1
|
Tan Y, Xu L, Zhu M, Zhao Y, Wei H, Wei W. Unraveling Morphological, Physiological, and Transcriptomic Alterations Underlying the Formation of Little Leaves in Phytoplasma-Infected Sweet Cherry Trees. PLANT DISEASE 2025; 109:373-383. [PMID: 39295135 DOI: 10.1094/pdis-04-24-0862-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Phytoplasmas are minute phytopathogenic bacteria that induce excessive vegetative growth, known as witches' broom (WB), in many infected plant species during the later stages of infection. The WB structure is characterized by densely clustered little (small) leaves, which are frequently accompanied by chlorosis (yellowing). The mechanisms behind the formation of little leaves within WB structures (LL-WB) are poorly understood. To address this gap, the LL-WB formation was extensively studied using sweet cherry virescence (SCV) phytoplasma-infected sweet cherry plants. Based on morphological examinations, signs of premature leaf senescence were observed in LL-WB samples, including reduced leaf size, chlorosis, and alterations in shape. Subsequent physiological analyses indicated decreased sucrose and glucose levels and changes in hormone concentrations in LL-WB samples. Additionally, the transcriptomic analysis revealed impaired ribosome biogenesis and DNA replication. As an essential process in protein production, the compromised ribosome biogenesis and the inhibited DNA replication led to cell cycle arrest, thus affecting leaf morphogenesis and further plant development. Moreover, the expression of marker genes involved in premature leaf senescence was significantly altered. These results indicate a complicated interplay between the development of leaves, premature leaf senescence, and pathogen-induced stress responses in SCV phytoplasma-infected sweet cherry trees. The results of this study provide insight into understanding the underlying molecular mechanisms driving the formation of little leaves and interactions between plants and pathogens. The findings might help control phytoplasma diseases in sweet cherry cultivation.
Collapse
Affiliation(s)
- Yue Tan
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Li Xu
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Min Zhu
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, U.S.A
| | - Hairong Wei
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, U.S.A
| |
Collapse
|
2
|
Deng M, Ma F, Zhai L, Zhang X, Zhang N, Zheng Y, Chen W, Zhou W, Pang K, Zhou J, Sun Q, Sun J. The effector SJP3 interferes with pistil development by sustaining SHORT VEGETATIVE PHASE 3 expression in jujube. PLANT PHYSIOLOGY 2024; 196:1923-1938. [PMID: 39189604 DOI: 10.1093/plphys/kiae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/28/2024]
Abstract
Jujube witches' broom (JWB) is a phytoplasma disease that causes severe damage to jujube (Ziziphus jujuba) crops worldwide. Diseased jujube plants show enhanced vegetative growth after floral reversion, including leafy flower structures (phyllody) and the fourth whorl converting into a vegetative shoot. In previous research, secreted JWB protein 3 (SJP3) was identified as an inducer of phyllody. However, the molecular mechanisms of SJP3-mediated pistil reversion remain unknown. Here, the effector SJP3 was found to interact with the MADS-box protein SHORT VEGETATIVE PHASE 3 (ZjSVP3). ZjSVP3 was expressed in young leaves and during the initial flower bud differentiation of healthy jujube-bearing shoots but was constitutively expressed in JWB phytoplasma-infected flowers until the later stage of floral development. The SJP3 effector showed the same expression pattern in the diseased buds and promoted ZjSVP3 accumulation in SJP3 transgenic jujube calli. The N-terminal domains of ZjSVP3 contributed to its escape from protein degradation in the presence of SJP3. Heterologous expression of ZjSVP3 in Nicotiana benthamiana produced typical pistil abnormalities, including trichome-enriched style and stemlike structures within the leaflike ovary, which were consistent with those in the mildly malformed lines overexpressing SJP3. Furthermore, ectopic expression of ZjSVP3 directly bound to the zinc finger protein 8 (ZjZFP8) and MADS-box gene SHATTERPROOF 1 (ZjSHP1) promoters to regulate their expression, resulting in abnormal pistil development. Overall, effector SJP3-mediated derepression of ZjSVP3 sustained its expression to interfere with pistil development, providing insight into the mechanisms of pistil reversion caused by JWB phytoplasma in specific perennial woody plant species.
Collapse
Affiliation(s)
- Mingsheng Deng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Fuli Ma
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Liping Zhai
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Xinyue Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Ning Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Yunyan Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Wei Chen
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Wenmin Zhou
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Kaixue Pang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| | - Junyong Zhou
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Qibao Sun
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230001, Anhui Province, People's Republic of China
| | - Jun Sun
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, People's Republic of China
| |
Collapse
|
3
|
Wei W, Shao J, Zhao Y, Inaba J, Ivanauskas A, Bottner-Parker KD, Costanzo S, Kim BM, Flowers K, Escobar J. iPhyDSDB: Phytoplasma Disease and Symptom Database. BIOLOGY 2024; 13:657. [PMID: 39336085 PMCID: PMC11429218 DOI: 10.3390/biology13090657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Phytoplasmas are small, intracellular bacteria that infect a vast range of plant species, causing significant economic losses and impacting agriculture and farmers' livelihoods. Early and rapid diagnosis of phytoplasma infections is crucial for preventing the spread of these diseases, particularly through early symptom recognition in the field by farmers and growers. A symptom database for phytoplasma infections can assist in recognizing the symptoms and enhance early detection and management. In this study, nearly 35,000 phytoplasma sequence entries were retrieved from the NCBI nucleotide database using the keyword "phytoplasma" and information on phytoplasma disease-associated plant hosts and symptoms was gathered. A total of 945 plant species were identified to be associated with phytoplasma infections. Subsequently, links to symptomatic images of these known susceptible plant species were manually curated, and the Phytoplasma Disease Symptom Database (iPhyDSDB) was established and implemented on a web-based interface using the MySQL Server and PHP programming language. One of the key features of iPhyDSDB is the curated collection of links to symptomatic images representing various phytoplasma-infected plant species, allowing users to easily access the original source of the collected images and detailed disease information. Furthermore, images and descriptive definitions of typical symptoms induced by phytoplasmas were included in iPhyDSDB. The newly developed database and web interface, equipped with advanced search functionality, will help farmers, growers, researchers, and educators to efficiently query the database based on specific categories such as plant host and symptom type. This resource will aid the users in comparing, identifying, and diagnosing phytoplasma-related diseases, enhancing the understanding and management of these infections.
Collapse
Affiliation(s)
- Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (Y.Z.); (J.I.); (A.I.); (K.D.B.-P.); (S.C.); (B.M.K.); (K.F.); (J.E.)
| | - Jonathan Shao
- Statistics and Bioinformatics Group—Northeast Area, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (Y.Z.); (J.I.); (A.I.); (K.D.B.-P.); (S.C.); (B.M.K.); (K.F.); (J.E.)
| | - Junichi Inaba
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (Y.Z.); (J.I.); (A.I.); (K.D.B.-P.); (S.C.); (B.M.K.); (K.F.); (J.E.)
| | - Algirdas Ivanauskas
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (Y.Z.); (J.I.); (A.I.); (K.D.B.-P.); (S.C.); (B.M.K.); (K.F.); (J.E.)
| | - Kristi D. Bottner-Parker
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (Y.Z.); (J.I.); (A.I.); (K.D.B.-P.); (S.C.); (B.M.K.); (K.F.); (J.E.)
| | - Stefano Costanzo
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (Y.Z.); (J.I.); (A.I.); (K.D.B.-P.); (S.C.); (B.M.K.); (K.F.); (J.E.)
| | - Bo Min Kim
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (Y.Z.); (J.I.); (A.I.); (K.D.B.-P.); (S.C.); (B.M.K.); (K.F.); (J.E.)
| | - Kailin Flowers
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (Y.Z.); (J.I.); (A.I.); (K.D.B.-P.); (S.C.); (B.M.K.); (K.F.); (J.E.)
| | - Jazmin Escobar
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (Y.Z.); (J.I.); (A.I.); (K.D.B.-P.); (S.C.); (B.M.K.); (K.F.); (J.E.)
| |
Collapse
|
4
|
Che H, Yu S, Chen W, Zheng W, Cao X, Luo D. Molecular Identification and Characterization of Novel Taxonomic Subgroups and New Host Plants in 16SrI and 16SrII Group Phytoplasmas and Their Evolutionary Diversity on Hainan Island, China. PLANT DISEASE 2024; 108:1703-1718. [PMID: 38175658 DOI: 10.1094/pdis-12-23-2682-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Phytoplasmas are a group of plant prokaryotic pathogens distributed worldwide. To comprehensively reveal the diversity of the pathogens and the diseases they cause on Hainan, a tropical island with abundant biodiversity in China, a survey of phytoplasmal diseases was performed from 2009 to 2022. Herein, molecular identification and genetic analysis were conducted based on the conserved genes of phytoplasmas. The results indicated that phytoplasmas could be detected in 138 samples from 18 host plants among 215 samples suspected to be infected by the pathogens. The phytoplasma strains from 27 diseased samples of 4 host plants belonged to the 16SrI group and the strains from 111 samples of 14 hosts belonged to the 16SrII group. Among them, 12 plants, including important tropical cash crops such as Phoenix dactylifera, cassava, sugarcane, and Piper nigrum, were first identified as hosts of phytoplasmas on Hainan Island. Based on BLAST and iPhyClassifier analyses, seven novel 16Sr subgroups were proposed to describe the relevant phytoplasma strains, comprising the 16SrI-AP, 16SrI-AQ, and 16SrI-AR subgroups within the 16SrI group and the 16SrII-Y, 16SrII-Z, 16SrII-AB, and 16SrII-AC subgroups within the 16SrII group. Genetic variation and phylogenetic analysis indicated that the phytoplasma strains identified in this study and those reported previously on Hainan Island mainly belong to four 16Sr groups (including I, II, V, and XXXII) and could infect 44 host plants, among which the 16SrI and 16SrII groups were the prevalent 16Sr groups associated with 43 host plant species. The diversity of host plants infected by the phytoplasmas made it difficult to monitor and control their related diseases. Therefore, strengthening inspection and quarantine during the introduction and transit of the related phytoplasmal host crops would effectively curb the spread and prevalence of the phytoplasmas and their related lethal diseases.
Collapse
Affiliation(s)
- Haiyan Che
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
| | - Shaoshuai Yu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, Hainan Province, China
| | - Wang Chen
- Hubei Collaborative Innovation Center for Grain Industry, Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434000, Hubei Province, China
| | - Wenhu Zheng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
| | - Xueren Cao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
| | - Daquan Luo
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
| |
Collapse
|
5
|
Pierro R, Moussa A, Mori N, Marcone C, Quaglino F, Romanazzi G. Bois noir management in vineyard: a review on effective and promising control strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1364241. [PMID: 38601314 PMCID: PMC11004249 DOI: 10.3389/fpls.2024.1364241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Among grapevine yellows, Bois noir (BN), associated with 'Candidatus Phytoplasma solani', represents the biggest threat in the main wine-growing areas worldwide, causing significant losses in berry quality and yields. BN epidemiology involves multiple plant hosts and several insect vectors, making considerably complex the development of effective management strategies. Since application of insecticides on the grapevine canopy is not effective to manage vectors, BN management includes an integrated approach based on treatments to the canopy to make the plant more resistant to the pathogen and/or inhibit the vector feeding, and actions on reservoir plants to reduce possibilities that the vector reaches the grapevine and transmit the phytoplasma. Innovative sustainable strategies developed in the last twenty years to improve the BN management are reviewed and discussed.
Collapse
Affiliation(s)
- Roberto Pierro
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Abdelhameed Moussa
- Pests and Plant Protection Department, Agricultural & Biological Research Institute, National Research Centre, Cairo, Egypt
| | - Nicola Mori
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Carmine Marcone
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
6
|
Ivanauskas A, Inaba J, Zhao Y, Bottner-Parker KD, Wei W. Differential Symptomology, Susceptibility, and Titer Dynamics Manifested by Phytoplasma-Infected Periwinkle and Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:787. [PMID: 38592808 PMCID: PMC10974080 DOI: 10.3390/plants13060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
Phytoplasmas are intracellular pathogenic bacteria that infect a wide range of plant species, including agriculturally important crops and ornamental trees. However, our understanding of the relationship between symptom severity, disease progression, and phytoplasma concentration remains limited due to the inability to inoculate phytoplasmas mechanically into new plant hosts. The present study investigated phytoplasma titer dynamics and symptom development in periwinkle and tomato, both infected with the same potato purple top (PPT) phytoplasma strain using a small seedling grafting approach. Virescence, phyllody, and witches'-broom (WB) symptoms sequentially developed in periwinkle, while in tomato plants, big bud (BB, a form of phyllody), cauliflower-like inflorescence (CLI), and WB appeared in order. Results from quantitative polymerase chain reaction (qPCR) targeting the PPT phytoplasma's 16S rRNA gene revealed that in both host species, phytoplasma titers differed significantly at different infection stages. Notably, the highest phytoplasma concentration in periwinkles was observed in samples displaying phyllody symptoms, whereas in tomatoes, the titer peaked at the BB stage. Western blot analysis, utilizing an antibody specific to PPT phytoplasma, confirmed substantial phytoplasma presence in samples displaying phyllody and BB symptoms, consistent with the qPCR results. These findings challenge the conventional understanding that phytoplasma infection dynamics result in a higher titer at later stages, such as WB (excessive vegetative growth), rather than in the early stage, such as phyllody (abnormal reproductive growth). Furthermore, the PPT phytoplasma titer was markedly higher in periwinkles than in tomato plants, indicating differing susceptibilities between the hosts. This study reveals distinct host responses to PPT phytoplasma infection, providing valuable insights into phytoplasma titer dynamics and symptom development, with implications for the future management of agricultural disease.
Collapse
Affiliation(s)
- Algirdas Ivanauskas
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (A.I.); (J.I.); (Y.Z.); (K.D.B.-P.)
- Laboratory of Plant Pathology, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Junichi Inaba
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (A.I.); (J.I.); (Y.Z.); (K.D.B.-P.)
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (A.I.); (J.I.); (Y.Z.); (K.D.B.-P.)
| | - Kristi D. Bottner-Parker
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (A.I.); (J.I.); (Y.Z.); (K.D.B.-P.)
| | - Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (A.I.); (J.I.); (Y.Z.); (K.D.B.-P.)
| |
Collapse
|
7
|
Inaba J, Kim BM, Zhao Y, Jansen AM, Wei W. The Endoplasmic Reticulum Is a Key Battleground between Phytoplasma Aggression and Host Plant Defense. Cells 2023; 12:2110. [PMID: 37626920 PMCID: PMC10453741 DOI: 10.3390/cells12162110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Phytoplasmas are intracellular plant pathogens that heavily rely on host cell nutrients for survival and propagation due to their limited ability to synthesize essential substrates. The endoplasmic reticulum (ER), which plays a vital role in various cellular processes, including lipid and protein biosynthesis, is an attractive target for numerous intracellular pathogens to exploit. This study investigated the impact of potato purple top (PPT) phytoplasma infection on the ER in tomato plants. Abnormal accumulation of ER-resident proteins, disrupted ER network structures, and formation of protein aggregates in the phloem were observed using confocal microscopy and transmission electron microscopy, indicating a phytoplasma-infection-induced disturbance in ER homeostasis. The colocalization of phytoplasmas with the accumulated ER-resident proteins suggests an association between ER stress, unfolded protein response (UPR) induction, and phytoplasma infection and colonization, with the ER stress response likely contributing to the host plant's defense mechanisms. Quantitative real-time PCR revealed a negative correlation between ER stress/UPR activation and PPT phytoplasma titer, implying the involvement of UPR in curbing phytoplasma proliferation. Inducing ER stress and activating the UPR pathway effectively decreased phytoplasma titer, while suppressing the ER-resident protein, binding immunoglobulin protein (BiP) increased phytoplasma titer. These results highlight the ER as an intracellular battleground where phytoplasmas exploit host components for survival and multiplication, while host plants deploy defense mechanisms to counteract the invasion. Understanding the intricate interactions between phytoplasmas and plant hosts at the subcellular level, particularly within the ER, provides valuable insights for developing new strategies to control phytoplasma diseases.
Collapse
Affiliation(s)
- Junichi Inaba
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.I.); (B.M.K.); (Y.Z.)
| | - Bo Min Kim
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.I.); (B.M.K.); (Y.Z.)
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.I.); (B.M.K.); (Y.Z.)
| | - Andrew M. Jansen
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | - Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.I.); (B.M.K.); (Y.Z.)
| |
Collapse
|
8
|
Inaba J, Shao J, Trivellone V, Zhao Y, Dietrich CH, Bottner-Parker KD, Ivanauskas A, Wei W. Guilt by Association: DNA Barcoding-Based Identification of Potential Plant Hosts of Phytoplasmas from Their Insect Carriers. PHYTOPATHOLOGY 2023; 113:413-422. [PMID: 36287619 DOI: 10.1094/phyto-09-22-0323-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phytoplasmas are small phloem-restricted and insect-transmissible bacteria that infect many plant species, including important crops and ornamental plants, causing severe economic losses. Our previous studies screened phytoplasmas in hundreds of leafhoppers collected from natural habitats worldwide and identified multiple genetically different phytoplasmas in seven leafhopper species (potential insect vectors). As an initial step toward determining the impact of these phytoplasmas on the ecosystem, ribulose 1,5-biphosphate carboxylase large subunit (rbcL), a commonly used plant DNA barcoding marker, was employed to identify the plant species that the phytoplasma-harboring leafhoppers feed on. The DNA of 17 individual leafhoppers was PCR amplified using universal rbcL primers. PCR products were cloned, and five clones per amplicon were randomly chosen for Sanger sequencing. Moreover, Illumina high-throughput sequencing on selected PCR products was conducted and confirmed no missing targets in Sanger sequencing. The nucleotide BLAST results revealed 14 plant species, including six well-known plant hosts of phytoplasmas such as tomato, alfalfa, and maize. The remaining species have not been documented as phytoplasma hosts, expanding our knowledge of potential plant hosts. Notably, the DNA of tomato and maize (apparently cultivated in well-managed croplands) was detected in some phytoplasma-harboring leafhopper species sampled in non-crop lands, suggesting the spillover/spillback risk of phytoplasma strains between crop and non-crop areas. Furthermore, our results indicate that barcoding (or metabarcoding) is a valuable tool to study the three-way interactions among phytoplasmas, plant hosts, and vectors. The findings contribute to a better understanding of phytoplasma host range, host shift, and disease epidemiology.
Collapse
Affiliation(s)
- Junichi Inaba
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Jonathan Shao
- Statistics Group, NEA Bioinformatics, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Valeria Trivellone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820
| | - Yan Zhao
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820
| | - Kristi D Bottner-Parker
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Algirdas Ivanauskas
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Wei Wei
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| |
Collapse
|
9
|
Wei W, Shao J, Bottner-Parker KD, Zhao Y. Draft Genome Sequence Resource of CBPPT1, a ' Candidatus Phytoplasma trifolii'-Related Strain Associated with Potato Purple Top Disease in the Columbia Basin, U.S.A. PLANT DISEASE 2023; 107:922-925. [PMID: 36587246 DOI: 10.1094/pdis-08-22-1788-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Wei Wei
- Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD 20705
| | - Jonathan Shao
- Statistics Group, Northeast Area Bioinformatics, USDA-ARS, Beltsville, MD 20705
| | | | - Yan Zhao
- Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD 20705
| |
Collapse
|
10
|
Pamei I, Makandar R. Comparative proteome analysis reveals the role of negative floral regulators and defense-related genes in phytoplasma infected sesame. PROTOPLASMA 2022; 259:1441-1453. [PMID: 35190871 DOI: 10.1007/s00709-022-01737-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
"Candidatus Phytoplasma australiense" is associated with floral malformations in sesame but the interaction remains largely unexplored. A label-free quantitative shotgun proteomics approach through liquid chromatography-mass spectrometry quadruple time-of-flight was used to analyze changes in the proteome of asymptomatic (control) and symptomatic (phytoplasma-infected) sesame plants to identify proteins differentially expressed during phytoplasma infection at early stages of flower development. A total of 3457 and 1704 proteins were identified from asymptomatic and symptomatic samples respectively through proteome profiling with three runs per sample. Several differentially abundant proteins (DAPs) were identified which might be involved in sesame-phytoplasma interaction. The DAPs identified were related to transcription, cell division, chromosome partitioning, defense mechanisms, negative regulation of flower development, amino acid transport and metabolism, signal transduction and RNA processing, and its modifications. Of these proteins, 21 were downregulated while 212 were significantly upregulated in symptomatic sesame plants compared to the control plants. The floral development-related proteins like UBP16 and DCAF1 were found to be downregulated while negative regulators/repressors of floral development genes, HUA2, PIE1, and ICU2, were upregulated in symptomatic samples indicating phytoplasma's role in altering the expression of these genes. Validation of these genes through quantitative retro-transcripted PCR suggested that the DAPs observed in symptomatic sesame might be induced by phytoplasma presence to suppress flowering via negative regulation of flower development.
Collapse
Affiliation(s)
- Injangbuanang Pamei
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Ragiba Makandar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
11
|
Wei W, Zhao Y. Phytoplasma Taxonomy: Nomenclature, Classification, and Identification. BIOLOGY 2022; 11:1119. [PMID: 35892975 PMCID: PMC9394401 DOI: 10.3390/biology11081119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Phytoplasmas are pleomorphic, wall-less intracellular bacteria that can cause devastating diseases in a wide variety of plant species. Rapid diagnosis and precise identification of phytoplasmas responsible for emerging plant diseases are crucial to preventing further spread of the diseases and reducing economic losses. Phytoplasma taxonomy (identification, nomenclature, and classification) has lagged in comparison to culturable bacteria, largely due to lack of axenic phytoplasma culture and consequent inaccessibility of phenotypic characteristics. However, the rapid expansion of molecular techniques and the advent of high throughput genome sequencing have tremendously enhanced the nucleotide sequence-based phytoplasma taxonomy. In this article, the key events and milestones that shaped the current phytoplasma taxonomy are highlighted. In addition, the distinctions and relatedness of two parallel systems of 'Candidatus phytoplasma' species/nomenclature system and group/subgroup classification system are clarified. Both systems are indispensable as they serve different purposes. Furthermore, some hot button issues in phytoplasma nomenclature are also discussed, especially those pertinent to the implementation of newly revised guidelines for 'Candidatus Phytoplasma' species description. To conclude, the challenges and future perspectives of phytoplasma taxonomy are briefly outlined.
Collapse
Affiliation(s)
- Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | | |
Collapse
|
12
|
Omenge KM, Rümpler F, Kathalingam SS, Furch ACU, Theißen G. Studying the Function of Phytoplasma Effector Proteins Using a Chemical-Inducible Expression System in Transgenic Plants. Int J Mol Sci 2021; 22:ijms222413582. [PMID: 34948378 PMCID: PMC8703313 DOI: 10.3390/ijms222413582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Phytoplasmas are bacterial pathogens that live mainly in the phloem of their plant hosts. They dramatically manipulate plant development by secreting effector proteins that target developmental proteins of their hosts. Traditionally, the effects of individual effector proteins have been studied by ectopic overexpression using strong, ubiquitously active promoters in transgenic model plants. However, the impact of phytoplasma infection on the host plants depends on the intensity and timing of infection with respect to the developmental stage of the host. To facilitate investigations addressing the timing of effector protein activity, we have established chemical-inducible expression systems for the three most well-characterized phytoplasma effector proteins, SECRETED ASTER YELLOWS WITCHES’ BROOM PROTEIN 11 (SAP11), SAP54 and TENGU in transgenic Arabidopsis thaliana. We induced gene expression either continuously, or at germination stage, seedling stage, or flowering stage. mRNA expression was determined by quantitative reverse transcription PCR, protein accumulation by confocal laser scanning microscopy of GFP fusion proteins. Our data reveal tight regulation of effector gene expression and strong upregulation after induction. Phenotypic analyses showed differences in disease phenotypes depending on the timing of induction. Comparative phenotype analysis revealed so far unreported similarities in disease phenotypes, with all three effector proteins interfering with flower development and shoot branching, indicating a surprising functional redundancy of SAP54, SAP11 and TENGU. However, subtle but mechanistically important differences were also observed, especially affecting the branching pattern of the plants.
Collapse
Affiliation(s)
- Keziah M. Omenge
- Department of Genetics, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany; (K.M.O.); (F.R.); (S.S.K.)
| | - Florian Rümpler
- Department of Genetics, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany; (K.M.O.); (F.R.); (S.S.K.)
| | - Subha Suvetha Kathalingam
- Department of Genetics, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany; (K.M.O.); (F.R.); (S.S.K.)
| | - Alexandra C. U. Furch
- Department of Plant Physiology, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany;
| | - Günter Theißen
- Department of Genetics, Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany; (K.M.O.); (F.R.); (S.S.K.)
- Correspondence:
| |
Collapse
|
13
|
The Effect of the Anticipated Nuclear Localization Sequence of ' Candidatus Phytoplasma mali' SAP11-like Protein on Localization of the Protein and Destabilization of TCP Transcription Factor. Microorganisms 2021; 9:microorganisms9081756. [PMID: 34442835 PMCID: PMC8401217 DOI: 10.3390/microorganisms9081756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/19/2022] Open
Abstract
SAP11 is an effector protein that has been identified in various phytoplasma species. It localizes in the plant nucleus and can bind and destabilize TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors. Although SAP11 of different phytoplasma species share similar activities, their protein sequences differ greatly. Here, we demonstrate that the SAP11-like protein of ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) strain PM19 localizes into the plant nucleus without requiring the anticipated nuclear localization sequence (NLS). We show that the protein induces crinkled leaves and siliques, and witches’ broom symptoms, in transgenic Arabidopsis thaliana (A. thaliana) plants and binds to six members of class I and all members of class II TCP transcription factors of A. thaliana in yeast two-hybrid assays. We also identified a 17 amino acid stretch previously predicted to be a nuclear localization sequence that is important for the binding of some of the TCPs, which results in a crinkled leaf and silique phenotype in transgenic A. thaliana. Moreover, we provide evidence that the SAP11-like protein has a destabilizing effect on some TCPs in vivo.
Collapse
|
14
|
Trivellone V, Wei W, Filippin L, Dietrich CH. Screening potential insect vectors in a museum biorepository reveals undiscovered diversity of plant pathogens in natural areas. Ecol Evol 2021; 11:6493-6503. [PMID: 34141234 PMCID: PMC8207438 DOI: 10.1002/ece3.7502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/03/2022] Open
Abstract
Phytoplasmas (Mollicutes, Acholeplasmataceae), vector-borne obligate bacterial plant parasites, infect nearly 1,000 plant species and unknown numbers of insects, mainly leafhoppers (Hemiptera, Deltocephalinae), which play a key role in transmission and epidemiology. Although the plant-phytoplasma-insect association has been evolving for >300 million years, nearly all known phytoplasmas have been discovered as a result of the damage inflicted by phytoplasma diseases on crops. Few efforts have been made to study phytoplasmas occurring in noneconomically important plants in natural habitats. In this study, a subsample of leafhopper specimens preserved in a large museum biorepository was analyzed to unveil potential new associations. PCR screening for phytoplasmas performed on 227 phloem-feeding leafhoppers collected worldwide from natural habitats revealed the presence of 6 different previously unknown phytoplasma strains. This indicates that museum collections of herbivorous insects represent a rich and largely untapped resource for discovery of new plant pathogens, that natural areas worldwide harbor a diverse but largely undiscovered diversity of phytoplasmas and potential insect vectors, and that independent epidemiological cycles occur in such habitats, posing a potential threat of disease spillover into agricultural systems. Larger-scale future investigations will contribute to a better understanding of phytoplasma genetic diversity, insect host range, and insect-borne phytoplasma transmission and provide an early warning for the emergence of new phytoplasma diseases across global agroecosystems.
Collapse
Affiliation(s)
- Valeria Trivellone
- Illinois Natural History SurveyPrairie Research InstituteUniversity of IllinoisChampaignILUSA
| | - Wei Wei
- Molecular Plant Pathology LaboratoryBeltsville Agricultural Research CenterAgricultural Research ServiceUnited States Department of AgricultureBeltsvilleMDUSA
| | - Luisa Filippin
- CREA–VECouncil for Agricultural Research and EconomicsResearch Centre for Viticulture and EnologyConegliano, TrevisoItaly
| | - Christopher H. Dietrich
- Illinois Natural History SurveyPrairie Research InstituteUniversity of IllinoisChampaignILUSA
| |
Collapse
|
15
|
Wei W, Trivellone V, Dietrich CH, Zhao Y, Bottner-Parker KD, Ivanauskas A. Identification of Phytoplasmas Representing Multiple New Genetic Lineages from Phloem-Feeding Leafhoppers Highlights the Diversity of Phytoplasmas and Their Potential Vectors. Pathogens 2021; 10:352. [PMID: 33809759 PMCID: PMC8002289 DOI: 10.3390/pathogens10030352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 01/18/2023] Open
Abstract
Phytoplasmas are obligate transkingdom bacterial parasites that infect a variety of plant species and replicate in phloem-feeding insects in the order Hemiptera, mainly leafhoppers (Cicadellidae). The insect capacity in acquisition, transmission, survival, and host range directly determines the epidemiology of phytoplasmas. However, due to the difficulty of insect sampling and the lack of follow-up transmission trials, the confirmed phytoplasma insect hosts are still limited compared with the identified plant hosts. Recently, quantitative polymerase chain reaction (qPCR)-based quick screening of 227 leafhoppers collected in natural habitats unveiled the presence of previously unknown phytoplasmas in six samples. In the present study, 76 leafhoppers, including the six prescreened positive samples, were further examined to identify and characterize the phytoplasma strains by semi-nested PCR. A total of ten phytoplasma strains were identified in leafhoppers from four countries including South Africa, Kyrgyzstan, Australia, and China. Based on virtual restriction fragment length polymorphism (RFLP) analysis, these ten phytoplasma strains were classified into four distinct ribosomal (16Sr) groups (16SrI, 16SrIII, 16SrXIV, and 16SrXV), representing five new subgroups (16SrI-AO, 16SrXIV-D, 16SrXIV-E, 16SrXIV-F, and 16SrXV-C). The results strongly suggest that the newly identified phytoplasma strains not only represent new genetic subgroup lineages, but also extend previously undiscovered geographical distributions. In addition, ten phytoplasma-harboring leafhoppers belonged to seven known leafhopper species, none of which were previously reported insect vectors of phytoplasmas. The findings from this study provide fresh insight into genetic diversity, geographical distribution, and insect host range of phytoplasmas. Further transmission trials and screening of new potential host plants and weed reservoirs in areas adjacent to collection sites of phytoplasma harboring leafhoppers will contribute to a better understanding of phytoplasma transmission and epidemiology.
Collapse
Affiliation(s)
- Wei Wei
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (Y.Z.); (K.D.B.-P.); (A.I.)
| | - Valeria Trivellone
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA; (V.T.); (C.H.D.)
| | - Christopher H. Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA; (V.T.); (C.H.D.)
| | - Yan Zhao
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (Y.Z.); (K.D.B.-P.); (A.I.)
| | - Kristi D. Bottner-Parker
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (Y.Z.); (K.D.B.-P.); (A.I.)
| | - Algirdas Ivanauskas
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (Y.Z.); (K.D.B.-P.); (A.I.)
| |
Collapse
|
16
|
Tan Y, Li Q, Zhao Y, Wei H, Wang J, Baker CJ, Liu Q, Wei W. Integration of metabolomics and existing omics data reveals new insights into phytoplasma-induced metabolic reprogramming in host plants. PLoS One 2021; 16:e0246203. [PMID: 33539421 PMCID: PMC7861385 DOI: 10.1371/journal.pone.0246203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/03/2022] Open
Abstract
Phytoplasmas are cell wall-less bacteria that induce abnormal plant growth and various diseases, causing severe economic loss. Phytoplasmas are highly dependent on nutrients imported from host cells because they have lost many genes involved in essential metabolic pathways during reductive evolution. However, metabolic crosstalk between phytoplasmas and host plants and the mechanisms of phytoplasma nutrient acquisition remain poorly understood. In this study, using metabolomics approach, sweet cherry virescence (SCV) phytoplasma-induced metabolite alterations in sweet cherry trees were investigated. A total of 676 metabolites were identified in SCV phytoplasma-infected and mock inoculated leaves, of which 187 metabolites were differentially expressed, with an overwhelming majority belonging to carbohydrates, fatty acids/lipids, amino acids, and flavonoids. Available omics data of interactions between plant and phytoplasma were also deciphered and integrated into the present study. The results demonstrated that phytoplasma infection promoted glycolysis and pentose phosphate pathway activities, which provide energy and nutrients, and facilitate biosynthesis of necessary low-molecular metabolites. Our findings indicated that phytoplasma can induce reprograming of plant metabolism to obtain nutrients for its own replication and infection. The findings from this study provide new insight into interactions of host plants and phytoplasmas from a nutrient acquisition perspective.
Collapse
Affiliation(s)
- Yue Tan
- Shandong Institute of Pomology, Taian, China
| | - Qingliang Li
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yan Zhao
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| | - Hairong Wei
- Shandong Institute of Pomology, Taian, China
| | - Jiawei Wang
- Shandong Institute of Pomology, Taian, China
| | - Con Jacyn Baker
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| | | | - Wei Wei
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| |
Collapse
|
17
|
Wei W, Davis RE, Bauchan GR, Zhao Y. New Symptoms Identified in Phytoplasma-Infected Plants Reveal Extra Stages of Pathogen-Induced Meristem Fate-Derailment. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1314-1323. [PMID: 31120802 DOI: 10.1094/mpmi-01-19-0035-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In flowering plants, the transition of a shoot apical meristem from vegetative to reproductive destiny is a graduated, multistage process that involves sequential conversion of the vegetative meristem to an inflorescence meristem, initiation of floral meristems, emergence of flower organ primordia, and formation of floral organs. This orderly process can be derailed by phytoplasma, a bacterium that parasitizes phloem sieve cells. In a previous study, we showed that phytoplasma-induced malformation of flowers reflects stage-specific derailment of shoot apical meristems from their genetically preprogrammed reproductive destiny. Our current study unveiled new symptoms of abnormal morphogenesis, pointing to derailment of meristem transition at additional stages previously unidentified. We also found that the fate of developing meristems may be derailed even after normal termination of the floral meristem and onset of seed production. Although previous reports by others have indicated that different symptoms may be induced by different phytoplasmal effectors, the phenomenon observed in our experiment raises interesting questions as to (i) whether effectors can act at specific stages of meristem transition and (ii) whether specific floral abnormalities are attributable to meristem fate-derailment events triggered by different effectors that each act at a specific stage in meristem transition. Research addressing such questions may lead to discoveries of an array of phytoplasmal effectors.
Collapse
Affiliation(s)
- Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, U.S.A
| | - Robert E Davis
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, U.S.A
| | - Gary R Bauchan
- Electron and Confocal Microscopy Unit, Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, U.S.A
| |
Collapse
|
18
|
Buoso S, Pagliari L, Musetti R, Martini M, Marroni F, Schmidt W, Santi S. 'Candidatus Phytoplasma solani' interferes with the distribution and uptake of iron in tomato. BMC Genomics 2019; 20:703. [PMID: 31500568 PMCID: PMC6734453 DOI: 10.1186/s12864-019-6062-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/26/2019] [Indexed: 11/25/2022] Open
Abstract
Background ‘Candidatus Phytoplasma solani’ is endemic in Europe and infects a wide range of weeds and cultivated plants. Phytoplasmas are prokaryotic plant pathogens that colonize the sieve elements of their host plant, causing severe alterations in phloem function and impairment of assimilate translocation. Typical symptoms of infected plants include yellowing of leaves or shoots, leaf curling, and general stunting, but the molecular mechanisms underlying most of the reported changes remain largely enigmatic. To infer a possible involvement of Fe in the host-phytoplasma interaction, we investigated the effects of ‘Candidatus Phytoplasma solani’ infection on tomato plants (Solanum lycopersicum cv. Micro-Tom) grown under different Fe regimes. Results Both phytoplasma infection and Fe starvation led to the development of chlorotic leaves and altered thylakoid organization. In infected plants, Fe accumulated in phloem tissue, altering the local distribution of Fe. In infected plants, Fe starvation had additive effects on chlorophyll content and leaf chlorosis, suggesting that the two conditions affected the phenotypic readout via separate routes. To gain insights into the transcriptional response to phytoplasma infection, or Fe deficiency, transcriptome profiling was performed on midrib-enriched leaves. RNA-seq analysis revealed that both stress conditions altered the expression of a large (> 800) subset of common genes involved in photosynthetic light reactions, porphyrin / chlorophyll metabolism, and in flowering control. In Fe-deficient plants, phytoplasma infection perturbed the Fe deficiency response in roots, possibly by interference with the synthesis or transport of a promotive signal transmitted from the leaves to the roots. Conclusions ‘Candidatus Phytoplasma solani’ infection changes the Fe distribution in tomato leaves, affects the photosynthetic machinery and perturbs the orchestration of root-mediated transport processes by compromising shoot-to-root communication. Electronic supplementary material The online version of this article (10.1186/s12864-019-6062-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Laura Pagliari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Marta Martini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Fabio Marroni
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy.,IGA Technology Services, Via Jacopo Linussio, 51, 33100, Udine, Italy
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan.,Biotechnology Center, National Chung Hsing University, 40227, Taichung, Taiwan
| | - Simonetta Santi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy.
| |
Collapse
|
19
|
Chang SH, Tan CM, Wu CT, Lin TH, Jiang SY, Liu RC, Tsai MC, Su LW, Yang JY. Alterations of plant architecture and phase transition by the phytoplasma virulence factor SAP11. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5389-5401. [PMID: 30165491 PMCID: PMC6255702 DOI: 10.1093/jxb/ery318] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/23/2018] [Indexed: 05/08/2023]
Abstract
As key mediators linking developmental processes with plant immunity, TCP (TEOSINTE-BRANCHED, CYCLOIDEA, PROLIFERATION FACTOR 1 and 2) transcription factors have been increasingly shown to be targets of pathogenic effectors. We report here that TB/CYC (TEOSINTE-BRANCHED/CYCLOIDEA)-TCPs are destabilized by phytoplasma SAP11 effectors, leading to the proliferation of axillary meristems. Although a high degree of sequence diversity was observed among putative SAP11 effectors identified from evolutionarily distinct clusters of phytoplasmas, these effectors acquired fundamental activity in destabilizing TB/CYC-TCPs. In addition, we demonstrate that miR156/SPLs and miR172/AP2 modules, which represent key regulatory hubs involved in plant phase transition, were modulated by Aster Yellows phytoplasma strain Witches' Broom (AY-WB) protein SAP11. A late-flowering phenotype with significant changes in the expression of flowering-related genes was observed in transgenic Arabidopsis plants expressing SAP11AYWB. These morphological and molecular alterations were correlated with the ability of SAP11 effectors to destabilize CIN (CINCINNATA)-TCPs. Although not all putative SAP11 effectors display broad-spectrum activities in modulating morphological and physiological changes in host plants, they serve as core virulence factors responsible for the witches' broom symptom caused by phytoplasmas.
Collapse
Affiliation(s)
- Shu Heng Chang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Choon Meng Tan
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Chih-Tang Wu
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Tzu-Hsiang Lin
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Shin-Ying Jiang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Ren-Ci Liu
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Chen Tsai
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Li-Wen Su
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
| | - Jun-Yi Yang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung, Taiwan
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Correspondence:
| |
Collapse
|
20
|
Gai YP, Zhao HN, Zhao YN, Zhu BS, Yuan SS, Li S, Guo FY, Ji XL. MiRNA-seq-based profiles of miRNAs in mulberry phloem sap provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Sci Rep 2018; 8:812. [PMID: 29339758 PMCID: PMC5770470 DOI: 10.1038/s41598-018-19210-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/20/2017] [Indexed: 11/09/2022] Open
Abstract
A wide range of miRNAs have been identified as phloem-mobile molecules that play important roles in coordinating plant development and physiology. Phytoplasmas are associated with hundreds of plant diseases, and the pathogenesis involved in the interactions between phytoplasmas and plants is still poorly understood. To analyse the molecular mechanisms of phytoplasma pathogenicity, the miRNAs profiles in mulberry phloem saps were examined in response to phytoplasma infection. A total of 86 conserved miRNAs and 19 novel miRNAs were identified, and 30 conserved miRNAs and 13 novel miRNAs were differentially expressed upon infection with phytoplasmas. The target genes of the differentially expressed miRNAs are involved in diverse signalling pathways showing the complex interactions between mulberry and phytoplasma. Interestingly, we found that mul-miR482a-5p was up-regulated in the infected phloem saps, and grafting experiments showed that it can be transported from scions to rootstock. Based on the results, the complexity and roles of the miRNAs in phloem sap and the potential molecular mechanisms of their changes were discussed. It is likely that the phytoplasma-responsive miRNAs in the phloem sap modulate multiple pathways and work cooperatively in response to phytoplasma infection, and their expression changes may be responsible for some symptoms in the infected plants.
Collapse
Affiliation(s)
- Ying-Ping Gai
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Huai-Ning Zhao
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Ya-Nan Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Bing-Sen Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Shuo-Shuo Yuan
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Shuo Li
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Fang-Yue Guo
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xian-Ling Ji
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China. .,College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| |
Collapse
|
21
|
Davis RE, Zhao Y, Wei W, Dally EL, Lee IM. ‘Candidatus Phytoplasma luffae’, a novel taxon associated with witches’ broom disease of loofah, Luffa aegyptica Mill. Int J Syst Evol Microbiol 2017; 67:3127-3133. [DOI: 10.1099/ijsem.0.001980] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Robert E. Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Wei Wei
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ellen L. Dally
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ing-Ming Lee
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
22
|
Zhou R, Zhu T, Han L, Liu M, Xu M, Liu Y, Han D, Qiu D, Gong Q, Liu X. The asparagine-rich protein NRP interacts with the Verticillium effector PevD1 and regulates the subcellular localization of cryptochrome 2. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3427-3440. [PMID: 28633330 DOI: 10.1093/jxb/erx192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/16/2017] [Indexed: 05/20/2023]
Abstract
The soil-borne fungal pathogen Verticillium dahliae infects a wide range of dicotyledonous plants including cotton, tobacco, and Arabidopsis. Among the effector proteins secreted by V. dahliae, the 16 kDa PevD1 induces a hypersensitive response in tobacco. Here we report the high-resolution structure of PevD1 with folds resembling a C2 domain-like structure with a calcium ion bound to the C-terminal acidic pocket. A yeast two-hybrid screen, designed to probe for molecular functions of PevD1, identified Arabidopsis asparagine-rich protein (NRP) as the interacting partner of PevD1. Extending the pathway of V. dahliae effects, which include induction of early flowering in cotton and Arabidopsis, NRP was found to interact with cryptochrome 2 (CRY2), leading to increased cytoplasmic accumulation of CRY2 in a blue light-independent manner. Further physiological and genetic evidence suggests that PevD1 indirectly activates CRY2 by antagonizing NRP functions. The promotion of CRY2-mediated flowering by a fungal effector outlines a novel pathway by which an external stimulus is recognized and transferred in changing a developmental program.
Collapse
Affiliation(s)
- Ruimin Zhou
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tong Zhu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lei Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Institute of Plant Protection, Beijing 100081, China
| | - Mengjie Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Institute of Plant Protection, Beijing 100081, China
| | - Mengyuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanli Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dandan Han
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Institute of Plant Protection, Beijing 100081, China
| | - Qingqiu Gong
- Tianjin Key Laboratory of Protein Science, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Davis RE, Harrison NA, Zhao Y, Wei W, Dally EL. ‘Candidatus Phytoplasma hispanicum’, a novel taxon associated with Mexican periwinkle virescence disease of Catharanthus roseus. Int J Syst Evol Microbiol 2016; 66:3463-3467. [DOI: 10.1099/ijsem.0.001218] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Robert E. Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Nigel A. Harrison
- Plant Pathology Department, Research and Education Center, University of Florida, Fort Lauderdale, FL 33314, USA
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Wei Wei
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ellen L. Dally
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
24
|
Ghareeb H, Drechsler F, Löfke C, Teichmann T, Schirawski J. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis. PLANT PHYSIOLOGY 2015; 169:2789-804. [PMID: 26511912 PMCID: PMC4677912 DOI: 10.1104/pp.15.01347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/23/2015] [Indexed: 05/26/2023]
Abstract
The biotrophic fungus Sporisorium reilianum causes head smut of maize (Zea mays) after systemic plant colonization. Symptoms include the formation of multiple female inflorescences at subapical nodes of the stalk because of loss of apical dominance. By deletion analysis of cluster 19-1, the largest genomic divergence cluster in S. reilianum, we identified a secreted fungal effector responsible for S. reilianum-induced loss of apical dominance, which we named SUPPRESSOR OF APICAL DOMINANCE1 (SAD1). SAD1 transcript levels were highly up-regulated during biotrophic fungal growth in all infected plant tissues. SAD1-green fluorescent protein fusion proteins expressed by recombinant S. reilianum localized to the extracellular hyphal space. Transgenic Arabidopsis (Arabidopsis thaliana)-expressing green fluorescent protein-SAD1 displayed an increased number of secondary rosette-leaf branches. This suggests that SAD1 manipulates inflorescence branching architecture in maize and Arabidopsis through a conserved pathway. Using a yeast (Saccharomyces cerevisiae) two-hybrid library of S. reilianum-infected maize tissues, we identified potential plant interaction partners that had a predicted function in ubiquitination, signaling, and nuclear processes. Presence of SAD1 led to an increase of the transcript levels of the auxin transporter PIN-FORMED1 in the root and a reduction of the branching regulator TEOSINTE BRANCHED1 in the stalk. This indicates a role of SAD1 in regulation of apical dominance by modulation of branching through increasing transcript levels of the auxin transporter PIN1 and derepression of bud outgrowth.
Collapse
Affiliation(s)
- Hassan Ghareeb
- Molecular Biology of Plant-Microbe Interactions (H.G., J.S.) andPlant Cell Biology (C.L., T.T.), Albrecht von Haller Institute of Plant Sciences, Georg August Universität Göttingen, 37077 Goettingen, Germany;Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany (H.G., J.S.);Department of Plant Biotechnology, National Research Centre, 12311 Cairo, Egypt (H.G.); andMicrobial Genetics, Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany (F.D., J.S.)
| | - Frank Drechsler
- Molecular Biology of Plant-Microbe Interactions (H.G., J.S.) andPlant Cell Biology (C.L., T.T.), Albrecht von Haller Institute of Plant Sciences, Georg August Universität Göttingen, 37077 Goettingen, Germany;Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany (H.G., J.S.);Department of Plant Biotechnology, National Research Centre, 12311 Cairo, Egypt (H.G.); andMicrobial Genetics, Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany (F.D., J.S.)
| | - Christian Löfke
- Molecular Biology of Plant-Microbe Interactions (H.G., J.S.) andPlant Cell Biology (C.L., T.T.), Albrecht von Haller Institute of Plant Sciences, Georg August Universität Göttingen, 37077 Goettingen, Germany;Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany (H.G., J.S.);Department of Plant Biotechnology, National Research Centre, 12311 Cairo, Egypt (H.G.); andMicrobial Genetics, Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany (F.D., J.S.)
| | - Thomas Teichmann
- Molecular Biology of Plant-Microbe Interactions (H.G., J.S.) andPlant Cell Biology (C.L., T.T.), Albrecht von Haller Institute of Plant Sciences, Georg August Universität Göttingen, 37077 Goettingen, Germany;Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany (H.G., J.S.);Department of Plant Biotechnology, National Research Centre, 12311 Cairo, Egypt (H.G.); andMicrobial Genetics, Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany (F.D., J.S.)
| | - Jan Schirawski
- Molecular Biology of Plant-Microbe Interactions (H.G., J.S.) andPlant Cell Biology (C.L., T.T.), Albrecht von Haller Institute of Plant Sciences, Georg August Universität Göttingen, 37077 Goettingen, Germany;Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany (H.G., J.S.);Department of Plant Biotechnology, National Research Centre, 12311 Cairo, Egypt (H.G.); andMicrobial Genetics, Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany (F.D., J.S.)
| |
Collapse
|
25
|
Nejat N, Cahill DM, Vadamalai G, Ziemann M, Rookes J, Naderali N. Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Genet Genomics 2015; 290:1899-910. [PMID: 25893418 DOI: 10.1007/s00438-015-1046-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/06/2015] [Indexed: 12/25/2022]
Abstract
Invasive phytoplasmas wreak havoc on coconut palms worldwide, leading to high loss of income, food insecurity and extreme poverty of farmers in producing countries. Phytoplasmas as strictly biotrophic insect-transmitted bacterial pathogens instigate distinct changes in developmental processes and defence responses of the infected plants and manipulate plants to their own advantage; however, little is known about the cellular and molecular mechanisms underlying host-phytoplasma interactions. Further, phytoplasma-mediated transcriptional alterations in coconut palm genes have not yet been identified. This study evaluated the whole transcriptome profiles of naturally infected leaves of Cocos nucifera ecotype Malayan Red Dwarf in response to yellow decline phytoplasma from group 16SrXIV, using RNA-Seq technique. Transcriptomics-based analysis reported here identified genes involved in coconut innate immunity. The number of down-regulated genes in response to phytoplasma infection exceeded the number of genes up-regulated. Of the 39,873 differentially expressed unigenes, 21,860 unigenes were suppressed and 18,013 were induced following infection. Comparative analysis revealed that genes associated with defence signalling against biotic stimuli were significantly overexpressed in phytoplasma-infected leaves versus healthy coconut leaves. Genes involving cell rescue and defence, cellular transport, oxidative stress, hormone stimulus and metabolism, photosynthesis reduction, transcription and biosynthesis of secondary metabolites were differentially represented. Our transcriptome analysis unveiled a core set of genes associated with defence of coconut in response to phytoplasma attack, although several novel defence response candidate genes with unknown function have also been identified. This study constitutes valuable sequence resource for uncovering the resistance genes and/or susceptibility genes which can be used as genetic tools in disease resistance breeding.
Collapse
Affiliation(s)
- Naghmeh Nejat
- Institute of Tropical Agriculture, University of Putra Malaysia, Serdang, Malaysia.
| | - David M Cahill
- School of Life and Environmental Sciences, Faculty of Science Engineering and Built Environment, Deakin University, Geelong, Australia
| | - Ganesan Vadamalai
- Institute of Tropical Agriculture, University of Putra Malaysia, Serdang, Malaysia
| | - Mark Ziemann
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - James Rookes
- School of Life and Environmental Sciences, Faculty of Science Engineering and Built Environment, Deakin University, Geelong, Australia
| | - Neda Naderali
- Institute of Tropical Agriculture, University of Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
26
|
Pistil Smut Infection Increases Ovary Production, Seed Yield Components, and Pseudosexual Reproductive Allocation in Buffalograss. PLANTS 2014; 3:594-612. [PMID: 27135522 PMCID: PMC4844276 DOI: 10.3390/plants3040594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 11/17/2022]
Abstract
Sex expression of dioecious buffalograss [Bouteloua dactyloides Columbus (syn. Buchloë dactyloides (Nutt.) Engelm.)] is known to be environmentally stable with approximate 1:1, male to female, sex ratios. Here we show that infection by the pistil smut fungus [Salmacisiabuchloëana Huff & Chandra (syn. Tilletia buchloëana Kellerman and Swingle)] shifts sex ratios of buffalograss to be nearly 100% phenotypically hermaphroditic. In addition, pistil smut infection decreased vegetative reproductive allocation, increased most seed yield components, and increased pseudosexual reproductive allocation in both sex forms compared to uninfected clones. In female sex forms, pistil smut infection resulted in a 26 fold increase in ovary production and a 35 fold increase in potential harvest index. In male sex forms, pistil smut infection resulted in 2.37 fold increase in floret number and over 95% of these florets contained a well-developed pistil. Although all ovaries of infected plants are filled with fungal teliospores and hence reproductively sterile, an average male-female pair of infected plants exhibited an 87 fold increase in potential harvest index compared to their uninfected clones. Acquiring an ability to mimic the effects of pistil smut infection would enhance our understanding of the flowering process in grasses and our efforts to increase seed yield of buffalograss and perhaps other grasses.
Collapse
|
27
|
Naseem M, Srivastava M, Dandekar T. Stem-cell-triggered immunity safeguards cytokinin enriched plant shoot apexes from pathogen infection. FRONTIERS IN PLANT SCIENCE 2014; 5:588. [PMID: 25400652 PMCID: PMC4214217 DOI: 10.3389/fpls.2014.00588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
Intricate mechanisms discriminate between friends and foes in plants. Plant organs deploy overlapping and distinct protection strategies. Despite vulnerability to a plethora of pathogens, the growing tips of plants grow bacteria free. The shoot apical meristem (SAM) is among three stem cells niches, a self-renewable reservoir for the future organogenesis of leaf, stem, and flowers. How plants safeguard this high value growth target from infections was not known until now. Recent reports find the stem cell secreted 12-amino acid peptide CLV3p (CLAVATA3 peptide) is perceived by FLS2 (FLAGELLIN SENSING 2) receptor and activates the transcription of immunity and defense marker genes. No infection in the SAM of wild type plants and bacterial infection in clv3 and fls2 mutants illustrate this natural protection against infections. Cytokinins (CKs) are enriched in the SAM and regulate meristem activities by their involvement in stem cell signaling networks. Auxin mediates plant susceptibility to pathogen infections while CKs boost plant immunity. Here, in addition to the stem-cell-triggered immunity we also highlight a potential link between CK signaling and CLV3p mediated immune response in the SAM.
Collapse
Affiliation(s)
| | | | - Thomas Dandekar
- *Correspondence: Thomas Dandekar, Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany e-mail:
| |
Collapse
|
28
|
Gai YP, Li YQ, Guo FY, Yuan CZ, Mo YY, Zhang HL, Wang H, Ji XL. Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Sci Rep 2014; 4:5378. [PMID: 24946736 PMCID: PMC5381547 DOI: 10.1038/srep05378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/02/2014] [Indexed: 02/04/2023] Open
Abstract
The yellow dwarf disease associated with phytoplasmas is one of the most devastating diseases of mulberry and the pathogenesis involved in the disease is poorly understood. To analyze the molecular mechanisms mediating gene expression in mulberry-phytoplasma interaction, the comprehensive sRNA changes of mulberry leaf in response to phytoplasma-infection were examined. A total of 164 conserved miRNAs and 23 novel miRNAs were identified, and 62 conserved miRNAs and 13 novel miRNAs were found to be involved in the response to phytoplasma-infection. Meanwhile, target genes of the responsive miRNAs were identified by sequencing of the degradome library. In addition, the endogenous siRNAs were sequenced, and their expression profiles were characterized. Interestingly, we found that phytoplasma infection induced the accumulation of mul-miR393-5p which was resulted from the increased transcription of MulMIR393A, and mul-miR393-5p most likely initiate the biogenesis of siRNAs from TIR1 transcript. Based on the results, we can conclude that phytoplasma-responsive sRNAs modulate multiple hormone pathways and play crucial roles in the regulation of development and metabolism. These responsive sRNAs may work cooperatively in the response to phytoplasma-infection and be responsible for some symptoms in the infected plants.
Collapse
Affiliation(s)
- Ying-Ping Gai
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yi-Qun Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Fang-Yue Guo
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Chuan-Zhong Yuan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yao-Yao Mo
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Hua-Liang Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Hong Wang
- College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xian-Ling Ji
- 1] State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China [2] College of Forestry, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| |
Collapse
|