1
|
Pathikonda S, Amirmahani F, Mathew D, Muthukrishnan SD. Histone acetyltransferases as promising therapeutic targets in glioblastoma resistance. Cancer Lett 2024; 604:217269. [PMID: 39326554 DOI: 10.1016/j.canlet.2024.217269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Glioblastoma (GBM) is a fatal adult brain tumor with an extremely poor prognosis. GBM poses significant challenges for targeted therapies due to its intra- and inter-tumoral heterogeneity, a highly immunosuppressive microenvironment, diffuse infiltration into normal brain parenchyma, protection by the blood-brain barrier and acquisition of therapeutic resistance. Recent studies have implicated epigenetic modifiers as key players driving tumorigenesis, resistance, and progression of GBM. While the vast majority of GBM research on epigenetic modifiers thus far has focused predominantly on elucidating the functional roles and targeting of DNA methyltransferases and histone deacetylases, emerging evidence indicates that histone acetyltransferases (HATs) also play a key role in mediating plasticity and therapeutic resistance in GBM. Here, we will provide an overview of HATs, their dual roles and functions in cancer as both tumor suppressors and oncogenes and focus specifically on their implications in GBM resistance. We also discuss the technical challenges in developing selective HAT inhibitors and highlight their promise as potential anti-cancer therapeutics for treating intractable cancers such as GBM.
Collapse
Affiliation(s)
- Spoorthy Pathikonda
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Farzaneh Amirmahani
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Diya Mathew
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| | - Sree Deepthi Muthukrishnan
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City 73104, USA.
| |
Collapse
|
2
|
Ciceri S, Bertolotti A, Serra A, Gattuso G, Boschetti L, Capasso M, Cecchi C, Sorrentino S, Quarello P, Ciniselli CM, Verderio P, De Cecco L, Manenti G, Diomedi Camassei F, Collini P, Spreafico F, Perotti D. Widening the spectrum of players affected by genetic changes in Wilms tumor relapse. iScience 2024; 27:110684. [PMID: 39262773 PMCID: PMC11387809 DOI: 10.1016/j.isci.2024.110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Few studies investigated the genetics of relapsed Wilms tumor (WT), suggesting the SIX1 gene, the microRNA processing genes, and the MYCN network as possibly involved in a relevant percentage of relapses. We investigated 28 relapsing WT patients (10 new cases and 18 cases in which the involvement of SIX and miRNAPG had been excluded) with a panel of ∼5000 genes. We identified variants affecting genes involved in DNA damage prevention and repair in 12/28 relapsing patients (42.9%), and affecting genes involved in chromatin modification and regulation in 6/28 relapsing patients (21.4%), widening the spectrum of anomalies detected in relapsed tumors. The disclosure of molecular pathways possibly underlying tumor progression might allow to use molecularly targeted therapies at relapse. Surprisingly, germline anomalies, mostly affecting DNA damage prevention and repair genes, were identified in 13/28 patients (46.4%), raising the issue of performing a genetic testing to all children presenting with a WT.
Collapse
Affiliation(s)
- Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alessia Bertolotti
- Diagnostic and Molecular Research Lab, Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Annalisa Serra
- Department of Pediatric Hematology and Oncology, Gene and Cellular Therapy, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giovanna Gattuso
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Luna Boschetti
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Maria Capasso
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Cecilia Cecchi
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | | | - Paola Quarello
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Chiara Maura Ciniselli
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Paolo Verderio
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giacomo Manenti
- Unit of Animal Health and Welfare, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Paola Collini
- Soft Tissue Tumor Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
3
|
Ali ML, Noushin F, Azme E, Hasan MM, Hoque N, Metu AF. Marine natural compounds as potential CBP bromodomain inhibitors for treating cancer: an in-silico approach using molecular docking, ADMET, molecular dynamics simulations and MM-PBSA binding free energy calculations. In Silico Pharmacol 2024; 12:85. [PMID: 39310674 PMCID: PMC11411048 DOI: 10.1007/s40203-024-00258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
The cAMP-responsive element binding protein (CREB) binding protein (CBP), a bromodomain-containing protein, engages with multiple transcription factors and enhances the activation of many genes. CBP bromodomain acts as an epigenetic reader and plays an important role in the CBP-chromatin interaction which makes it an important drug target for treating many diseases. Though inhibiting CBP bromodomain was reported to have great potential in cancer therapeutics, approved CBP bromodomain inhibitor is yet to come. We utilized various in silico approaches like molecular docking, ADMET, molecular dynamics (MD) simulations, MM-PBSA calculations, and in silico PASS predictions to identify potential CBP bromodomain inhibitors from marine natural compounds as they have been identified as having distinctive chemical structures and greater anticancer activities. To develop a marine natural compound library for this investigation, Lipinski's rule of five was used. Sequential investigations utilizing molecular docking, ADMET studies, 100 ns MD simulations, and MM-PBSA calculations revealed that three marine compounds-ascididemin, neoamphimedine, and stelletin A-demonstrated superior binding affinity compared to the standard inhibitor, 69 A. These compounds also exhibited suitable drug-like properties, a favorable safety profile, and formed stable protein-ligand complexes. The in-silico PASS tool predicted that these compounds have significant potential for anticancer activity. Among them, ascididemin demonstrated the highest binding affinity in both molecular docking and MM-PBSA calculations, as well as a better stability profile in MD simulations. Hence, ascididemin can be a potential inhibitor of CBP bromodomain. However, in vitro and in vivo validation is required for further confirmation of these findings. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00258-5.
Collapse
Affiliation(s)
- Md. Liakot Ali
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, 4331 Bangladesh
| | - Fabiha Noushin
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, 4331 Bangladesh
| | - Eva Azme
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, 4331 Bangladesh
| | - Md. Mahmudul Hasan
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, 4331 Bangladesh
| | - Neamul Hoque
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, 4331 Bangladesh
| | - Afroz Fathema Metu
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, 4331 Bangladesh
| |
Collapse
|
4
|
Yuan X, Hao X, Chan HL, Zhao N, Pedroza DA, Liu F, Le K, Smith AJ, Calderon SJ, Lieu N, Soth MJ, Jones P, Zhang XH, Rosen JM. CREB-binding protein/P300 bromodomain inhibition reduces neutrophil accumulation and activates antitumor immunity in triple-negative breast cancer. JCI Insight 2024; 9:e182621. [PMID: 39287984 PMCID: PMC11533985 DOI: 10.1172/jci.insight.182621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Tumor-associated neutrophils (TANs) have been shown to promote immunosuppression and tumor progression, and a high TAN frequency predicts poor prognosis in triple-negative breast cancer (TNBC). Dysregulation of CREB-binding protein (CBP)/P300 function has been observed with multiple cancer types. The bromodomain (BRD) of CBP/P300 has been shown to regulate its activity. In this study, we found that IACS-70654, a selective CBP/P300 BRD inhibitor, reduced TANs and inhibited the growth of neutrophil-enriched TNBC models. In the bone marrow, CBP/P300 BRD inhibition reduced the tumor-driven abnormal differentiation and proliferation of neutrophil progenitors. Inhibition of CBP/P300 BRD also stimulated the immune response by inducing an IFN response and MHCI expression in tumor cells and increasing tumor-infiltrated cytotoxic T cells. Moreover, IACS-70654 improved the response of a neutrophil-enriched TNBC model to docetaxel and immune checkpoint blockade. This provides a rationale for combining a CBP/P300 BRD inhibitor with standard-of-care therapies in future clinical trials for neutrophil-enriched TNBC.
Collapse
Affiliation(s)
- Xueying Yuan
- Department of Molecular and Cellular Biology and
| | - Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Hilda L. Chan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Na Zhao
- Department of Molecular and Cellular Biology and
| | - Diego A. Pedroza
- Department of Molecular and Cellular Biology and
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Kang Le
- Institute for Applied Cancer Science (IACS), University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Nadia Lieu
- Department of Molecular and Cellular Biology and
| | - Michael J. Soth
- Institute for Applied Cancer Science (IACS), University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Philip Jones
- Institute for Applied Cancer Science (IACS), University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiang H.F. Zhang
- Department of Molecular and Cellular Biology and
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
5
|
Dong M, Zhang Y, Chen M, Tan Y, Min J, He X, Liu F, Gu J, Jiang H, Zheng L, Chen J, Yin Q, Li X, Chen X, Shao Y, Ji Y, Chen H. ASF1A-dependent P300-mediated histone H3 lysine 18 lactylation promotes atherosclerosis by regulating EndMT. Acta Pharm Sin B 2024; 14:3027-3048. [PMID: 39027248 PMCID: PMC11252488 DOI: 10.1016/j.apsb.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 07/20/2024] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a key driver of atherosclerosis. Aerobic glycolysis is increased in the endothelium of atheroprone areas, accompanied by elevated lactate levels. Histone lactylation, mediated by lactate, can regulate gene expression and participate in disease regulation. However, whether histone lactylation is involved in atherosclerosis remains unknown. Here, we report that lipid peroxidation could lead to EndMT-induced atherosclerosis by increasing lactate-dependent histone H3 lysine 18 lactylation (H3K18la) in vitro and in vivo, as well as in atherosclerotic patients' arteries. Mechanistically, the histone chaperone ASF1A was first identified as a cofactor of P300, which precisely regulated the enrichment of H3K18la at the promoter of SNAI1, thereby activating SNAI1 transcription and promoting EndMT. We found that deletion of ASF1A inhibited EndMT and improved endothelial dysfunction. Functional analysis based on Apoe KO Asf1a ECKO mice in the atherosclerosis model confirmed the involvement of H3K18la in atherosclerosis and found that endothelium-specific ASF1A deficiency inhibited EndMT and alleviated atherosclerosis development. Inhibition of glycolysis by pharmacologic inhibition and advanced PROTAC attenuated H3K18la, SNAI1 transcription, and EndMT-induced atherosclerosis. This study illustrates precise crosstalk between metabolism and epigenetics via H3K18la by the P300/ASF1A molecular complex during EndMT-induced atherogenesis, which provides emerging therapies for atherosclerosis.
Collapse
Affiliation(s)
- Mengdie Dong
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, and Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
| | - Yunjia Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Minghong Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yongkang Tan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jiao Min
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xian He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fuhao Liu
- Department of Clinical Medicine, Nanjing Medical University TIANYUAN Honors School, Nanjing Medical University, Nanjing 211166, China
| | - Jiaming Gu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hong Jiang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Longbin Zheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Department of Anesthesiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Jiajing Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Quanwen Yin
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing 211166, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Hongshan Chen
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, and Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Cardiology, Huai'an First People's Hospital Affiliated with Nanjing Medical University, Huai'an 223399, China
| |
Collapse
|
6
|
Yuan X, Hao X, Chan HL, Zhao N, Pedroza DA, Liu F, Le K, Smith AJ, Calderon SJ, Lieu N, Soth MJ, Jones P, Zhang XHF, Rosen JM. CBP/P300 BRD Inhibition Reduces Neutrophil Accumulation and Activates Antitumor Immunity in TNBC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.590983. [PMID: 38712292 PMCID: PMC11071628 DOI: 10.1101/2024.04.25.590983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tumor-associated neutrophils (TANs) have been shown to promote immunosuppression and tumor progression, and a high TAN frequency predicts poor prognosis in triple-negative breast cancer (TNBC). Dysregulation of CREB binding protein (CBP)/P300 function has been observed with multiple cancer types. The bromodomain (BRD) of CBP/P300 has been shown to regulate its activity. In this study, we found that IACS-70654, a novel and selective CBP/P300 BRD inhibitor, reduced TANs and inhibited the growth of neutrophil-enriched TNBC models. In the bone marrow, CBP/P300 BRD inhibition reduced the tumor-driven abnormal differentiation and proliferation of neutrophil progenitors. Inhibition of CBP/P300 BRD also stimulated the immune response by inducing an IFN response and MHCI expression in tumor cells and increasing tumor-infiltrated CTLs. Moreover, IACS-70654 improved the response of a neutrophil-enriched TNBC model to docetaxel and immune checkpoint blockade. This provides a rationale for combining a CBP/P300 BRD inhibitor with standard-of-care therapies in future clinical trials for neutrophil-enriched TNBC.
Collapse
Affiliation(s)
- Xueying Yuan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Hilda L Chan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Diego A Pedroza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Kang Le
- Institute for Applied Cancer Science (IACS), the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alex J Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sebastian J Calderon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nadia Lieu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Michael J Soth
- Institute for Applied Cancer Science (IACS), the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip Jones
- Institute for Applied Cancer Science (IACS), the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Angappulige DH, Mahajan NP, Mahajan K. Epigenetic underpinnings of tumor-immune dynamics in prostate cancer immune suppression. Trends Cancer 2024; 10:369-381. [PMID: 38341319 DOI: 10.1016/j.trecan.2024.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/12/2024]
Abstract
Prostate cancer (PC) is immunosuppressive and refractory to immunotherapy. Infiltration of myeloid-derived suppressor cells (MDSCs) and senescent-like neutrophils and T cell exhaustion are observed in the tumor microenvironment (TME) following androgen receptor (AR) antagonism with antiandrogens or androgen ablation. De novo post-translational acetylation of the AR, HOXB13, and H2A at K609, K13, and K130, respectively, and phosphorylation of H4 at Y88 have emerged as key epigenetic modifications associated with castration-resistant PC (CRPC). The resulting chromatin changes are integrated into cellular processes via phosphorylation of the AR, ACK1, ATPF1A, and SREBP1 at Y267, Y284, Y243/Y246, and Y673/Y951, respectively. In this review, we discuss how these de novo epigenetic alterations drive resistance and how efforts aimed at targeting these regulators may overcome immune suppression observed in PC.
Collapse
Affiliation(s)
- Duminduni Hewa Angappulige
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kiran Mahajan
- Division of Urologic Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Kersey AL, Cheng DY, Deo KA, Dubell CR, Wang TC, Jaiswal MK, Kim MH, Murali A, Hargett SE, Mallick S, Lele TP, Singh I, Gaharwar AK. Stiffness assisted cell-matrix remodeling trigger 3D mechanotransduction regulatory programs. Biomaterials 2024; 306:122473. [PMID: 38335719 DOI: 10.1016/j.biomaterials.2024.122473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
Engineered matrices provide a valuable platform to understand the impact of biophysical factors on cellular behavior such as migration, proliferation, differentiation, and tissue remodeling, through mechanotransduction. While recent studies have identified some mechanisms of 3D mechanotransduction, there is still a critical knowledge gap in comprehending the interplay between 3D confinement, ECM properties, and cellular behavior. Specifically, the role of matrix stiffness in directing cellular fate in 3D microenvironment, independent of viscoelasticity, microstructure, and ligand density remains poorly understood. To address this gap, we designed a nanoparticle crosslinker to reinforce collagen-based hydrogels without altering their chemical composition, microstructure, viscoelasticity, and density of cell-adhesion ligand and utilized it to understand cellular dynamics. This crosslinking mechanism utilizes nanoparticles as crosslink epicenter, resulting in 10-fold increase in mechanical stiffness, without other changes. Human mesenchymal stem cells (hMSCs) encapsulated in 3D responded to mechanical stiffness by displaying circular morphology on soft hydrogels (5 kPa) and elongated morphology on stiff hydrogels (30 kPa). Stiff hydrogels facilitated the production and remodeling of nascent extracellular matrix (ECM) and activated mechanotransduction cascade. These changes were driven through intracellular PI3AKT signaling, regulation of epigenetic modifiers and activation of YAP/TAZ signaling. Overall, our study introduces a unique biomaterials platform to understand cell-ECM mechanotransduction in 3D for regenerative medicine as well as disease modelling.
Collapse
Affiliation(s)
- Anna L Kersey
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Daniel Y Cheng
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kaivalya A Deo
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Christina R Dubell
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ting-Ching Wang
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Manish K Jaiswal
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Min Hee Kim
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Aparna Murali
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sarah E Hargett
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sumana Mallick
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Irtisha Singh
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA; Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA.
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA; Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA; Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
9
|
Wang W, Shi W, Wang Y, Yang Y, Li P, Zeng Z, Hu W, Chen Y, Tang D, Dai Y. Systematic proteomics profiling of lysine crotonylation of the lung at Pseudoglandular and Canalicular phases in human fetus. Proteome Sci 2023; 21:22. [PMID: 38041078 PMCID: PMC10691156 DOI: 10.1186/s12953-023-00215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/28/2023] [Indexed: 12/03/2023] Open
Abstract
Lung tissue is an important organ of the fetus, and genomic research on its development has improved our understanding of the biology of this tissue. However, the proteomic research of developing fetal lung tissue is still very scarce. We conducted comprehensive analysis of two developmental stages of fetal lung tissue of proteomics. It showed the developmental characteristics of lung tissue, such as the down-regulation of metabolism-related protein expression, the up-regulation of cell cycle-related proteins, and the regulation in proteins and pathways related to lung development. In addition, we also discovered some key core proteins related to lung development, and provided some key crotonylation modification sites that regulation during lung tissue development. Our comprehensive analysis of lung proteomics can provide a more comprehensive understanding of the developmental status of lung tissue, and provide a certain reference for future research and epigenetics of lung tissue.
Collapse
Affiliation(s)
- Wei Wang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Wei Shi
- Department of Obstetrics and Gynecology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern, University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Yinglan Wang
- Department of Obstetrics and Gynecology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern, University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Yane Yang
- Shenzhen Far East Women & Children Hospital, Shenzhen, 518000, Guangdong, China
| | - Ping Li
- Shenzhen Far East Women & Children Hospital, Shenzhen, 518000, Guangdong, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Wenlong Hu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Yumei Chen
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China.
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China.
| |
Collapse
|
10
|
Bu H, Lan X, Cheng H, Pei C, Ouyang M, Chen Y, Huang X, Yu L, Tan Y. Development of an interfering peptide M1-20 with potent anti-cancer effects by targeting FOXM1. Cell Death Dis 2023; 14:533. [PMID: 37598210 PMCID: PMC10439915 DOI: 10.1038/s41419-023-06056-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Disrupting protein-protein interactions (PPIs) has emerged as a promising strategy for cancer drug development. Interfering peptides disrupting PPIs can be rationally designed based on the structures of natural sequences mediating these interactions. Transcription factor FOXM1 overexpresses in multiple cancers and is considered an effective target for cancer therapeutic drug development. Using a rational design approach, we have generated a peptide library from the FOXM1 C-terminal sequence and screened FOXM1-binding peptides. Combining FOXM1 binding and cell inhibitory results, we have obtained a FOXM1-targeting interfering peptide M1-20 that is optimized from the natural parent peptide to the D-retro-inverso peptide. With improved stability characteristics, M1-20 inhibits proliferation and migration, and induces apoptosis of cancer cells. Mechanistically, M1-20 inhibits FOXM1 transcriptional activities by disrupting its interaction between the MuvB complex and the transcriptional co-activator CBP. These are consistent with the results that M1-20 suppresses cancer progression and metastasis without noticeable toxic and side effects in wild-type mice. These findings reveal that M1-20 has the potential to be developed as an anti-cancer drug candidate targeting FOXM1.
Collapse
Affiliation(s)
- Huitong Bu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Xianling Lan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Haojie Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Chaozhu Pei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Min Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Yan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaoqin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Li Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
11
|
Zhu Y, Wang Z, Li Y, Peng H, Liu J, Zhang J, Xiao X. The Role of CREBBP/EP300 and Its Therapeutic Implications in Hematological Malignancies. Cancers (Basel) 2023; 15:cancers15041219. [PMID: 36831561 PMCID: PMC9953837 DOI: 10.3390/cancers15041219] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Disordered histone acetylation has emerged as a key mechanism in promoting hematological malignancies. CREB-binding protein (CREBBP) and E1A-binding protein P300 (EP300) are two key acetyltransferases and transcriptional cofactors that regulate gene expression by regulating the acetylation levels of histone proteins and non-histone proteins. CREBBP/EP300 dysregulation and CREBBP/EP300-containing complexes are critical for the initiation, progression, and chemoresistance of hematological malignancies. CREBBP/EP300 also participate in tumor immune responses by regulating the differentiation and function of multiple immune cells. Currently, CREBBP/EP300 are attractive targets for drug development and are increasingly used as favorable tools in preclinical studies of hematological malignancies. In this review, we summarize the role of CREBBP/EP300 in normal hematopoiesis and highlight the pathogenic mechanisms of CREBBP/EP300 in hematological malignancies. Moreover, the research basis and potential future therapeutic implications of related inhibitors were also discussed from several aspects. This review represents an in-depth insight into the physiological and pathological significance of CREBBP/EP300 in hematology.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Zi Wang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Yanan Li
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Ji Zhang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang 421001, China
- Correspondence: (J.Z.); (X.X.); Tel.: +86-734-8279050 (J.Z.); +86-731-84805449 (X.X.)
| | - Xiaojuan Xiao
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
- Correspondence: (J.Z.); (X.X.); Tel.: +86-734-8279050 (J.Z.); +86-731-84805449 (X.X.)
| |
Collapse
|
12
|
Yang L, Tian J, Wang J, Zeng J, Wang T, Lin B, Linneman J, Li L, Niu Y, Gou D, Zhang Y. The protective role of EP300 in monocrotaline-induced pulmonary hypertension. Front Cardiovasc Med 2023; 10:1037217. [PMID: 36910531 PMCID: PMC9992637 DOI: 10.3389/fcvm.2023.1037217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Background Pulmonary hypertension (PH) is a lethal disease characterized by pulmonary vascular remodeling, which is mediated by the abnormal proliferation/migration of pulmonary arterial smooth muscle cells (PASMCs). Recent reports suggest the involvement of histone acetylation in PAH development and that histone deacetylase (HDAC) inhibitors have therapeutic potential for the treatment of PAH. EP300 is an acetyltransferase that plays diverse roles in cell proliferation, differentiation, and apoptosis. However, the functions of EP3000 in PH are rarely studied. Results In this work, we found that the expression of EP300 was increased in the pulmonary arteries of monocrotaline (MCT)-induced PH rats. Knockdown of EP300 by AAV-mediated shRNA exacerbated the PH, with a higher right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and wall thickness in the pulmonary artery of MCT-induced PH rat. On the cellular level, the proliferation of PASMCs was promoted by EP300 knockdown. In addition, the expression of EP300 was increased in PASMCs by the overexpression of EGR1, while the deletion of EGR1 binding sites in the EP300 promoter region decreased the activity of EP300 promoter. Moreover, deleting the EP300 promoter region containing EGR1 binding sites using CRISPR/Cas9 abolished the upregulation of EP300 in MCT-induced rats and exacerbated MCT-induced PH. To summarize, our data indicate that EP300 upregulation mediated by EGR1 has a protective effect on MCT-induced PH. Conclusion These findings showed EP300 expression was increased in the MCT-induced PH model in rats, which could be mediated by EGR1; the EP300 also displayed the potential to provide protection from PH.
Collapse
Affiliation(s)
- Lei Yang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Jinglin Tian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Jie Zeng
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ting Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Boya Lin
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - John Linneman
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
13
|
Identification of early and intermediate biomarkers for ARDS mortality by multi-omic approaches. Sci Rep 2021; 11:18874. [PMID: 34556700 PMCID: PMC8460799 DOI: 10.1038/s41598-021-98053-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022] Open
Abstract
The lack of successful clinical trials in acute respiratory distress syndrome (ARDS) has highlighted the unmet need for biomarkers predicting ARDS mortality and for novel therapeutics to reduce ARDS mortality. We utilized a systems biology multi-“omics” approach to identify predictive biomarkers for ARDS mortality. Integrating analyses were designed to differentiate ARDS non-survivors and survivors (568 subjects, 27% overall 28-day mortality) using datasets derived from multiple ‘omics’ studies in a multi-institution ARDS cohort (54% European descent, 40% African descent). ‘Omics’ data was available for each subject and included genome-wide association studies (GWAS, n = 297), RNA sequencing (n = 93), DNA methylation data (n = 61), and selective proteomic network analysis (n = 240). Integration of available “omic” data identified a 9-gene set (TNPO1, NUP214, HDAC1, HNRNPA1, GATAD2A, FOSB, DDX17, PHF20, CREBBP) that differentiated ARDS survivors/non-survivors, results that were validated utilizing a longitudinal transcription dataset. Pathway analysis identified TP53-, HDAC1-, TGF-β-, and IL-6-signaling pathways to be associated with ARDS mortality. Predictive biomarker discovery identified transcription levels of the 9-gene set (AUC-0.83) and Day 7 angiopoietin 2 protein levels as potential candidate predictors of ARDS mortality (AUC-0.70). These results underscore the value of utilizing integrated “multi-omics” approaches in underpowered datasets from racially diverse ARDS subjects.
Collapse
|
14
|
Ozyerli-Goknar E, Bagci-Onder T. Epigenetic Deregulation of Apoptosis in Cancers. Cancers (Basel) 2021; 13:3210. [PMID: 34199020 PMCID: PMC8267644 DOI: 10.3390/cancers13133210] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cells possess the ability to evade apoptosis. Genetic alterations through mutations in key genes of the apoptotic signaling pathway represent a major adaptive mechanism of apoptosis evasion. In parallel, epigenetic changes via aberrant modifications of DNA and histones to regulate the expression of pro- and antiapoptotic signal mediators represent a major complementary mechanism in apoptosis regulation and therapy response. Most epigenetic changes are governed by the activity of chromatin modifying enzymes that add, remove, or recognize different marks on histones and DNA. Here, we discuss how apoptosis signaling components are deregulated at epigenetic levels, particularly focusing on the roles of chromatin-modifying enzymes in this process. We also review the advances in cancer therapies with epigenetic drugs such as DNMT, HMT, HDAC, and BET inhibitors, as well as their effects on apoptosis modulation in cancer cells. Rewiring the epigenome by drug interventions can provide therapeutic advantage for various cancers by reverting therapy resistance and leading cancer cells to undergo apoptotic cell death.
Collapse
Affiliation(s)
- Ezgi Ozyerli-Goknar
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey;
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey;
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
15
|
Waddell AR, Huang H, Liao D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers (Basel) 2021; 13:2872. [PMID: 34201346 PMCID: PMC8229436 DOI: 10.3390/cancers13122872] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
The CREB-binding protein (CBP) and p300 are two paralogous lysine acetyltransferases (KATs) that were discovered in the 1980s-1990s. Since their discovery, CBP/p300 have emerged as important regulatory proteins due to their ability to acetylate histone and non-histone proteins to modulate transcription. Work in the last 20 years has firmly established CBP/p300 as critical regulators for nuclear hormone signaling pathways, which drive tumor growth in several cancer types. Indeed, CBP/p300 are critical co-activators for the androgen receptor (AR) and estrogen receptor (ER) signaling in prostate and breast cancer, respectively. The AR and ER are stimulated by sex hormones and function as transcription factors to regulate genes involved in cell cycle progression, metabolism, and other cellular functions that contribute to oncogenesis. Recent structural studies of the AR/p300 and ER/p300 complexes have provided critical insights into the mechanism by which p300 interacts with and activates AR- and ER-mediated transcription. Breast and prostate cancer rank the first and forth respectively in cancer diagnoses worldwide and effective treatments are urgently needed. Recent efforts have identified specific and potent CBP/p300 inhibitors that target the acetyltransferase activity and the acetytllysine-binding bromodomain (BD) of CBP/p300. These compounds inhibit AR signaling and tumor growth in prostate cancer. CBP/p300 inhibitors may also be applicable for treating breast and other hormone-dependent cancers. Here we provide an in-depth account of the critical roles of CBP/p300 in regulating the AR and ER signaling pathways and discuss the potential of CBP/p300 inhibitors for treating prostate and breast cancer.
Collapse
Affiliation(s)
- Aaron R. Waddell
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA;
| | - Daiqing Liao
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| |
Collapse
|
16
|
Rouka E, Gourgoulianis KI, Zarogiannis SG. In silico investigation of the viroporin E as a vaccine target against SARS-CoV-2. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1057-L1063. [PMID: 33822639 PMCID: PMC8203416 DOI: 10.1152/ajplung.00443.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Viroporins, integral viral membrane ion channel proteins, interact with host-cell proteins deregulating physiological processes and activating inflammasomes. Severity of COVID-19 might be associated with hyperinflammation, thus we aimed at the complete immunoinformatic analysis of the SARS-CoV-2 viroporin E, P0DTC4. We also identified the human proteins interacting with P0DTC4 and the enriched molecular functions of the corresponding genes. The complete sequence of P0DTC4 in FASTA format was processed in 10 databases relative to secondary and tertiary protein structure analyses and prediction of optimal vaccine epitopes. Three more databases were accessed for the retrieval and the molecular functional characterization of the P0DTC4 human interactors. The immunoinformatics analysis resulted in the identification of 4 discontinuous B-cell epitopes along with 1 linear B-cell epitope and 11 T-cell epitopes which were found to be antigenic, immunogenic, nonallergen, nontoxin, and unable to induce autoimmunity thus fulfilling prerequisites for vaccine design. The functional enrichment analysis showed that the predicted host interactors of P0DTC4 target the cellular acetylation network. Two of the identified host-cell proteins – BRD2 and BRD4 – have been shown to be promising targets for antiviral therapy. Thus, our findings have implications for COVID-19 therapy and indicate that viroporin E could serve as a promising vaccine target against SARS-CoV-2. Validation experiments are required to complement these in silico results.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.,Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.,Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| |
Collapse
|
17
|
Lee KY, Dutta A. Chk1 promotes non-homologous end joining in G1 through direct phosphorylation of ASF1A. Cell Rep 2021; 34:108680. [PMID: 33503415 DOI: 10.1016/j.celrep.2020.108680] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/16/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
The cell-cycle phase is a major determinant of repair pathway choice at DNA double strand breaks, non-homologous end joining (NHEJ), or homologous recombination (HR). Chk1 responds to genotoxic stress in S/G2 phase, but here, we report a role of Chk1 in directly promoting NHEJ repair in G1 phase. ASF1A is a histone chaperone, but it promotes NHEJ through a pathway independent of its histone-chaperone activity. Chk1 activated by ataxia telangiectasia mutated (ATM) kinase on DNA breaks in G1 promotes NHEJ through direct phosphorylation of ASF1A at Ser-166. ASF1A phosphorylated at Ser-166 interacts with the repair protein MDC1 and thus enhances MDC1's interaction with ATM and the stable localization of ATM at DNA breaks. Chk1 deficiency suppresses all steps downstream of MDC1 following a DNA break in G1, namely histone ubiquitination, 53BP1 localization to the DNA break, and NHEJ. Thus, ASF1A phosphorylation by Chk1 is essential for DNA break repair by NHEJ in G1.
Collapse
Affiliation(s)
- Kyung Yong Lee
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22901, USA; Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22901, USA.
| |
Collapse
|
18
|
Gomathi K, Akshaya N, Srinaath N, Rohini M, Selvamurugan N. Histone acetyl transferases and their epigenetic impact on bone remodeling. Int J Biol Macromol 2020; 170:326-335. [PMID: 33373635 DOI: 10.1016/j.ijbiomac.2020.12.173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Bone remodeling is a complex event that maintains bone homeostasis. The epigenetic mechanism of the regulation of bone remodeling has been a major research focus over the past decades. Histone acetylation is an influential post-translational modification in chromatin architecture. Acetylation affects chromatin structure by offering binding signals for reader proteins that harbor acetyl-lysine recognition domains. This review summarizes recent data of histone acetylation in bone remodeling. The crux of this review is the functional role of histone acetyltransferases, the key promoters of histone acetylation. The functional regulation of acetylation via noncoding RNAs in bone remodeling is also discussed. Understanding the principles governing histone acetylation in bone remodeling would lead to the development of better epigenetic therapies for bone diseases.
Collapse
Affiliation(s)
- K Gomathi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Srinaath
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - M Rohini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
19
|
A novel miRNA inhibits metastasis of prostate cancer via decreasing CREBBP-mediated histone acetylation. J Cancer Res Clin Oncol 2020; 147:469-480. [PMID: 33221996 DOI: 10.1007/s00432-020-03455-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND To identify novel miRNAs implicated in prostate cancer metastasis. METHODS Sixty-five prostate cancer tissues and paired pan-cancer tissues were sequenced. Novel miRNAs were re-analyzed by MIREAP program. Biological functions of miR-N5 were transwell experiment and colony formation. Target genes of miR-N5 were analyzed by bioinformatic analysis. Downstream of target gene was analyzed by The Cancer Genome Atlas (TCGA) and Memorial Sloan Kettering Cancer Center (MSKCC) databases and confirmed by CHIP experiment. RESULTS We identified a novel miRNA-miR-N5, which was downregulated in PCa cells, PCa tissue, and in the serum of patients with PCa. Knockout of miR-N5 enhanced migration and invasiveness in vitro. miR-N5 specified targeted CREBBP 3'-UTR and inhibited CREBBP expression, which mediated H3K56 acetylation at the promoter of EGFR, β-catenin and CDH1. CONCLUSION This study may shed the light on miR-N5 which influences metastasis via histone acetylation.
Collapse
|
20
|
Yuan YG, Wang JL, Mesalam A, Li L, Choi YJ, Talimur Reza AMM, Zhou D, Chen L, Qian C. Nicotinamide-induced mouse embryo developmental defect rescued by resveratrol and I-CBP112. Mol Reprod Dev 2020; 87:1009-1017. [PMID: 32818292 DOI: 10.1002/mrd.23405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022]
Abstract
Cell cycle of mouse embryo could be delayed by nicotinamide (NAM). Histone H3 lysine 56 (H3K56ac) acetylation plays an important role in mammalian genomic stability and the function of this modification in mouse embryos is not known. Hence, we designed to study the effects of NAM-induced oxidative stress on the developmental ability of mouse embryos, on the acetylation of H3K56ac and the possible functions of this modification related to mouse embryo development. Treatment with NAM (10, 20, or 40 mmol/L for 24 or 48 hr) during in vitro culture significantly decreased developmental rate of blastocyst (24 hr: 90.2 vs. 81.2, 43.2, and 18.2, with p > .05, p < .01, respectively; 48 hr: 89.3 vs. 53.2%, 12.1%, and 0% with p < .05, respectively). NAM treatment (20 mmol/L) for 6 and 31 hr resulted in increased intracellular reactive oxygen species levels in two-cell embryos, and apoptotic cell numbers in blastocysts. Resveratrol (RSV) and I-CBP112 rescued the 20 mmol/L NAM-induced embryo developmental defects. RSV and I-CBP112 increased the level of Sirt1 and decreased the level of H3K56ac induced by NAM in two-cell embryos (p < .05). These data suggest that NAM treatment decreases the expression of Sirt1, which induces high levels of H3K56 acetylation that may be involved in oxidative stress-induced mouse embryo defects, which can be rescued by RSV and I-CBP112.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis/Jiangsu Key Laboratory of Animal genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Stem cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jia-Lin Wang
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ling Li
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yun-Jung Choi
- Department of Stem cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Abu Musa Md Talimur Reza
- Division of Bioinformatics, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Dongjie Zhou
- Department of Stem cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Li Chen
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chen Qian
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
21
|
Zhang XW, Feng N, Wang LC, Liu D, Hua YM, Zhang C, Tu PF, Zeng KW. Small-molecule arone protects from neuroinflammation in LPS-activated microglia BV-2 cells by targeting histone-remodeling chaperone ASF1a. Biochem Pharmacol 2020; 177:113932. [DOI: 10.1016/j.bcp.2020.113932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
|
22
|
Deng K, Feng W, Liu X, Su X, Zuo E, Du S, Huang Y, Shi D, Lu F. Anti-silencing factor 1A is associated with genome stability maintenance of mouse preimplantation embryos†. Biol Reprod 2020; 102:817-827. [PMID: 31916576 DOI: 10.1093/biolre/ioaa001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/07/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Genome stability is critical for the normal development of preimplantation embryos, as DNA damages may result in mutation and even embryo lethality. Anti-silencing factor 1A (ASF1A) is a histone chaperone and enriched in the MII oocytes as a maternal factor, which may be associated with the maintenance of genome stability. Thus, this study was undertaken to explore the role of ASF1A in maintaining the genome stability of early mouse embryos. The ASF1A expressed in the preimplantation embryos and displayed a dynamic pattern throughout the early embryonic development. Inhibition of ASF1A expression decreased embryonic development and increased DNA damages. Overexpression of ASF1A improved the developmental potential and decreased DNA damages. When 293T cells that had been integrated with RGS-NHEJ were co-transfected with plasmids of pcDNA3.1-ASF1A, gRNA-NHEJ, and hCas9, less cells expressed eGFP, indicating that non-homologous end joining was reduced by ASF1A. When 293T cells were co-transfected with plasmids of HR-donor, gRNA-HR, hCas9, and pcDNA3.1-ASF1A, more cells expressed eGFP, indicating that homologous recombination (HR) was enhanced by ASF1A. These results indicate that ASF1A may be associated with the genome stability maintenance of early mouse embryos and this action may be mediated by promoting DNA damage repair through HR pathway.
Collapse
Affiliation(s)
- Kai Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Wanyou Feng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Xiaohua Liu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Xiaoping Su
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Erwei Zuo
- Center for Animal Genomics, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shanshan Du
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Yongjun Huang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Deshun Shi
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Fenghua Lu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| |
Collapse
|
23
|
Agudelo Garcia PA, Nagarajan P, Parthun MR. Hat1-Dependent Lysine Acetylation Targets Diverse Cellular Functions. J Proteome Res 2020; 19:1663-1673. [PMID: 32081014 DOI: 10.1021/acs.jproteome.9b00843] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lysine acetylation has emerged as one of the most important post-translational modifications, regulating different biological processes. However, its regulation by lysine acetyltransferases is still unclear in most cases. Hat1 is a lysine acetyltransferase originally identified based on its ability to acetylate histones. Using an unbiased proteomics approach, we have determined how loss of Hat1 affects the mammalian acetylome. Hat1+/+ and Hat1-/- mouse embryonic fibroblast cell lines were grown in both glucose- and galactose-containing media, as Hat1 is required for growth on galactose, and Hat1-/- cells exhibit defects in mitochondrial function. Following trypsin digestion of whole cell extracts, acetylated peptides were enriched by acetyllysine affinity purification, and acetylated peptides were identified and analyzed by label-free quantitation. Comparison of the acetylome from Hat1+/+ cells grown on galactose and glucose demonstrated that there are large carbon source-dependent changes in the mammalian acetylome where the acetylation of enzymes involved in glycolysis were the most affected. Comparisons of the acetylomes from Hat1+/+ and Hat1-/- cells identified 65 proteins whose acetylation decreased by at least 2.5-fold in cells lacking Hat1. In Hat1-/- cells, acetylation of the autoregulatory loop of CBP (CREB-binding protein) was the most highly affected, decreasing by up to 20-fold. In addition to the proteins involved in chromatin structure, Hat1-dependent acetylation was also found in a number of transcriptional regulators, including p53 and mitochondrial proteins. Hat1 mitochondrial localization suggests that it may be directly involved in the acetylation of mitochondrial proteins. Data are available via ProteomeXchange with identifier PXD017362.
Collapse
Affiliation(s)
- Paula A Agudelo Garcia
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
24
|
Zhang FC, Sun ZY, Liao LP, Zuo Y, Zhang D, Wang J, Chen YT, Xiao SH, Jiang H, Lu T, Xu P, Yue LY, Du DH, Zhang H, Liu CP, Luo C. Discovery of novel CBP bromodomain inhibitors through TR-FRET-based high-throughput screening. Acta Pharmacol Sin 2020; 41:286-292. [PMID: 31253937 PMCID: PMC7468272 DOI: 10.1038/s41401-019-0256-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
The cAMP-responsive element binding protein (CREB) binding protein (CBP) and adenoviral E1A-binding protein (P300) are two closely related multifunctional transcriptional coactivators. Both proteins contain a bromodomain (BrD) adjacent to the histone acetyl transferase (HAT) catalytic domain, which serves as a promising drug target for cancers and immune system disorders. Several potent and selective small-molecule inhibitors targeting CBP BrD have been reported, but thus far small-molecule inhibitors targeting BrD outside of the BrD and extraterminal domain (BET) family are especially lacking. Here, we established and optimized a TR-FRET-based high-throughput screening platform for the CBP BrD and acetylated H4 peptide. Through an HTS assay against an in-house chemical library containing 20 000 compounds, compound DC_CP20 was discovered as a novel CBP BrD inhibitor with an IC50 value of 744.3 nM. This compound bound to CBP BrD with a KD value of 4.01 μM in the surface plasmon resonance assay. Molecular modeling revealed that DC_CP20 occupied the Kac-binding region firmly through hydrogen bonding with the conserved residue N1168. At the celluslar level, DC_CP20 dose-dependently inhibited the proliferation of human leukemia MV4-11 cells with an IC50 value of 19.2 μM and markedly downregulated the expression of the c-Myc in the cells. Taken together, the discovery of CBP BrD inhibitor DC_CP20 provides a novel chemical scaffold for further medicinal chemistry optimization and a potential chemical probe for CBP-related biological function research. In addition, this inhibitor may serve as a promising therapeutic strategy for MLL leukemia by targeting CBP BrD protein.
Collapse
Affiliation(s)
- Feng-Cai Zhang
- School of Pharmacy, Nanchang University, Nanchang, 330006, China
| | - Zhong-Ya Sun
- School of Life and Technology, Harbin Institute of Technology, Harbin, 150001, China
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li-Ping Liao
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zuo
- School of Pharmacy, Nanchang University, Nanchang, 330006, China
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dan Zhang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jun Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan-Tao Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sen-Hao Xiao
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian Lu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Pan Xu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Yan Yue
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dao-Hai Du
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Zhang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chuan-Peng Liu
- School of Life and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
25
|
Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J Affect Disord 2020; 260:302-313. [PMID: 31521867 DOI: 10.1016/j.jad.2019.09.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/22/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Metformin, a first-line antiglycemic drug, has been reported to have anti-depressant effects in patients with type 2 diabetes; however, its exact role and underlying mechanism still need to be investigated. METHOD C57BL/6J mice were subjected to the Chronic social defeat stress (SDS) and drug administration (Control + Vehicle, SDS + Vehicle, SDS + MET (200 mg kg-1), SDS + FLUOX (3 mg kg-1), SDS + MET + FLUOX). And the depression phenotypes were evaluated by the sucrose preference test, social interaction, tail suspension test and forced swimming test. The potential mechanisms underlying the effects of metformin on depression was discussed by using Chromatin immunoprecipitation, Quantitative real-time PCR mRNA expression analysis and Western blot in vivo and in primary cultured hippocampal neurons. RESULT The metformin treatment counteracted the development of depression-like behaviors in mice suffering SDS when administered alone and enhanced the anti-depressant effect of fluoxetine when combined with fluoxetine. Further RNA sequencing analysis revealed that metformin treatment prevented the transcriptional changes in the medial prefrontal cortex (mPFC) of the animals and Golgi staining indicated favorable morphological changes in the neurite plasticity of CA1 pyramidal neurons, which approximated to those found in unstressed mice. At a molecular level, metformin significantly upregulated the expression of the brain-derived neurotrophic factor (BDNF) by increasing the histone acetylation along with the BDNF promoter, which was attributed to the activation of AMP-activated protein kinase (AMPK) and cAMP-response element binding protein (CREB). CONCLUSION Our findings suggest that metformin can produce antidepressant effects, which provides empirical insights into the clinical value of metformin in the prevention and therapy of depression.
Collapse
|
26
|
Ganesan A, Arimondo PB, Rots MG, Jeronimo C, Berdasco M. The timeline of epigenetic drug discovery: from reality to dreams. Clin Epigenetics 2019; 11:174. [PMID: 31791394 PMCID: PMC6888921 DOI: 10.1186/s13148-019-0776-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
The flexibility of the epigenome has generated an enticing argument to explore its reversion through pharmacological treatments as a strategy to ameliorate disease phenotypes. All three families of epigenetic proteins—readers, writers, and erasers—are druggable targets that can be addressed through small-molecule inhibitors. At present, a few drugs targeting epigenetic enzymes as well as analogues of epigenetic modifications have been introduced into the clinic use (e.g. to treat haematological malignancies), and a wide range of epigenetic-based drugs are undergoing clinical trials. Here, we describe the timeline of epigenetic drug discovery and development beginning with the early design based solely on phenotypic observations to the state-of-the-art rational epigenetic drug discovery using validated targets. Finally, we will highlight some of the major aspects that need further research and discuss the challenges that need to be overcome to implement epigenetic drug discovery into clinical management of human disorders. To turn into reality, researchers from various disciplines (chemists, biologists, clinicians) need to work together to optimise the drug engineering, read-out assays, and clinical trial design.
Collapse
Affiliation(s)
- A Ganesan
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, 75724, Paris, France
| | - Marianne G Rots
- Epigenetic Editing, Dept. Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Carmen Jeronimo
- Cancer Biology & Epigenetics Group, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - María Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain. .,Epigenetic Therapies, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Campus ICO-Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n 08916 Badalona, Barcelona, Catalonia, Spain.
| |
Collapse
|
27
|
TRIM66 reads unmodified H3R2K4 and H3K56ac to respond to DNA damage in embryonic stem cells. Nat Commun 2019; 10:4273. [PMID: 31537782 PMCID: PMC6753139 DOI: 10.1038/s41467-019-12126-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Recognition of specific chromatin modifications by distinct structural domains within “reader” proteins plays a critical role in the maintenance of genomic stability. However, the specific mechanisms involved in this process remain unclear. Here we report that the PHD-Bromo tandem domain of tripartite motif-containing 66 (TRIM66) recognizes the unmodified H3R2-H3K4 and acetylated H3K56. The aberrant deletion of Trim66 results in severe DNA damage and genomic instability in embryonic stem cells (ESCs). Moreover, we find that the recognition of histone modification by TRIM66 is critical for DNA damage repair (DDR) in ESCs. TRIM66 recruits Sirt6 to deacetylate H3K56ac, negatively regulating the level of H3K56ac and facilitating the initiation of DDR. Importantly, Trim66-deficient blastocysts also exhibit higher levels of H3K56ac and DNA damage. Collectively, the present findings indicate the vital role of TRIM66 in DDR in ESCs, establishing the relationship between histone readers and maintenance of genomic stability. TRIM66 protein has an N-terminal tripartite motif and a C-terminal PHD Bromodomain. Here the authors show the specific histone modification recognition of TRIM66-PHD-Bromodomain through crystallography and biochemistry assay, and further reveal that TRIM66 recognition of certain histone modification is important for DNA damage repair in ESCs.
Collapse
|
28
|
Zhang Y, Tao H, Huang SY. Dynamics and Mechanisms in the Recruitment and Transference of Histone Chaperone CIA/ASF1. Int J Mol Sci 2019; 20:ijms20133325. [PMID: 31284555 PMCID: PMC6651421 DOI: 10.3390/ijms20133325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
The recruitment and transference of proteins through protein-protein interactions is a general process involved in various biological functions in cells. Despite the importance of this general process, the dynamic mechanism of how proteins are recruited and transferred from one interacting partner to another remains unclear. In this study, we investigated the dynamic mechanisms of recruitment and translocation of histone chaperone CIA/ASF1 for nucleosome disassembly by exploring the conformational space and the free energy profile of unbound DBD(CCG1) and CIA/ASF1-bound DBD(CCG1) systems through extensive molecular dynamics simulations. It was found that there exists three metastable conformational states for DBD(CCG1), an unbound closed state, a CIA/ASF1-bound half-open state, and an open state. The free energy landscape shows that the closed state and the half-open state are separated by a high free energy barrier, while the half-open state and the open state are connected with a moderate free energy increase. The high free energy barrier between the closed and half-open states explains why DBD(CCG1) can recruit CIA/ASF1 and remain in the binding state during the transportation. In addition, the asymmetric binding of CIA/ASF1 on DBD(CCG1) allows DBD(CCG1) to adopt the open state by moving one of its two domains, such that the exposed domain of DBD(CCG1) is able to recognize the acetylated histone H4 tails. As such, CIA/ASF1 has a chance to translocate from DBD(CCG1) to histone, which is also facilitated by the moderate energy increase from the bound half-open state to the open state of DBD(CCG1). These findings suggest that the recruitment and transference of histone chaperone CIA/ASF1 is highly favored by its interaction with DBD(CCG1) via conformational selection and asymmetric binding, which may represent a general mechanism of similar biological processes.
Collapse
Affiliation(s)
- Yanjun Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huanyu Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
29
|
Giannopoulou AF, Konstantakou EG, Velentzas AD, Avgeris SN, Avgeris M, Papandreou NC, Zoi I, Filippa V, Katarachia S, Lampidonis AD, Prombona A, Syntichaki P, Piperi C, Basdra EK, Iconomidou V, Papadavid E, Anastasiadou E, Papassideri IS, Papavassiliou AG, Voutsinas GE, Scorilas A, Stravopodis DJ. Gene-Specific Intron Retention Serves as Molecular Signature that Distinguishes Melanoma from Non-Melanoma Cancer Cells in Greek Patients. Int J Mol Sci 2019; 20:937. [PMID: 30795533 PMCID: PMC6412294 DOI: 10.3390/ijms20040937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Skin cancer represents the most common human malignancy, and it includes BCC, SCC, and melanoma. Since melanoma is one of the most aggressive types of cancer, we have herein attempted to develop a gene-specific intron retention signature that can distinguish BCC and SCC from melanoma biopsy tumors. METHODS Intron retention events were examined through RT-sqPCR protocols, using total RNA preparations derived from BCC, SCC, and melanoma Greek biopsy specimens. Intron-hosted miRNA species and their target transcripts were predicted via the miRbase and miRDB bioinformatics platforms, respectively. Ιntronic ORFs were recognized through the ORF Finder application. Generation and visualization of protein interactomes were achieved by the IntAct and Cytoscape softwares, while tertiary protein structures were produced by using the I-TASSER online server. RESULTS c-MYC and Sestrin-1 genes proved to undergo intron retention specifically in melanoma. Interaction maps of proteins encoded by genes being potentially targeted by retained intron-accommodated miRNAs were generated and SRPX2 was additionally delivered to our melanoma-specific signature. Novel ORFs were identified in MCT4 and Sestrin-1 introns, with potentially critical roles in melanoma development. CONCLUSIONS The property of c-MYC, Sestrin-1, and SRPX2 genes to retain specific introns could be clinically used to molecularly differentiate non-melanoma from melanoma tumors.
Collapse
Affiliation(s)
- Aikaterini F Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Eumorphia G Konstantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Socratis N Avgeris
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Margaritis Avgeris
- Section of Biochemistry and Molecular Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Ilianna Zoi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Vicky Filippa
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Stamatia Katarachia
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Antonis D Lampidonis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Anastasia Prombona
- Laboratory of Chronobiology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Popi Syntichaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Vassiliki Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Evangelia Papadavid
- 2nd Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, "Attikon" University Hospital, 12462 Athens, Greece.
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Gerassimos E Voutsinas
- Laboratory of Molecular Carcinogenesis and Rare Disease Genetics, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Andreas Scorilas
- Section of Biochemistry and Molecular Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701 Athens, Greece.
| |
Collapse
|
30
|
Wang L, Deng Y, Zhou XL, Ma JJ, Li W. First case of Rubinstein-Taybi syndrome with desquamation associated with a novel mutation in the bromodomain of the CREBBP gene. Clin Exp Dermatol 2019; 44:e205-e208. [PMID: 30614040 DOI: 10.1111/ced.13871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2018] [Indexed: 02/05/2023]
Abstract
Rubinstein-Taybi syndrome (RSTS) is a rare congenital disorder, mainly characterized by postnatal growth retardation, intellectual disability, and facial and limb abnormalities. Although not considered as characteristic manifestations, numerous cutaneous anomalies have also been reported in patients with RSTS while there has been no report of desquamation so far in any patients with RSTS. We report an unusual case of RSTS in an 8-year-old boy who presented with the typical facial and limb abnormalities of RSTS accompanied with apparent hirsutism and desquamation, but without apparent intellectual disability. Whole exome sequencing identified a novel mutation in the bromodomain of CREBBP (c.3503A>G, p.N1168S), which was further confirmed by targeted Sanger sequencing in comparison with healthy controls. Our findings expand the spectra of genetic mutations and clinical presentations associated with RSTS, and underline the importance of maintaining high awareness of rare presentations and diagnostic difficulties in management of rare genetic diseases such as RSTS.
Collapse
Affiliation(s)
- L Wang
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - Y Deng
- National Office for Maternal and Child Health Surveillance of China, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Laboratory of Molecular Epidemiology for Birth Defects, West China Institute of Women and Children's Health, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - X-L Zhou
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - J J Ma
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - W Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Zhang Y, Xue Y, Shi J, Ahn J, Mi W, Ali M, Wang X, Klein BJ, Wen H, Li W, Shi X, Kutateladze TG. The ZZ domain of p300 mediates specificity of the adjacent HAT domain for histone H3. Nat Struct Mol Biol 2018; 25:841-849. [PMID: 30150647 PMCID: PMC6482957 DOI: 10.1038/s41594-018-0114-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/18/2018] [Indexed: 12/24/2022]
Abstract
Human p300 is a transcriptional co-activator and a major acetyltransferase that acetylates histones and other proteins facilitating gene transcription. The activity of p300 relies on the fine-tuned interactome that involves a dozen p300 domains and hundreds of binding partners and links p300 to a wide range of vital signaling events. Here, we report on a novel function of the ZZ-type zinc finger (ZZ) of p300 as a reader of histone H3. We show that the ZZ domain and acetyllysine recognizing bromodomain (BD) of p300 play critical roles in modulating p300 enzymatic activity and its association with chromatin. Acetyllysine binding of BD is essential for acetylation of histones H3 and H4, whereas interaction of the ZZ domain with H3 promotes selective acetylation of histone H3K27 and H3K18.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yongming Xue
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jiejun Shi
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - JaeWoo Ahn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wenyi Mi
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Muzaffar Ali
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xiaolu Wang
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hong Wen
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Wei Li
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA. .,Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
32
|
Huang TH, Shen ZJ, Sleckman BP, Tyler JK. The histone chaperone ASF1 regulates the activation of ATM and DNA-PKcs in response to DNA double-strand breaks. Cell Cycle 2018; 17:1413-1424. [PMID: 29954236 PMCID: PMC6132960 DOI: 10.1080/15384101.2018.1486165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/29/2018] [Indexed: 10/28/2022] Open
Abstract
The Ataxia-telangiectasia mutated (ATM) kinase and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are activated by DNA double-strand breaks (DSBs). These DSBs occur in the context of chromatin but how chromatin influences the activation of these kinases is not known. Here we show that loss of the replication-dependent chromatin assembly factors ASF1A/B or CAF-1 compromises ATM activation, while augmenting DNA-PKcs activation, in response to DNA DSBs. Cells deficient in ASF1A/B or CAF-1 exhibit reduced histone H4 lysine 16 acetylation (H4K16ac), a histone mark known to promote ATM activation. ASF1A interacts with the histone acetyl transferase, hMOF that mediates H4K16ac. ASF1A depletion leads to increased recruitment of DNA-PKcs to DSBs. We propose normal chromatin assembly and H4K16ac during DNA replication is required to regulate ATM and DNA-PKcs activity in response to the subsequent induction of DNA DSBs.
Collapse
Affiliation(s)
- Ting-Hsiang Huang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Zih-Jie Shen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Barry P. Sleckman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jessica K. Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
33
|
|
34
|
Zhu Q, Wei S, Sharma N, Wani G, He J, Wani AA. Human CRL4 DDB2 ubiquitin ligase preferentially regulates post-repair chromatin restoration of H3K56Ac through recruitment of histone chaperon CAF-1. Oncotarget 2017; 8:104525-104542. [PMID: 29262658 PMCID: PMC5732824 DOI: 10.18632/oncotarget.21869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/30/2017] [Indexed: 11/25/2022] Open
Abstract
Acetylated histone H3 lysine 56 (H3K56Ac) diminishes in response to DNA damage but is restored following DNA repair. Here, we report that CRL4DDB2 ubiquitin ligase preferentially regulates post-repair chromatin restoration of H3K56Ac through recruitment of histone chaperon CAF-1. We show that H3K56Ac accumulates at DNA damage sites. The restoration of H3K56Ac but not H3K27Ac, H3K18Ac and H3K14Ac depends on CAF-1 function, whereas all these acetylations are mediated by CBP/p300. The CRL4DDB2 components, DDB1, DDB2 and CUL4A, are also required for maintaining the H3K56Ac and H3K9Ac level in chromatin, and for restoring H3K56Ac following induction of DNA photolesions and strand breaks. Depletion of CUL4A decreases the recruitment of CAF-1 p60 and p150 to ultraviolet radiation- and phleomycin-induced DNA damage. Neddylation inhibition renders CRL4DDB2 inactive, decreases H3K56Ac level, diminishes CAF-1 recruitment and prevents H3K56Ac restoration. Mutation in the PIP box of DDB2 compromises its capability to elevate the H3K56Ac level but does not affect XPC ubiquitination. These results demonstrated a function of CRL4DDB2 in differential regulation of histone acetylation in response to DNA damage, suggesting a novel role of CRL4DDB2 in repair-driven chromatin assembly.
Collapse
Affiliation(s)
- Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Shengcai Wei
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Nidhi Sharma
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Gulzar Wani
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Jinshan He
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Altaf A Wani
- Department of Radiology, The Ohio State University, Columbus, 43210, OH.,Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, 43210, OH.,James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, 43210, OH
| |
Collapse
|
35
|
Xu L, Cheng A, Huang M, Zhang J, Jiang Y, Wang C, Li F, Bao H, Gao J, Wang N, Liu J, Wu J, Wong CC, Ruan K. Structural insight into the recognition of acetylated histone H3K56ac mediated by the bromodomain of CREB-binding protein. FEBS J 2017; 284:3422-3436. [DOI: 10.1111/febs.14198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/29/2017] [Accepted: 08/11/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Li Xu
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Aimin Cheng
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Min Huang
- National Center for Protein Science Shanghai; Institute of Biochemistry and Cell Biology; Chinese Academy of Sciences; Shanghai China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Yiyang Jiang
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Chongyuan Wang
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Fudong Li
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Hongyu Bao
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Jia Gao
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Na Wang
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Jiuyang Liu
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Jihui Wu
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| | - Catherine C.L. Wong
- National Center for Protein Science Shanghai; Institute of Biochemistry and Cell Biology; Chinese Academy of Sciences; Shanghai China
| | - Ke Ruan
- Hefei National Laboratory for Physical Science at the Microscale; School of Life Sciences; University of Science and Technology of China; Hefei China
| |
Collapse
|
36
|
Role of the CBP catalytic core in intramolecular SUMOylation and control of histone H3 acetylation. Proc Natl Acad Sci U S A 2017. [PMID: 28630323 DOI: 10.1073/pnas.1703105114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The histone acetyl transferases CREB-binding protein (CBP) and its paralog p300 play a critical role in numerous cellular processes. Dysregulation of their catalytic activity is associated with several human diseases. Previous work has elucidated the regulatory mechanisms of p300 acetyltransferase activity, but it is not known whether CBP activity is controlled similarly. Here, we present the crystal structure of the CBP catalytic core encompassing the bromodomain (BRD), CH2 (comprising PHD and RING), HAT, and ZZ domains at 2.4-Å resolution. The BRD, PHD, and HAT domains form an integral structural unit to which the RING and ZZ domains are flexibly attached. The structure of the apo-CBP HAT domain is similar to that of acyl-CoA-bound p300 HAT complexes and shows that the acetyl-CoA binding site is stably formed in the absence of cofactor. The BRD, PHD, and ZZ domains interact with small ubiquitin-like modifier 1 (SUMO-1) and Ubc9, and function as an intramolecular E3 ligase for SUMOylation of the cell cycle regulatory domain 1 (CRD1) of CBP, which is located adjacent to the BRD. In vitro HAT assays suggest that the RING domain, the autoregulatory loop (AL) within the HAT domain, and the ZZ domain do not directly influence catalytic activity, whereas the BRD is essential for histone H3 acetylation in nucleosomal substrates. Several lysine residues in the intrinsically disordered AL are autoacetylated by the HAT domain. Upon autoacetylation, acetyl-K1596 (Ac-K1596) binds intramolecularly to the BRD, competing with histones for binding to the BRD and acting as a negative regulator that inhibits histone H3 acetylation.
Collapse
|
37
|
Histone Chaperone ASF1A Predicts Poor Outcomes for Patients With Gastrointestinal Cancer and Drives Cancer Progression by Stimulating Transcription of β-Catenin Target Genes. EBioMedicine 2017. [PMID: 28625518 PMCID: PMC5514402 DOI: 10.1016/j.ebiom.2017.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epigenetic mechanisms play a key role in gastrointestinal cancer (GIC) development and progression, and most studies have been focused on aberrant DNA methylation and histone modifying enzymes. However, the histone H3–H4 chaperone ASF1A is an important factor regulating chromatin assembling and gene transcription, while it is currently unclear whether ASF1A is involved in cancer pathogenesis. The present study is thus designed to address this issue. Here we showed that ASF1A expression was widespread in GIC-derived cell lines and up-regulated in primary GIC. Higher levels of ASF1A expression predicted significantly shorter patient overall survival in colorectal cancer (P = 0.0012). The further analyses of the GEO dataset validate higher ASF1A expression as a prognostic factor for CRC patients. Mechanistically, ASF1A interacted with β-catenin and promoted the transcription of β-catenin target genes including c-MYC, cyclin D1, ZEB1 and LGR5, thereby stimulating proliferation, stemness and migration/invasion of GIC cells. β-Catenin inhibition abolished these effects of ASF1A. Moreover, the ASF1A-β-catenin-ZEB1 axis down-regulated E-Cadherin expression, thereby contributing to enhanced migration/invasion of GIC cells. ASF1A over-expression and depletion facilitated and inhibited in vivo tumor growth and/or metastasis in mouse xenograft models, respectively. Taken together, ASF1A is aberrantly over-expressed in GIC tumors and plays key roles in GIC development and progression by stimulating the transcription of β-catenin target genes. ASF1A may thus be a novel target for GIC therapy and a potential prognostic marker. ASF1A is over-expressed in GIC and predicts poor patient outcomes. ASF1A interacts with β-catenin, facilitates the expression of its targets and promotes stemness and invasion of GIC cells. Targeting ASF1A could be a novel epigenetic strategy against GIC.
Gastrointestinal cancer (GIC) is the leading cause of cancer-related death worldwide and invasion or distant metastasis account for the majority of mortalities due to the limited treatment choices. We determined the effect of ASF1A, the histone H3–H4 chaperone, on GIC pathogenesis. We found that ASF1A expression was up-regulated in primary GIC and higher ASF1A levels predicted significantly shorter patient overall survival in colorectal cancer. ASF1A interacted with β-catenin and promoted the transcription of β-catenin target genes, thereby stimulating proliferation, stemness and migration/invasion of GIC cells. ASF1A may thus be a novel target for GIC therapy and a useful prognostic marker.
Collapse
|
38
|
A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nat Med 2017; 23:782-787. [DOI: 10.1038/nm.4311] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/07/2017] [Indexed: 02/08/2023]
|
39
|
Sanchez OF, Mendonca A, Carneiro AD, Yuan C. Engineering Recombinant Protein Sensors for Quantifying Histone Acetylation. ACS Sens 2017; 2:426-435. [PMID: 28723212 DOI: 10.1021/acssensors.7b00026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
H3K14ac (acetylation of lysine 14 of histone H3) is one of the most important epigentic modifications. Aberrant changes in H3K14ac have been associated with various diseases, including cancers and neurological disorders. Tools that enable detection and quantification of H3K14ac levels in cell extracts and in situ are thus of critical importance to reveal its role in various biological processes. Current detection techniques of specific histone modifications, however, are constrained by tedious sample pretreatments, lack of quantitative accuracy, and reliance on high quality antibodies. To address this issue, we engineered recombinant sensors that are suitable for probing histone acetylation levels using various biological samples. The protein sensor contains recongition domain(s) with sequences derived from the bromodomain of human polybromo-1 (PB1), a natural H3K14ac reader domain. Various sensor designs were tested using nuclear extracts and live cells. The sensor containing dimeric repeats of bromodomain was found most effective in quantifying H3K14ac level in both in vitro and in situ assays. The sensor has a linear detection range of 0.5-50 nM when mixed with nuclear extracts. The sensor colocalizes with H3K14ac antibodies in situ when transfected into human embryonic kidney 293T (HEK293T) cells and is thus capable of providing spatial details of histone modification within the nucleus. Corrected nuclear fluorescence intensity was used to quantify the modification level in situ and found to correlate well with our in vitro assays. Our sensor offers a novel tool to characterize the histone modification level using nuclear extracts and probe histone modification change in live cells.
Collapse
Affiliation(s)
- Oscar F. Sanchez
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Agnes Mendonca
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Ana D. Carneiro
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Chongli Yuan
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
40
|
Attar N, Kurdistani SK. Exploitation of EP300 and CREBBP Lysine Acetyltransferases by Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026534. [PMID: 27881443 DOI: 10.1101/cshperspect.a026534] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
p300 and CREB-binding protein (CBP), two homologous lysine acetyltransferases in metazoans, have a myriad of cellular functions. They exert their influence mainly through their roles as transcriptional regulators but also via nontranscriptional effects inside and outside of the nucleus on processes such as DNA replication and metabolism. The versatility of p300/CBP as molecular tools has led to their exploitation by viral oncogenes for cellular transformation and by cancer cells to achieve and maintain an oncogenic phenotype. How cancer cells use p300/CBP in their favor varies depending on the cellular context and is evident by the growing list of loss- and gain-of-function genetic alterations in p300 and CBP in solid tumors and hematological malignancies. Here, we discuss the biological functions of p300/CBP and how disruption of these functions by mutations and alterations in expression or subcellular localization contributes to the cancer phenotype.
Collapse
Affiliation(s)
- Narsis Attar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
41
|
Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1372-401. [PMID: 27296530 DOI: 10.1016/j.bbapap.2016.06.007] [Citation(s) in RCA: 563] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 12/30/2022]
Abstract
Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation.
Collapse
Affiliation(s)
- Adrian Drazic
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Line M Myklebust
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Rasmus Ree
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
42
|
The Commercial Antibodies Widely Used to Measure H3 K56 Acetylation Are Non-Specific in Human and Drosophila Cells. PLoS One 2016; 11:e0155409. [PMID: 27187594 PMCID: PMC4871326 DOI: 10.1371/journal.pone.0155409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 12/26/2022] Open
Abstract
Much of our understanding of the function of histone post-translational modifications in metazoans is inferred from their genomic localization and / or extrapolated from yeast studies. For example, acetylation of histone H3 lysine 56 (H3 K56Ac) is assumed to be important for transcriptional regulation in metazoan cells based on its occurrence at promoters and its function in yeast. Here we directly assess the function of H3 K56Ac during chromatin disassembly from gene regulatory regions during transcriptional induction in human cells by using mutations that either mimic or prevent H3 K56Ac. Although there is rapid histone H3 disassembly during induction of some estrogen receptor responsive genes, depletion of the histone chaperone ASF1A/B, which is required for H3 K56 acetylation, has no effect on chromatin disassembly at these regions. During the course of this work, we found that all the commercially available antibodies to H3 K56Ac are non-specific in human cells and in Drosophila. We used H3-YFP fusions to show that the H3 K56Q mutation can promote chromatin disassembly from regulatory regions of some estrogen responsive genes in the context of transcriptional induction. However, neither the H3 K56R nor K56Q mutation significantly altered chromatin disassembly dynamics by FRAP analysis. These results indicate that unlike the situation in yeast, human cells do not use H3 K56Ac to promote chromatin disassembly from regulatory regions or from the genome in general. Furthermore, our work highlights the need for rigorous characterization of the specificity of antibodies to histone post-translational modifications in vivo.
Collapse
|
43
|
Jacobs KM, Misri S, Meyer B, Raj S, Zobel CL, Sleckman BP, Hallahan DE, Sharma GG. Unique epigenetic influence of H2AX phosphorylation and H3K56 acetylation on normal stem cell radioresponses. Mol Biol Cell 2016; 27:1332-45. [PMID: 26941327 PMCID: PMC4831886 DOI: 10.1091/mbc.e16-01-0017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/22/2016] [Indexed: 01/08/2023] Open
Abstract
Normal stem cells from tissues often exhibiting radiation injury are highly radiosensitive and exhibit a muted DNA damage response, in contrast to differentiated progeny. These radioresponses can be attributed to unique epigenetic regulation in stem cells, identifying potential therapeutic targets for radioprotection. Normal tissue injury resulting from cancer radiotherapy is often associated with diminished regenerative capacity. We examined the relative radiosensitivity of normal stem cell populations compared with non–stem cells within several radiosensitive tissue niches and culture models. We found that these stem cells are highly radiosensitive, in contrast to their isogenic differentiated progeny. Of interest, they also exhibited a uniquely attenuated DNA damage response (DDR) and muted DNA repair. Whereas stem cells exhibit reduced ATM activation and ionizing radiation–induced foci, they display apoptotic pannuclear H2AX-S139 phosphorylation (γH2AX), indicating unique radioresponses. We also observed persistent phosphorylation of H2AX-Y142 along the DNA breaks in stem cells, which promotes apoptosis while inhibiting DDR signaling. In addition, down-regulation of constitutively elevated histone-3 lysine-56 acetylation (H3K56ac) in stem cells significantly decreased their radiosensitivity, restored DDR function, and increased survival, signifying its role as a key contributor to stem cell radiosensitivity. These results establish that unique epigenetic landscapes affect cellular heterogeneity in radiosensitivity and demonstrate the nonubiquitous nature of radiation responses. We thus elucidate novel epigenetic rheostats that promote ionizing radiation hypersensitivity in various normal stem cell populations, identifying potential molecular targets for pharmacological radioprotection of stem cells and hopefully improving the efficacy of future cancer treatment.
Collapse
Affiliation(s)
- Keith M Jacobs
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Sandeep Misri
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Barbara Meyer
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Suyash Raj
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Cheri L Zobel
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108
| | - Barry P Sleckman
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63108 Department of Pathology, Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63108
| | - Dennis E Hallahan
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108 Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63108
| | - Girdhar G Sharma
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO 63108 Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63108
| |
Collapse
|
44
|
Messiaen S, Guiard J, Aigueperse C, Fliniaux I, Tourpin S, Barroca V, Allemand I, Fouchet P, Livera G, Vernet M. Loss of the histone chaperone ASF1B reduces female reproductive capacity in mice. Reproduction 2016; 151:477-89. [PMID: 26850882 DOI: 10.1530/rep-15-0327] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022]
Abstract
Anti-silencing function 1 (ASF1) is an evolutionarily conserved histone H3-H4 chaperone involved in the assembly/disassembly of nucleosome and histone modification. Two paralogous genes, Asf1a and Asf1b, exist in the mouse genome. Asf1a is ubiquitously expressed and its loss causes embryonic lethality. Conversely, Asf1b expression is more restricted and has been less studied. To determine the in vivo function of Asf1b, we generated a Asf1b-deficient mouse line (Asf1b(GT(ROSA-βgeo)437)) in which expression of the lacZ reporter gene is driven by the Asf1b promoter. Analysis of β-galactosidase activity at early embryonic stages indicated a correlation between Asf1b expression and cell differentiation potential. In the gonads of both male and female, Asf1b expression was specifically detected in the germ cell lineage with a peak expression correlated with meiosis. The viability of Asf1b-null mice suggests that Asf1b is dispensable for mouse development. However, these mice showed reduced reproductive capacity compared with wild-type controls. We present evidence that the timing of meiotic entry and the subsequent gonad development are affected more severely in Asf1b-null female mice than in male mice. In female mice, in addition to subfertility related to altered gamete formation, variable defects compromising the development and/or survival of their offspring were also observed. Altogether, our data indicate the importance of Asf1b expression at the time of meiotic entry, suggesting that chromatin modifications may play a central role in this process.
Collapse
Affiliation(s)
- S Messiaen
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - J Guiard
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - C Aigueperse
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - I Fliniaux
- CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France
| | - S Tourpin
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - V Barroca
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - I Allemand
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de gamétogenèseapoptose et génotoxicité, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - P Fouchet
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de gamétogenèseapoptose et génotoxicité, Fontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - G Livera
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France Laboratoire de développement des gonadesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| | - M Vernet
- CEADSV/iRCM/UMR S967 Stabilité génétique, cellules souches et radiations, Fontenay-aux-roses F-92265, France CEADSV/iRTSV/Atelier de transgenèse, Grenoble F-38054 Cedex 9, France Laboratoire de Recherche sur la réparation et la transcription dans les cellules souchesFontenay-aux-roses F-92265, France INSERMUMR 967, Fontenay-aux-roses F-92265, France Univ Paris DiderotSorbonne Paris cité, UMR S967, Fontenay-aux-roses F-92265, France Univ Paris-SudUMR S967, Fontenay-aux-roses F-92265, France
| |
Collapse
|
45
|
Zha L, Cao Q, Cui X, Li F, Liang H, Xue B, Shi H. Epigenetic regulation of E-cadherin expression by the histone demethylase UTX in colon cancer cells. Med Oncol 2016; 33:21. [PMID: 26819089 DOI: 10.1007/s12032-016-0734-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/11/2016] [Indexed: 01/22/2023]
Abstract
Decreased epithelial cadherin (E-cadherin) gene expression, a hallmark of epithelial-mesenchymal transition (EMT), is essential for triggering metastatic advantage of the colon cancer. Genetic mechanisms underlying the regulation of E-cadherin expression in EMT have been extensively investigated; however, much is unknown about the epigenetic mechanism underlying this process. Here, we identified ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX), a histone demethylase involved in demethylating di- or tri-methylated histone 3 lysine 27 (H3K27me2/3), as a positive regulator for the expression of E-cadherin in the colon cancer cell line HCT-116. We showed that inactivation of UTX down-regulated E-cadherin gene expression, while overexpression of UTX did the opposite. Notably, overexpression of UTX inhibited migration and invasion of HCT-116 cells. Moreover, UTX demethylated H3K27me3, a histone transcriptional repressive mark, leading to decreased H3K27me3 at the E-cadherin promoter. Further, UTX interacted with the histone acetyltransferase (HAT) protein CBP and recruited it to the E-cadherin promoter, resulting in increased H3K27 acetylation (H3K27ac), a histone transcriptional active mark. UTX positively regulates E-cadherin expression through coordinated regulation of H3K27 demethylation and acetylation, switching the transcriptional repressive state to the transcriptional active state at the E-cadherin promoter. We conclude that UTX may play a role in regulation of E-cadherin gene expression in HCT-116 cells and that UTX may serve as a therapeutic target against the metastasis in the treatment of colon cancer.
Collapse
Affiliation(s)
- Lin Zha
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, 400038, China.,Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA, 30303, USA
| | - Qiang Cao
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA, 30303, USA
| | - Xin Cui
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA, 30303, USA
| | - Fenfen Li
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA, 30303, USA
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, 400038, China.
| | - Bingzhong Xue
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA, 30303, USA.
| | - Hang Shi
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
46
|
Adhikary S, Sanyal S, Basu M, Sengupta I, Sen S, Srivastava DK, Roy S, Das C. Selective Recognition of H3.1K36 Dimethylation/H4K16 Acetylation Facilitates the Regulation of All-trans-retinoic Acid (ATRA)-responsive Genes by Putative Chromatin Reader ZMYND8. J Biol Chem 2015; 291:2664-81. [PMID: 26655721 DOI: 10.1074/jbc.m115.679985] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/25/2023] Open
Abstract
ZMYND8 (zinc finger MYND (Myeloid, Nervy and DEAF-1)-type containing 8), a newly identified component of the transcriptional coregulator network, was found to interact with the Nucleosome Remodeling and Deacetylase (NuRD) complex. Previous reports have shown that ZMYND8 is instrumental in recruiting the NuRD complex to damaged chromatin for repressing transcription and promoting double strand break repair by homologous recombination. However, the mode of transcription regulation by ZMYND8 has remained elusive. Here, we report that through its specific key residues present in its conserved chromatin-binding modules, ZMYND8 interacts with the selective epigenetic marks H3.1K36Me2/H4K16Ac. Furthermore, ZMYND8 shows a clear preference for canonical histone H3.1 over variant H3.3. Interestingly, ZMYND8 was found to be recruited to several developmental genes, including the all-trans-retinoic acid (ATRA)-responsive ones, through its modified histone-binding ability. Being itself inducible by ATRA, this zinc finger transcription factor is involved in modulating other ATRA-inducible genes. We found that ZMYND8 interacts with transcription initiation-competent RNA polymerase II phosphorylated at Ser-5 in a DNA template-dependent manner and can alter the global gene transcription. Overall, our study identifies that ZMYND8 has CHD4-independent functions in regulating gene expression through its modified histone-binding ability.
Collapse
Affiliation(s)
- Santanu Adhikary
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Sulagna Sanyal
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Moitri Basu
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Isha Sengupta
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Sabyasachi Sen
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| | - Dushyant Kumar Srivastava
- the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Siddhartha Roy
- the Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata-700032, India
| | - Chandrima Das
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 and
| |
Collapse
|
47
|
Affiliation(s)
- Guangtao Zhang
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Steven G Smith
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| |
Collapse
|
48
|
Abstract
BACKGROUND High attrition rates in drug discovery call for new approaches to improve target validation. Academia is filling gaps, but often lacks the experience and resources of the pharmaceutical industry resulting in poorly characterized tool compounds. DISCUSSION The SGC has established an open access chemical probe consortium, currently encompassing ten pharmaceutical companies. One of its mandates is to create well-characterized inhibitors (chemical probes) for epigenetic targets to enable new biology and target validation for drug development. CONCLUSION Epigenetic probe compounds have proven to be very valuable and have not only spurred a plethora of novel biological findings, but also provided starting points for clinical trials. These probes have proven to be critical complementation to traditional genetic targeting strategies and provided sometimes surprising results.
Collapse
Affiliation(s)
- Peter J Brown
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Susanne Müller
- Structural Genomics Consortium, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ, UK
| |
Collapse
|
49
|
Skalska L, Stojnic R, Li J, Fischer B, Cerda-Moya G, Sakai H, Tajbakhsh S, Russell S, Adryan B, Bray SJ. Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation. EMBO J 2015; 34:1889-904. [PMID: 26069324 DOI: 10.15252/embj.201489923] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/13/2015] [Indexed: 12/23/2022] Open
Abstract
The conserved Notch pathway functions in diverse developmental and disease-related processes, requiring mechanisms to ensure appropriate target selection and gene activation in each context. To investigate the influence of chromatin organisation and dynamics on the response to Notch signalling, we partitioned Drosophila chromatin using histone modifications and established the preferred chromatin conditions for binding of Su(H), the Notch pathway transcription factor. By manipulating activity of a co-operating factor, Lozenge/Runx, we showed that it can help facilitate these conditions. While many histone modifications were unchanged by Su(H) binding or Notch activation, we detected rapid changes in acetylation of H3K56 at Notch-regulated enhancers. This modification extended over large regions, required the histone acetyl-transferase CBP and was independent of transcription. Such rapid changes in H3K56 acetylation appear to be a conserved indicator of enhancer activation as they also occurred at the mammalian Notch-regulated Hey1 gene and at Drosophila ecdysone-regulated genes. This intriguing example of a core histone modification increasing over short timescales may therefore underpin changes in chromatin accessibility needed to promote transcription following signalling activation.
Collapse
Affiliation(s)
- Lenka Skalska
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Robert Stojnic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Jinghua Li
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bettina Fischer
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Gustavo Cerda-Moya
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hiroshi Sakai
- Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Steven Russell
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Boris Adryan
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK Department of Genetics, University of Cambridge, Cambridge, UK
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
50
|
Affiliation(s)
| | - Philip A. Cole
- Department
of Pharmacology
and Molecular Sciences, The Johns Hopkins
University School of Medicine, 725 North Wolfe Street, Hunterian 316, Baltimore, Maryland 21205, United States
| |
Collapse
|