1
|
Garrido-Sanz D, Keel C. Seed-borne bacteria drive wheat rhizosphere microbiome assembly via niche partitioning and facilitation. Nat Microbiol 2025; 10:1130-1144. [PMID: 40140705 PMCID: PMC12055584 DOI: 10.1038/s41564-025-01973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
Microbial communities play a crucial role in supporting plant health and productivity. Reproducible, natural plant-associated microbiomes can help disentangle microbial dynamics across time and space. Here, using a sequential propagation strategy, we generated a complex and reproducible wheat rhizosphere microbiome (RhizCom) to study successional dynamics and interactions between the soil and heritable seed-borne rhizosphere microbiomes (SbRB) in a microcosm. Using 16S rRNA sequencing and genome-resolved shotgun metagenomics, we find that SbRB surpassed native soil microbes as the dominant rhizosphere-associated microbiome source. SbRB genomes were enriched in host-associated traits including degradation of key saccharide (niche partitioning) and cross-feeding interactions that supported partner strains (niche facilitation). In vitro co-culture experiments confirmed that helper SbRB strains facilitated the growth of partner bacteria on disaccharides as sole carbon source. These results reveal the importance of seed microbiota dynamics in microbial succession and community assembly, which could inform strategies for crop microbiome manipulation.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Seshadri K, Abad AND, Nagasawa KK, Yost KM, Johnson CW, Dror MJ, Tang Y. Synthetic Biology in Natural Product Biosynthesis. Chem Rev 2025; 125:3814-3931. [PMID: 40116601 DOI: 10.1021/acs.chemrev.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synthetic biology has played an important role in the renaissance of natural products research during the post-genomics era. The development and integration of new tools have transformed the workflow of natural product discovery and engineering, generating multidisciplinary interest in the field. In this review, we summarize recent developments in natural product biosynthesis from three different aspects. First, advances in bioinformatics, experimental, and analytical tools to identify natural products associated with predicted biosynthetic gene clusters (BGCs) will be covered. This will be followed by an extensive review on the heterologous expression of natural products in bacterial, fungal and plant organisms. The native host-independent paradigm to natural product identification, pathway characterization, and enzyme discovery is where synthetic biology has played the most prominent role. Lastly, strategies to engineer biosynthetic pathways for structural diversification and complexity generation will be discussed, including recent advances in assembly-line megasynthase engineering, precursor-directed structural modification, and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Abner N D Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Kyle K Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Karl M Yost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Colin W Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Moriel J Dror
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Geers AU, Michoud G, Busi SB, Peter H, Kohler TJ, Ezzat L, The Vanishing Glaciers Field Team StyllasMichael1SchönMartina1TolosanoMatteo1de StaerckeVincent1PeterHannes1KohlerTyler2BattinTom J.1River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, EcolePolytechnique Fédérale de Lausanne (EPFL), Sion, SwitzerlandDepartment of Ecology, Faculty of Science, Charles University, Prague, Czechia, Battin TJ. Deciphering the biosynthetic landscape of biofilms in glacier-fed streams. mSystems 2025; 10:e0113724. [PMID: 39745394 PMCID: PMC11834409 DOI: 10.1128/msystems.01137-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/09/2024] [Indexed: 02/19/2025] Open
Abstract
Glacier-fed streams are permanently cold, ultra-oligotrophic, and physically unstable environments, yet microbial life thrives in benthic biofilm communities. Within biofilms, microorganisms rely on secondary metabolites for communication and competition. However, the diversity and genetic potential of secondary metabolites in glacier-fed stream biofilms remain poorly understood. In this study, we present the first large-scale exploration of biosynthetic gene clusters (BGCs) from benthic glacier-fed stream biofilms sampled by the Vanishing Glaciers project from the world's major mountain ranges. We found a remarkable diversity of BGCs, with more than 8,000 of them identified within 2,868 prokaryotic metagenome-assembled genomes, some of them potentially conferring ecological advantages, such as UV protection and quorum sensing. The BGCs were distinct from those sourced from other aquatic microbiomes, with over 40% of them being novel. The glacier-fed stream BGCs exhibited the highest similarity to BGCs from glacier microbiomes. BGC composition displayed geographic patterns and correlated with prokaryotic alpha diversity. We also found that BGC diversity was positively associated with benthic chlorophyll a and prokaryotic diversity, indicative of more biotic interactions in more extensive biofilms. Our study provides new insights into a hitherto poorly explored microbial ecosystem, which is now changing at a rapid pace as glaciers are shrinking due to climate change. IMPORTANCE Glacier-fed streams are characterized by low temperatures, high turbidity, and high flow. They host a unique microbiome within biofilms, which form the foundation of the food web and contribute significantly to biogeochemical cycles. Our investigation into secondary metabolites, which likely play an important role in these complex ecosystems, found a unique genetic potential distinct from other aquatic environments. We found the potential to synthesize several secondary metabolites, which may confer ecological advantages, such as UV protection and quorum sensing. This biosynthetic diversity was positively associated with the abundance and complexity of the microbial community, as well as concentrations of chlorophyll a. In the face of climate change, our study offers new insights into a vanishing ecosystem.
Collapse
Affiliation(s)
- Aileen Ute Geers
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Grégoire Michoud
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Susheel Bhanu Busi
- UK Centre for Ecology and Hydrology (UKCEH), Wallingford, United Kingdom
| | - Hannes Peter
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Tyler J. Kohler
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Leïla Ezzat
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - The Vanishing Glaciers Field TeamStyllasMichael1SchönMartina1TolosanoMatteo1de StaerckeVincent1PeterHannes1KohlerTyler2BattinTom J.1River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, EcolePolytechnique Fédérale de Lausanne (EPFL), Sion, SwitzerlandDepartment of Ecology, Faculty of Science, Charles University, Prague, Czechia
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Tom J. Battin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| |
Collapse
|
4
|
Wang Q, Sun Z, Li T, Fan T, Zhou Z, Liu J, Chen X, Wang A. Identifying a Biocontrol Bacterium with Disease-Prevention Potential and Employing It as a Powerful Biocontrol Agent Against Fusarium oxysporum. Int J Mol Sci 2025; 26:700. [PMID: 39859414 PMCID: PMC11766301 DOI: 10.3390/ijms26020700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
Biocontrol microbes are environment friendly and safe for humans and animals. To seek biocontrol microbes effective in suppressing Fusarium oxysporum is important for tomato production. F. oxysporum is a soil-borne pathogen capable of causing wilt in numerous plant species. Therefore, we found a biocontrol bacterium with an excellent control effect from the rhizosphere soil of plant roots. In this work, we focus on two parts of work. The first part is the identification and genomic analysis of the biocontrol bacterium Y-4; the second part is the control efficiency of strain Y-4 on F. oxysporum. For this study, we identified strain Y-4 as Bacillus velezensis. It is an aerobic Gram-positive bacterium that can secrete a variety of extracellular enzymes and siderophores. Strain Y-4 also contains a large number of disease-resistant genes and a gene cluster that forms antibacterial substances. In addition, we found that it significantly inhibited the reproduction of F. oxysporum in a culture dish. In the indoor control effect test, after treatment with strain Y-4 suspension, the disease index of tomato plants decreased significantly. Furthermore, the control efficiency of the plants was 71.88%. At the same time, Y-4 bacterial suspension induced an increase in POD and SOD enzyme activities in tomato leaves, resulting in increased plant resistance. Taken together, strain Y-4 proves to be an effective means of controlling F. oxysporum in tomatoes.
Collapse
Affiliation(s)
- Qi Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Q.W.); (T.L.); (T.F.)
| | - Zhenshu Sun
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (Z.S.); (Z.Z.)
| | - Tiantian Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Q.W.); (T.L.); (T.F.)
| | - Tiantian Fan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Q.W.); (T.L.); (T.F.)
| | - Ziqi Zhou
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (Z.S.); (Z.Z.)
| | - Jiayin Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China;
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Q.W.); (T.L.); (T.F.)
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Q.W.); (T.L.); (T.F.)
| |
Collapse
|
5
|
Ejaz MR, Badr K, Hassan ZU, Al-Thani R, Jaoua S. Metagenomic approaches and opportunities in arid soil research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176173. [PMID: 39260494 DOI: 10.1016/j.scitotenv.2024.176173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Arid soils present unique challenges and opportunities for studying microbial diversity and bioactive potential due to the extreme environmental conditions they bear. This review article investigates soil metagenomics as an emerging tool to explore complex microbial dynamics and unexplored bioactive potential in harsh environments. Utilizing advanced metagenomic techniques, diverse microbial populations that grow under extreme conditions such as high temperatures, salinity, high pH levels, and exposure to metals and radiation can be studied. The use of extremophiles to discover novel natural products and biocatalysts emphasizes the role of functional metagenomics in identifying enzymes and secondary metabolites for industrial and pharmaceutical purposes. Metagenomic sequencing uncovers a complex network of microbial diversity, offering significant potential for discovering new bioactive compounds. Functional metagenomics, connecting taxonomic diversity to genetic capabilities, provides a pathway to identify microbes' mechanisms to synthesize valuable secondary metabolites and other bioactive substances. Contrary to the common perception of desert soil as barren land, the metagenomic analysis reveals a rich diversity of life forms adept at extreme survival. It provides valuable findings into their resilience and potential applications in biotechnology. Moreover, the challenges associated with metagenomics in arid soils, such as low microbial biomass, high DNA degradation rates, and DNA extraction inhibitors and strategies to overcome these issues, outline the latest advancements in extraction methods, high-throughput sequencing, and bioinformatics. The importance of metagenomics for investigating diverse environments opens the way for future research to develop sustainable solutions in agriculture, industry, and medicine. Extensive studies are necessary to utilize the full potential of these powerful microbial communities. This research will significantly improve our understanding of microbial ecology and biotechnology in arid environments.
Collapse
Affiliation(s)
- Muhammad Riaz Ejaz
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Kareem Badr
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
6
|
Geers AU, Buijs Y, Schostag MD, Elberling B, Bentzon-Tilia M. Exploring the biosynthesis potential of permafrost microbiomes. ENVIRONMENTAL MICROBIOME 2024; 19:96. [PMID: 39578925 PMCID: PMC11583570 DOI: 10.1186/s40793-024-00644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Permafrost microbiomes are of paramount importance for the biogeochemistry of high latitude soils and while endemic biosynthetic domain sequences involved in secondary metabolism have been found in polar surface soils, the biosynthetic potential of permafrost microbiomes remains unexplored. Moreover, the nature of these ecosystems facilitates the unique opportunity to study the distribution and diversity of biosynthetic genes in relic DNA from ancient microbiomes. To explore the biosynthesis potential in permafrost, we used adenylation (AD) domain sequencing to evaluate non-ribosomal peptide (NRP) production in permafrost cores housing microbiomes separated at kilometer and kiloyear scales. RESULTS Permafrost microbiomes represented NRP repertoires significantly different from that of temperate soil microbiomes, but as for temperate soils, the estimated domain richness and diversity was strongly correlated to the bacterial taxonomic diversity across locations. Furthermore, we found significant differences in both community composition and AD domain composition across geographical and temporal distances. Overall, the vast majority of biosynthetic domains showed below 90% amino acid similarity to characterized BGCs, confirming the high degree of novelty of NRPs inherent to permafrost microbiomes. Using available metagenomic sequences, we further identified a high biosynthetic diversity beyond NRPs throughout arctic surface soils down to deep and ancient (megayear old) permafrost microbiomes. CONCLUSION We have shown that arctic permafrost microbiomes harbor a unique biosynthetic repertoire rich in hitherto undescribed NRPs. This diversity is driven by geographic separation across kilometer scales and by the bacterial taxonomic diversity between microbiomes confined in separate permafrost layers. Hence the permafrost biome represents a unique resource for studying secondary metabolism, and potentially for the discovery of novel drug leads.
Collapse
Affiliation(s)
- Aileen Ute Geers
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- River Ecosystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yannick Buijs
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Morten Dencker Schostag
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bo Elberling
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
7
|
Xiong J, Hu S, Xu Z, Li C, Li Z, Li S, Ma Y, Ren X, Huang B, Pan X. Different paths, same destination: Bisphenol A and its substitute induce the conjugative transfer of antibiotic resistance genes. CHEMOSPHERE 2024; 368:143625. [PMID: 39510271 DOI: 10.1016/j.chemosphere.2024.143625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Antibiotic resistance genes are primarily spread through horizontal gene transfer in aquatic environments. Bisphenols, which are widely used in industry, are pervasive contaminants in such environments. This study investigated how environmentally relevant concentrations of bisphenol A and its substitute (bisphenol S, Bisphenol AP and Bisphenol AF) affect the spread of antibiotic resistance genes among Escherichia coli. As a result, bisphenol A and its three substitutes were found to promote the RP4 plasmid-mediated conjugative transfer of antibiotic resistance genes with different promotive efficiency. Particularly, bisphenol A and bisphenol S were found to induce more than double the incidence of conjugation at 0.1 nmol/L concentration. They therefore were selected as model compounds to investigate the involved mechanisms. Surprisingly, both slightly inhibited bacterial activity, but there was no significant increase in cell death. Bisphenols exposure changed the polymeric substances excreted by the bacteria, increased the permeability of their cell membranes, induced the secretion of antioxidant enzymes and generated reactive oxygen species. They also affected the expression of genes related to conjugative transfer by upregulating replication and DNA transfer genes and downregulating global regulatory genes. It should be noted that gene expression levels were higher in the BPS-exposed group than in the BPA-exposed group. The synthesis of bacterial metabolites and functional components was also significantly affected by bisphenols exposure. This research has helped to clarify the potential health risks of bisphenol contamination of aquatic environments.
Collapse
Affiliation(s)
- Jinrui Xiong
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Siyuan Hu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhixiang Xu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Caiqing Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zihui Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Siyuan Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yitao Ma
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bin Huang
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
8
|
Cao Y, Shen Z, Zhang N, Deng X, Thomashow LS, Lidbury I, Liu H, Li R, Shen Q, Kowalchuk GA. Phosphorus availability influences disease-suppressive soil microbiome through plant-microbe interactions. MICROBIOME 2024; 12:185. [PMID: 39342390 PMCID: PMC11439275 DOI: 10.1186/s40168-024-01906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Soil nutrient status and soil-borne diseases are pivotal factors impacting modern intensive agricultural production. The interplay among plants, soil microbiome, and nutrient regimes in agroecosystems is essential for developing effective disease management. However, the influence of nutrient availability on soil-borne disease suppression and associated plant-microbe interactions remains to be fully explored. T his study aims to elucidate the mechanistic understanding of nutrient impacts on disease suppression, using phosphorous as a target nutrient. RESULTS A 6-year field trial involving monocropping of tomatoes with varied fertilizer manipulations demonstrated that phosphorus availability is a key factor driving the control of bacterial wilt disease caused by Ralstonia solanacearum. Subsequent greenhouse experiments were then conducted to delve into the underlying mechanisms of this phenomenon by varying phosphorus availability for tomatoes challenged with the pathogen. Results showed that the alleviation of phosphorus stress promoted the disease-suppressive capacity of the rhizosphere microbiome, but not that of the bulk soil microbiome. This appears to be an extension of the plant trade-off between investment in disease defense mechanisms versus phosphorus acquisition. Adequate phosphorus levels were associated with elevated secretion of root metabolites such as L-tryptophan, methoxyindoleacetic acid, O-phosphorylethanolamine, or mangiferin, increasing the relative density of microbial biocontrol populations such as Chryseobacterium in the rhizosphere. On the other hand, phosphorus deficiency triggered an alternate defense strategy, via root metabolites like blumenol A or quercetin to form symbiosis with arbuscular mycorrhizal fungi, which facilitated phosphorus acquisition as well. CONCLUSION Overall, our study shows how phosphorus availability can influence the disease suppression capability of the soil microbiome through plant-microbial interactions. These findings highlight the importance of optimizing nutrient regimes to enhance disease suppression, facilitating targeted crop management and boosting agricultural productivity. Video Abstract.
Collapse
Affiliation(s)
- Yifan Cao
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zongzhuan Shen
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Na Zhang
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuhui Deng
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, WA, 99164, USA
| | - Ian Lidbury
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Hongjun Liu
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| |
Collapse
|
9
|
Li X, Lu Q, Hafeez R, Ogunyemi SO, Ibrahim E, Ren X, Tian Z, Ruan S, Mohany M, Al-Rejaie SS, Li B, Yan J. The response of root-zone soil bacterial community, metabolites, and soil properties of Sanyeqing medicinal plant varieties to anthracnose disease in reclaimed land, China. Heliyon 2024; 10:e36602. [PMID: 39258202 PMCID: PMC11385761 DOI: 10.1016/j.heliyon.2024.e36602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
Objectives To enhance the utilization of reclaimed land, Sanyeqing (SYQ) has been extensively cultivated in Zhejiang province, China. However, the prevalence of anthracnose has significantly hindered SYQ growth, emerging as a primary obstacle to its production. This study aimed to elucidate SYQ's responses to anthracnose in reclaimed land environments by comprehensively analyzing root-zone bacterial community structure, metabolites, and soil properties. Methods The experiment was conducted on reclaimed land in Chun'an, China. In order to evaluate the responses of SYQ to anthracnose, the fresh and dry weight of SYQ tubes, the soil properties, the high-throughput sequencing, and metabolomics assay were carried out. Results Significant differences were observed between an anthracnose-resistant variety (A201714) and an anthracnose-susceptibile variety (B201301). Fresh and dry weight increased 131.53 % and 144.82 % for A201714 compared to B201301.Lacibacterium (39.85 %), Gp6 (21.83 %), Gp5 (21.49 %), and Sphingomonas (18.84 %) were more prevalent, whereas Gp3 (22.71 %), WPS-1 (18.88 %), Gp4 (15.60 %), Subdivision3 (14.70 %), Chryseolinea (14.37 %), and Nitrospira (0.76 %) were less prevalent in A201714 than B201301. A total of 24 bacterial biomarkers were detected in all soil samples, while the network suggests a more stable soil bacterial community in A201714 than in B201301. Eight differentially expressed metabolites (DEMs) that belonged to lipids and lipid-like molecules, organic acids and derivatives, benzenoids, nucleosides, nucleotides, and analogues were found between two soil samples, and all these eight DEMs were downregulated in A201714 and had a strong correlation with 12 genera of bacteria. Moreover, the data from the redundancy analysis indicated that the main variables affecting changes in the bacterial communities were pH, available phosphorus (AP), available potassium (AK), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN). Conclusion This research offers new insights into the SYQ response to anthracnose in reclaimed land and provides valuable recommendations for the high-quality SYQ cultivation and production.
Collapse
Affiliation(s)
- Xuqing Li
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qiujun Lu
- Hangzhou Agricultural and Rural Affairs Guarantee Center, Hangzhou, China
| | - Rahila Hafeez
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaoxu Ren
- Institute of Crop and Ecology, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Zhongling Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Songlin Ruan
- Institute of Crop and Ecology, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianli Yan
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Cano-Prieto C, Undabarrena A, de Carvalho AC, Keasling JD, Cruz-Morales P. Triumphs and Challenges of Natural Product Discovery in the Postgenomic Era. Annu Rev Biochem 2024; 93:411-445. [PMID: 38639989 DOI: 10.1146/annurev-biochem-032620-104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Natural products have played significant roles as medicine and food throughout human history. Here, we first provide a brief historical overview of natural products, their classification and biosynthetic origins, and the microbiological and genetic methods used for their discovery. We also describe and discuss the technologies that revolutionized the field, which transitioned from classic genetics to genome-centric discovery approximately two decades ago. We then highlight the most recent advancements and approaches in the current postgenomic era, in which genome mining is a standard operation and high-throughput analytical methods allow parallel discovery of genes and molecules at an unprecedented pace. Finally, we discuss the new challenges faced by the field of natural products and the future of systematic heterologous expression and strain-independent discovery, which promises to deliver more molecules in vials than ever before.
Collapse
Affiliation(s)
- Carolina Cano-Prieto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Agustina Undabarrena
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Ana Calheiros de Carvalho
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
- Department of Bioengineering, University of California, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| |
Collapse
|
11
|
Grundmann CO, Guzman J, Vilcinskas A, Pupo MT. The insect microbiome is a vast source of bioactive small molecules. Nat Prod Rep 2024; 41:935-967. [PMID: 38411238 DOI: 10.1039/d3np00054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: September 1964 to June 2023Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as Streptomyces and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.
Collapse
Affiliation(s)
| | - Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, Giessen, Germany
| | - Mônica Tallarico Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
12
|
Zhang Z, Zhang L, Zhang L, Chu H, Zhou J, Ju F. Diversity and distribution of biosynthetic gene clusters in agricultural soil microbiomes. mSystems 2024; 9:e0126323. [PMID: 38470142 PMCID: PMC11019929 DOI: 10.1128/msystems.01263-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024] Open
Abstract
Bacterial secondary metabolites serve as an important source of molecules for drug discovery. They also play an important function in mediating the interactions of microbial producers with their living environment and surrounding organisms. However, little is known about the genetic novelty, distribution, and community-level impacts of soil bacterial biosynthetic potential on a large geographic scale. Here, we constructed the first catalog of 11,149 biosynthetic gene clusters (BGCs) from agricultural soils across China and unearthed hidden biosynthetic potential for new natural product discovery from the not-yet-cultivated soil bacteria. Notably, we revealed soil pH as the strongest environmental driver of BGC biogeography and predicted that soil acidification and global climate change could damage the biosynthetic potential of the soil microbiome. The co-occurrence network of bacterial genomes revealed two BGC-rich species, i.e., Nocardia niigatensis from Actinobacteriota and PSRF01 from Acidobacteriota, as the module hub and connector, respectively, indicating their keystone positions in the soil microbial communities. We also uncovered a dominant role of BGC-inferred biotic interactions over environmental drivers in structuring the soil microbiome. Overall, this study achieved novel insights into the BGC landscape in agricultural soils of China, substantially expanding our understanding of the diversity and novelty of bacterial secondary metabolism and the potential role of secondary metabolites in microbiota assembly.IMPORTANCEBacterial secondary metabolites not only serve as the foundation for numerous therapeutics (e.g., antibiotics and anticancer drugs), but they also play critical ecological roles in mediating microbial interactions (e.g., competition and communication). However, our knowledge of bacterial secondary metabolism is limited to only a small fraction of cultured strains, thus restricting our comprehensive understanding of their diversity, novelty, and potential ecological roles in soil ecosystems. Here, we used culture-independent metagenomics to explore biosynthetic potentials in agricultural soils of China. Our analyses revealed a high degree of genetic diversity and novelty within biosynthetic gene clusters in agricultural soil environments, offering valuable insights for biochemists seeking to synthesize novel bioactive products. Furthermore, we uncovered the pivotal role of BGC-rich species in microbial communities and the significant relationship between BGC richness and microbial phylogenetic turnover. This information emphasizes the importance of biosynthetic potential in the assembly of microbial communities.
Collapse
Affiliation(s)
- Zhiguo Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lihan Zhang
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Department of Chemistry, Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, China
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Buijs Y, Geers AU, Nita I, Strube ML, Bentzon-Tilia M. SecMet-FISH: labeling, visualization, and enumeration of secondary metabolite producing microorganisms. FEMS Microbiol Ecol 2024; 100:fiae038. [PMID: 38490742 PMCID: PMC11004939 DOI: 10.1093/femsec/fiae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 03/17/2024] Open
Abstract
Our understanding of the role of secondary metabolites in microbial communities is challenged by intrinsic limitations of culturing bacteria under laboratory conditions and hence cultivation independent approaches are needed. Here, we present a protocol termed Secondary Metabolite FISH (SecMet-FISH), combining advantages of gene-targeted fluorescence in situ hybridization (geneFISH) with in-solution methods (in-solution FISH) to detect and quantify cells based on their genetic capacity to produce secondary metabolites. The approach capitalizes on the conserved nature of biosynthetic gene clusters (BGCs) encoding adenylation (AD) and ketosynthase (KS) domains, and thus selectively targets the genetic basis of non-ribosomal peptide and polyketide biosynthesis. The concept relies on the generation of amplicon pools using degenerate primers broadly targeting AD and KS domains followed by fluorescent labeling, detection, and quantification. Initially, we obtained AD and KS amplicons from Pseuodoalteromonas rubra, which allowed us to successfully label and visualize BGCs within P. rubra cells, demonstrating the feasibility of SecMet-FISH. Next, we adapted the protocol and optimized it for hybridization in both Gram-negative and Gram-positive bacterial cell suspensions, enabling high-throughput single cell analysis by flow cytometry. Ultimately, we used SecMet-FISH to successfully distinguish secondary metabolite producers from non-producers in a five-member synthetic community.
Collapse
Affiliation(s)
- Yannick Buijs
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Aileen Ute Geers
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Iuliana Nita
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Messenger SR, McGuinniety EMR, Stevenson LJ, Owen JG, Challis GL, Ackerley DF, Calcott MJ. Metagenomic domain substitution for the high-throughput modification of nonribosomal peptides. Nat Chem Biol 2024; 20:251-260. [PMID: 37996631 DOI: 10.1038/s41589-023-01485-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
The modular nature of nonribosomal peptide biosynthesis has driven efforts to generate peptide analogs by substituting amino acid-specifying domains within nonribosomal peptide synthetase (NRPS) enzymes. Rational NRPS engineering has increasingly focused on finding evolutionarily favored recombination sites for domain substitution. Here we present an alternative evolution-inspired approach that involves large-scale diversification and screening. By amplifying amino acid-specifying domains en masse from soil metagenomic DNA, we substitute more than 1,000 unique domains into a pyoverdine NRPS. Initial fluorescence and mass spectrometry screens followed by sequencing reveal more than 100 functional domain substitutions, collectively yielding 16 distinct pyoverdines as major products. This metagenomic approach does not require the high success rates demanded by rational NRPS engineering but instead enables the exploration of large numbers of substitutions in parallel. This opens possibilities for the discovery and production of nonribosomal peptides with diverse biological activities.
Collapse
Affiliation(s)
- Sarah R Messenger
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Edward M R McGuinniety
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Luke J Stevenson
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| | - Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
15
|
Wu E, Wang K, Liu Z, Wang J, Yan H, Zhu X, Zhu X, Chen B. Metabolic and Microbial Profiling of Soil Microbial Community under Per- and Polyfluoroalkyl Substance (PFAS) Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21855-21865. [PMID: 38086098 DOI: 10.1021/acs.est.3c07020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent significant stress to organisms and are known to disrupt microbial community structure and function. Nevertheless, a detailed knowledge of the soil microbial community responding to PFAS stress at the metabolism level is required. Here we integrated UPLC-HRMS-based metabolomics data with 16S rRNA and ITS amplicon data across soil samples collected adjacent to a fluoropolymer production facility to directly identify the biochemical intermediates in microbial metabolic pathways and the interactions with microbial community structure under PFAS stress. A strong correlation between metabolite and microbial diversity was observed, which demonstrated significant variations in soil metabolite profiles and microbial community structures along with the sampling locations relative to the facility. Certain key metabolites were identified in the metabolite-PFAS co-occurrence network, functioning on microbial metabolisms including lipid metabolism, amino acid metabolism, and secondary metabolite biosynthesis. These results provide novel insights into the impacts of PFAS contamination on soil metabolomes and microbiomes. We suggest that soil metabolomics is an informative and useful tool that could be applied to reinforce the chemical evidence on the disruption of microbial ecological traits.
Collapse
Affiliation(s)
- Enhui Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhengzheng Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, People's Republic of China
| | - Jing Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, People's Republic of China
| | - Huicong Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiaomin Zhu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Innovation Center of Yangtze River Delta, Zhejiang University, Haining, Zhejiang 311400, People's Republic of China
| |
Collapse
|
16
|
Zhang JW, Wang R, Liang X, Han P, Zheng YL, Li XF, Gao DZ, Liu M, Hou LJ, Dong HP. Novel Gene Clusters for Natural Product Synthesis Are Abundant in the Mangrove Swamp Microbiome. Appl Environ Microbiol 2023; 89:e0010223. [PMID: 37191511 PMCID: PMC10304795 DOI: 10.1128/aem.00102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Natural microbial communities produce a diverse array of secondary metabolites with ecologically and biotechnologically relevant activities. Some of them have been used clinically as drugs, and their production pathways have been identified in a few culturable microorganisms. However, since the vast majority of microorganisms in nature have not been cultured, identifying the synthetic pathways of these metabolites and tracking their hosts remain a challenge. The microbial biosynthetic potential of mangrove swamps remains largely unknown. Here, we examined the diversity and novelty of biosynthetic gene clusters in dominant microbial populations in mangrove wetlands by mining 809 newly reconstructed draft genomes and probing the activities and products of these clusters by using metatranscriptomic and metabolomic techniques. A total of 3,740 biosynthetic gene clusters were identified from these genomes, including 1,065 polyketide and nonribosomal peptide gene clusters, 86% of which showed no similarity to known clusters in the Minimum Information about a Biosynthetic Gene Cluster (MIBiG) repository. Of these gene clusters, 59% were harbored by new species or lineages of Desulfobacterota-related phyla and Chloroflexota, whose members are highly abundant in mangrove wetlands and for which few synthetic natural products have been reported. Metatranscriptomics revealed that most of the identified gene clusters were active in field and microcosm samples. Untargeted metabolomics was also used to identify metabolites from the sediment enrichments, and 98% of the mass spectra generated were unrecognizable, further supporting the novelty of these biosynthetic gene clusters. Our study taps into a corner of the microbial metabolite reservoir in mangrove swamps, providing clues for the discovery of new compounds with valuable activities. IMPORTANCE At present, the majority of known clinical drugs originated from cultivated species of a few bacterial lineages. It is vital for the development of new pharmaceuticals to explore the biosynthetic potential of naturally uncultivable microorganisms using new techniques. Based on the large numbers of genomes reconstructed from mangrove wetlands, we identified abundant and diverse biosynthetic gene clusters in previously unsuspected phylogenetic groups. These gene clusters exhibited a variety of organizational architectures, especially for nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS), implying the presence of new compounds with valuable activities in the mangrove swamp microbiome.
Collapse
Affiliation(s)
- Jia-Wei Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Ran Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Ping Han
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, China
| | - Yan-Ling Zheng
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, China
| | - Xiao-Fei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Deng-Zhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Min Liu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Hong-Po Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
17
|
Chase AB, Bogdanov A, Demko AM, Jensen PR. Biogeographic patterns of biosynthetic potential and specialized metabolites in marine sediments. THE ISME JOURNAL 2023:10.1038/s41396-023-01410-3. [PMID: 37061583 DOI: 10.1038/s41396-023-01410-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023]
Abstract
While the field of microbial biogeography has largely focused on the contributions of abiotic factors to community patterns, the potential influence of biotic interactions in structuring microbial communities, such as those mediated by the production of specialized metabolites, remains largely unknown. Here, we examined the relationship between microbial community structure and specialized metabolism at local spatial scales in marine sediment samples collected from the Long-Term Ecological Research (LTER) site in Moorea, French Polynesia. By employing a multi-omic approach to characterize the taxonomic, functional, and specialized metabolite composition within sediment communities, we find that biogeographic patterns were driven by local scale processes (e.g., biotic interactions) and largely independent of dispersal limitation. Specifically, we observed high variation in biosynthetic potential (based on Bray-Curtis dissimilarity) between samples, even within 1 m2 plots, that reflected uncharacterized chemical space associated with site-specific metabolomes. Ultimately, connecting biosynthetic potential to community metabolomes facilitated the in situ detection of natural products and revealed new insights into the complex metabolic dynamics associated with sediment microbial communities. Our study demonstrates the potential to integrate biosynthetic genes and metabolite production into assessments of microbial community dynamics.
Collapse
Affiliation(s)
- Alexander B Chase
- Department of Earth Sciences, Southern Methodist University, Dallas, TX, USA.
| | - Alexander Bogdanov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Alyssa M Demko
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Exploring the Interspecific Interactions and the Metabolome of the Soil Isolate Hylemonella gracilis. mSystems 2023; 8:e0057422. [PMID: 36537799 PMCID: PMC9948732 DOI: 10.1128/msystems.00574-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microbial community analysis of aquatic environments showed that an important component of its microbial diversity consists of bacteria with cell sizes of ~0.1 μm. Such small bacteria can show genomic reductions and metabolic dependencies with other bacteria. However, so far, no study has investigated if such bacteria exist in terrestrial environments like soil. Here, we isolated soil bacteria that passed through a 0.1-μm filter. The complete genome of one of the isolates was sequenced and the bacterium was identified as Hylemonella gracilis. A set of coculture assays with phylogenetically distant soil bacteria with different cell and genome sizes was performed. The coculture assays revealed that H. gracilis grows better when interacting with other soil bacteria like Paenibacillus sp. AD87 and Serratia plymuthica. Transcriptomics and metabolomics showed that H. gracilis was able to change gene expression, behavior, and biochemistry of the interacting bacteria without direct cell-cell contact. Our study indicates that in soil there are bacteria that can pass through a 0.1-μm filter. These bacteria may have been overlooked in previous research on soil microbial communities. Such small bacteria, exemplified here by H. gracilis, can induce transcriptional and metabolomic changes in other bacteria upon their interactions in soil. In vitro, the studied interspecific interactions allowed utilization of growth substrates that could not be utilized by monocultures, suggesting that biochemical interactions between substantially different sized soil bacteria may contribute to the symbiosis of soil bacterial communities. IMPORTANCE Analysis of aquatic microbial communities revealed that parts of its diversity consist of bacteria with cell sizes of ~0.1 μm. Such bacteria can show genomic reductions and metabolic dependencies with other bacteria. So far, no study investigated if such bacteria exist in terrestrial environments such as soil. Here, we show that such bacteria also exist in soil. The isolated bacteria were identified as Hylemonella gracilis. Coculture assays with phylogenetically different soil bacteria revealed that H. gracilis grows better when cocultured with other soil bacteria. Transcriptomics and metabolomics showed that H. gracilis was able to change gene expression, behavior, and biochemistry of the interacting bacteria without direct contact. Our study revealed that bacteria are present in soil that can pass through 0.1-μm filters. Such bacteria may have been overlooked in previous research on soil microbial communities and may contribute to the symbiosis of soil bacterial communities.
Collapse
|
19
|
Small Spatial Scale Drivers of Secondary Metabolite Biosynthetic Diversity in Environmental Microbiomes. mSystems 2023; 8:e0072422. [PMID: 36790187 PMCID: PMC10134846 DOI: 10.1128/msystems.00724-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
In the search for novel drug candidates, diverse environmental microbiomes have been surveyed for their secondary metabolite biosynthesis potential, yet little is known about the biosynthetic diversity encoded by divergent microbiomes from different ecosystems, and the environmental parameters driving this diversity. Here, we used targeted amplicon sequencing of adenylation (AD) and ketosynthase (KS) domains along with 16S sequencing to delineate the unique biosynthetic potential of microbiomes from three separate habitats (soil, water, and sediments) exhibiting unique small spatial scale physicochemical gradients. The estimated richness of AD domains was highest in marine sediments with 656 ± 58 operational biosynthetic units (OBUs), while the KS domain richness was highest in soil microbiomes with 388 ± 67 OBUs. Microbiomes with rich and diverse bacterial communities displayed the highest PK potential across all ecosystems, and on a small spatial scale, pH and salinity were significantly, positively correlated to KS domain richness in soil and aquatic systems, respectively. Integrating our findings, we were able to predict the KS domain richness with a RMSE of 31 OBUs and a R2 of 0.91, and by the use of publicly available information on bacterial richness and diversity, we identified grassland biomes as being particularly promising sites for the discovery of novel polyketides. Furthermore, a focus on acidobacterial taxa is likely to be fruitful, as these were responsible for most of the variation in biosynthetic diversity. Overall, our results highlight the importance of sampling diverse environments with high taxonomic diversity in the pursuit for novel secondary metabolites. IMPORTANCE To counteract the antibiotic resistance crisis, novel anti-infective agents need to be discovered and brought to market. Microbial secondary metabolites have been important sources of inspiration for small-molecule therapeutics. However, the isolation of novel antibiotics is difficult, and the risk of rediscovery is high. With the overarching purpose of identifying promising microbiomes for discovery of novel bioactivity, we mapped out the most significant drivers of biosynthetic diversity across divergent microbiomes. We found the biosynthetic potential to be unique to individual ecosystems, and to depend on bacterial taxonomic diversity. Within systems, and on small spatial scales, pH and salinity correlated positively to the biosynthetic richness of the microbiomes, Acidobacteria representing the taxa most highly associated with biosynthetic diversity. Ultimately, understanding the key drivers of the biosynthesis potential of environmental microbiomes will allow us to focus bioprospecting efforts and facilitate the discovery of novel therapeutics.
Collapse
|
20
|
Singh HW, Creamer KE, Chase AB, Klau LJ, Podell S, Jensen PR. Metagenomic Data Reveal Type I Polyketide Synthase Distributions Across Biomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523365. [PMID: 36711755 PMCID: PMC9882069 DOI: 10.1101/2023.01.09.523365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microbial polyketide synthase (PKS) genes encode the biosynthesis of many biomedically important natural products, yet only a small fraction of nature's polyketide biosynthetic potential has been realized. Much of this potential originates from type I PKSs (T1PKSs), which can be delineated into different classes and subclasses based on domain organization and structural features of the compounds encoded. Notably, phylogenetic relationships among PKS ketosynthase (KS) domains provide a method to classify the larger and more complex genes in which they occur. Increased access to large metagenomic datasets from diverse habitats provides opportunities to assess T1PKS biosynthetic diversity and distributions through the analysis of KS domain sequences. Here, we used the webtool NaPDoS2 to detect and classify over 35,000 type I KS domains from 137 metagenomic data sets reported from eight diverse biomes. We found biome-specific separation with soils enriched in modular cis -AT and hybrid cis -AT KSs relative to other biomes and marine sediments enriched in KSs associated with PUFA and enediyne biosynthesis. By extracting full-length KS domains, we linked the phylum Actinobacteria to soil-specific enediyne and cis -AT clades and identified enediyne and monomodular KSs in phyla from which the associated compound classes have not been reported. These sequences were phylogenetically distinct from those associated with experimentally characterized PKSs suggesting novel structures or enzyme functions remain to be discovered. Lastly, we employed our metagenome-extracted KS domains to evaluate commonly used type I KS PCR primers and identified modifications that could increase the KS sequence diversity recovered from amplicon libraries. Importance Polyketides are a crucial source of medicines, agrichemicals, and other commercial products. Advances in our understanding of polyketide biosynthesis coupled with the accumulation of metagenomic sequence data provide new opportunities to assess polyketide biosynthetic potential across biomes. Here, we used the webtool NaPDoS2 to assess type I PKS diversity and distributions by detecting and classifying KS domains across 137 metagenomes. We show that biomes are differentially enriched in KS domain classes, providing a roadmap for future biodiscovery strategies. Further, KS phylogenies reveal both biome-specific clades that do not include biochemically characterized PKSs, highlighting the biosynthetic potential of poorly explored environments. The large metagenome-derived KS dataset allowed us to identify regions of commonly used type I KS PCR primers that could be modified to capture a larger extent of KS diversity. These results facilitate both the search for novel polyketides and our understanding of the biogeographical distribution of PKSs across earth's major biomes.
Collapse
|
21
|
Wychimicins, a new class of spirotetronate polyketides from Actinocrispum wychmicini MI503-A4. J Antibiot (Tokyo) 2022; 75:535-541. [PMID: 36071214 PMCID: PMC9449258 DOI: 10.1038/s41429-022-00560-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
In the course of our screening program for new anti-methicillin-resistant Staphylococcus aureus antibiotics, four novel antibiotics, termed wychimicins A–D, were isolated from the culture broth of the rare actinomycete Actinocrispum wychmicini strain MI503-AF4. Wychimicins are spirotetronates possessing a macrocyclic 13-membered ring containing trans-decalin and β-d-xylo-hexopyranose moieties connected to C-17 by an O-glycosidic linkage according to MS, NMR and X-ray analyses. In X-ray crystal structure analysis, the Flack constant was 0.10 (11). The stereochemistry of the spirocarbon C-25 was R. Wychimicins had a minimum inhibitory concentration of 0.125–2 µg ml−1 against methicillin-resistant Staphylococcus aureus.
Collapse
|
22
|
Streptomyces sp. ADR1, Strain Producing β- and γ-Rubromycin Antibiotics, Isolated from Algerian Sahara Desert. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A Gram-positive strain, ADR1, was isolated from soil collected from the Algerian Sahara Desert. The ethyl acetate extract of the fermentation broth showed cytotoxic activity against the PANC-1 cell line (37.1 ± 1.3% viability when applied at a concentration of 100 µg/mL). Fractionation and NMR analysis of two peaks absorbing at 490 nm revealed that they represented β- and γ-rubromycin, anticancer antibiotic compounds. The ADR1 strain contained LL-diaminopimelic acid in the whole-cell hydrolysate, and the partial 16S ribosomal RNA gene sequence (1392 bp, Accession No. KF947515) showed 99% sequence similarity to Streptomyces species. Therefore, the name Streptomyces sp. ADR1 was proposed and deposited in the Wellness Industries Culture Collection (WICC) of the Institute of Bioproduct Development, UTM, Malaysia, under the number (WICC- B86). In a 16 L stirred-tank bioreactor, the stain was adapted to submerged culture conditions and produced rubromycins at a relatively high concentration, with maximums of 24.58 mg/L and 356 mg/L for β- and γ-rubromycins, respectively.
Collapse
|
23
|
Deng X, Zhang N, Li Y, Zhu C, Qu B, Liu H, Li R, Bai Y, Shen Q, Falcao Salles J. Bio-organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities. THE NEW PHYTOLOGIST 2022; 235:1558-1574. [PMID: 35569105 DOI: 10.1111/nph.18221] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Stimulating the development of soil suppressiveness against certain pathogens represents a sustainable solution toward reducing pesticide use in agriculture. However, understanding the dynamics of suppressiveness and the mechanisms leading to pathogen control remain largely elusive. Here, we investigated the mechanisms used by the rhizosphere microbiome induces bacterial wilt disease suppression in a long-term field experiment where continuous application of bio-organic fertilizers (BFs) triggered disease suppressiveness when compared to chemical fertilizer application. We further demonstrated in a glasshouse experiment that the suppressiveness of the rhizosphere bacterial communities was triggered mainly by changes in community composition rather than only by the abundance of the introduced biocontrol strain. Metagenomics approaches revealed that members of the families Sphingomonadaceae and Xanthomonadaceae with the ability to produce secondary metabolites were enriched in the BF plant rhizosphere but only upon pathogen invasion. We experimentally validated this observation by inoculating bacterial isolates belonging to the families Sphingomonadaceae and Xanthomonadaceae into conducive soil, which led to a significant reduction in pathogen abundance and increase in nonribosomal peptide synthetase gene abundance. We conclude that priming of the soil microbiome with BF amendment fostered reactive bacterial communities in the rhizosphere of tomato plants in response to biotic disturbance.
Collapse
Affiliation(s)
- Xuhui Deng
- Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747AG, the Netherlands
| | - Na Zhang
- Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuchan Li
- Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chengzhi Zhu
- Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Baoyuan Qu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Hongjun Liu
- Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Rong Li
- Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Joana Falcao Salles
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747AG, the Netherlands
| |
Collapse
|
24
|
Soil substrate culturing approaches recover diverse members of Actinomycetota from desert soils of Herring Island, East Antarctica. Extremophiles 2022; 26:24. [PMID: 35829965 PMCID: PMC9279279 DOI: 10.1007/s00792-022-01271-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/06/2022] [Indexed: 11/12/2022]
Abstract
Antimicrobial resistance is an escalating health crisis requiring urgent action. Most antimicrobials are natural products (NPs) sourced from Actinomycetota, particularly the Streptomyces. Underexplored and extreme environments are predicted to harbour novel microorganisms with the capacity to synthesise unique metabolites. Herring Island is a barren and rocky cold desert in East Antarctica, remote from anthropogenic impact. We aimed to recover rare and cold-adapted NP-producing bacteria, by employing two culturing methods which mimic the natural environment: direct soil culturing and the soil substrate membrane system. First, we analysed 16S rRNA gene amplicon sequencing data from 18 Herring Island soils and selected the soil sample with the highest Actinomycetota relative abundance (78%) for culturing experiments. We isolated 166 strains across three phyla, including novel and rare strains, with 94% of strains belonging to the Actinomycetota. These strains encompassed thirty-five ‘species’ groups, 18 of which were composed of Streptomyces strains. We screened representative strains for genes which encode polyketide synthases and non-ribosomal peptide synthetases, indicating that 69% have the capacity to synthesise polyketide and non-ribosomal peptide NPs. Fourteen Streptomyces strains displayed antimicrobial activity against selected bacterial and yeast pathogens using an in situ assay. Our results confirm that the cold-adapted bacteria of the harsh East Antarctic deserts are worthy targets in the search for bioactive compounds.
Collapse
|
25
|
Taxonomic Positions of a Nyuzenamide-Producer and Its Closely Related Strains. Microorganisms 2022; 10:microorganisms10020349. [PMID: 35208804 PMCID: PMC8880029 DOI: 10.3390/microorganisms10020349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Streptomyces sp. N11-34 is a producer of bicyclic peptides named nyuzenamides A and B. We elucidated its taxonomic position and surveyed its nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) gene clusters by whole genome analysis. Streptomyces sp. N11-34 showed 16S rRNA gene sequence similarities of 99.9% and 99.8% to Streptomyces hygroscopicus NBRC 13472T and Streptomyces demainii NRRL B-1478T, respectively. Although these members formed a clade in a phylogenetic tree based on 16S rRNA gene sequences, the clade split into two closely related subclades in multilocus sequence analysis (MLSA). One included Streptomyces sp. N11-34, S. demainii NRRL B-1478T, S. hygroscopicus NBRC 100766, S. hygroscopicus NBRC 16556 and S. hygroscopicus TP-A0867 and the other comprised S. hygroscopicus NBRC 13472T and S. hygroscopicus NBRC 12859. These phylogenetic relationships were supported by phylogenomic analysis. Although Streptomyces sp. N11-34 was classified to S. hygroscopicus at the species level based on MLSA evolutionary distances and DNA–DNA relatedness, these distances and relatedness of members between the two subclades were comparatively far (0.004–0.006) and low (75.4–76.4%), respectively. Streptomyces sp. N11-34 possessed six NRPS, seven PKS and four hybrid PKS/NRPS gene clusters in the genome. Among the seventeen, ten were identified to be biosynthetic gene clusters (BGCs) of nyuzenamide, echoside, coelichelin, geldanamycin, mediomycin, nigericin, azalomycin, spore pigment, alchivemycin and totopotensamide, whereas the remaining seven were orphan in our bioinformatic analysis. All seventeen are conserved in S. hygroscopicus NBRC 100766, S. hygroscopicus NBRC 16556 and S. hygroscopicus TP-A0867. In contrast, S. hygroscopicus NBRC 13472T and S. hygroscopicus NBRC 12859 lacked the BGCs of alchivemycin, totopotensamide, a nonribosomal peptide and a hybrid polyketide/nonribosomal peptide compound. This difference was in a good accordance with the abovementioned phylogenetic relationship. Based on phenotypic differences in addition to phylogenetic relationship, DNA–DNA relatedness and BGCs, strains of S. hygroscopicus should be reclassified to two subspecies: S. hygroscopicus subsp. hygroscopicus and a new subspecies, for which we proposed S. hygroscopicus subsp. sporocinereus subsp. nov. The type strain is NBRC 100766T (=ATCC 43692T = DSM 41460T = INMI 32T = JCM 9093T = NRRL B-16376T = VKM Ac-312T). S. demainii was classified in this subspecies.
Collapse
|
26
|
Assembly of 97 Novel Bacterial Genomes in the Microbial Community Affiliated with Polyvinyl Alcohol in Soil of Northern China. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2229147. [PMID: 35087906 PMCID: PMC8789413 DOI: 10.1155/2022/2229147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
Background Undeveloped ecosystems belong to rich source of microbial population, of which resources remain unearthed. A kind of polymeric compound system with high polyvinyl alcohol (PVA) content has been reported and named Taisui. Marker gene amplification showed that Taisui harbored little-explored microbial communities. Aim To address this issue, our study attempted to recover draft genomes and functional potential from microbial communities in Taisui using the metagenomic approach. Material and Methods. Taisui communities provided 97 novel bacterial genomes from 13 bacterial phyla, including bacteria candidate phylum. Two novel genus-level lineages were recovered from Planctomycetes and Chloroflexi. Based on the draft genomes, we expanded the number of taxa with potential productions of PKS and NRPS in phyla including Candidatus Dadabacteria, Chloroflexi, and Planctomycetes. Results A rich diversity of PVA dehydrogenase genes from 4 phyla, involving Proteobacteria, Acidobacteria, Acitinobacteria, and Planctomycetes, were identified. The phylogenetic tree of PVA dehydrogenase showed the possibility of horizontal gene transfer between microbes. Conclusion Our study underscores the substantial microbial diversity and PVA degradation potential in the previously unexplored Taisui system.
Collapse
|
27
|
Chevrette MG, Himes BW, Carlos-Shanley C. Nutrient Availability Shifts the Biosynthetic Potential of Soil-Derived Microbial Communities. Curr Microbiol 2022; 79:64. [PMID: 35020062 DOI: 10.1007/s00284-021-02746-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022]
Abstract
Secondary metabolites produced by microorganisms are the main source of antimicrobials and other pharmaceutical drugs. Soil microbes have been the primary discovery source for these secondary metabolites, often producing complex organic compounds with specific biological activities. Research suggests that secondary metabolism broadly shapes microbial ecological interactions, but little is known about the factors that shape the abundance, distribution, and diversity of biosynthetic gene clusters in the context of microbial communities. In this study, we investigate the role of nutrient availability on the abundance of biosynthetic gene clusters in soil-derived microbial consortia. Soil microbial consortia enriched in high sugar medium (150 mg/L of glucose and 200 mg/L of trehalose) had more biosynthetic gene clusters and higher inhibitory activity than those enriched in low sugar medium (15 mg/L of glucose + 20 mg/L of trehalose). Our results demonstrate that experimental microbial communities are a promising tool to study the ecology of specialized metabolites.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Bradley W Himes
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Camila Carlos-Shanley
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
| |
Collapse
|
28
|
Xu G, Zhang L, Liu X, Guan F, Xu Y, Yue H, Huang JQ, Chen J, Wu N, Tian J. Combined assembly of long and short sequencing reads improve the efficiency of exploring the soil metagenome. BMC Genomics 2022; 23:37. [PMID: 34996356 PMCID: PMC8742384 DOI: 10.1186/s12864-021-08260-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Background Advances in DNA sequencing technologies have transformed our capacity to perform life science research, decipher the dynamics of complex soil microbial communities and exploit them for plant disease management. However, soil is a complex conglomerate, which makes functional metagenomics studies very challenging. Results Metagenomes were assembled by long-read (PacBio, PB), short-read (Illumina, IL), and mixture of PB and IL (PI) sequencing of soil DNA samples were compared. Ortholog analyses and functional annotation revealed that the PI approach significantly increased the contig length of the metagenomic sequences compared to IL and enlarged the gene pool compared to PB. The PI approach also offered comparable or higher species abundance than either PB or IL alone, and showed significant advantages for studying natural product biosynthetic genes in the soil microbiomes. Conclusion Our results provide an effective strategy for combining long and short-read DNA sequencing data to explore and distill the maximum information out of soil metagenomics. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08260-3.
Collapse
Affiliation(s)
- Guoshun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Haitao Yue
- Department of Biology and Biotechnology, Xinjiang University, 666 Shengli Road, Urumqi, 830046, People's Republic of China
| | - Jin-Qun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| |
Collapse
|
29
|
The natural product biosynthesis potential of the microbiomes of Earth – Bioprospecting for novel anti-microbial agents in the meta-omics era. Comput Struct Biotechnol J 2022; 20:343-352. [PMID: 35035787 PMCID: PMC8733032 DOI: 10.1016/j.csbj.2021.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
As we stand on the brink of the post-antibiotic era, we are in dire need of novel antimicrobial compounds. Microorganisms produce a wealth of so-called secondary metabolites and have been our most prolific source of antibiotics so far. However, rediscovery of known antibiotics from well-studied cultured microorganisms, and the fact that the majority of microorganisms in the environment are out of reach by means of conventional cultivation techniques, have led to the exploration of the biosynthetic potential in natural microbial communities by novel approaches. In this mini review we discuss how sequence-based analyses have exposed an unprecedented wealth of potential for secondary metabolite production in soil, marine, and host-associated microbiomes, with a focus on the biosynthesis of non-ribosomal peptides and polyketides. Furthermore, we discuss how the complexity of natural microbiomes and the lack of standardized methodology has complicated comparisons across biomes. Yet, as even the most commonly sampled microbiomes hold promise of providing novel classes of natural products, we lastly discuss the development of approaches applied in the translation of the immense biosynthetic diversity of natural microbiomes to the procurement of novel antibiotics.
Collapse
|
30
|
El-Sayed SE, Abdelaziz NA, Osman HEH, El-Housseiny GS, Aleissawy AE, Aboshanab KM. Lysinibacillus Isolate MK212927: A Natural Producer of Allylamine Antifungal ‘Terbinafine’. Molecules 2021; 27:molecules27010201. [PMID: 35011429 PMCID: PMC8746802 DOI: 10.3390/molecules27010201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Resistance to antifungal agents represents a major clinical challenge, leading to high morbidity and mortality rates, especially in immunocompromised patients. In this study, we screened soil bacterial isolates for the capability of producing metabolites with antifungal activities via the cross-streak and agar cup-plate methods. One isolate, coded S6, showed observable antifungal activity against Candida (C.) albicans ATCC 10231 and Aspergillus (A.) niger clinical isolate. This strain was identified using a combined approach of phenotypic and molecular techniques as Lysinibacillus sp. MK212927. The purified metabolite displayed fungicidal activity, reserved its activity in a relatively wide range of temperatures (up to 60 °C) and pH values (6–7.8) and was stable in the presence of various enzymes and detergents. As compared to fluconazole, miconazole and Lamisil, the minimum inhibitory concentration of the metabolite that showed 90% inhibition of the growth (MIC90) was equivalent to that of Lamisil, half of miconazole and one fourth of fluconazole. Using different spectroscopic techniques such as FTIR, UV spectroscopy, 1D NMR and 2D NMR techniques, the purified metabolite was identified as terbinafine, an allylamine antifungal agent. It is deemed necessary to note that this is the first report of terbinafine production by Lysinibacillus sp. MK212927, a fast-growing microbial source, with relatively high yield and that is subject to potential optimization for industrial production capabilities.
Collapse
Affiliation(s)
- Sayed E. El-Sayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Sixth of October City 12451, Egypt; (S.E.E.-S.); (N.A.A.)
| | - Neveen A. Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Sixth of October City 12451, Egypt; (S.E.E.-S.); (N.A.A.)
| | - Hosam-Eldin Hussein Osman
- Department of Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Cairo 11566, Egypt;
| | - Ahmed E. Aleissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Cairo 11566, Egypt;
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Cairo 11566, Egypt;
- Correspondence: ; Tel.: +20-100-758-2620
| |
Collapse
|
31
|
Rego A, Fernandez-Guerra A, Duarte P, Assmy P, Leão PN, Magalhães C. Secondary metabolite biosynthetic diversity in Arctic Ocean metagenomes. Microb Genom 2021; 7. [PMID: 34904945 PMCID: PMC8767328 DOI: 10.1099/mgen.0.000731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are mega enzymes responsible for the biosynthesis of a large fraction of natural products (NPs). Molecular markers for biosynthetic genes, such as the ketosynthase (KS) domain of PKSs, have been used to assess the diversity and distribution of biosynthetic genes in complex microbial communities. More recently, metagenomic studies have complemented and enhanced this approach by allowing the recovery of complete biosynthetic gene clusters (BGCs) from environmental DNA. In this study, the distribution and diversity of biosynthetic genes and clusters from Arctic Ocean samples (NICE-2015 expedition), was assessed using PCR-based strategies coupled with high-throughput sequencing and metagenomic analysis. In total, 149 KS domain OTU sequences were recovered, 36 % of which could not be assigned to any known BGC. In addition, 74 bacterial metagenome-assembled genomes were recovered, from which 179 BGCs were extracted. A network analysis identified potential new NP families, including non-ribosomal peptides and polyketides. Complete or near-complete BGCs were recovered, which will enable future heterologous expression efforts to uncover the respective NPs. Our study represents the first report of biosynthetic diversity assessed for Arctic Ocean metagenomes and highlights the potential of Arctic Ocean planktonic microbiomes for the discovery of novel secondary metabolites. The strategy employed in this study will enable future bioprospection, by identifying promising samples for bacterial isolation efforts, while providing also full-length BGCs for heterologous expression.
Collapse
Affiliation(s)
- Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Antonio Fernandez-Guerra
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Pedro Duarte
- Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway
| | - Philipp Assmy
- Norwegian Polar Institute, Fram Centre, N-9296 Tromsø, Norway
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- *Correspondence: Pedro N. Leão,
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- Faculty of Sciences, University of Porto, 4150-179 Porto, Portugal
- *Correspondence: Catarina Magalhães,
| |
Collapse
|
32
|
Chevrette MG, Handelsman J. Needles in haystacks: reevaluating old paradigms for the discovery of bacterial secondary metabolites. Nat Prod Rep 2021; 38:2083-2099. [PMID: 34693961 DOI: 10.1039/d1np00044f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Natural products research is in the midst of a renaissance ushered in by a modern understanding of microbiology and the technological explosions of genomics and metabolomics. As the exploration of uncharted chemical space expands into high-throughput discovery campaigns, it has become increasingly clear how design elements influence success: (bio)geography, habitat, community dynamics, culturing/induction methods, screening methods, dereplication, and more. We explore critical considerations and assumptions in natural products discovery. We revisit previous estimates of chemical rediscovery and discuss their relatedness to study design and producer taxonomy. Through frequency analyses of biosynthetic gene clusters in publicly available genomic data, we highlight phylogenetic biases that influence rediscovery rates. Through selected examples of how study design at each level determines discovery outcomes, we discuss the challenges and opportunities for the future of high-throughput natural product discovery.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jo Handelsman
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
33
|
Strategies for Natural Products Discovery from Uncultured Microorganisms. Molecules 2021; 26:molecules26102977. [PMID: 34067778 PMCID: PMC8156983 DOI: 10.3390/molecules26102977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Microorganisms are highly regarded as a prominent source of natural products that have significant importance in many fields such as medicine, farming, environmental safety, and material production. Due to this, only tiny amounts of microorganisms can be cultivated under standard laboratory conditions, and the bulk of microorganisms in the ecosystems are still unidentified, which restricts our knowledge of uncultured microbial metabolism. However, they could hypothetically provide a large collection of innovative natural products. Culture-independent metagenomics study has the ability to address core questions in the potential of NP production by cloning and analysis of microbial DNA derived directly from environmental samples. Latest advancements in next generation sequencing and genetic engineering tools for genome assembly have broadened the scope of metagenomics to offer perspectives into the life of uncultured microorganisms. In this review, we cover the methods of metagenomic library construction, and heterologous expression for the exploration and development of the environmental metabolome and focus on the function-based metagenomics, sequencing-based metagenomics, and single-cell metagenomics of uncultured microorganisms.
Collapse
|
34
|
Safaei N, Nouioui I, Mast Y, Zaburannyi N, Rohde M, Schumann P, Müller R, Wink J. Kibdelosporangium persicum sp. nov., a new member of the Actinomycetes from a hot desert in Iran. Int J Syst Evol Microbiol 2021; 71. [PMID: 33427607 DOI: 10.1099/ijsem.0.004625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Isolate 4NS15T was isolated from a neglected arid habitat in Kerman, Iran. The strain showed 16S rRNA gene sequence similarity values of 98.9 % to the type strains of Kibdelosporangium aridum subsp. aridum, Kibdelosporangium phytohabitans and Kibdelosporangium philippinense and 98.6 % to the type strain K. aridum subsp. largum, respectively. Genome-based phylogenetic analysis revealed that isolate 4NS15T is closely related to Kibdelosporangium aridum subsp. aridum DSM 43828T. The digital DNA-DNA hybridization value between the genome sequences of 4NS15T and strain DSM 43828T is 29.8 %. Strain 4NS15T produces long chains of spores without a sporangium-like structure which can be distinguished from other Kibdelosporangium species. Isolate 4NS15T has a genome size of 10.35 Mbp with a G+C content of 68.1 mol%. Whole-cell hydrolysates of isolate 4NS15T are rich in meso-diaminopimelic acid and cell-wall sugars such as arabinose, galactose, glucose and ribose. Major fatty acids (>10 %) are C16 : 0, iso-C16 : 0 and iso-C15 : 0. The phospholipid profile contains diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylhydroxyethanolamine, aminolipid and glycoaminolipid. The predominant menaquinone is MK-9(H4). Based on its phenotypic and genotypic characteristics, isolate 4NS15T (NCCB 100701=CIP 111705=DSM 110728) merits recognition as representing a novel species of the genus Kibdelosporangium, for which the name Kibdelosporangium persicum sp. nov. is proposed.
Collapse
Affiliation(s)
- Nasim Safaei
- Microbial Strain Collection, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Imen Nouioui
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Yvonne Mast
- German Center for Infection Research (DZIF), Partner Site Tübingen, Germany.,Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Nestor Zaburannyi
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany.,Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, D-66041 Saarbrücken, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Peter Schumann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Rolf Müller
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany.,Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, D-66041 Saarbrücken, Germany
| | - Joachim Wink
- Microbial Strain Collection, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
35
|
Hernandez A, Nguyen LT, Dhakal R, Murphy BT. The need to innovate sample collection and library generation in microbial drug discovery: a focus on academia. Nat Prod Rep 2021; 38:292-300. [PMID: 32706349 PMCID: PMC7855266 DOI: 10.1039/d0np00029a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The question of whether culturable microorganisms will continue to be a viable source of new drug leads is inherently married to the strategies used to collect samples from the environment, the methods used to cultivate microorganisms from these samples, and the processes used to create microbial libraries. An academic microbial natural products (NP) drug discovery program with the latest innovative chromatographic and spectroscopic technology, high-throughput capacity, and bioassays will remain at the mercy of the quality of its microorganism source library. This viewpoint will discuss limitations of sample collection and microbial strain library generation practices. Additionally, it will offer suggestions to innovate these areas, particularly through the targeted cultivation of several understudied bacterial phyla and the untargeted use of mass spectrometry and bioinformatics to generate diverse microbial libraries. Such innovations have potential to impact downstream therapeutic discovery, and make its front end more informed, efficient, and less reliant on serendipity. This viewpoint is not intended to be a comprehensive review of contributing literature and was written with a focus on bacteria. Strategies to discover NPs from microbial libraries, including a variety of genomics and "OSMAC" style approaches, are considered downstream of sample collection and library creation, and thus are out of the scope of this viewpoint.
Collapse
Affiliation(s)
- Antonio Hernandez
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Linh T Nguyen
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA. and Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Nghiado, Caugiay, Hanoi, Vietnam
| | - Radhika Dhakal
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Brian T Murphy
- Dept. of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
36
|
Gutiérrez-Chávez C, Benaud N, Ferrari BC. The ecological roles of microbial lipopeptides: Where are we going? Comput Struct Biotechnol J 2021; 19:1400-1413. [PMID: 33777336 PMCID: PMC7960500 DOI: 10.1016/j.csbj.2021.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
Lipopeptides (LPs) are secondary metabolites produced by a diversity of bacteria and fungi. Their unique chemical structure comprises both a peptide and a lipid moiety. LPs are of major biotechnological interest owing to their emulsification, antitumor, immunomodulatory, and antimicrobial activities. To date, these versatile compounds have been applied across multiple industries, from pharmaceuticals through to food processing, cosmetics, agriculture, heavy metal, and hydrocarbon bioremediation. The variety of LP structures and the diversity of the environments from which LP-producing microorganisms have been isolated suggest important functions in their natural environment. However, our understanding of the ecological role of LPs is limited. In this review, the mode of action and the role of LPs in motility, antimicrobial activity, heavy metals removal and biofilm formation are addressed. We include discussion on the need to characterise LPs from a diversity of microorganisms, with a focus on taxa inhabiting 'extreme' environments. We introduce the use of computational target fishing and molecular dynamics simulations as powerful tools to investigate the process of interaction between LPs and cell membranes. Together, these advances will provide new understanding of the mechanism of action of novel LPs, providing greater insights into the roles of LPs in the natural environment.
Collapse
Affiliation(s)
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney 2052, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney 2052, Australia
| |
Collapse
|
37
|
Zhu C, Lew CI, Neuhaus GF, Adpressa DA, Zakharov LN, Kaweesa EN, Plitzko B, Loesgen S. Biodiversity, Bioactivity, and Metabolites of High Desert Derived Oregonian Soil Bacteria. Chem Biodivers 2021; 18:e2100046. [PMID: 33636028 DOI: 10.1002/cbdv.202100046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
From arid, high desert soil samples collected near Bend, Oregon, 19 unique bacteria were isolated. Each strain was identified by 16S rRNA gene sequencing, and their organic extracts were tested for antibacterial and antiproliferative activities. Noteworthy, six extracts (30 %) exhibited strong inhibition resulting in less than 50 % cell proliferation in more than one cancer cell model, tested at 10 μg/mL. Principal component analysis (PCA) of LC/MS data revealed drastic differences in the metabolic profiles found in the organic extracts of these soil bacteria. In total, fourteen potent antibacterial and/or cytotoxic metabolites were isolated via bioactivity-guided fractionation, including two new natural products: a pyrazinone containing tetrapeptide and 7-methoxy-2,3-dimethyl-4H-chromen-4-one, as well as twelve known compounds: furanonaphthoquinone I, bafilomycin C1 and D, FD-594, oligomycin A, chloramphenicol, MY12-62A, rac-sclerone, isosclerone, tunicamycin VII, tunicamycin VIII, and (6S,16S)-anthrabenzoxocinone 1.264-C.
Collapse
Affiliation(s)
- Chenxi Zhu
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA.,Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, St. Augustine, Florida, 32080, USA
| | - Cassandra I Lew
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - George F Neuhaus
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Donovon A Adpressa
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Lev N Zakharov
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Elizabeth N Kaweesa
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA.,Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, St. Augustine, Florida, 32080, USA
| | - Birte Plitzko
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA.,Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, St. Augustine, Florida, 32080, USA
| |
Collapse
|
38
|
Vij R, Hube B, Brunke S. Uncharted territories in the discovery of antifungal and antivirulence natural products from bacteria. Comput Struct Biotechnol J 2021; 19:1244-1252. [PMID: 33680363 PMCID: PMC7905183 DOI: 10.1016/j.csbj.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
Many fungi can cause deadly diseases in humans, and nearly every human will suffer from some kind of fungal infection in their lives. Only few antifungals are available, and some of these fail to treat intrinsically resistant species and the ever-increasing number of fungal strains that have acquired resistance. In nature, bacteria and fungi display versatile interactions that range from friendly co-existence to predation. The first antifungal drugs, nystatin and amphotericin B, were discovered in bacteria as mediators of such interactions, and bacteria continue to be an important source of antifungals. To learn more about the ecological bacterial-fungal interactions that drive the evolution of natural products and exploit them, we need to identify environments where such interactions are pronounced, and diverse. Here, we systematically analyze historic and recent developments in this field to identify potentially under-investigated niches and resources. We also discuss alternative strategies to treat fungal infections by utilizing the antagonistic potential of bacteria to target fungal stress pathways and virulence factors, and thereby suppress the evolution of antifungal resistance.
Collapse
Affiliation(s)
- Raghav Vij
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
| |
Collapse
|
39
|
Benaud N, Edwards RJ, Amos TG, D'Agostino PM, Gutiérrez-Chávez C, Montgomery K, Nicetic I, Ferrari BC. Antarctic desert soil bacteria exhibit high novel natural product potential, evaluated through long-read genome sequencing and comparative genomics. Environ Microbiol 2020; 23:3646-3664. [PMID: 33140504 DOI: 10.1111/1462-2920.15300] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022]
Abstract
Actinobacteria and Proteobacteria are important producers of bioactive natural products (NP), and these phyla dominate in the arid soils of Antarctica, where metabolic adaptations influence survival under harsh conditions. Biosynthetic gene clusters (BGCs) which encode NPs, are typically long and repetitious high G + C regions difficult to sequence with short-read technologies. We sequenced 17 Antarctic soil bacteria from multi-genome libraries, employing the long-read PacBio platform, to optimize capture of BGCs and to facilitate a comprehensive analysis of their NP capacity. We report 13 complete bacterial genomes of high quality and contiguity, representing 10 different cold-adapted genera including novel species. Antarctic BGCs exhibited low similarity to known compound BGCs (av. 31%), with an abundance of terpene, non-ribosomal peptide and polyketide-encoding clusters. Comparative genome analysis was used to map BGC variation between closely related strains from geographically distant environments. Results showed the greatest biosynthetic differences to be in a psychrotolerant Streptomyces strain, as well as a rare Actinobacteria genus, Kribbella, while two other Streptomyces spp. were surprisingly similar to known genomes. Streptomyces and Kribbella BGCs were predicted to encode antitumour, antifungal, antibacterial and biosurfactant-like compounds, and the synthesis of NPs with antibacterial, antifungal and surfactant properties was confirmed through bioactivity assays.
Collapse
Affiliation(s)
- Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, 2052, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, 2052, Australia
| | - Timothy G Amos
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, 2052, Australia
| | - Paul M D'Agostino
- Technische Universität Dresden, Chair of Technical Biochemistry, Bergstraße 66, 01602 Dresden, Germany
| | | | - Kate Montgomery
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, 2052, Australia
| | - Iskra Nicetic
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, 2052, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, 2052, Australia
| |
Collapse
|
40
|
Ferdous N, Reza MN, Emon MTH, Islam MS, Mohiuddin AKM, Hossain MU. Molecular characterization and functional annotation of a hypothetical protein (SCO0618) of Streptomyces coelicolor A3(2). Genomics Inform 2020; 18:e28. [PMID: 33017872 PMCID: PMC7560446 DOI: 10.5808/gi.2020.18.3.e28] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Streptomyces coelicolor is a gram-positive soil bacterium which is well known for the production of several antibiotics used in various biotechnological applications. But numerous proteins from its genome are considered hypothetical proteins. Therefore, the present study aimed to reveal the functions of a hypothetical protein from the genome of S. coelicolor. Several bioinformatics tools were employed to predict the structure and function of this protein. Sequence similarity was searched through the available bioinformatics databases to find out the homologous protein. The secondary and tertiary structure were predicted and further validated with quality assessment tools. Furthermore, the active site and the interacting proteins were also explored with the utilization of CASTp and STRING server. The hypothetical protein showed the important biological activity having with two functional domain including POD-like_MBL-fold and rhodanese homology domain. The functional annotation exposed that the selected hypothetical protein could show the hydrolase activity. Furthermore, protein-protein interactions of selected hypothetical protein revealed several functional partners those have the significant role for the bacterial survival. At last, the current study depicts that the annotated hypothetical protein is linked with hydrolase activity which might be of great interest to the further research in bacterial genetics.
Collapse
Affiliation(s)
- Nadim Ferdous
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Mahjerin Nasrin Reza
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Tabassum Hossain Emon
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Shariful Islam
- Laboratory of Reproductive and Developmental Biology, Hokkaido University, Sapporo 060-0808, Japan
| | - A K M Mohiuddin
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh
| |
Collapse
|
41
|
Abstract
Since bacterial resistance to antibiotics is developing worldwide, new antibiotics are needed. Most antibiotics discovered so far have been found in soil-dwelling bacteria, so we instead targeted marine environments as a novel source of bioactive potential. We used amplicon sequencing of bioactive gene clusters in the microbiome of coastal seawater and sandy sediments and found the bioactive potential to be comparable to, but distinct from, the bioactive potential of selected soil microbiomes. Moreover, most of this potential is not captured by culturing. Comparing the biosynthetic potential to the corresponding microbiome composition suggested that minor constituents of the microbiome likely hold a disproportionally large fraction of the biosynthesis potential. Novel natural products have traditionally been sourced from culturable soil microorganisms, whereas marine sources have been less explored. The purpose of this study was to profile the microbial biosynthetic potential in coastal surface seawater and sandy sediment samples and to evaluate the feasibility of capturing this potential using traditional culturing methods. Amplicon sequencing of conserved ketosynthase (KS) and adenylation (AD) domains within polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes showed that seawater and, in particular, sandy sediment had a high biosynthetic potential with 6,065 and 11,072 KS operational biosynthetic units (OBUs) and 3,292 and 5,691 AD OBUs, respectively, compared to that of four soil samples collected by Charlop-Powers et al. (Z. Charlop-Powers, C. C. Pregitzer, C. Lemetre, M. A. Ternei, et al., Proc Natl Acad Sci U S A 113:14811–14816, 2016, https://doi.org/10.1073/pnas.1615581113) with 7,067 KS and 1,629 AD OBUs. All three niches harbored unique OBUs (P = 0.001 for KS and P = 0.002 for AD by permutational multivariate analysis of variance [PERMANOVA]). The total colonial growth captured 1.9% of KS and 13.6% of AD OBUs from seawater and 2.2% KS and 12.5% AD OBUs from sediment. In a subset of bioactive isolates, only four KS OBUs and one AD OBU were recovered from whole-genome sequencing (WGS) of seven seawater-derived strains and one AD OBU from a sediment-derived strain, adding up to 0.028% of the original OBU diversity. Using a pairwise regression model of classified amplicon sequence variants (ASVs) to the species level, and OBUs, we suggest a method to estimate possible links between taxonomy and biosynthetic potential, which indicated that low abundance organisms may hold a disproportional share of the biosynthetic potential. Thus, marine microorganisms are a rich source of novel bioactive potential, which is difficult to access with traditional culturing methods. IMPORTANCE Since bacterial resistance to antibiotics is developing worldwide, new antibiotics are needed. Most antibiotics discovered so far have been found in soil-dwelling bacteria, so we instead targeted marine environments as a novel source of bioactive potential. We used amplicon sequencing of bioactive gene clusters in the microbiome of coastal seawater and sandy sediments and found the bioactive potential to be comparable to, but distinct from, the bioactive potential of selected soil microbiomes. Moreover, most of this potential is not captured by culturing. Comparing the biosynthetic potential to the corresponding microbiome composition suggested that minor constituents of the microbiome likely hold a disproportionally large fraction of the biosynthesis potential.
Collapse
|
42
|
Chen R, Wong HL, Kindler GS, MacLeod FI, Benaud N, Ferrari BC, Burns BP. Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats. Front Microbiol 2020; 11:1950. [PMID: 32973707 PMCID: PMC7472256 DOI: 10.3389/fmicb.2020.01950] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/24/2020] [Indexed: 01/27/2023] Open
Abstract
Microbial mats are geobiological multilayered ecosystems that have significant evolutionary value in understanding the evolution of early life on Earth. Shark Bay, Australia has some of the best examples of modern microbial mats thriving under harsh conditions of high temperatures, salinity, desiccation, and ultraviolet (UV) radiation. Microorganisms living in extreme ecosystems are thought to potentially encode for secondary metabolites as a survival strategy. Many secondary metabolites are natural products encoded by a grouping of genes known as biosynthetic gene clusters (BGCs). Natural products have diverse chemical structures and functions which provide competitive advantages for microorganisms and can also have biotechnology applications. In the present study, the diversity of BGC were described in detail for the first time from Shark Bay microbial mats. A total of 1477 BGCs were detected in metagenomic data over a 20 mm mat depth horizon, with the surface layer possessing over 200 BGCs and containing the highest relative abundance of BGCs of all mat layers. Terpene and bacteriocin BGCs were highly represented and their natural products are proposed to have important roles in ecosystem function in these mat systems. Interestingly, potentially novel BGCs were detected from Heimdallarchaeota and Lokiarchaeota, two evolutionarily significant archaeal phyla not previously known to possess BGCs. This study provides new insights into how secondary metabolites from BGCs may enable diverse microbial mat communities to adapt to extreme environments.
Collapse
Affiliation(s)
- Ray Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Gareth S Kindler
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Fraser Iain MacLeod
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
43
|
Sharrar AM, Crits-Christoph A, Méheust R, Diamond S, Starr EP, Banfield JF. Bacterial Secondary Metabolite Biosynthetic Potential in Soil Varies with Phylum, Depth, and Vegetation Type. mBio 2020; 11:e00416-20. [PMID: 32546614 PMCID: PMC7298704 DOI: 10.1128/mbio.00416-20] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/08/2020] [Indexed: 01/12/2023] Open
Abstract
Bacteria isolated from soils are major sources of specialized metabolites, including antibiotics and other compounds with clinical value that likely shape interactions among microbial community members and impact biogeochemical cycles. Yet, isolated lineages represent a small fraction of all soil bacterial diversity. It remains unclear how the production of specialized metabolites varies across the phylogenetic diversity of bacterial species in soils and whether the genetic potential for production of these metabolites differs with soil depth and vegetation type within a geographic region. We sampled soils and saprolite from three sites in a northern California Critical Zone Observatory with various vegetation and bedrock characteristics and reconstructed 1,334 metagenome-assembled genomes containing diverse biosynthetic gene clusters (BGCs) for secondary metabolite production. We obtained genomes for prolific producers of secondary metabolites, including novel groups within the Actinobacteria, Chloroflexi, and candidate phylum "Candidatus Dormibacteraeota." Surprisingly, one genome of a candidate phyla radiation (CPR) bacterium coded for a ribosomally synthesized linear azole/azoline-containing peptide, a capacity we found in other publicly available CPR bacterial genomes. Overall, bacteria with higher biosynthetic potential were enriched in shallow soils and grassland soils, with patterns of abundance of BGC type varying by taxonomy.IMPORTANCE Microbes produce specialized compounds to compete or communicate with one another and their environment. Some of these compounds, such as antibiotics, are also useful in medicine and biotechnology. Historically, most antibiotics have come from soil bacteria which can be isolated and grown in the lab. Though the vast majority of soil bacteria cannot be isolated, we can extract their genetic information and search it for genes which produce these specialized compounds. These understudied soil bacteria offer a wealth of potential for the discovery of new and important microbial products. Here, we identified the ability to produce these specialized compounds in diverse and novel bacteria in a range of soil environments. This information will be useful to other researchers who wish to isolate certain products. Beyond their use to humans, understanding the distribution and function of microbial products is key to understanding microbial communities and their effects on biogeochemical cycles.
Collapse
Affiliation(s)
- Allison M Sharrar
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
| | - Alexander Crits-Christoph
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, Berkeley, California, USA
| | - Spencer Diamond
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
| | - Evan P Starr
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, Berkeley, California, USA
| |
Collapse
|
44
|
Boutin S, Dalpke AH. The Microbiome: A Reservoir to Discover New Antimicrobials Agents. Curr Top Med Chem 2020; 20:1291-1299. [DOI: 10.2174/1568026620666200320112731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 02/01/2023]
Abstract
Nature offered mankind the first golden era of discovery of novel antimicrobials based on
the ability of eukaryotes or micro-organisms to produce such compounds. The microbial world proved
to be a huge reservoir of such antimicrobial compounds which play important functional roles in every
environment. However, most of those organisms are still uncultivable in a classical way, and therefore,
the use of extended culture or DNA based methods (metagenomics) to discover novel compounds
promises usefulness. In the past decades, the advances in next-generation sequencing and bioinformatics
revealed the enormous diversity of the microbial worlds and the functional repertoire available for
studies. Thus, data-mining becomes of particular interest in the context of the increased need for new
antibiotics due to antimicrobial resistance and the rush in antimicrobial discovery. In this review, an
overview of principles will be presented to discover new natural compounds from the microbiome. We
describe culture-based and culture-independent (metagenomic) approaches that have been developed to
identify new antimicrobials and the input of those methods in the field as well as their limitations.
Collapse
Affiliation(s)
- Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Alexander H. Dalpke
- Institute of Medical Microbiology and Hygiene, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
45
|
Benaud N, Zhang E, van Dorst J, Brown MV, Kalaitzis JA, Neilan BA, Ferrari BC. Harnessing long-read amplicon sequencing to uncover NRPS and Type I PKS gene sequence diversity in polar desert soils. FEMS Microbiol Ecol 2020; 95:5372416. [PMID: 30848780 DOI: 10.1093/femsec/fiz031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/07/2019] [Indexed: 02/02/2023] Open
Abstract
The severity of environmental conditions at Earth's frigid zones present attractive opportunities for microbial biomining due to their heightened potential as reservoirs for novel secondary metabolites. Arid soil microbiomes within the Antarctic and Arctic circles are remarkably rich in Actinobacteria and Proteobacteria, bacterial phyla known to be prolific producers of natural products. Yet the diversity of secondary metabolite genes within these cold, extreme environments remain largely unknown. Here, we employed amplicon sequencing using PacBio RS II, a third generation long-read platform, to survey over 200 soils spanning twelve east Antarctic and high Arctic sites for natural product-encoding genes, specifically targeting non-ribosomal peptides (NRPS) and Type I polyketides (PKS). NRPS-encoding genes were more widespread across the Antarctic, whereas PKS genes were only recoverable from a handful of sites. Many recovered sequences were deemed novel due to their low amino acid sequence similarity to known protein sequences, particularly throughout the east Antarctic sites. Phylogenetic analysis revealed that a high proportion were most similar to antifungal and biosurfactant-type clusters. Multivariate analysis showed that soil fertility factors of carbon, nitrogen and moisture displayed significant negative relationships with natural product gene richness. Our combined results suggest that secondary metabolite production is likely to play an important physiological component of survival for microorganisms inhabiting arid, nutrient-starved soils.
Collapse
Affiliation(s)
- Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Eden Zhang
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Josie van Dorst
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Mark V Brown
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - John A Kalaitzis
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
46
|
Rego A, Sousa AGG, Santos JP, Pascoal F, Canário J, Leão PN, Magalhães C. Diversity of Bacterial Biosynthetic Genes in Maritime Antarctica. Microorganisms 2020; 8:microorganisms8020279. [PMID: 32085500 PMCID: PMC7074882 DOI: 10.3390/microorganisms8020279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial natural products (NPs) are still a major source of new drug leads. Polyketides (PKs) and non-ribosomal peptides (NRP) are two pharmaceutically important families of NPs and recent studies have revealed Antarctica to harbor endemic polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, likely to be involved in the production of novel metabolites. Despite this, the diversity of secondary metabolites genes in Antarctica is still poorly explored. In this study, a computational bioprospection approach was employed to study the diversity and identity of PKS and NRPS genes to one of the most biodiverse areas in maritime Antarctica—Maxwell Bay. Amplicon sequencing of soil samples targeting ketosynthase (KS) and adenylation (AD) domains of PKS and NRPS genes, respectively, revealed abundant and unexplored chemical diversity in this peninsula. About 20% of AD domain sequences were only distantly related to characterized biosynthetic genes. Several PKS and NRPS genes were found to be closely associated to recently described metabolites including those from uncultured and candidate phyla. The combination of new approaches in computational biology and new culture-dependent and -independent strategies is thus critical for the recovery of the potential novel chemistry encoded in Antarctica microorganisms.
Collapse
Affiliation(s)
- Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (A.G.G.S.); (J.P.S.); (F.P.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - António G. G. Sousa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (A.G.G.S.); (J.P.S.); (F.P.)
| | - João P. Santos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (A.G.G.S.); (J.P.S.); (F.P.)
- Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 66, Boulevard Carl-Vogt, 1211 Genève 4, Switzerland
| | - Francisco Pascoal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (A.G.G.S.); (J.P.S.); (F.P.)
| | - João Canário
- Centro de Química Estrutural at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (A.G.G.S.); (J.P.S.); (F.P.)
- Correspondence: (P.N.L); (C.M.)
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; (A.R.); (A.G.G.S.); (J.P.S.); (F.P.)
- Faculty of Sciences, University of Porto, 4150-179 Porto, Portugal
- School of Science, University of Waikato, Hamilton 3216, New Zealand
- Correspondence: (P.N.L); (C.M.)
| |
Collapse
|
47
|
Van Wieren A, Cook R, Majumdar S. Characterization of Alanine Dehydrogenase and Its Effect on Streptomyces coelicolorA3(2) Development in Liquid Culture. J Mol Microbiol Biotechnol 2019; 29:57-65. [PMID: 31851994 DOI: 10.1159/000504709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/10/2019] [Indexed: 11/19/2022] Open
Abstract
Streptomyces, the most important group of industrial microorganisms, is harvested in liquid cultures for the production of two-thirds of all clinically relevant secondary metabolites. It is demonstrated here that the growth of Streptomyces coelicolor A3(2) is impacted by the deletion of the alanine dehydrogenase (ALD), an essential enzyme that plays a central role in the carbon and nitrogen metabolism. A long lag-phase growth followed by a slow exponential growth of S. coelicolor due to ALD gene deletion was observed in liquid yeast extract mineral salt culture. The slow lag-phase growth was replaced by the normal wild-type like growth by ALD complementation engineering. The ALD enzyme from S. coelicolor was also heterologously cloned and expressed in Escherichia coli for characterization. The optimum enzyme activity for the oxidative deamination reaction was found at 30°C, pH 9.5 with a catalytic efficiency, kcat/KM, of 2.0 ± 0.1 mM-1 s-1. The optimum enzyme activity for the reductive amination reaction was found at 30°C, pH 9.0 with a catalytic efficiency, kcat/KM, of 1.9 ± 0.1 mM-1 s-1.
Collapse
Affiliation(s)
- Arie Van Wieren
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA
| | - Ryan Cook
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA.,West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Sudipta Majumdar
- Department of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA,
| |
Collapse
|
48
|
Stevenson LJ, Owen JG, Ackerley DF. Metagenome Driven Discovery of Nonribosomal Peptides. ACS Chem Biol 2019; 14:2115-2126. [PMID: 31508935 DOI: 10.1021/acschembio.9b00618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Declining rates of novel natural product discovery and exponential rates of rediscovery heralded the end of the 1940s to 1960s "golden era" of antibiotic discovery. Fifty years later, the implementation of molecular screening methodologies revealed that standard culture-based screening approaches had failed to capture the vast majority of environmental bacteria and that even for the cultivable isolates only a small fraction of the biosynthetic potential had been tapped. A diversity of metagenomic screening and synthetic biology approaches have been developed to address these issues. The nonribosomal peptides have received particular focus, owing to their high levels of bioactivity and the predictability of the biosynthetic logic of the genetically encoded assembly lines that produce them. By uniting advances in next-generation sequencing and bioinformatic analysis with a diversity of traditional disciplines, several pioneering teams have proven that this previously inaccessible resource is no longer out of reach.
Collapse
Affiliation(s)
- Luke J. Stevenson
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Jeremy G. Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
49
|
Bhushan A, Egli PJ, Peters EE, Freeman MF, Piel J. Genome mining- and synthetic biology-enabled production of hypermodified peptides. Nat Chem 2019; 11:931-939. [PMID: 31501509 PMCID: PMC6763334 DOI: 10.1038/s41557-019-0323-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
The polytheonamides are among the most complex and biosynthetically distinctive natural products known to date. These potent peptide cytotoxins are derived from a ribosomal precursor processed by 49 mostly non-canonical posttranslational modifications. As the producer is a 'microbial dark matter' bacterium only distantly related to any cultivated organism, >70-step chemical syntheses have been developed to access these unique compounds. Here, we mined prokaryotic diversity to establish a synthetic platform based on the new host Microvirgula aerodenitrificans that produces hypermodified peptides within two days. Using this system, we generated the aeronamides, new polytheonamide-type compounds with near-picomolar cytotoxicity. Aeronamides, as well as the polygeonamides produced from deep-rock biosphere DNA, contain the highest numbers of D-amino acids in known biomolecules. With increasing bacterial genomes being sequenced, similar host mining strategies might become feasible to access further elusive natural products from uncultivated life.
Collapse
Affiliation(s)
- Agneya Bhushan
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | | | - Eike E Peters
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Michael F Freeman
- Department of Biochemistry, Molecular Biology, and Biophysics and BioTechnology Institute, University of Minnesota-Twin Cities, St Paul, MN, USA
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
50
|
Borsetto C, Amos GCA, da Rocha UN, Mitchell AL, Finn RD, Laidi RF, Vallin C, Pearce DA, Newsham KK, Wellington EMH. Microbial community drivers of PK/NRP gene diversity in selected global soils. MICROBIOME 2019; 7:78. [PMID: 31118083 PMCID: PMC6532259 DOI: 10.1186/s40168-019-0692-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The emergence of antibiotic-resistant pathogens has created an urgent need for novel antimicrobial treatments. Advances in next-generation sequencing have opened new frontiers for discovery programmes for natural products allowing the exploitation of a larger fraction of the microbial community. Polyketide (PK) and non-ribosomal pepetide (NRP) natural products have been reported to be related to compounds with antimicrobial and anticancer activities. We report here a new culture-independent approach to explore bacterial biosynthetic diversity and determine bacterial phyla in the microbial community associated with PK and NRP diversity in selected soils. RESULTS Through amplicon sequencing, we explored the microbial diversity (16S rRNA gene) of 13 soils from Antarctica, Africa, Europe and a Caribbean island and correlated this with the amplicon diversity of the adenylation (A) and ketosynthase (KS) domains within functional genes coding for non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), which are involved in the production of NRP and PK, respectively. Mantel and Procrustes correlation analyses with microbial taxonomic data identified not only the well-studied phyla Actinobacteria and Proteobacteria, but also, interestingly, the less biotechnologically exploited phyla Verrucomicrobia and Bacteroidetes, as potential sources harbouring diverse A and KS domains. Some soils, notably that from Antarctica, provided evidence of endemic diversity, whilst others, such as those from Europe, clustered together. In particular, the majority of the domain reads from Antarctica remained unmatched to known sequences suggesting they could encode enzymes for potentially novel PK and NRP. CONCLUSIONS The approach presented here highlights potential sources of metabolic novelty in the environment which will be a useful precursor to metagenomic biosynthetic gene cluster mining for PKs and NRPs which could provide leads for new antimicrobial metabolites.
Collapse
Affiliation(s)
- Chiara Borsetto
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Gregory C. A. Amos
- School of Life Sciences, University of Warwick, Coventry, UK
- Present addresses: G.C.A.A National Institute for Biological Standards and Control (NIBSC), Potters Bar, UK
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Alex L. Mitchell
- EMBL-EBI European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Robert D. Finn
- EMBL-EBI European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | - David A. Pearce
- Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Ellison Building, Northumberland Road, Newcastle, NE1 8ST UK
- Natural Environment Research Council, British Antarctic Survey, Cambridge, UK
| | - Kevin K. Newsham
- Natural Environment Research Council, British Antarctic Survey, Cambridge, UK
| | | |
Collapse
|