1
|
Duan T, Sun L, Ding K, Zhao Q, Xu L, Liu C, Sun L. Mitochondrial RNA metabolism, a potential therapeutic target for mitochondria-related diseases. Chin Med J (Engl) 2025; 138:808-818. [PMID: 40008813 PMCID: PMC11970820 DOI: 10.1097/cm9.0000000000003516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Indexed: 02/27/2025] Open
Abstract
ABSTRACT In recent years, the roles of mitochondrial RNA and its associated human diseases have been reported to increase significantly. Treatments based on mtRNA metabolic processes and nuclear gene mutations are thus discussed. The mitochondrial oxidative phosphorylation process is affected by mtRNA metabolism, including mtRNA production, maturation, stabilization, and degradation, which leads to a variety of inherited human mitochondrial diseases. Moreover, mitochondrial diseases are caused by mitochondrial messenger RNA, mitochondrial transfer RNA, and mitochondrial ribosomal RNA gene mutations. This review presents the molecular mechanisms of human mtRNA metabolism and pathological mutations in mtRNA metabolism-related nuclear-encoded/nonencoded genes and mitochondrial DNA mutations to highlight the importance of mitochondrial RNA-related diseases and treatments.
Collapse
Affiliation(s)
- Tongyue Duan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Liya Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Kaiyue Ding
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Qing Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Lujun Xu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan 410011, China
| |
Collapse
|
2
|
Mahmood M, Little E, Girard N, Wu F, Samuels T, Heinemann IU, Reynolds NM. Yeast models for Charcot-Marie-Tooth disease-causing aminoacyl-tRNA synthetase alleles reveal the cellular basis of disease. IUBMB Life 2025; 77:e70017. [PMID: 40156251 PMCID: PMC11953622 DOI: 10.1002/iub.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetically diverse hereditary disorder that affects the motor and sensory nerves, impacting about 1 in 2500 people. It can be inherited through autosomal dominant (AD), autosomal recessive (AR), or X-linked genetic patterns. CMT2, one of the primary subtypes, is characterized by axonal degeneration and commonly presents with muscle weakness, atrophy, foot deformities, and sensory loss. Aminoacyl-tRNA synthetases (aaRSs) play an important role in the genetic underpinnings of CMT2, with more than 60 disease-causing alleles identified across eight different aaRSs, including alanyl-, asparaginyl-, histidyl-, glycyl-, methionyl-, tryptophanyl-, seryl-, and tyrosyl-tRNA synthetases. Mutations in aaRS genes can lead to destabilization of the enzyme, reduced aminoacylation, and aberrant protein complex formation. Yeast as a simple organism provides a robust model system to study the pathogenic effects of aaRS CMT mutations. In this review, we discuss the advantages and limitations of the yeast model systems for CMT2-causative mutations in aaRS.
Collapse
Affiliation(s)
- Maria Mahmood
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
| | - Emma Little
- School of Integrated Science, Sustainability, and Public HealthUniversity of Illinois SpringfieldSpringfieldIllinoisUSA
| | - Nicole Girard
- School of Integrated Science, Sustainability, and Public HealthUniversity of Illinois SpringfieldSpringfieldIllinoisUSA
| | - Fanqi Wu
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
| | - Tristan Samuels
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
| | - Ilka U. Heinemann
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
| | - Noah M. Reynolds
- School of Integrated Science, Sustainability, and Public HealthUniversity of Illinois SpringfieldSpringfieldIllinoisUSA
| |
Collapse
|
3
|
Iwaniec BW, Allegretti MM, Jackman JE. Metal ion requirement for catalysis by 3'-5' RNA polymerases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644660. [PMID: 40166239 PMCID: PMC11957112 DOI: 10.1101/2025.03.21.644660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The two-metal ion mechanism for catalysis of RNA and DNA synthesis by 5'-3' polymerases has been extensively characterized. The 3'-5' polymerase family of enzymes, consisting of tRNAHis guanylyltransferase (Thg1) and Thg1-like proteins (TLPs), perform a similar nucleotide addition reaction, but in the reverse direction, adding Watson-Crick base paired NTPs to the 5'-ends of RNA substrates, yet the effect of divalent cations beyond magnesium has not been described. Here, we examined the effects of five divalent cations (Mg2+, Mn2+, Co2+, Ni2+ and Ca2+) on templated nucleotide addition activity and kinetics of 5'-activation by ATP catalyzed by recombinantly purified, metal-free TLPs from organisms from diverse domains of life. This work revealed that different TLPs exhibit distinct dependencies on the concentration and identity of divalent metal ions that support effective catalysis. The patterns of metal ion usage demonstrated here for TLPs evince features that are characteristic of both canonical 5'-3' polymerases and DNA/RNA ligases. Similar to 5'-3' polymerases, some metals were also seen to be mutagenic in the context of TLP catalysis. Furthermore, we provide the first direct evidence that both ATP and the NTP poised for nucleotidyl transfer are present in the active site during the 5'-adenylylation. These results provide the first in-depth study of the role of the two-metal ion mechanism in TLP catalysis that was first suggested by structures of these enzymes.
Collapse
Affiliation(s)
- Brandon W.J. Iwaniec
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, 43210
- Center for RNA Biology and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Madison M. Allegretti
- Center for RNA Biology and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Jane E. Jackman
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, 43210
- Center for RNA Biology and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
4
|
Usui T, Ono S, Nakamura A, Kato K, Ose T, Yao M. Crystallographic analysis of the Escherichia coli tRNA seleno-modification enzyme in complex with tRNA. Acta Crystallogr F Struct Biol Commun 2025; 81:35-40. [PMID: 39783014 PMCID: PMC11783179 DOI: 10.1107/s2053230x25000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
The bacterial enzyme tRNA 2-selenouridine synthase (SelU) catalyzes the conversion of 5-substituted 2-thiouridine (R5S2U) to 5-substituted 2-selenouridine (R5Se2U) at the wobble positions of several tRNAs. Seleno-modification potentially regulates translation efficiency in response to selenium availability. Notably, SelU uses the 2-geranylthiouridine (R5geS2U) intermediate for sulfur removal, and this geranylthiol (geS) is a unique leaving group among tRNA-maturation enzymes. However, the underlying sequence of the SelU reaction remains unclear. Here, a crystallographic study of the Escherichia coli SelU-tRNA complex is reported. Robust and well formed SelU-tRNA crystals were obtained after several optimizations, including co-expression with tRNA and additive screening. Diffraction data were collected at a resolution of 3.10 Å using a wavelength of 1.0000 Å. The crystals belonged to space group C2, and the phase was determined by molecular replacement using the AlphaFold2-predicted SelU structure as a search model. Electron-density mapping revealed the presence of two SelU-tRNA complexes in the asymmetric unit.
Collapse
Affiliation(s)
- Takuya Usui
- Graduate School of Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
| | - Sayaka Ono
- Graduate School of Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
| | - Akiyoshi Nakamura
- Faculty of Advanced Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology1-1-1 HigashiTsukubaIbaraki305-0046Japan
| | - Koji Kato
- Graduate School of Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
- Faculty of Advanced Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
- Research Institute for Interdisciplinary ScienceOkayama UniversityTsushima-naka 1-1-1, Kita-kuOkayama CityOkayama700-8530Japan
| | - Toyoyuki Ose
- Graduate School of Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
- Faculty of Advanced Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
| | - Min Yao
- Graduate School of Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
- Faculty of Advanced Life ScienceHokkaido UniversityKita 10, Nishi 8, Kita-kuSapporoHokkaido060-0810Japan
| |
Collapse
|
5
|
Wilhelm SDP, Moresco AA, Rivero AD, Siu VM, Heinemann IU. Characterization of a novel heterozygous variant in the histidyl-tRNA synthetase gene associated with Charcot-Marie-Tooth disease type 2W. IUBMB Life 2024; 76:1125-1138. [PMID: 39352000 PMCID: PMC11580374 DOI: 10.1002/iub.2918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/01/2024] [Indexed: 10/03/2024]
Abstract
Heterozygous pathogenic variants in the histidyl-tRNA synthetase (HARS) gene are associated with Charcot-Marie-Tooth (CMT) type 2W disease, classified as an axonal peripheral neuropathy. To date, at least 60 variants causing CMT symptoms have been identified in seven different aminoacyl-tRNA synthetases, with eight being found in the catalytic domain of HARS. The genetic data clearly show a causative role of aminoacyl-tRNA synthetases in CMT; however, the cellular mechanisms leading to pathology can vary widely and are unknown in the case of most identified variants. Here we describe a novel HARS variant, c.412T>C; p.Y138H, identified through a CMT gene panel in a patient with peripheral neuropathy. To determine the effect of p.Y138H we employed a humanized HARS yeast model and recombinant protein biochemistry, which identified a deficiency in protein dimerization and a growth defect which shows mild but significant improvement with histidine supplementation. This raises the potential for a clinical trial of histidine.
Collapse
Affiliation(s)
- Sarah D. P. Wilhelm
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
| | - Angelica A. Moresco
- Division of Medical Genetics, Department of PaediatricsThe University of Western OntarioLondonOntarioCanada
| | | | - Victoria Mok Siu
- Division of Medical Genetics, Department of PaediatricsThe University of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
| | - Ilka U. Heinemann
- Department of BiochemistryThe University of Western OntarioLondonOntarioCanada
- Children's Health Research InstituteLondonOntarioCanada
| |
Collapse
|
6
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
7
|
Antika TR, Nazilah KR, Lee YH, Lo YT, Yeh CS, Yeh FL, Chang TH, Wang TL, Wang CC. Human Thg1 displays tRNA-inducible GTPase activity. Nucleic Acids Res 2022; 50:10015-10025. [PMID: 36107775 PMCID: PMC9508852 DOI: 10.1093/nar/gkac768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
tRNAHis guanylyltransferase (Thg1) catalyzes the 3′-5′ incorporation of guanosine into position -1 (G-1) of tRNAHis. G-1 is unique to tRNAHis and is crucial for recognition by histidyl-tRNA synthetase (HisRS). Yeast Thg1 requires ATP for G-1 addition to tRNAHis opposite A73, whereas archaeal Thg1 requires either ATP or GTP for G-1 addition to tRNAHis opposite C73. Paradoxically, human Thg1 (HsThg1) can add G-1 to tRNAsHis with A73 (cytoplasmic) and C73 (mitochondrial). As N73 is immediately followed by a CCA end (positions 74–76), how HsThg1 prevents successive 3′-5′ incorporation of G-1/G-2/G-3 into mitochondrial tRNAHis (tRNAmHis) through a template-dependent mechanism remains a puzzle. We showed herein that mature native human tRNAmHis indeed contains only G-1. ATP was absolutely required for G-1 addition to tRNAmHis by HsThg1. Although HsThg1 could incorporate more than one GTP into tRNAmHisin vitro, a single-GTP incorporation prevailed when the relative GTP level was low. Surprisingly, HsThg1 possessed a tRNA-inducible GTPase activity, which could be inhibited by ATP. Similar activity was found in other high-eukaryotic dual-functional Thg1 enzymes, but not in yeast Thg1. This study suggests that HsThg1 may downregulate the level of GTP through its GTPase activity to prevent multiple-GTP incorporation into tRNAmHis.
Collapse
Affiliation(s)
- Titi Rindi Antika
- Department of Life Sciences, National Central University , Zhongli District, Taoyuan 320317, Taiwan
| | - Kun Rohmatan Nazilah
- Department of Life Sciences, National Central University , Zhongli District, Taoyuan 320317, Taiwan
| | - Yi-Hsueh Lee
- Department of Life Sciences, National Central University , Zhongli District, Taoyuan 320317, Taiwan
| | - Ya-Ting Lo
- Department of Life Sciences, National Central University , Zhongli District, Taoyuan 320317, Taiwan
| | - Chung-Shu Yeh
- Genomics Research Center , Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Fu-Lung Yeh
- Genomics Research Center , Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Tien-Hsien Chang
- Genomics Research Center , Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Tzu-Ling Wang
- Graduate Institute of Mathematics and Science Education, National Tsing Hua University , Hsinchu City 30014, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University , Zhongli District, Taoyuan 320317, Taiwan
| |
Collapse
|
8
|
Nakamura A, Wang D, Komatsu Y. Analysis of GTP addition in the reverse (3'-5') direction by human tRNA His guanylyltransferase. RNA (NEW YORK, N.Y.) 2021; 27:665-675. [PMID: 33758037 PMCID: PMC8127990 DOI: 10.1261/rna.078287.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Human tRNAHis guanylyltransferase (HsThg1) catalyzes the 3'-5' addition of guanosine triphosphate (GTP) to the 5'-end (-1 position) of tRNAHis, producing mature tRNAHis In human cells, cytoplasmic and mitochondrial tRNAHis have adenine (A) or cytidine (C), respectively, opposite to G-1 Little attention has been paid to the structural requirements of incoming GTP in 3'-5' nucleotidyl addition by HsThg1. In this study, we evaluated the incorporation efficiencies of various GTP analogs by HsThg1 and compared the reaction mechanism with that of Candida albicans Thg1 (CaThg1). HsThg1 incorporated GTP opposite A or C in the template most efficiently. In contrast to CaThg1, HsThg1 could incorporate UTP opposite A, and guanosine diphosphate (GDP) opposite C. These results suggest that HsThg1 could transfer not only GTP, but also other NTPs, by forming Watson-Crick (WC) hydrogen bonds between the incoming NTP and the template base. On the basis of the molecular mechanism, HsThg1 succeeded in labeling the 5'-end of tRNAHis with biotinylated GTP. Structural analysis of HsThg1 was also performed in the presence of the mitochondrial tRNAHis Structural comparison of HsThg1 with other Thg1 family enzymes suggested that the structural diversity of the carboxy-terminal domain of the Thg1 enzymes might be involved in the formation of WC base-pairing between the incoming GTP and template base. These findings provide new insights into an unidentified biological function of HsThg1 and also into the applicability of HsThg1 to the 5'-terminal modification of RNAs.
Collapse
Affiliation(s)
- Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Daole Wang
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yasuo Komatsu
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
9
|
Patel KJ, Yourik P, Jackman JE. Fidelity of base-pair recognition by a 3'-5' polymerase: mechanism of the Saccharomyces cerevisiae tRNA His guanylyltransferase. RNA (NEW YORK, N.Y.) 2021; 27:683-693. [PMID: 33790044 PMCID: PMC8127993 DOI: 10.1261/rna.078686.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The tRNAHis guanylyltransferase (Thg1) was originally discovered in Saccharomyces cerevisiae where it catalyzes 3'-5' addition of a single nontemplated guanosine (G-1) to the 5' end of tRNAHis In addition to this activity, S. cerevisiae Thg1 (SceThg1) also catalyzes 3'-5' polymerization of Watson-Crick (WC) base pairs, utilizing nucleotides in the 3'-end of a tRNA as the template for addition. Subsequent investigation revealed an entire class of enzymes related to Thg1, called Thg1-like proteins (TLPs). TLPs are found in all three domains of life and preferentially catalyze 3'-5' polymerase activity, utilizing this unusual activity to repair tRNA, among other functions. Although both Thg1 and TLPs utilize the same chemical mechanism, the molecular basis for differences between WC-dependent (catalyzed by Thg1 and TLPs) and non-WC-dependent (catalyzed exclusively by Thg1) reactions has not been fully elucidated. Here we investigate the mechanism of base-pair recognition by 3'-5' polymerases using transient kinetic assays, and identify Thg1-specific residues that play a role in base-pair discrimination. We reveal that, regardless of the identity of the opposing nucleotide in the RNA "template," addition of a non-WC G-1 residue is driven by a unique kinetic preference for GTP. However, a secondary preference for forming WC base pairs is evident for all possible templating residues. Similar to canonical 5'-3' polymerases, nucleotide addition by SceThg1 is driven by the maximal rate rather than by NTP substrate affinity. Together, these data provide new insights into the mechanism of base-pair recognition by 3'-5' polymerases.
Collapse
Affiliation(s)
- Krishna J Patel
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Paul Yourik
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
10
|
Schoeters F, Van Dijck P. Protein-Protein Interactions in Candida albicans. Front Microbiol 2019; 10:1792. [PMID: 31440220 PMCID: PMC6693483 DOI: 10.3389/fmicb.2019.01792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
Despite being one of the most important human fungal pathogens, Candida albicans has not been studied extensively at the level of protein-protein interactions (PPIs) and data on PPIs are not readily available in online databases. In January 2018, the database called "Biological General Repository for Interaction Datasets (BioGRID)" that contains the most PPIs for C. albicans, only documented 188 physical or direct PPIs (release 3.4.156) while several more can be found in the literature. Other databases such as the String database, the Molecular INTeraction Database (MINT), and the Database for Interacting Proteins (DIP) database contain even fewer interactions or do not even include C. albicans as a searchable term. Because of the non-canonical codon usage of C. albicans where CUG is translated as serine rather than leucine, it is often problematic to use the yeast two-hybrid system in Saccharomyces cerevisiae to study C. albicans PPIs. However, studying PPIs is crucial to gain a thorough understanding of the function of proteins, biological processes and pathways. PPIs can also be potential drug targets. To aid in creating PPI networks and updating the BioGRID, we performed an exhaustive literature search in order to provide, in an accessible format, a more extensive list of known PPIs in C. albicans.
Collapse
Affiliation(s)
- Floris Schoeters
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Matlock AO, Smith BA, Jackman JE. Chemical footprinting and kinetic assays reveal dual functions for highly conserved eukaryotic tRNA His guanylyltransferase residues. J Biol Chem 2019; 294:8885-8893. [PMID: 31000629 DOI: 10.1074/jbc.ra119.007939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/16/2019] [Indexed: 01/28/2023] Open
Abstract
tRNAHis guanylyltransferase (Thg1) adds a single guanine to the -1 position of tRNAHis as part of its maturation. This seemingly modest addition of one nucleotide to tRNAHis ensures translational fidelity by providing a critical identity element for the histidyl aminoacyl tRNA synthetase (HisRS). Like HisRS, Thg1 utilizes the GUG anticodon for selective tRNAHis recognition, and Thg1-tRNA complex structures have revealed conserved residues that interact with anticodon nucleotides. Separately, kinetic analysis of alanine variants has demonstrated that many of these same residues are required for catalytic activity. A model in which loss of activity with the variants was attributed directly to loss of the critical anticodon interaction has been proposed to explain the combined biochemical and structural results. Here we used RNA chemical footprinting and binding assays to test this model and further probe the molecular basis for the requirement for two critical tRNA-interacting residues, His-152 and Lys-187, in the context of human Thg1 (hThg1). Surprisingly, we found that His-152 and Lys-187 alanine-substituted variants maintain a similar overall interaction with the anticodon region, arguing against the sufficiency of this interaction for driving catalysis. Instead, conservative mutagenesis revealed a new direct function for these residues in recognition of a non-Watson-Crick G-1:A73 bp, which had not been described previously. These results have important implications for the evolution of eukaryotic Thg1 from a family of ancestral promiscuous RNA repair enzymes to the highly selective enzymes needed for their essential function in tRNAHis maturation.
Collapse
Affiliation(s)
- Ashanti O Matlock
- From the Department of Chemistry and Biochemistry, Center for RNA Biology, and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| | - Brian A Smith
- From the Department of Chemistry and Biochemistry, Center for RNA Biology, and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| | - Jane E Jackman
- From the Department of Chemistry and Biochemistry, Center for RNA Biology, and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
12
|
Dodbele S, Moreland B, Gardner SM, Bundschuh R, Jackman JE. 5'-End sequencing in Saccharomyces cerevisiae offers new insights into 5'-ends of tRNA H is and snoRNAs. FEBS Lett 2019; 593:971-981. [PMID: 30908619 DOI: 10.1002/1873-3468.13364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/19/2023]
Abstract
tRNAH is guanylyltransferase (Thg1) specifies eukaryotic tRNAH is identity by catalysing a 3'-5' non-Watson-Crick (WC) addition of guanosine to the 5'-end of tRNAH is . Thg1 family enzymes in Archaea and Bacteria, called Thg1-like proteins (TLPs), catalyse a similar but distinct 3'-5' addition in an exclusively WC-dependent manner. Here, a genetic system in Saccharomyces cerevisiae was employed to further assess the biochemical differences between Thg1 and TLPs. Utilizing a novel 5'-end sequencing pipeline, we find that a Bacillus thuringiensis TLP sustains the growth of a thg1Δ strain by maintaining a WC-dependent addition of U-1 across from A73 . Additionally, we observe 5'-end heterogeneity in S. cerevisiae small nucleolar RNAs (snoRNAs), an observation that may inform methods of annotation and mechanisms of snoRNA processing.
Collapse
Affiliation(s)
- Samantha Dodbele
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Blythe Moreland
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Spencer M Gardner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Ralf Bundschuh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Jane E Jackman
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
The Role of 3' to 5' Reverse RNA Polymerization in tRNA Fidelity and Repair. Genes (Basel) 2019; 10:genes10030250. [PMID: 30917604 PMCID: PMC6471195 DOI: 10.3390/genes10030250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
The tRNAHis guanylyltransferase (Thg1) superfamily includes enzymes that are found in all three domains of life that all share the common ability to catalyze the 3′ to 5′ synthesis of nucleic acids. This catalytic activity, which is the reverse of all other known DNA and RNA polymerases, makes this enzyme family a subject of biological and mechanistic interest. Previous biochemical, structural, and genetic investigations of multiple members of this family have revealed that Thg1 enzymes use the 3′ to 5′ chemistry for multiple reactions in biology. Here, we describe the current state of knowledge regarding the catalytic features and biological functions that have been so far associated with Thg1 and its homologs. Progress toward the exciting possibility of utilizing this unusual protein activity for applications in biotechnology is also discussed.
Collapse
|
14
|
Nakamura A, Wang D, Komatsu Y. Molecular mechanism of substrate recognition and specificity of tRNA His guanylyltransferase during nucleotide addition in the 3'-5' direction. RNA (NEW YORK, N.Y.) 2018; 24:1583-1593. [PMID: 30111535 PMCID: PMC6191723 DOI: 10.1261/rna.067330.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/09/2018] [Indexed: 05/06/2023]
Abstract
The tRNAHis guanylyltransferase (Thg1) transfers a guanosine triphosphate (GTP) in the 3'-5' direction onto the 5'-terminal of tRNAHis, opposite adenosine at position 73 (A73). The guanosine at the -1 position (G-1) serves as an identity element for histidyl-tRNA synthetase. To investigate the mechanism of recognition for the insertion of GTP opposite A73, first we constructed a two-stranded tRNAHis molecule composed of a primer and a template strand through division at the D-loop. Next, we evaluated the structural requirements of the incoming GTP from the incorporation efficiencies of GTP analogs into the two-piece tRNAHis Nitrogen at position 7 and the 6-keto oxygen of the guanine base were important for G-1 addition; however, interestingly, the 2-amino group was found not to be essential from the highest incorporation efficiency of inosine triphosphate. Furthermore, substitution of the conserved A73 in tRNAHis revealed that the G-1 addition reaction was more efficient onto the template containing the opposite A73 than onto the template with cytidine (C73) or other bases forming canonical Watson-Crick base-pairing. Some interaction might occur between incoming GTP and A73, which plays a role in the prevention of continuous templated 3'-5' polymerization. This study provides important insights into the mechanism of accurate tRNAHis maturation.
Collapse
Affiliation(s)
- Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Daole Wang
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
15
|
Nakamura A, Wang D, Komatsu Y. Biochemical analysis of human tRNA His guanylyltransferase in mitochondrial tRNA His maturation. Biochem Biophys Res Commun 2018; 503:2015-2021. [PMID: 30093107 DOI: 10.1016/j.bbrc.2018.07.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/30/2018] [Indexed: 11/29/2022]
Abstract
Mitochondria contain their own protein synthesis machinery, which includes mitochondrial tRNA maturation. It has been suggested that mammalian mitochondrial tRNAHis (mtRNAHis) is matured by post-transcriptional addition of guanosine at the -1 position (G-1), which serves as an identity element for mitochondrial histidyl-tRNA synthetase. However, the exact maturation process of mammalian mtRNAHis remains unclear. In cytoplasmic tRNAHis (ctRNAHis) maturation, tRNAHis guanylyltransferase (Thg1) adds a GTP onto the 5'-terminal of ctRNAHis and then removes the 5'-pyrophosphate to yield the mature 5'-monophospholylated G-1-ctRNAHis (pG-1-ctRNAHis). Although mammalian Thg1 is localized to both the cytoplasm and mitochondria, it remains unclear whether mammalian Thg1 plays a role in mtRNAHis maturation in mitochondria. Here, we demonstrated that human Thg1 (hThg1) catalyzes the G-1 addition reaction for both human ctRNAHis and mtRNAHis through recognition of the anticodon. While hThg1 catalyzed consecutive GTP additions to mtRNAHisin vitro, it did not exhibit any activity toward mature pG-1-mtRNAHis. We further found that hThg1 could add a GMP directly to the 5'-terminal of mtRNAHis in a template-dependent manner, but fungal Thg1 could not. Therefore, we hypothesized that acceleration of the pyrophosphate removal activity before or after the G-1 addition reaction is a key feature of hThg1 for maintaining a normal 5'-terminal of mtRNAHis in human mitochondria. This study provided a new insight into the differences between tRNAHis maturation in the cytoplasm and mitochondria of humans.
Collapse
Affiliation(s)
- Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Daole Wang
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan; Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
16
|
D'Souza AR, Minczuk M. Mitochondrial transcription and translation: overview. Essays Biochem 2018; 62:309-320. [PMID: 30030363 PMCID: PMC6056719 DOI: 10.1042/ebc20170102] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Mitochondria are the major source of ATP in the cell. Five multi-subunit complexes in the inner membrane of the organelle are involved in the oxidative phosphorylation required for ATP production. Thirteen subunits of these complexes are encoded by the mitochondrial genome often referred to as mtDNA. For this reason, the expression of mtDNA is vital for the assembly and functioning of the oxidative phosphorylation complexes. Defects of the mechanisms regulating mtDNA gene expression have been associated with deficiencies in assembly of these complexes, resulting in mitochondrial diseases. Recently, numerous factors involved in these processes have been identified and characterized leading to a deeper understanding of the mechanisms that underlie mitochondrial diseases.
Collapse
Affiliation(s)
- Aaron R D'Souza
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, U.K
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, U.K.
| |
Collapse
|
17
|
Desai R, Kim K, Büchsenschütz HC, Chen AW, Bi Y, Mann MR, Turk MA, Chung CZ, Heinemann IU. Minimal requirements for reverse polymerization and tRNA repair by tRNA His guanylyltransferase. RNA Biol 2017; 15:614-622. [PMID: 28901837 DOI: 10.1080/15476286.2017.1372076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
tRNAHis guanylyltransferase (Thg1) has unique reverse (3'-5') polymerase activity occurring in all three domains of life. Most eukaryotic Thg1 homologs are essential genes involved in tRNAHis maturation. These enzymes normally catalyze a single 5' guanylation of tRNAHis lacking the essential G-1 identity element required for aminoacylation. Recent studies suggest that archaeal type Thg1, which includes most archaeal and bacterial Thg1 enzymes is phylogenetically distant from eukaryotic Thg1. Thg1 is evolutionarily related to canonical 5'-3' forward polymerases but catalyzes reverse 3'-5'polymerization. Similar to its forward polymerase counterparts, Thg1 encodes the conserved catalytic palm domain and fingers domain. Here we investigate the minimal requirements for reverse polymerization. We show that the naturally occurring minimal Thg1 enzyme from Ignicoccus hospitalis (IhThg1), which lacks parts of the conserved fingers domain, is catalytically active. And adds all four natural nucleotides to RNA substrates, we further show that the entire fingers domain of Methanosarcina acetivorans Thg1 and Pyrobaculum aerophilum Thg1 (PaThg1) is dispensable for enzymatic activity. In addition, we identified residues in yeast Thg1 that play a part in preventing extended polymerization. Mutation of these residues with alanine resulted in extended reverse polymerization. PaThg1 was found to catalyze extended, template dependent tRNA repair, adding up to 13 nucleotides to a truncated tRNAHis substrate. Sequencing results suggest that PaThg1 fully restored the near correct sequence of the D- and acceptor stem, but also produced incompletely and incorrectly repaired tRNA products. This research forms the basis for future engineering efforts towards a high fidelity, template dependent reverse polymerase.
Collapse
Affiliation(s)
- Riddhi Desai
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Kunmo Kim
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | | | - Allan W Chen
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Yumin Bi
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Mitchell R Mann
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Matthew A Turk
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Christina Z Chung
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| | - Ilka U Heinemann
- a Department of Biochemistry , The University of Western Ontario , London , Canada
| |
Collapse
|
18
|
Structural Basis for the Bidirectional Activity of Bacillus nanoRNase NrnA. Sci Rep 2017; 7:11085. [PMID: 28894100 PMCID: PMC5593865 DOI: 10.1038/s41598-017-09403-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
NanoRNAs are RNA fragments 2 to 5 nucleotides in length that are generated as byproducts of RNA degradation and abortive transcription initiation. Cells have specialized enzymes to degrade nanoRNAs, such as the DHH phosphoesterase family member NanoRNase A (NrnA). This enzyme was originally identified as a 3′ → 5′ exonuclease, but we show here that NrnA is bidirectional, degrading 2–5 nucleotide long RNA oligomers from the 3′ end, and longer RNA substrates from the 5′ end. The crystal structure of Bacillus subtilis NrnA reveals a dynamic bi-lobal architecture, with the catalytic N-terminal DHH domain linked to the substrate binding C-terminal DHHA1 domain via an extended linker. Whereas this arrangement is similar to the structure of RecJ, a 5′ → 3′ DHH family DNase and other DHH family nanoRNases, Bacillus NrnA has gained an extended substrate-binding patch that we posit is responsible for its 3′ → 5′ activity.
Collapse
|
19
|
Lee K, Lee EH, Son J, Hwang KY. Crystal structure of tRNA His guanylyltransferase from Saccharomyces cerevisiae. Biochem Biophys Res Commun 2017. [PMID: 28623126 DOI: 10.1016/j.bbrc.2017.06.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
tRNA maturation involves several steps, including processing, splicing, CCA addition, and posttranscriptional modifications. tRNAHis guanylyltransferase (Thg1) is the only enzyme known to catalyze templated nucleotide addition in the 3'-5' direction, unlike other DNA and RNA polymerases. For a better understanding of its unique catalytic mechanism at the molecular level, we determined the crystal structure of GTP-bound Thg1 from Saccharomyces cerevisiae at the maximum resolution of 3.0 Å. The structure revealed the enzyme to have a tetrameric conformation that is well conserved among different species, and the GTP molecule was clearly bound at the active site, coordinating with two magnesium ions. In addition, two flexible protomers at the potential binding site (PBS) for tRNAHis were observed. We suggest that the PBS of the tetramer could also be one of the sites for interaction with partner proteins.
Collapse
Affiliation(s)
- Kitaik Lee
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-791, Republic of Korea
| | - Eun Hye Lee
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-791, Republic of Korea
| | - Jonghyeon Son
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-791, Republic of Korea
| | - Kwang Yeon Hwang
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-791, Republic of Korea.
| |
Collapse
|
20
|
Han L, Marcus E, D'Silva S, Phizicky EM. S. cerevisiae Trm140 has two recognition modes for 3-methylcytidine modification of the anticodon loop of tRNA substrates. RNA (NEW YORK, N.Y.) 2017; 23:406-419. [PMID: 28003514 PMCID: PMC5311504 DOI: 10.1261/rna.059667.116] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/12/2016] [Indexed: 05/25/2023]
Abstract
The 3-methylcytidine (m3C) modification is ubiquitous in eukaryotic tRNA, widely found at C32 in the anticodon loop of tRNAThr, tRNASer, and some tRNAArg species, as well as in the variable loop (V-loop) of certain tRNASer species. In the yeast Saccharomyces cerevisiae, formation of m3C32 requires Trm140 for six tRNA substrates, including three tRNAThr species and three tRNASer species, whereas in Schizosaccharomyces pombe, two Trm140 homologs are used, one for tRNAThr and one for tRNASer The occurrence of a single Trm140 homolog is conserved broadly among Ascomycota, whereas multiple Trm140-related homologs are found in metazoans and other fungi. We investigate here how S. cerevisiae Trm140 protein recognizes its six tRNA substrates. We show that Trm140 has two modes of tRNA substrate recognition. Trm140 recognizes G35-U36-t6A37 of the anticodon loop of tRNAThr substrates, and this sequence is an identity element because it can be used to direct m3C modification of tRNAPhe However, Trm140 recognition of tRNASer substrates is different, since their anticodons do not share G35-U36 and do not have any nucleotides in common. Rather, specificity of Trm140 for tRNASer is achieved by seryl-tRNA synthetase and the distinctive tRNASer V-loop, as well as by t6A37 and i6A37 We provide evidence that all of these components are important in vivo and that seryl-tRNA synthetase greatly stimulates m3C modification of tRNASer(CGA) and tRNASer(UGA) in vitro. In addition, our results show that Trm140 binding is a significant driving force for tRNA modification and suggest separate contributions from each recognition element for the modification.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/metabolism
- Base Sequence
- Binding Sites
- Cloning, Molecular
- Cytidine/analogs & derivatives
- Cytidine/genetics
- Cytidine/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Nucleic Acid Conformation
- Protein Binding
- Protein Biosynthesis
- Protein Domains
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- RNA, Transfer, Thr/chemistry
- RNA, Transfer, Thr/genetics
- RNA, Transfer, Thr/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Substrate Specificity
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Erin Marcus
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Sonia D'Silva
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| |
Collapse
|
21
|
Ekimoto T, Matubayasi N, Ikeguchi M. Finite-size effect on the charging free energy of protein in explicit solvent. J Chem Theory Comput 2016; 11:215-23. [PMID: 26574219 DOI: 10.1021/ct5008394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The finite-size effect in periodic system is examined for the charging free energy of protein in explicit solvent over a variety of charged states. The key to the finite-size correction is the self-energy, which is defined as the interaction energy of the solute with its own periodic images and the neutralizing background. By employing the thermodynamic-integration method with systematically varied sizes of the unit cell of molecular dynamics (MD) simulations, we show for ubiquitin that the self-energy corrects the finite-size effect on the charging free energy within 1 kcal/mol at total charges of -5e, -1e, neutral, and +1e and within 5 kcal/mol even for a highly charged state with +8e. We then sought the additional correction from the solvation effect using the numerical solution to the Poisson equation of the protein with implicit solvent. This correction reduces the cell-size dependence of the charging free energy at +8e to 3 kcal/mol and is well expressed as the self-energy divided by the dielectric constant of solvent water.
Collapse
Affiliation(s)
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University , Katsura, Kyoto 615-8520, Japan
| | | |
Collapse
|
22
|
Long Y, Abad MG, Olson ED, Carrillo EY, Jackman JE. Identification of distinct biological functions for four 3'-5' RNA polymerases. Nucleic Acids Res 2016; 44:8395-406. [PMID: 27484477 PMCID: PMC5041481 DOI: 10.1093/nar/gkw681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/22/2016] [Indexed: 12/19/2022] Open
Abstract
The superfamily of 3'-5' polymerases synthesize RNA in the opposite direction to all other DNA/RNA polymerases, and its members include eukaryotic tRNA(His) guanylyltransferase (Thg1), as well as Thg1-like proteins (TLPs) of unknown function that are broadly distributed, with family members in all three domains of life. Dictyostelium discoideum encodes one Thg1 and three TLPs (DdiTLP2, DdiTLP3 and DdiTLP4). Here, we demonstrate that depletion of each of the genes results in a significant growth defect, and that each protein catalyzes a unique biological reaction, taking advantage of specialized biochemical properties. DdiTLP2 catalyzes a mitochondria-specific tRNA(His) maturation reaction, which is distinct from the tRNA(His) maturation reaction typically catalyzed by Thg1 enzymes on cytosolic tRNA. DdiTLP3 catalyzes tRNA repair during mitochondrial tRNA 5'-editing in vivo and in vitro, establishing template-dependent 3'-5' polymerase activity of TLPs as a bona fide biological activity for the first time since its unexpected discovery more than a decade ago. DdiTLP4 is cytosolic and, surprisingly, catalyzes robust 3'-5' polymerase activity on non-tRNA substrates, strongly implying further roles for TLP 3'-5' polymerases in eukaryotes.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Maria G Abad
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Erik D Olson
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Elisabeth Y Carrillo
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Kimura S, Suzuki T, Chen M, Kato K, Yu J, Nakamura A, Tanaka I, Yao M. Template-dependent nucleotide addition in the reverse (3'-5') direction by Thg1-like protein. SCIENCE ADVANCES 2016; 2:e1501397. [PMID: 27051866 PMCID: PMC4820378 DOI: 10.1126/sciadv.1501397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/04/2016] [Indexed: 05/23/2023]
Abstract
Thg1-like protein (TLP) catalyzes the addition of a nucleotide to the 5'-end of truncated transfer RNA (tRNA) species in a Watson-Crick template-dependent manner. The reaction proceeds in two steps: the activation of the 5'-end by adenosine 5'-triphosphate (ATP)/guanosine 5'-triphosphate (GTP), followed by nucleotide addition. Structural analyses of the TLP and its reaction intermediates have revealed the atomic detail of the template-dependent elongation reaction in the 3'-5' direction. The enzyme creates two substrate binding sites for the first- and second-step reactions in the vicinity of one reaction center consisting of two Mg(2+) ions, and the two reactions are executed at the same reaction center in a stepwise fashion. When the incoming nucleotide is bound to the second binding site with Watson-Crick hydrogen bonds, the 3'-OH of the incoming nucleotide and the 5'-triphosphate of the tRNA are moved to the reaction center where the first reaction has occurred. That the 3'-5' elongation enzyme performs this elaborate two-step reaction in one catalytic center suggests that these two reactions have been inseparable throughout the process of protein evolution. Although TLP and Thg1 have similar tetrameric organization, the tRNA binding mode of TLP is different from that of Thg1, a tRNA(His)-specific G-1 addition enzyme. Each tRNA(His) binds to three of the four Thg1 tetramer subunits, whereas in TLP, tRNA only binds to a dimer interface and the elongation reaction is terminated by measuring the accepter stem length through the flexible β-hairpin. Furthermore, mutational analyses show that tRNA(His) is bound to TLP in a similar manner as Thg1, thus indicating that TLP has a dual binding mode.
Collapse
Affiliation(s)
- Shoko Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tateki Suzuki
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Meirong Chen
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jian Yu
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akiyoshi Nakamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
24
|
Zhu W, Ausin I, Seleznev A, Méndez-Vigo B, Picó FX, Sureshkumar S, Sundaramoorthi V, Bulach D, Powell D, Seemann T, Alonso-Blanco C, Balasubramanian S. Natural Variation Identifies ICARUS1, a Universal Gene Required for Cell Proliferation and Growth at High Temperatures in Arabidopsis thaliana. PLoS Genet 2015; 11:e1005085. [PMID: 25951176 PMCID: PMC4423873 DOI: 10.1371/journal.pgen.1005085] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/20/2015] [Indexed: 12/17/2022] Open
Abstract
Plants are highly sensitive to environmental changes and even small variations in ambient temperature have severe consequences on their growth and development. Temperature affects multiple aspects of plant development, but the processes and mechanisms underlying thermo-sensitive growth responses are mostly unknown. Here we exploit natural variation in Arabidopsis thaliana to identify and characterize novel components and processes mediating thermo-sensitive growth responses in plants. Phenotypic screening of wild accessions identified several strains displaying pleiotropic growth defects, at cellular and organism levels, specifically at high ambient temperatures. Positional cloning and characterization of the underlying gene revealed that ICARUS1 (ICA1), which encodes a protein of the tRNAHis guanylyl transferase (Thg1) superfamily, is required for plant growth at high temperatures. Transcriptome and gene marker analyses together with DNA content measurements show that ICA1 loss-of-function results in down regulation of cell cycle associated genes at high temperatures, which is linked with a block in G2/M transition and endoreduplication. In addition, plants with mutations in ICA1 show enhanced sensitivity to DNA damage. Characterization of additional strains that carry lesions in ICA1, but display normal growth, shows that alternative splicing is likely to alleviate the deleterious effects of some natural mutations. Furthermore, analyses of worldwide and regional collections of natural accessions indicate that ICA1 loss-of-function has arisen several times independently, and that these occur at high frequency in some local populations. Overall our results suggest that ICA1-mediated-modulation of fundamental processes such as tRNAHis maturation, modify plant growth responses to temperature changes in a quantitative and reversible manner, in natural populations. The increase in average temperatures across the globe has been predicted to have negative impacts on agricultural productivity. Therefore, there is a need to understand the molecular mechanisms that underlie plant growth responses to varying temperature regimes. At present, very little is known about the genes and pathways that modulate thermo-sensory growth responses in plants. In this article, the authors exploit natural variation in the commonly occurring weed thale cress (Arabidopsis thaliana) and identify a gene referred to as ICARUS1 to be required for plant growth at higher ambient temperatures. Plants carrying lesions in this gene stop growing at high temperatures and revert to growth when temperatures reduce. Using a combination of computational, molecular and cell biological approaches, the authors demonstrate that allelic variation at ICARUS1, which encodes an enzyme required for the fundamental biochemical process of tRNAHis maturation, underlies variation in thermo-sensory growth responses of A. thaliana. Furthermore, the authors discover that the deleterious impact of a natural mutation in ICARUS1 is suppressed through alternative splicing, thus suggesting the potential for alternative splicing to buffer the impacts of some natural mutations. These results support that modulation of fundamental processes, in addition to transcriptional regulation, mediate thermo-sensory growth responses in plants.
Collapse
Affiliation(s)
- Wangsheng Zhu
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Israel Ausin
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Andrei Seleznev
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Belén Méndez-Vigo
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - F. Xavier Picó
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | | | | | - Dieter Bulach
- Victorian Bioinformatics Consortium, Monash University, Victoria, Australia
| | - David Powell
- Victorian Bioinformatics Consortium, Monash University, Victoria, Australia
| | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, Victoria, Australia
| | - Carlos Alonso-Blanco
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail: (CAB); (SB)
| | | |
Collapse
|
25
|
Seligmann H. Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A<->T+C<->G in the mitogenome of Kamimuria wangi. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2440-6. [PMID: 25865623 DOI: 10.3109/19401736.2015.1033691] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (X<->Y, i.e. A<->C) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the A<->T+C<->G exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are "regular", stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA.
Collapse
Affiliation(s)
- Hervé Seligmann
- a Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, Faculté de Médecine, URMITE CNRS-IRD 198 UMR 6236, Université d'Aix-Marseille , Marseille , France
| |
Collapse
|
26
|
Powell CA, Nicholls TJ, Minczuk M. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease. Front Genet 2015; 6:79. [PMID: 25806043 PMCID: PMC4354410 DOI: 10.3389/fgene.2015.00079] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/16/2015] [Indexed: 11/29/2022] Open
Abstract
The human mitochondrial genome (mtDNA) encodes 22 tRNAs (mt-tRNAs) that are necessary for the intraorganellar translation of the 13 mtDNA-encoded subunits of the mitochondrial respiratory chain complexes. Maturation of mt-tRNAs involves 5′ and 3′ nucleolytic excision from precursor RNAs, as well as extensive post-transcriptional modifications. Recent data suggest that over 7% of all mt-tRNA residues in mammals undergo post-transcriptional modification, with over 30 different modified mt-tRNA positions so far described. These processing and modification steps are necessary for proper mt-tRNA function, and are performed by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes (nDNA), leading to incorrect maturation of mt-tRNAs, are a cause of human mitochondrial disease. Furthermore, mtDNA mutations in mt-tRNA genes, which may also affect mt-tRNA function, processing, and modification, are also frequently associated with human disease. In theory, all pathogenic mt-tRNA variants should be expected to affect only a single process, which is mitochondrial translation, albeit to various extents. However, the clinical manifestations of mitochondrial disorders linked to mutations in mt-tRNAs are extremely heterogeneous, ranging from defects of a single tissue to complex multisystem disorders. This review focuses on the current knowledge of nDNA coding for proteins involved in mt-tRNA maturation that have been linked to human mitochondrial pathologies. We further discuss the possibility that tissue specific regulation of mt-tRNA modifying enzymes could play an important role in the clinical heterogeneity observed for mitochondrial diseases caused by mutations in mt-tRNA genes.
Collapse
Affiliation(s)
- Christopher A Powell
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| | - Thomas J Nicholls
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| | - Michal Minczuk
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| |
Collapse
|
27
|
Tian Q, Wang C, Liu Y, Xie W. Structural basis for recognition of G-1-containing tRNA by histidyl-tRNA synthetase. Nucleic Acids Res 2015; 43:2980-90. [PMID: 25722375 PMCID: PMC4357726 DOI: 10.1093/nar/gkv129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play a crucial role in protein translation by linking tRNAs with cognate amino acids. Among all the tRNAs, only tRNAHis bears a guanine base at position -1 (G-1), and it serves as a major recognition element for histidyl-tRNA synthetase (HisRS). Despite strong interests in the histidylation mechanism, the tRNA recognition and aminoacylation details are not fully understood. We herein present the 2.55 Å crystal structure of HisRS complexed with tRNAHis, which reveals that G-1 recognition is principally nonspecific interactions on this base and is made possible by an enlarged binding pocket consisting of conserved glycines. The anticodon triplet makes additional specific contacts with the enzyme but the rest of the loop is flexible. Based on the crystallographic and biochemical studies, we inferred that the uniqueness of histidylation system originates from the enlarged binding pocket (for the extra base G-1) on HisRS absent in other aaRSs, and this structural complementarity between the 5′ extremity of tRNA and enzyme is probably a result of coevolution of both.
Collapse
Affiliation(s)
- Qingnan Tian
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China Center for Cellular & Structural biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou 510006, People's Republic of China
| | - Caiyan Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China Center for Cellular & Structural biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou 510006, People's Republic of China
| | - Yuhuan Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Wei Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, People's Republic of China Center for Cellular & Structural biology, The Sun Yat-Sen University, 132 E. Circle Rd., University City, Guangzhou 510006, People's Republic of China
| |
Collapse
|