. Therefore, understanding the neural mechanisms by which sensory input influences aging may uncover novel therapeutic targets for aging-related physiologies. In this review, we examine different perceptive experiences that have been most clearly linked to aging or age-related disease: food perception, social perception, time perception, and threat perception. For each, the sensory cues, receptors, and/or pathways that influence aging as well as the individual or groups of neurons involved, if known, are discussed. We conclude with general thoughts about the potential impact of this line of research on human health and aging.
Collapse
Affiliation(s)
- Christi M Gendron
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Tuhin S Chakraborty
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Brian Y Chung
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Zachary M Harvanek
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Kristina J Holme
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Jacob C Johnson
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Yang Lyu
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Allyson S Munneke
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
16
|
Chakraborty TS, Gendron CM, Lyu Y, Munneke AS, DeMarco MN, Hoisington ZW, Pletcher SD. Sensory perception of dead conspecifics induces aversive cues and modulates lifespan through serotonin in Drosophila. Nat Commun 2019; 10:2365. [PMID: 31147540 PMCID: PMC6542802 DOI: 10.1038/s41467-019-10285-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/02/2019] [Indexed: 01/29/2023] Open
Abstract
Sensory perception modulates health and aging across taxa. Understanding the nature of relevant cues and the mechanisms underlying their action may lead to novel interventions that improve the length and quality of life. We found that in the vinegar fly, Drosophila melanogaster, exposure to dead conspecifics in the environment induced cues that were aversive to other flies, modulated physiology, and impaired longevity. The effects of exposure to dead conspecifics on aversiveness and lifespan required visual and olfactory function in the exposed flies. Furthermore, the sight of dead flies was sufficient to produce aversive cues and to induce changes in the head metabolome. Genetic and pharmacologic attenuation of serotonergic signaling eliminated the effects of exposure on aversiveness and lifespan. Our results indicate that Drosophila have an ability to perceive dead conspecifics in their environment and suggest conserved mechanistic links between neural state, health, and aging; the roots of which might be unearthed using invertebrate model systems.
Collapse
Affiliation(s)
- Tuhin S Chakraborty
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christi M Gendron
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yang Lyu
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allyson S Munneke
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madeline N DeMarco
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zachary W Hoisington
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, MI, 48109, USA. .,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
Evangelakou Z, Manola M, Gumeni S, Trougakos IP. Nutrigenomics as a tool to study the impact of diet on aging and age-related diseases: the Drosophila approach. GENES & NUTRITION 2019; 14:12. [PMID: 31073342 PMCID: PMC6498619 DOI: 10.1186/s12263-019-0638-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Aging is a complex phenomenon caused by the time-dependent loss of cellular homeodynamics and consequently of physiological organismal functions. This process is affected by both genetic and environmental (e.g., diet) factors, as well as by their constant interaction. Consistently, deregulation of nutrient sensing and signaling pathways is considered a hallmark of aging. Nutrigenomics is an emerging scientific discipline that studies changes induced by diet on the genome and thus it considers the intersection of three topics, namely health, diet, and genomics. Model organisms, such as the fruit fly Drosophila melanogaster, have been successfully used for in vivo modeling of higher metazoans aging and for nutrigenomic studies. Drosophila is a well-studied organism with sophisticated genetics and a fully annotated sequenced genome, in which ~ 75% of human disease-related genes have functional orthologs. Also, flies have organs/tissues that perform the equivalent functions of most mammalian organs, while discrete clusters of cells maintain insect carbohydrate homeostasis in a way similar to pancreatic cells. Herein, we discuss the mechanistic connections between nutrition and aging in Drosophila, and how this model organism can be used to study the effect of different diets (including natural products and/or their derivatives) on higher metazoans longevity.
Collapse
Affiliation(s)
- Zoi Evangelakou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Maria Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
18
|
Kojima T, Furuyama A, Isono K, Hamada T, Ohsuga K, Takada S. Effects of salt taste disorder on behavior and lifespan in Drosophila melanogaster. J Oral Biosci 2018. [DOI: 10.1016/j.job.2018.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Brown EB, Patterson C, Pancoast R, Rollmann SM. Artificial selection for odor-guided behavior in Drosophila reveals changes in food consumption. BMC Genomics 2017; 18:867. [PMID: 29132294 PMCID: PMC5683340 DOI: 10.1186/s12864-017-4233-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022] Open
Abstract
Background The olfactory system enables organisms to detect chemical cues in the environment and can signal the availability of food or the presence of a predator. Appropriate behavioral responses to these chemical cues are therefore important for organismal survival and can influence traits such as organismal life span and food consumption. However, understanding the genetic mechanisms underlying odor-guided behavior, correlated responses in other traits, and how these constrain or promote their evolution, remain an important challenge. Here, we performed artificial selection for attractive and aversive behavioral responses to four chemical compounds, two aromatics (4-ethylguaiacol and 4-methylphenol) and two esters (methyl hexanoate and ethyl acetate), for thirty generations. Results Artificial selection for odor-guided behavior revealed symmetrical responses to selection for each of the four chemical compounds. We then investigated whether selection for odor-guided behavior resulted in correlated responses in life history traits and/or food consumption. We found changes in food consumption upon selection for behavioral responses to aromatics. In many cases, lines selected for increased attraction to aromatics showed an increase in food consumption. We then performed RNA sequencing of lines selected for responses to 4-ethylguaiacol to identify candidate genes associated with odor-guided behavior and its impact on food consumption. We identified 91 genes that were differentially expressed among lines, many of which were associated with metabolic processes. RNAi-mediated knockdown of select candidate genes further supports their role in odor-guided behavior and/or food consumption. Conclusions This study identifies novel genes underlying variation in odor-guided behavior and further elucidates the genetic mechanisms underlying the interrelationship between olfaction and feeding. Electronic supplementary material The online version of this article (10.1186/s12864-017-4233-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth B Brown
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA
| | - Cody Patterson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA
| | - Rayanne Pancoast
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA.,Department of Biology, Xavier University, Cincinnati, OH, 45207, USA
| | - Stephanie M Rollmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA.
| |
Collapse
|
20
|
Lin CT, He CW, Huang TT, Pan CL. Longevity control by the nervous system: Sensory perception, stress response and beyond. TRANSLATIONAL MEDICINE OF AGING 2017. [DOI: 10.1016/j.tma.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Hoedjes KM, Rodrigues MA, Flatt T. Amino acid modulation of lifespan and reproduction in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2017; 23:118-122. [PMID: 29129276 DOI: 10.1016/j.cois.2017.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 05/23/2023]
Abstract
Manipulating amino acid (AA) intake in Drosophila can profoundly affect lifespan and reproduction. Remarkably, AA manipulation can uncouple the commonly observed trade-off between these traits. This finding seems to challenge the idea that this trade-off is due to competitive resource allocation, but here we argue that this view might be too simplistic. We also discuss the mechanisms of the AA response, mediated by the IIS/TOR and GCN2 pathways. Elucidating how these pathways respond to specific AA will likely yield important insights into how AA modulate the reproduction-lifespan relationship. The Drosophila model offers powerful genetic tools, combined with options for precise diet manipulation, to address these fundamental questions.
Collapse
Affiliation(s)
- Katja M Hoedjes
- Department of Ecology and Evolution, University of Lausanne, UNIL Sorge, Biophore, CH-1015 Lausanne, Switzerland
| | - Marisa A Rodrigues
- Department of Ecology and Evolution, University of Lausanne, UNIL Sorge, Biophore, CH-1015 Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, UNIL Sorge, Biophore, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
22
|
Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28642799 PMCID: PMC5469997 DOI: 10.1155/2017/5435831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More and more research studies are revealing unexpectedly important roles of taste for health and pathogenesis of various diseases. Only recently it has been shown that taste receptors have many extraoral locations (e.g., stomach, intestines, liver, pancreas, respiratory system, heart, brain, kidney, urinary bladder, pancreas, adipose tissue, testis, and ovary), being part of a large diffuse chemosensory system. The functional implications of these taste receptors widely dispersed in various organs or tissues shed a new light on several concepts used in ayurvedic pharmacology (dravyaguna vijnana), such as taste (rasa), postdigestive effect (vipaka), qualities (guna), and energetic nature (virya). This review summarizes the significance of extraoral taste receptors and transient receptor potential (TRP) channels for ayurvedic pharmacology, as well as the biological activities of various types of phytochemical tastants from an ayurvedic perspective. The relative importance of taste (rasa), postdigestive effect (vipaka), and energetic nature (virya) as ethnopharmacological descriptors within Ayurveda boundaries will also be discussed.
Collapse
|
23
|
Lucanic M, Garrett T, Yu I, Calahorro F, Asadi Shahmirzadi A, Miller A, Gill MS, Hughes RE, Holden‐Dye L, Lithgow GJ. Chemical activation of a food deprivation signal extends lifespan. Aging Cell 2016; 15:832-41. [PMID: 27220516 PMCID: PMC5013014 DOI: 10.1111/acel.12492] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2016] [Indexed: 12/29/2022] Open
Abstract
Model organisms subject to dietary restriction (DR) generally live longer. Accompanying this lifespan extension are improvements in overall health, based on multiple metrics. This indicates that pharmacological treatments that mimic the effects of DR could improve health in humans. To find new chemical structures that extend lifespan, we screened 30 000 synthetic, diverse drug‐like chemicals in Caenorhabditis elegans and identified several structurally related compounds that acted through DR mechanisms. The most potent of these NP1 impinges upon a food perception pathway by promoting glutamate signaling in the pharynx. This results in the overriding of a GPCR pathway involved in the perception of food and which normally acts to decrease glutamate signals. Our results describe the activation of a dietary restriction response through the pharmacological masking of a novel sensory pathway that signals the presence of food. This suggests that primary sensory pathways may represent novel targets for human pharmacology.
Collapse
Affiliation(s)
- Mark Lucanic
- Buck Institute for Research on Aging 8001 Redwood Boulevard Novato CA USA
| | - Theo Garrett
- Buck Institute for Research on Aging 8001 Redwood Boulevard Novato CA USA
| | - Ivan Yu
- Buck Institute for Research on Aging 8001 Redwood Boulevard Novato CA USA
- Dominican University of California 50 Acacia Avenue San Rafael CA USA
| | - Fernando Calahorro
- Center for Biological Sciences Institute for Life Sciences University of Southampton Southampton UK
| | - Azar Asadi Shahmirzadi
- Buck Institute for Research on Aging 8001 Redwood Boulevard Novato CA USA
- Davis School of Gerontology University of Southern California Los Angeles CA USA
| | - Aaron Miller
- Buck Institute for Research on Aging 8001 Redwood Boulevard Novato CA USA
| | - Matthew S. Gill
- Department of Metabolism & Aging The Scripps Research Institute‐Scripps Florida 130 Scripps Way Jupiter FL 33458
| | - Robert E. Hughes
- Buck Institute for Research on Aging 8001 Redwood Boulevard Novato CA USA
| | - Lindy Holden‐Dye
- Center for Biological Sciences Institute for Life Sciences University of Southampton Southampton UK
| | - Gordon J. Lithgow
- Buck Institute for Research on Aging 8001 Redwood Boulevard Novato CA USA
| |
Collapse
|
24
|
Gerofotis CD, Ioannou CS, Nakas CT, Papadopoulos NT. The odor of a plant metabolite affects life history traits in dietary restricted adult olive flies. Sci Rep 2016; 6:28540. [PMID: 27339862 PMCID: PMC4919778 DOI: 10.1038/srep28540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/03/2016] [Indexed: 11/09/2022] Open
Abstract
Food quality shapes life history traits either directly or through response of individuals to additional environmental factors, such as chemical cues. Plant extracts used as food additives modulate key life history traits; however little is known regarding such effects for olfactory chemical cues. Exploiting an interesting experimental system that involves the olive fly (Bactrocera oleae) and the plant metabolite α-pinene we asked whether exposure of adults to this compound modulates adult longevity and female reproduction in similar manner in a stressful - dietary (protein) restricted (DR) and in a relaxed- full diet (FD) feeding environment. Accordingly, we exposed males and females to the aroma of α-pinene and measured lifespan and age-specific fecundity in the above two dietary contexts. Our results demonstrate that exposure to α-pinene increased longevity in males and fecundity in females only under dietary restricted conditions. In relaxed food conditions, females exposed to α-pinene shifted high egg-laying towards younger ages compared to non-exposed ones. This is the first report demonstrating that a plant compound affects key life history traits of adult olive flies through olfaction. These effects are sex-specific and more pronounced in dietary restricted adults. Possible underlying mechanisms and the ecological significance are discussed.
Collapse
Affiliation(s)
- Christos D Gerofotis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 N. Ionia Magnisia, Greece
| | - Charalampos S Ioannou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 N. Ionia Magnisia, Greece
| | - Christos T Nakas
- Laboratory of Biometry, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 N. Ionia Magnisia, Greece.,University Institute of Clinical Chemistry, Centre of Laboratory Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 N. Ionia Magnisia, Greece
| |
Collapse
|
25
|
Liu Y, Liao S, Veenstra JA, Nässel DR. Drosophila insulin-like peptide 1 (DILP1) is transiently expressed during non-feeding stages and reproductive dormancy. Sci Rep 2016; 6:26620. [PMID: 27197757 PMCID: PMC4873736 DOI: 10.1038/srep26620] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/04/2016] [Indexed: 01/20/2023] Open
Abstract
The insulin/insulin-like growth factor signaling pathway is evolutionarily conserved in animals, and is part of nutrient-sensing mechanisms that control growth, metabolism, reproduction, stress responses, and lifespan. In Drosophila, eight insulin-like peptides (DILP1-8) are known, six of which have been investigated in some detail, whereas expression and functions of DILP1 and DILP4 remain enigmatic. Here we demonstrate that dilp1/DILP1 is transiently expressed in brain insulin producing cells (IPCs) from early pupa until a few days of adult life. However, in adult female flies where diapause is triggered by low temperature and short days, within a time window 0–10h post-eclosion, the dilp1/DILP1 expression remains high for at least 9 weeks. The dilp1 mRNA level is increased in dilp2, 3, 5 and dilp6 mutant flies, indicating feedback regulation. Furthermore, the DILP1 expression in IPCs is regulated by short neuropeptide F, juvenile hormone and presence of larval adipocytes. Male dilp1 mutant flies display increased lifespan and reduced starvation resistance, whereas in female dilp1 mutants oviposition is reduced. Thus, DILP1 is expressed in non-feeding stages and in diapausing flies, is under feedback regulation and appears to play sex-specific functional roles.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Sifang Liao
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, 33405 Talence Cedex, France
| | - Dick R Nässel
- Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
26
|
Artan M, Jeong DE, Lee D, Kim YI, Son HG, Husain Z, Kim J, Altintas O, Kim K, Alcedo J, Lee SJV. Food-derived sensory cues modulate longevity via distinct neuroendocrine insulin-like peptides. Genes Dev 2016; 30:1047-57. [PMID: 27125673 PMCID: PMC4863736 DOI: 10.1101/gad.279448.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/07/2016] [Indexed: 11/24/2022]
Abstract
Environmental fluctuations influence organismal aging by affecting various regulatory systems. One such system involves sensory neurons, which affect life span in many species. However, how sensory neurons coordinate organismal aging in response to changes in environmental signals remains elusive. Here, we found that a subset of sensory neurons shortens Caenorhabditis elegans' life span by differentially regulating the expression of a specific insulin-like peptide (ILP), INS-6. Notably, treatment with food-derived cues or optogenetic activation of sensory neurons significantly increases ins-6 expression and decreases life span. INS-6 in turn relays the longevity signals to nonneuronal tissues by decreasing the activity of the transcription factor DAF-16/FOXO. Together, our study delineates a mechanism through which environmental sensory cues regulate aging rates by modulating the activities of specific sensory neurons and ILPs.
Collapse
Affiliation(s)
- Murat Artan
- Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Young-Il Kim
- Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Heehwa G Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Zahabiya Husain
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | - Jinmahn Kim
- Department of Cognitive and Brain Sciences, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu 42988, South Korea
| | - Ozlem Altintas
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Kyuhyung Kim
- Department of Cognitive and Brain Sciences, DGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu 42988, South Korea
| | - Joy Alcedo
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | - Seung-Jae V Lee
- Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
27
|
Zwoinska MK, Lind MI, Cortazar-Chinarro M, Ramsden M, Maklakov AA. Selection on learning performance results in the correlated evolution of sexual dimorphism in life history. Evolution 2016; 70:342-57. [DOI: 10.1111/evo.12862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 01/04/2016] [Accepted: 01/07/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Martyna K. Zwoinska
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Martin I. Lind
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Maria Cortazar-Chinarro
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Mark Ramsden
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Alexei A. Maklakov
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| |
Collapse
|
28
|
Abstract
The essential role of the brain in maintaining energy homeostasis has motivated the drive to define the neural circuitry that integrates external and internal stimuli to enact appropriate and consequential metabolic and behavioral responses. The hypothalamus has received significant attention in this regard given its ability to influence feeding behavior, yet organisms rely on a much broader diversity and distribution of neuronal networks to regulate both energy intake and expenditure. Because energy balance is a fundamental determinant of survival and success of an organism, it is not surprising that emerging data connect circuits controlling feeding and energy balance with higher brain functions and degenerative processes. In this review, we will highlight both classically defined and emerging aspects of brain control of energy homeostasis.
Collapse
Affiliation(s)
- Michael J Waterson
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
29
|
Garlapow ME, Huang W, Yarboro MT, Peterson KR, Mackay TFC. Quantitative Genetics of Food Intake in Drosophila melanogaster. PLoS One 2015; 10:e0138129. [PMID: 26375667 PMCID: PMC4574202 DOI: 10.1371/journal.pone.0138129] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022] Open
Abstract
Food intake is an essential animal activity, regulated by neural circuits that motivate food localization, evaluate nutritional content and acceptance or rejection responses through the gustatory system, and regulate neuroendocrine feedback loops that maintain energy homeostasis. Excess food consumption in people is associated with obesity and metabolic and cardiovascular disorders. However, little is known about the genetic basis of natural variation in food consumption. To gain insights in evolutionarily conserved genetic principles that regulate food intake, we took advantage of a model system, Drosophila melanogaster, in which food intake, environmental conditions and genetic background can be controlled precisely. We quantified variation in food intake among 182 inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP). We found significant genetic variation in the mean and within-line environmental variance of food consumption and observed sexual dimorphism and genetic variation in sexual dimorphism for both food intake traits (mean and variance). We performed genome wide association (GWA) analyses for mean food intake and environmental variance of food intake (using the coefficient of environmental variation, CVE, as the metric for environmental variance) and identified molecular polymorphisms associated with both traits. Validation experiments using RNAi-knockdown confirmed 24 of 31 (77%) candidate genes affecting food intake and/or variance of food intake, and a test cross between selected DGRP lines confirmed a SNP affecting mean food intake identified in the GWA analysis. The majority of the validated candidate genes were novel with respect to feeding behavior, and many had mammalian orthologs implicated in metabolic diseases.
Collapse
Affiliation(s)
- Megan E. Garlapow
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695–7614, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Wen Huang
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695–7614, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Michael T. Yarboro
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Kara R. Peterson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Trudy F. C. Mackay
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695–7614, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695, United States of America
- * E-mail:
| |
Collapse
|
30
|
Thermosensation and longevity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:857-67. [PMID: 26101089 DOI: 10.1007/s00359-015-1021-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 12/25/2022]
Abstract
Temperature has profound effects on behavior and aging in both poikilotherms and homeotherms. To thrive under the ever fluctuating environmental temperatures, animals have evolved sophisticated mechanisms to sense and adapt to temperature changes. Animals sense temperature through various molecular thermosensors, such as thermosensitive transient receptor potential (TRP) channels expressed in neurons, keratinocytes, and intestine. These evolutionarily conserved thermosensitive TRP channels feature distinct activation thresholds, thereby covering a wide spectrum of ambient temperature. Temperature changes trigger complex thermosensory behaviors. Due to the simplicity of the nervous system in model organisms such as Caenorhabditis elegans and Drosophila, the mechanisms of thermosensory behaviors in these species have been extensively studied at the circuit and molecular levels. While much is known about temperature regulation of behavior, it remains largely unclear how temperature affects aging. Recent studies in C. elegans demonstrate that temperature modulation of longevity is not simply a passive thermodynamic phenomenon as suggested by the rate-of-living theory, but rather a process that is actively regulated by genes, including those encoding thermosensitive TRP channels. In this review, we discuss our current understanding of thermosensation and its role in aging.
Collapse
|
31
|
Fontana L, Partridge L. Promoting health and longevity through diet: from model organisms to humans. Cell 2015; 161:106-118. [PMID: 25815989 DOI: 10.1016/j.cell.2015.02.020] [Citation(s) in RCA: 858] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 12/19/2022]
Abstract
Reduced food intake, avoiding malnutrition, can ameliorate aging and aging-associated diseases in invertebrate model organisms, rodents, primates, and humans. Recent findings indicate that meal timing is crucial, with both intermittent fasting and adjusted diurnal rhythm of feeding improving health and function, in the absence of changes in overall intake. Lowered intake of particular nutrients rather than of overall calories is also key, with protein and specific amino acids playing prominent roles. Nutritional modulation of the microbiome can also be important, and there are long-term, including inter-generational, effects of diet. The metabolic, molecular, and cellular mechanisms that mediate both improvement in health during aging to diet and genetic variation in the response to diet are being identified. These new findings are opening the way to specific dietary and pharmacological interventions to recapture the full potential benefits of dietary restriction, which humans can find difficult to maintain voluntarily.
Collapse
Affiliation(s)
- Luigi Fontana
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Clinical and Experimental Science, Brescia University, 25123 Brescia, Italy; CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy.
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Institute of Healthy Ageing and Department of Genetics, Environment, and Evolution, University College London, London WC1E 6BT, UK.
| |
Collapse
|
32
|
Speth MT, Kreibich CD, Amdam GV, Münch D. Aging- and task-related resilience decline is linked to food responsiveness in highly social honey bees. Exp Gerontol 2015; 65:46-52. [DOI: 10.1016/j.exger.2015.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/04/2015] [Accepted: 03/08/2015] [Indexed: 01/11/2023]
|
33
|
Gendron CM, Chung BY, Pletcher SD. The sensory system: More than just a window to the external world. Commun Integr Biol 2015; 8:e1017159. [PMID: 26480026 PMCID: PMC4594513 DOI: 10.1080/19420889.2015.1017159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 11/28/2022] Open
Abstract
While the traditional importance of the sensory system lies in its ability to perceive external information about the world, emerging discoveries suggest that sensory perception has a greater impact on health and longevity than was previously appreciated. These effects are conserved across species. In this mini-review, we discuss the specific sensory cues that have been identified to significantly impact organismal physiology and lifespan. Ongoing work in the aging field has begun to identify the downstream molecules that mediate the broad effects of sensory signals. Candidates include FOXO, neuropeptide F (NPF), adipokinetic hormone (AKH), dopamine, serotonin, and octopamine. We then discuss the many implications that arise from our current understanding of the effects of sensory perception on health and longevity.
Collapse
Affiliation(s)
- Christi M Gendron
- Department of Molecular and Integrative Physiology and Geriatrics Center; A. Alfred Taubman Biomedical Sciences and Research Building; University of Michigan ; Ann Arbor, MI USA
| | - Brian Y Chung
- Department of Molecular and Integrative Physiology and Geriatrics Center; A. Alfred Taubman Biomedical Sciences and Research Building; University of Michigan ; Ann Arbor, MI USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center; A. Alfred Taubman Biomedical Sciences and Research Building; University of Michigan ; Ann Arbor, MI USA
| |
Collapse
|
34
|
Waterson MJ, Chan TP, Pletcher SD. Adaptive Physiological Response to Perceived Scarcity as a Mechanism of Sensory Modulation of Life Span. J Gerontol A Biol Sci Med Sci 2015; 70:1088-91. [PMID: 25878032 DOI: 10.1093/gerona/glv039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/15/2015] [Indexed: 11/13/2022] Open
Abstract
Chemosensation is a potent modulator of organismal physiology and longevity. In Drosophila, loss of recognition of diverse tastants has significant and bidirectional life-span effects. Recently published results revealed that when flies were unable to taste water, they increased its internal generation, which may have subsequently altered life span. To determine whether similar adaptive responses occur in other contexts, we explored the impact of sensory deficiency of other metabolically important molecules. Trehalose is a major circulating carbohydrate in the fly that is recognized by the gustatory receptor Gr5a. Gr5a mutant flies are short lived, and we found that they specifically increased whole-body and circulating levels of trehalose, but not other carbohydrates, likely through upregulation of de novo synthesis. dILP2 transcript levels were increased in Gr5a mutants, a possible response intended to reduce hypertrehalosemia, and likely a contributing factor to their reduced life span. Together, these data suggest that compensatory physiological responses to perceived environmental scarcity, which are designed to alleviate the ostensive shortage, may be a common outcome of sensory manipulation. We suggest that future investigations into the mechanisms underlying sensory modulation of aging may benefit by focusing on direct or indirect consequences of physiological changes that are designed to correct perceived disparity with the environment.
Collapse
Affiliation(s)
- Michael J Waterson
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor
| | - Tammy P Chan
- Program in Developmental Biology, Baylor College of Medicine; Houston, TX
| | - Scott D Pletcher
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor. Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor. Geriatrics Center, University of Michigan, Ann Arbor.
| |
Collapse
|
35
|
Allen E, Ren J, Zhang Y, Alcedo J. Sensory systems: their impact on C. elegans survival. Neuroscience 2014; 296:15-25. [PMID: 24997267 DOI: 10.1016/j.neuroscience.2014.06.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 12/24/2022]
Abstract
An animal's survival strongly depends on a nervous system that can rapidly process and integrate the changing quality of its environment and promote the most appropriate physiological responses. This is amply demonstrated in the nematode worm Caenorhabditis elegans, where its sensory system has been shown to impact multiple physiological traits that range from behavior and developmental plasticity to longevity. Because of the accessibility of its nervous system and the number of tools available to study and manipulate its neural circuitry, C. elegans has thus become an important model organism in dissecting the mechanisms through which the nervous system promotes survival. Here we review our current understanding of how the C. elegans sensory system affects diverse physiological traits, whose coordination would be essential for survival under fluctuating environments. The knowledge we derive from the C. elegans studies should provide testable hypotheses in discovering similar mechanisms in higher animals.
Collapse
Affiliation(s)
- Erika Allen
- Department of Biological Sciences, Wayne State University, Detroit, MI 48334, USA
| | - Jing Ren
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Joy Alcedo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48334, USA
| |
Collapse
|
36
|
Water sensor ppk28 modulates Drosophila lifespan and physiology through AKH signaling. Proc Natl Acad Sci U S A 2014; 111:8137-42. [PMID: 24821805 DOI: 10.1073/pnas.1315461111] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sensory perception modulates lifespan across taxa, presumably due to alterations in physiological homeostasis after central nervous system integration. The coordinating circuitry of this control, however, remains unknown. Here, we used the Drosophila melanogaster gustatory system to dissect one component of sensory regulation of aging. We found that loss of the critical water sensor, pickpocket 28 (ppk28), altered metabolic homeostasis to promote internal lipid and water stores and extended healthy lifespan. Additionally, loss of ppk28 increased neuronal glucagon-like adipokinetic hormone (AKH) signaling, and the AKH receptor was necessary for ppk28 mutant effects. Furthermore, activation of AKH-producing cells alone was sufficient to enhance longevity, suggesting that a perceived lack of water availability triggers a metabolic shift that promotes the production of metabolic water and increases lifespan via AKH signaling. This work provides an example of how discrete gustatory signals recruit nutrient-dependent endocrine systems to coordinate metabolic homeostasis, thereby influencing long-term health and aging.
Collapse
|