1
|
Yi J, Du J, Chen X, Nie RC, Hu GS, Wang L, Zhang YY, Chen S, Wen XS, Luo DX, He H, Liu W. A circRNA-mRNA pairing mechanism regulates tumor growth and endocrine therapy resistance in ER-positive breast cancer. Proc Natl Acad Sci U S A 2025; 122:e2420383122. [PMID: 40233410 PMCID: PMC11874584 DOI: 10.1073/pnas.2420383122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/13/2025] [Indexed: 04/17/2025] Open
Abstract
The molecular mechanisms underlying estrogen receptor (ER)-positive breast carcinogenesis and drug resistance remain incompletely understood. Elevated expression of CCND1 is linked to enhanced invasiveness, poorer prognosis, and resistance to drug therapies in ER-positive breast cancer. In this study, we identify a highly expressed circular RNA (circRNA) derived from FOXK2, called circFOXK2, which plays a key role in stabilizing CCND1 mRNA, thereby promoting cell cycle progression, cell growth, and endocrine therapy resistance in ER-positive breast cancer cells. Mechanistically, circFOXK2 binds directly to CCND1 mRNA via RNA-RNA pairing and recruits the RNA-binding protein ELAVL1/HuR, stabilizing the CCND1 mRNA and enhancing CCND1 protein levels. This results in activation of the CCND1-CDK4/6-p-RB-E2F signaling axis, driving the transcription of downstream E2F target genes and facilitating the G1/S transition during cell cycle progression. Notably, targeting circFOXK2 with antisense oligonucleotide (ASO-circFOXK2) suppresses ER-positive breast cancer cell growth both in vitro and in vivo. Moreover, combination therapy with ASO-circFOXK2 and tamoxifen exhibits synergistic effects and restores tamoxifen sensitivity in tamoxifen-resistant cells. Clinically, high circFOXK2 expression is positively correlated with CCND1 levels in both ER-positive breast cancer cell lines and patient tumor tissues. Overall, our findings reveal the critical role of circFOXK2 in stabilizing the oncogene CCND1 and promoting cancer progression, positioning circFOXK2 as a potential therapeutic target for ER-positive breast cancer in clinical settings.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/genetics
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Female
- Drug Resistance, Neoplasm/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Animals
- Mice
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Proliferation/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Gene Expression Regulation, Neoplastic
- Antineoplastic Agents, Hormonal/pharmacology
- ELAV-Like Protein 1/metabolism
- ELAV-Like Protein 1/genetics
- Tamoxifen/pharmacology
- Mice, Nude
- MCF-7 Cells
Collapse
Affiliation(s)
- Jia Yi
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Yu-Yue Pathology Scientific Research Center, Chongqing400039, China
- Jinfeng Laboratory, Chongqing401329, China
| | - Jiao Du
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
| | - Xue Chen
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
| | - Rui-chao Nie
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen361102, Fujian, China
| | - Guo-sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
| | - Lei Wang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
| | - Yue-ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
| | - Shang Chen
- Laboratory Medicine Centre, Shenzhen Nanshan People’s Hospital, Shenzhen518052, Guangdong, China
| | - Xiao-sha Wen
- Laboratory Medicine Centre, Shenzhen Nanshan People’s Hospital, Shenzhen518052, Guangdong, China
| | - Di-xian Luo
- The Third Affiliated Hospital (Luohu Hospital), Shenzhen University, Shenzhen518000, Guangdong, China
| | - Hua He
- Department of Neurosurgery, Third Affiliated Hospital, Naval Medical University, Shanghai200438, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Xiamen University, Xiamen361102, Fujian, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen361102, Fujian, China
| |
Collapse
|
2
|
Sanchez Barrios A, Lundberg D, de Lorenzo L, Amos BK, Nair M, Hunt A, DeBolt S. Bacterial Spermosphere Inoculants Alter N. benthamiana-Plant Physiology and Host Bacterial Microbiome. PLANTS (BASEL, SWITZERLAND) 2024; 13:1677. [PMID: 38931109 PMCID: PMC11207711 DOI: 10.3390/plants13121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
In this study, we investigated the interplay between the spermosphere inoculum, host plant physiology, and endophytic compartment (EC) microbial community. Using 16S ribosomal RNA gene sequencing of root, stem, and leaf endophytic compartment communities, we established a baseline microbiome for Nicotiana sp. Phenotypic differences were observed due to the addition of some bacterial inoculants, correlated with endogenous auxin loads using transgenic plants expressing the auxin reporter pB-GFP::P87. When applied as spermosphere inoculants, select bacteria were found to create reproducible variation within the root EC microbiome and, more systematically, the host plant physiology. Our findings support the assertion that the spermosphere of plants is a zone that can influence the EC microbiome when applied in a greenhouse setting.
Collapse
Affiliation(s)
| | - Derek Lundberg
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| | - Laura de Lorenzo
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - B Kirtley Amos
- Department of Horticulture, University of Kentucky, Lexington, KY 40546, USA; (A.S.B.)
| | - Meera Nair
- Department of Horticulture, University of Kentucky, Lexington, KY 40546, USA; (A.S.B.)
| | - Arthur Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Seth DeBolt
- Department of Horticulture, University of Kentucky, Lexington, KY 40546, USA; (A.S.B.)
| |
Collapse
|
3
|
Liu S, Luo S, Yang D, Huang J, Jiang X, Yu S, Fu J, Zhou D, Chen X, He H, Fu H. Alternative polyadenylation profiles of susceptible and resistant rice (Oryza sativa L.) in response to bacterial leaf blight using RNA-seq. BMC PLANT BIOLOGY 2024; 24:145. [PMID: 38413866 PMCID: PMC10900630 DOI: 10.1186/s12870-024-04839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Alternative polyadenylation (APA) is an important pattern of post-transcriptional regulation of genes widely existing in eukaryotes, involving plant physiological and pathological processes. However, there is a dearth of studies investigating the role of APA profile in rice leaf blight. RESULTS In this study, we compared the APA profile of leaf blight-susceptible varieties (CT 9737-613P-M) and resistant varieties (NSIC RC154) following bacterial blight infection. Through gene enrichment analysis, we found that the genes of two varieties typically exhibited distal poly(A) (PA) sites that play different roles in two kinds of rice, indicating differential APA regulatory mechanisms. In this process, many disease-resistance genes displayed multiple transcripts via APA. Moreover, we also found five polyadenylation factors of similar expression patterns of rice, highlighting the critical roles of these five factors in rice response to leaf blight about PA locus diversity. CONCLUSION Notably, the present study provides the first dynamic changes of APA in rice in early response to biotic stresses and proposes a possible functional conjecture of APA in plant immune response, which lays the theoretical foundation for in-depth determination of the role of APA events in plant stress response and other life processes.
Collapse
Affiliation(s)
- Shaochun Liu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuqi Luo
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dewei Yang
- Institute of Rice, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Junying Huang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinlei Jiang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shangwei Yu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Haihui Fu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Zhou J, Li QQ. Stress responses of plants through transcriptome plasticity by mRNA alternative polyadenylation. MOLECULAR HORTICULTURE 2023; 3:19. [PMID: 37789388 PMCID: PMC10536700 DOI: 10.1186/s43897-023-00066-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
The sessile nature of plants confines their responsiveness to changing environmental conditions. Gene expression regulation becomes a paramount mechanism for plants to adjust their physiological and morphological behaviors. Alternative polyadenylation (APA) is known for its capacity to augment transcriptome diversity and plasticity, thereby furnishing an additional set of tools for modulating gene expression. APA has also been demonstrated to exhibit intimate associations with plant stress responses. In this study, we review APA dynamic features and consequences in plants subjected to both biotic and abiotic stresses. These stresses include adverse environmental stresses, and pathogenic attacks, such as cadmium toxicity, high salt, hypoxia, oxidative stress, cold, heat shock, along with bacterial, fungal, and viral infections. We analyzed the overarching research framework employed to elucidate plant APA response and the alignment of polyadenylation site transitions with the modulation of gene expression levels within the ambit of each stress condition. We also proposed a general APA model where transacting factors, including poly(A) factors, epigenetic regulators, RNA m6A modification factors, and phase separation proteins, assume pivotal roles in APA related transcriptome plasticity during stress response in plants.
Collapse
Affiliation(s)
- Jiawen Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
5
|
Zhang F, Chen L, Li W, Yang C, Xiong M, Zhou M, Kazobinka G, Zhao J, Hou T. Lengthening of 3' Untranslated Regions of mRNAs by Alternative Polyadenylation Is Associated With Tumor Progression and Poor Prognosis of Clear Cell Renal Cell Carcinoma. J Transl Med 2023; 103:100125. [PMID: 36889542 DOI: 10.1016/j.labinv.2023.100125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Alternative polyadenylation (APA) is emerging as a major posttranscriptional mechanism for gene regulation in cancer. A prevailing hypothesis is that shortening of the 3' untranslated region (3'UTR) increases oncoprotein expression because of the loss of miRNA-binding sites (MBSs). We showed that the longer 3'UTR is associated with a more advanced tumor stage in patients with clear cell renal cell carcinoma (ccRCC). More surprisingly, 3'UTR shortening is correlated with better overall survival in patients with ccRCC. Furthermore, we identified a mechanism by which longer transcripts lead to increased oncogenic protein and decreased tumor-suppressive protein expression compared to the shorter transcripts. In our model, shortening of 3'UTRs by APA may increase the mRNA stability of the majority of the potential tumor-suppressor genes due to the loss of MBSs and AU-rich elements (AREs). Unlike potential tumor-suppressor genes, the potential oncogenes display much lower MBS and ARE density and globally much higher m6A density in distal 3'UTRs. As a result, 3'UTRs shortening decreases the mRNA stability of potential oncogenes and enhances the mRNA stability of potential tumor-suppressor genes. Our findings highlight the cancer-specific pattern of APA regulation and extend our understanding of the mechanism of APA-mediated 3'UTR length changes in cancer biology.
Collapse
Affiliation(s)
- Futian Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Urology, Nanyang Central Hospital, Nanyang, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencheng Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlu Yang
- Department of Gynecology and Obstetrics, Women and Children Hospital of Guangdong Province, Guangzhou, China
| | - Ming Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Menghao Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gallina Kazobinka
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Urology Unit, La Nouvelle Polyclinique Centrale de Bujumbura, Bujumbura, Burundi
| | - Jun Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Teng Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.
| |
Collapse
|
6
|
Wang T, Ye W, Zhang J, Li H, Zeng W, Zhu S, Ji G, Wu X, Ma L. Alternative 3'-untranslated regions regulate high-salt tolerance of Spartina alterniflora. PLANT PHYSIOLOGY 2023; 191:2570-2587. [PMID: 36682816 PMCID: PMC10069910 DOI: 10.1093/plphys/kiad030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 05/15/2023]
Abstract
High-salt stress continues to challenge the growth and survival of many plants. Alternative polyadenylation (APA) produces mRNAs with different 3'-untranslated regions (3' UTRs) to regulate gene expression at the post-transcriptional level. However, the roles of alternative 3' UTRs in response to salt stress remain elusive. Here, we report the function of alternative 3' UTRs in response to high-salt stress in S. alterniflora (Spartina alterniflora), a monocotyledonous halophyte tolerant of high-salt environments. We found that high-salt stress induced global APA dynamics, and ∼42% of APA genes responded to salt stress. High-salt stress led to 3' UTR lengthening of 207 transcripts through increasing the usage of distal poly(A) sites. Transcripts with alternative 3' UTRs were mainly enriched in salt stress-related ion transporters. Alternative 3' UTRs of HIGH-AFFINITY K+ TRANSPORTER 1 (SaHKT1) increased RNA stability and protein synthesis in vivo. Regulatory AU-rich elements were identified in alternative 3' UTRs, boosting the protein level of SaHKT1. RNAi-knock-down experiments revealed that the biogenesis of 3' UTR lengthening in SaHKT1 was controlled by the poly(A) factor CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 30 (SaCPSF30). Over-expression of SaHKT1 with an alternative 3' UTR in rice (Oryza sativa) protoplasts increased mRNA accumulation of salt-tolerance genes in an AU-rich element-dependent manner. These results suggest that mRNA 3' UTR lengthening is a potential mechanism in response to high-salt stress. These results also reveal complex regulatory roles of alternative 3' UTRs coupling APA and regulatory elements at the post-transcriptional level in plants.
Collapse
Affiliation(s)
- Taotao Wang
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wenbin Ye
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiaxiang Zhang
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Han Li
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Weike Zeng
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sheng Zhu
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaohui Wu
- Pasteurien College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Liuyin Ma
- College of Forestry, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
7
|
A survey of transcriptome complexity using full-length isoform sequencing in the tea plant Camellia sinensis. Mol Genet Genomics 2022; 297:1243-1255. [PMID: 35763065 DOI: 10.1007/s00438-022-01913-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/29/2022] [Indexed: 10/17/2022]
Abstract
Tea is one of the most popular beverages and its leaves are rich in catechins, contributing to the diverse flavor as well as beneficial for human health. However, the study of the post-transcriptional regulatory mechanism affecting the synthesis of catechins remains insufficient. Here, we sequenced the transcriptome using PacBio sequencing technology and obtained 63,111 full-length high-quality isoforms, including 1302 potential novel genes and 583 highly reliable fusion transcripts. We also identified 1204 lncRNAs with high quality, containing 188 known and 1016 novel lncRNAs. In addition, 311 mis-annotated genes were corrected based on the high-quality Isoseq reads. A large number of alternative splicing (AS) events (3784) and alternative polyadenylation (APA) genes (18,714) were analyzed, accounting for 8.84% and 43.7% of the total annotated genes, respectively. We also found that 2884 genes containing AS and APA features exhibited higher expression levels than other genes. These genes are mainly involved in amino acid biosynthesis, carbon fixation in photosynthetic organisms, phenylalanine, tyrosine, tryptophan biosynthesis, and pyruvate metabolism, suggesting that they play an essential role in the catechins content of tea polyphenols. Our results further improved the level of genome annotation and indicated that post-transcriptional regulation plays a crucial part in synthesizing catechins.
Collapse
|
8
|
Xing Y, Chen L, Gu H, Yang C, Zhao J, Chen Z, Xiong M, Kazobinka G, Liu Y, Hou T. Downregulation of NUDT21 contributes to cervical cancer progression through alternative polyadenylation. Oncogene 2021; 40:2051-2064. [PMID: 33619322 DOI: 10.1038/s41388-021-01693-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 01/30/2023]
Abstract
Nudix Hydrolase 21 (NUDT21), an alternative polyadenylation (APA)-regulatory protein, exhibits tumor-suppressive effects. However, its role in cervical cancer (CxCa) remains unknown. In the present study, we found that NUDT21 expression was reduced in CxCa tissues and cells, and NUDT21 levels were highly associated with the clinical prognosis of patients with CxCa. Knockdown of NUDT21 promoted CxCa cell proliferation, migration, and invasion in vitro, as well as tumorigenesis and lung metastasis in vivo. Overexpression of NUDT21 produces the opposite effects. Moreover, we performed polyadenylation site sequencing (PAS-Seq) and identified 457 transcripts with lengthened 3' untranslated regions (3' UTRs) upon NUDT21 overexpression. In particular, NUDT21 modulated the expression of several genes involved in fatty acid metabolism and the Wnt and NF-κB signaling pathways in CxCa development. Taken together, our study demonstrated that the APA regulatory effect of NUDT21 is an important mechanism for CxCa suppression.
Collapse
Affiliation(s)
- Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Haifeng Gu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Chenlu Yang
- Department of Gynecology and Obstetrics, Women and Children Hospital of Guangdong Province, Guangzhou, 510080, Guangdong, China
| | - Jun Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ming Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Gallina Kazobinka
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.,Urology Unit, La Nouvelle Polyclinique Centrale de Bujumbura, Bujumbura, 378, Burundi
| | - Yaqiong Liu
- Department of Gynecology and Obstetrics, Guangzhou Women and Childrens' Medical Center, Guangzhou Medical University, Guangzhou, 510000, Guangdong, China.
| | - Teng Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China. .,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
9
|
Yu Z, Lin J, Li QQ. Transcriptome Analyses of FY Mutants Reveal Its Role in mRNA Alternative Polyadenylation. THE PLANT CELL 2019; 31:2332-2352. [PMID: 31427469 PMCID: PMC6790095 DOI: 10.1105/tpc.18.00545] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 08/19/2019] [Indexed: 05/10/2023]
Abstract
A crucial step for mRNA polyadenylation is poly(A) signal recognition by trans-acting factors. The mammalian cleavage and polyadenylation specificity factor (CPSF) complex components CPSF30 and WD repeat-containing protein33 (WDR33) recognize the canonical AAUAAA for polyadenylation. In Arabidopsis (Arabidopsis thaliana), the flowering time regulator FY is the homolog of WDR33. However, its role in mRNA polyadenylation is poorly understood. Using poly(A) tag sequencing, we found that >50% of alternative polyadenylation (APA) events are altered in fy single mutants or double mutants with oxt6 (a null mutant of AtCPSF30), but mutation of the FY WD40-repeat has a stronger effect than deletion of the plant-unique Pro-Pro-Leu-Pro-Pro (PPLPP) domain. fy mutations disrupt AAUAAA or AAUAAA-like poly(A) signal recognition. Notably, A-rich signal usage is suppressed in the WD40-repeat mutation but promoted in PPLPP-domain deficiency. However, fy mutations do not aggravate the altered signal usage in oxt6 Furthermore, the WD40-repeat mutation shows a preference for 3' untranslated region shortening, but the PPLPP-domain deficiency shows a preference for lengthening. Interestingly, the WD40-repeat mutant exhibits shortened primary roots and late flowering with alteration of APA of related genes. Importantly, the long transcripts of two APA genes affected in fy are related to abiotic stress responses. These results reveal a conserved and specific role of FY in mRNA polyadenylation.
Collapse
Affiliation(s)
- Zhibo Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China 361102
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China 361102
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China 361102
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766
| |
Collapse
|
10
|
Zhou X, Zhang Y, Michal JJ, Qu L, Zhang S, Wildung MR, Du W, Pouchnik DJ, Zhao H, Xia Y, Shi H, Ji G, Davis JF, Smith GD, Griswold MD, Harland RM, Jiang Z. Alternative polyadenylation coordinates embryonic development, sexual dimorphism and longitudinal growth in Xenopus tropicalis. Cell Mol Life Sci 2019; 76:2185-2198. [PMID: 30729254 PMCID: PMC6597005 DOI: 10.1007/s00018-019-03036-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 12/27/2022]
Abstract
RNA alternative polyadenylation contributes to the complexity of information transfer from genome to phenome, thus amplifying gene function. Here, we report the first X. tropicalis resource with 127,914 alternative polyadenylation (APA) sites derived from embryos and adults. Overall, APA networks play central roles in coordinating the maternal-zygotic transition (MZT) in embryos, sexual dimorphism in adults and longitudinal growth from embryos to adults. APA sites coordinate reprogramming in embryos before the MZT, but developmental events after the MZT due to zygotic genome activation. The APA transcriptomes of young adults are more variable than growing adults and male frog APA transcriptomes are more divergent than females. The APA profiles of young females were similar to embryos before the MZT. Enriched pathways in developing embryos were distinct across the MZT and noticeably segregated from adults. Briefly, our results suggest that the minimal functional units in genomes are alternative transcripts as opposed to genes.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-7620, USA
- College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yangzi Zhang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-7620, USA
| | - Jennifer J Michal
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-7620, USA
| | - Lujiang Qu
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-7620, USA
- College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Shuwen Zhang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-7620, USA
| | - Mark R Wildung
- Laboratory for Biotechnology and Bioanalysis, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Weiwei Du
- Laboratory for Biotechnology and Bioanalysis, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Derek J Pouchnik
- Laboratory for Biotechnology and Bioanalysis, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Honghua Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, China
| | - Jon F Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Gary D Smith
- Departments of OB/GYN, Physiology, and Urology, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Griswold
- Laboratory for Biotechnology and Bioanalysis, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-7620, USA.
| |
Collapse
|
11
|
|
12
|
Mapping diet-induced alternative polyadenylation of hypothalamic transcripts in the obese rat. Physiol Behav 2018; 188:173-180. [PMID: 29391168 DOI: 10.1016/j.physbeh.2018.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 12/17/2022]
Abstract
RNA biogenesis has emerged as a powerful biological event that regulates energy homeostasis. In this context insertion of alternative polyadenylation sites (APSs) dictate the fate of newly synthesized RNA molecules and direct alternative splicing of nascent transcripts. Thus APSs serve a mechanistic function by regulating transcriptome expression and function. In this study we employed a novel RNA-Seq Next Generation Sequencing (NGS) approach that utilized the power of Whole Transcriptome Termini Site Sequencing (WTTS-Seq) to simultaneously measure APS events on multiple RNA biotypes. We used this technique to measure APS events in the hypothalamus of adult male Long Evans rats exposed to a palatable high fat diet (HFD) or chow. Rats maintained on HFD displayed typical hyperphagic feeding and ensuing body weight gain over the one-month manipulation period. Our WTTS-Seq analysis mapped approximately 89,000 unique hypothalamic APSs induced by HFD relative to chow fed controls. HFD exposure produced APSs on multiple RNA biotypes in the hypothalamus. The majority of detected APSs occur on mRNA transcripts that encode functional proteins. Notably we find APSs on micro (miRNA) and long non-coding RNAs (lncRNA), newly recognized transcription factors that regulate body weight in rodents. In addition we detect APSs on protein encoding mRNAs that control neuron projection development and synapse organization and glutamate signaling, key events hypothesized to maintain excess food intake. Importantly, quantitative real time PCR indicated that APS insertion led to increased hypothalamic expression of multiple RNA biotypes. Collectively these data highlight APS events as a novel genetic mechanism that directs hypothalamic RNA biogenesis stimulated by diet-induced obesity.
Collapse
|
13
|
Lin J, Xu R, Wu X, Shen Y, Li QQ. Role of cleavage and polyadenylation specificity factor 100: anchoring poly(A) sites and modulating transcription termination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:829-839. [PMID: 28621907 DOI: 10.1111/tpj.13611] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 05/28/2023]
Abstract
CPSF100 is a core component of the cleavage and polyadenylation specificity factor (CPSF) complex for 3'-end formation of mRNA, but it still has no clear functional assignment. CPSF100 was reported to play a role in RNA silencing and promote flowering in Arabidopsis. However, the molecular mechanisms underlying these phenomena are not fully understood. Our genetics analyses indicate that plants with a hypomorphic mutant of CPSF100 (esp5) show defects in embryogenesis, reduced seed production or altered root morphology. To unravel this puzzle, we employed a poly(A) tag sequencing protocol and uncovered a different poly(A) profile in esp5. This transcriptome-wide analysis revealed alternative polyadenylation of thousands of genes, most of which result in transcriptional read-through in protein-coding genes. AtCPSF100 also affects poly(A) signal recognition on the far-upstream elements; in particular it prefers less U-rich sequences. Importantly, AtCPSF100 was found to exert its functions through the change of poly(A) sites on genes encoding binding proteins, such as nucleotide-binding, RNA-binding and poly(U)-binding proteins. In addition, through its interaction with RNA Polymerase II C-terminal domain (CTD) and affecting the expression level of CTD phosphatase-like 3 (CPL3), AtCPSF100 is shown to potentially ensure transcriptional termination by dephosphorylation of Ser2 on the CTD. These data suggest a key role for CPSF100 in locating poly(A) sites and affecting transcription termination.
Collapse
Affiliation(s)
- Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Ruqiang Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| |
Collapse
|
14
|
A protein complex regulates RNA processing of intronic heterochromatin-containing genes in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:E7377-E7384. [PMID: 28808009 DOI: 10.1073/pnas.1710683114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In several eukaryotic organisms, heterochromatin (HC) in the introns of genes can regulate RNA processing, including polyadenylation, but the mechanism underlying this regulation is poorly understood. By promoting distal polyadenylation, the bromo-adjacent homology (BAH) domain-containing and RNA recognition motif-containing protein ASI1 and the H3K9me2-binding protein EDM2 are required for the expression of functional full-length transcripts of intronic HC-containing genes in Arabidopsis Here we report that ASI1 and EDM2 form a protein complex in vivo via a bridge protein, ASI1-Immunoprecipitated Protein 1 (AIPP1), which is another RNA recognition motif-containing protein. The complex also may contain the Pol II CTD phosphatase CPL2, the plant homeodomain-containing protein AIPP2, and another BAH domain protein, AIPP3. As is the case with dysfunction of ASI1 and EDM2, dysfunction of AIPP1 impedes the use of distal polyadenylation sites at tested intronic HC-containing genes, such as the histone demethylase gene IBM1, resulting in a lack of functional full-length transcripts. A mutation in AIPP1 causes silencing of the 35S-SUC2 transgene and genome-wide CHG hypermethylation at gene body regions, consistent with the lack of full-length functional IBM1 transcripts in the mutant. Interestingly, compared with asi1, edm2, and aipp1 mutations, mutations in CPL2, AIPP2, and AIPP3 cause the opposite effects on the expression of intronic HC-containing genes and other genes, suggesting that CPL2, AIPP2, and AIPP3 may form a distinct subcomplex. These results advance our understanding of the interplay between heterochromatic epigenetic modifications and RNA processing in higher eukaryotes.
Collapse
|
15
|
Wang T, Wang H, Cai D, Gao Y, Zhang H, Wang Y, Lin C, Ma L, Gu L. Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:684-699. [PMID: 28493303 DOI: 10.1111/tpj.13597] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 05/21/2023]
Abstract
Moso bamboo (Phyllostachys edulis) represents one of the fastest-spreading plants in the world, due in part to its well-developed rhizome system. However, the post-transcriptional mechanism for the development of the rhizome system in bamboo has not been comprehensively studied. We therefore used a combination of single-molecule long-read sequencing technology and polyadenylation site sequencing (PAS-seq) to re-annotate the bamboo genome, and identify genome-wide alternative splicing (AS) and alternative polyadenylation (APA) in the rhizome system. In total, 145 522 mapped full-length non-chimeric (FLNC) reads were analyzed, resulting in the correction of 2241 mis-annotated genes and the identification of 8091 previously unannotated loci. Notably, more than 42 280 distinct splicing isoforms were derived from 128 667 intron-containing full-length FLNC reads, including a large number of AS events associated with rhizome systems. In addition, we characterized 25 069 polyadenylation sites from 11 450 genes, 6311 of which have APA sites. Further analysis of intronic polyadenylation revealed that LTR/Gypsy and LTR/Copia were two major transposable elements within the intronic polyadenylation region. Furthermore, this study provided a quantitative atlas of poly(A) usage. Several hundred differential poly(A) sites in the rhizome-root system were identified. Taken together, these results suggest that post-transcriptional regulation may potentially have a vital role in the underground rhizome-root system.
Collapse
Affiliation(s)
- Taotao Wang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiyuan Wang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dawei Cai
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yubang Gao
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongsheng Wang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Liuyin Ma
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
16
|
de Lorenzo L, Sorenson R, Bailey-Serres J, Hunt AG. Noncanonical Alternative Polyadenylation Contributes to Gene Regulation in Response to Hypoxia. THE PLANT CELL 2017; 29:1262-1277. [PMID: 28559476 PMCID: PMC5502444 DOI: 10.1105/tpc.16.00746] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 05/17/2017] [Accepted: 05/30/2017] [Indexed: 05/06/2023]
Abstract
Stresses from various environmental challenges continually confront plants, and their responses are important for growth and survival. One molecular response to such challenges involves the alternative polyadenylation of mRNA. In plants, it is unclear how stress affects the production and fate of alternative mRNA isoforms. Using a genome-scale approach, we show that in Arabidopsis thaliana, hypoxia leads to increases in the number of mRNA isoforms with polyadenylated 3' ends that map to 5'-untranslated regions (UTRs), introns, and protein-coding regions. RNAs with 3' ends within protein-coding regions and introns were less stable than mRNAs that end at 3'-UTR poly(A) sites. Additionally, these RNA isoforms were underrepresented in polysomes isolated from control and hypoxic plants. By contrast, mRNA isoforms with 3' ends that lie within annotated 5'-UTRs were overrepresented in polysomes and were as stable as canonical mRNA isoforms. These results indicate that the generation of noncanonical mRNA isoforms is an important feature of the abiotic stress response. The finding that several noncanonical mRNA isoforms are relatively unstable suggests that the production of non-stop and intronic mRNA isoforms may represent a form of negative regulation in plants, providing a conceptual link with mechanisms that generate these isoforms (such as alternative polyadenylation) and RNA surveillance.
Collapse
Affiliation(s)
- Laura de Lorenzo
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, 40546-0312
| | - Reed Sorenson
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, 40546-0312
| |
Collapse
|
17
|
Guo C, Spinelli M, Liu M, Li QQ, Liang C. A Genome-wide Study of "Non-3UTR" Polyadenylation Sites in Arabidopsis thaliana. Sci Rep 2016; 6:28060. [PMID: 27301740 PMCID: PMC4908657 DOI: 10.1038/srep28060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/20/2016] [Indexed: 11/18/2022] Open
Abstract
Alternative polyadenylation has been recognized as a key contributor of gene expression regulation by generating different transcript isoforms with altered 3′ ends. Although polyadenylation is well known for marking the end of a 3′ UTR, an increasing number of studies have reported previously less-addressed polyadenylation events located in other parts of genes in many eukaryotic organisms. These other locations include 5′ UTRs, introns and coding sequences (termed herein as non-3UTR), as well as antisense and intergenic polyadenlation. Focusing on the non-3UTR polyadenylation sites (n3PASs), we detected and characterized more than 11000 n3PAS clusters in the Arabidopsis genome using poly(A)-tag sequencing data (PAT-Seq). Further analyses suggested that the occurrence of these n3PASs were positively correlated with certain characteristics of their respective host genes, including the presence of spliced, diminutive or diverse beginning of 5′ UTRs, number of introns and whether introns have extreme lengths. The interaction of the host genes with surrounding genetic elements, like a convergently overlapped gene and associated transposable element, may contribute to the generation of a n3PAS as well. Collectively, these results provide a better understanding of n3PASs, and offer some new insights of the underlying mechanisms for non-3UTR polyadenylation and its regulation in plants.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | | - Man Liu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.,Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
18
|
Liu M, Xu R, Merrill C, Hong L, Von Lanken C, Hunt AG, Li QQ. Integration of developmental and environmental signals via a polyadenylation factor in Arabidopsis. PLoS One 2014; 9:e115779. [PMID: 25546057 PMCID: PMC4278772 DOI: 10.1371/journal.pone.0115779] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
The ability to integrate environmental and developmental signals with physiological responses is critical for plant survival. How this integration is done, particularly through posttranscriptional control of gene expression, is poorly understood. Previously, it was found that the 30 kD subunit of Arabidopsis cleavage and polyadenylation specificity factor (AtCPSF30) is a calmodulin-regulated RNA-binding protein. Here we demonstrated that mutant plants (oxt6) deficient in AtCPSF30 possess a novel range of phenotypes--reduced fertility, reduced lateral root formation, and altered sensitivities to oxidative stress and a number of plant hormones (auxin, cytokinin, gibberellic acid, and ACC). While the wild-type AtCPSF30 (C30G) was able to restore normal growth and responses, a mutant AtCPSF30 protein incapable of interacting with calmodulin (C30GM) could only restore wild-type fertility and responses to oxidative stress and ACC. Thus, the interaction with calmodulin is important for part of AtCPSF30 functions in the plant. Global poly(A) site analysis showed that the C30G and C30GM proteins can restore wild-type poly(A) site choice to the oxt6 mutant. Genes associated with hormone metabolism and auxin responses are also affected by the oxt6 mutation. Moreover, 19 genes that are linked with calmodulin-dependent CPSF30 functions, were identified through genome-wide expression analysis. These data, in conjunction with previous results from the analysis of the oxt6 mutant, indicate that the polyadenylation factor AtCPSF30 is a regulatory hub where different signaling cues are transduced, presumably via differential mRNA 3' end formation or alternative polyadenylation, into specified phenotypic outcomes. Our results suggest a novel function of a polyadenylation factor in environmental and developmental signal integration.
Collapse
Affiliation(s)
- Man Liu
- Department of Biology, Miami University, Oxford, OH 45045, United States of America
| | - Ruqiang Xu
- Department of Biology, Miami University, Oxford, OH 45045, United States of America
| | - Carrie Merrill
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, United States of America
| | - Liwei Hong
- Key Laboratory of the Ministry of Education on Costal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Carol Von Lanken
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, United States of America
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, United States of America
| | - Qingshun Q. Li
- Department of Biology, Miami University, Oxford, OH 45045, United States of America
- Key Laboratory of the Ministry of Education on Costal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, China
| |
Collapse
|
19
|
Wu X, Gaffney B, Hunt AG, Li QQ. Genome-wide determination of poly(A) sites in Medicago truncatula: evolutionary conservation of alternative poly(A) site choice. BMC Genomics 2014; 15:615. [PMID: 25048171 PMCID: PMC4117952 DOI: 10.1186/1471-2164-15-615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022] Open
Abstract
Background Alternative polyadenylation (APA) plays an important role in the post-transcriptional regulation of gene expression. Little is known about how APA sites may evolve in homologous genes in different plant species. To this end, comparative studies of APA sites in different organisms are needed. In this study, a collection of poly(A) sites in Medicago truncatula, a model system for legume plants, has been generated and compared with APA sites in Arabidopsis thaliana. Results The poly(A) tags from a deep-sequencing protocol were mapped to the annotated M. truncatula genome, and the identified poly(A) sites used to update the annotations of 14,203 genes. The results show that 64% of M. truncatula genes possess more than one poly(A) site, comparable to the percentages reported for Arabidopsis and rice. In addition, the poly(A) signals associated with M. truncatula genes were similar to those seen in Arabidopsis and other plants. The 3′-UTR lengths are correlated in pairs of orthologous genes between M. truncatula and Arabidopsis. Very little conservation of intronic poly(A) sites was found between Arabidopsis and M. truncatula, which suggests that such sites are likely to be species-specific in plants. In contrast, there is a greater conservation of CDS-localized poly(A) sites in these two species. A sizeable number of M. truncatula antisense poly(A) sites were found. A high percentage of the associated target genes possess Arabidopsis orthologs that are also associated with antisense sites. This is suggestive of important roles for antisense regulation of these target genes. Conclusions Our results reveal some distinct patterns of sense and antisense poly(A) sites in Arabidopsis and M. truncatula. In so doing, this study lends insight into general evolutionary trends of alternative polyadenylation in plants. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-615) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA.
| | | |
Collapse
|
20
|
Ji G, Guan J, Zeng Y, Li QQ, Wu X. Genome-wide identification and predictive modeling of polyadenylation sites in eukaryotes. Brief Bioinform 2014; 16:304-13. [DOI: 10.1093/bib/bbu011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Bioinformatics analysis of alternative polyadenylation in green alga Chlamydomonas reinhardtii using transcriptome sequences from three different sequencing platforms. G3-GENES GENOMES GENETICS 2014; 4:871-83. [PMID: 24626288 PMCID: PMC4025486 DOI: 10.1534/g3.114.010249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Messenger RNA 3′-end formation is an essential posttranscriptional processing step for most eukaryotic genes. Different from plants and animals where AAUAAA and its variants routinely are found as the main poly(A) signal, Chlamydomonas reinhardtii uses UGUAA as the major poly(A) signal. The advance of sequencing technology provides an enormous amount of sequencing data for us to explore the variations of poly(A) signals, alternative polyadenylation (APA), and its relationship with splicing in this algal species. Through genome-wide analysis of poly(A) sites in C. reinhardtii, we identified a large number of poly(A) sites: 21,041 from Sanger expressed sequence tags, 88,184 from 454, and 195,266 from Illumina sequence reads. In comparison with previous collections, more new poly(A) sites are found in coding sequences and intron and intergenic regions by deep-sequencing. Interestingly, G-rich signals are particularly abundant in intron and intergenic regions. The prevalence of different poly(A) signals between coding sequences and a 3′-untranslated region implies potentially different polyadenylation mechanisms. Our data suggest that the APA occurs in about 68% of C. reinhardtii genes. Using Gene Ontolgy analysis, we found most of the APA genes are involved in RNA regulation and metabolic process, protein synthesis, hydrolase, and ligase activities. Moreover, intronic poly(A) sites are more abundant in constitutively spliced introns than retained introns, suggesting an interplay between polyadenylation and splicing. Our results support that APA, as in higher eukaryotes, may play significant roles in increasing transcriptome diversity and gene expression regulation in this algal species. Our datasets also provide useful information for accurate annotation of transcript ends in C. reinhardtii.
Collapse
|
22
|
Tsuchiya T, Eulgem T. The PHD-finger module of the Arabidopsis thaliana defense regulator EDM2 can recognize triply modified histone H3 peptides. PLANT SIGNALING & BEHAVIOR 2014; 9:e29202. [PMID: 25763495 PMCID: PMC4203584 DOI: 10.4161/psb.29202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/12/2014] [Indexed: 05/19/2023]
Abstract
Recently we reported that the Arabidopsis thaliana PHD-finger protein EDM2 (enhanced downy mildew 2) impacts disease resistance by affecting levels of di-methylated lysine 9 of histone H3 (H3K9me2) at an alternative polyadenylation site in the immune receptor gene RPP7. EDM2-dependent modulation of this post-translational histone modification (PHM) shifts the balance between full-length RPP7 transcripts and prematurely polyadenylated transcripts, which do not encode the RPP7 protein. Our previous work genetically linked, for the first time, PHMs to alternative polyadenylation and established EDM2 as a critical component mediating PHM-dependent polyadenylation control. However, how EDM2 is recruited to its genomic target sites and how it affects H3K9me2 levels is unknown. Here we show the PHD-finger module of EDM2 to recognize histone H3 bearing certain combinations of 3 distinct PHMs. Our results suggest that targeting of EDM2 to specific genomic regions is mediated by the histone-binding selectivity of its PHD-finger domain.
Collapse
Affiliation(s)
- Tokuji Tsuchiya
- Institute for Integrative Genome Biology; Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California at Riverside; Riverside, CA USA
- Currently at Shanghai Center for Plant Stress Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, PR China
| | - Thomas Eulgem
- Institute for Integrative Genome Biology; Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California at Riverside; Riverside, CA USA
- Correspondence to: Thomas Eulgem,
| |
Collapse
|