1
|
Wang Y, Tan B, Wang Y, Chen Z. Cholinergic Signaling, Neural Excitability, and Epilepsy. Molecules 2021; 26:molecules26082258. [PMID: 33924731 PMCID: PMC8070422 DOI: 10.3390/molecules26082258] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a common brain disorder characterized by recurrent epileptic seizures with neuronal hyperexcitability. Apart from the classical imbalance between excitatory glutamatergic transmission and inhibitory γ-aminobutyric acidergic transmission, cumulative evidence suggest that cholinergic signaling is crucially involved in the modulation of neural excitability and epilepsy. In this review, we briefly describe the distribution of cholinergic neurons, muscarinic, and nicotinic receptors in the central nervous system and their relationship with neural excitability. Then, we summarize the findings from experimental and clinical research on the role of cholinergic signaling in epilepsy. Furthermore, we provide some perspectives on future investigation to reveal the precise role of the cholinergic system in epilepsy.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.W.); (Z.C.); Tel.: +86-5718-661-8660 (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.W.); (B.T.)
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.W.); (Z.C.); Tel.: +86-5718-661-8660 (Z.C.)
| |
Collapse
|
2
|
Nuñez A, Buño W. The Theta Rhythm of the Hippocampus: From Neuronal and Circuit Mechanisms to Behavior. Front Cell Neurosci 2021; 15:649262. [PMID: 33746716 PMCID: PMC7970048 DOI: 10.3389/fncel.2021.649262] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
This review focuses on the neuronal and circuit mechanisms involved in the generation of the theta (θ) rhythm and of its participation in behavior. Data have accumulated indicating that θ arises from interactions between medial septum-diagonal band of Broca (MS-DbB) and intra-hippocampal circuits. The intrinsic properties of MS-DbB and hippocampal neurons have also been shown to play a key role in θ generation. A growing number of studies suggest that θ may represent a timing mechanism to temporally organize movement sequences, memory encoding, or planned trajectories for spatial navigation. To accomplish those functions, θ and gamma (γ) oscillations interact during the awake state and REM sleep, which are considered to be critical for learning and memory processes. Further, we discuss that the loss of this interaction is at the base of various neurophatological conditions.
Collapse
Affiliation(s)
- Angel Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Washington Buño
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| |
Collapse
|
3
|
Fuenzalida M, Chiu CQ, Chávez AE. Muscarinic Regulation of Spike Timing Dependent Synaptic Plasticity in the Hippocampus. Neuroscience 2020; 456:50-59. [PMID: 32828940 DOI: 10.1016/j.neuroscience.2020.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022]
Abstract
Long-term changes in synaptic transmission between neurons in the brain are considered the cellular basis of learning and memory. Over the last few decades, many studies have revealed that the precise order and timing of activity between pre- and post-synaptic cells ("spike-timing-dependent plasticity; STDP") is crucial for the sign and magnitude of long-term changes at many central synapses. Acetylcholine (ACh) via the recruitment of diverse muscarinic receptors is known to influence STDP in a variety of ways, enabling flexibility and adaptability in brain network activity during complex behaviors. In this review, we will summarize and discuss different mechanistic aspects of muscarinic modulation of timing-dependent plasticity at both excitatory and inhibitory synapses in the hippocampus to shape learning and memory.
Collapse
Affiliation(s)
- Marco Fuenzalida
- Center of Neurobiology and Integrative Physiopathology, Institute of Physiology, Faculty of Science, Universidad de Valparaíso, Chile.
| | - Chiayu Q Chiu
- Interdisciplinary Center of Neuroscience of Valparaiso, Institute of Neuroscience, Faculty of Science, Universidad de Valparaíso, Chile
| | - Andrés E Chávez
- Interdisciplinary Center of Neuroscience of Valparaiso, Institute of Neuroscience, Faculty of Science, Universidad de Valparaíso, Chile
| |
Collapse
|
4
|
Yang D, Ding C, Qi G, Feldmeyer D. Cholinergic and Adenosinergic Modulation of Synaptic Release. Neuroscience 2020; 456:114-130. [PMID: 32540364 DOI: 10.1016/j.neuroscience.2020.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/14/2023]
Abstract
In this review we will discuss the effect of two neuromodulatory transmitters, acetylcholine (ACh) and adenosine, on the synaptic release probability and short-term synaptic plasticity. ACh and adenosine differ fundamentally in the way they are released into the extracellular space. ACh is released mostly from synaptic terminals and axonal bouton of cholinergic neurons in the basal forebrain (BF). Its mode of action on synaptic release probability is complex because it activate both ligand-gated ion channels, so-called nicotinic ACh receptors and G-protein coupled muscarinic ACh receptors. In contrast, adenosine is released from both neurons and glia via nucleoside transporters or diffusion over the cell membrane in a non-vesicular, non-synaptic fashion; its receptors are exclusively G-protein coupled receptors. We show that ACh and adenosine effects are highly specific for an identified synaptic connection and depend mostly on the presynaptic but also on the postsynaptic receptor type and discuss the functional implications of these differences.
Collapse
Affiliation(s)
- Danqing Yang
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Chao Ding
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Guanxiao Qi
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany
| | - Dirk Feldmeyer
- Research Centre Juelich, Institute of Neuroscience and Medicine 10, Leo-Brandt-Strasse, Juelich, Germany; RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen, Germany; Jülich-Aachen Research Alliance Brain - JARA Brain, Germany.
| |
Collapse
|
5
|
Fernández de Sevilla D, Núñez A, Buño W. Muscarinic Receptors, from Synaptic Plasticity to its Role in Network Activity. Neuroscience 2020; 456:60-70. [PMID: 32278062 DOI: 10.1016/j.neuroscience.2020.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
Acetylcholine acting via metabotropic receptors plays a key role in learning and memory by regulating synaptic plasticity and circuit activity. However, a recent overall view of the effects of muscarinic acetylcholine receptors (mAChRs) on excitatory and inhibitory long-term synaptic plasticity and on circuit activity is lacking. This review focusses on specific aspects of the regulation of synaptic plasticity and circuit activity by mAChRs in the hippocampus and cortex. Acetylcholine increases the excitability of pyramidal neurons, facilitating the generation of dendritic Ca2+-spikes, NMDA-spikes and action potential bursts which provide the main source of Ca2+ influx necessary to induce synaptic plasticity. The activation of mAChRs induced Ca2+ release from intracellular IP3-sensitive stores is a major player in the induction of a NMDA independent long-term potentiation (LTP) caused by an increased expression of AMPA receptors in hippocampal pyramidal neuron dendritic spines. In the neocortex, activation of mAChRs also induces a long-term enhancement of excitatory postsynaptic currents. In addition to effects on excitatory synapses, a single brief activation of mAChRs together with short repeated membrane depolarization can induce a long-term enhancement of GABA A type (GABAA) inhibition through an increased expression of GABAA receptors in hippocampal pyramidal neurons. By contrast, a long term depression of GABAA inhibition (iLTD) is induced by muscarinic receptor activation in the absence of postsynaptic depolarizations. This iLTD is caused by an endocannabinoid-mediated presynaptic inhibition that reduces the GABA release probability at the terminals of inhibitory interneurons. This bidirectional long-term plasticity of inhibition may dynamically regulate the excitatory/inhibitory balance depending on the quiescent or active state of the postsynaptic pyramidal neurons. Therefore, acetylcholine can induce varied effects on neuronal activity and circuit behavior that can enhance sensory detection and processing through the modification of circuit activity leading to learning, memory and behavior.
Collapse
Affiliation(s)
- D Fernández de Sevilla
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain.
| | - A Núñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - W Buño
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28029, Spain
| |
Collapse
|
6
|
Morales-Weil K, Moreno M, Ahumada J, Arriagada J, Fuentealba P, Bonansco C, Fuenzalida M. Priming of GABAergic Long-term Potentiation by Muscarinic Receptors. Neuroscience 2020; 428:242-251. [PMID: 31917346 DOI: 10.1016/j.neuroscience.2019.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022]
Abstract
Growing evidence indicates that GABAergic interneurons play a pivotal role to generate brain oscillation patterns, which are fundamental for the mnemonic processing of the hippocampus. While acetylcholine (ACh) is a powerful modulator of synaptic plasticity and brain function, few studies have been focused on the role of cholinergic signaling in the regulation of GABAergic inhibitory synaptic plasticity. We have previously shown that co-activation of endocannabinoids (CB1R) and muscarinic receptor (mAChR) in hippocampal interneurons can induce activity-dependent GABAergic long-term depression in CA1 pyramidal neurons. Here, using electrophysiological and pharmacological approaches in acute rat hippocampal slices, we show that activation of cholinergic receptors followed by either high-frequency stimulation of Schaeffer collaterals or exogenous activation of metabotropic glutamate receptor (mGluR) induces a robust long-term potentiation at GABAergic synapses (iLTP). These forms of iLTP are blocked by the M1 type of mAChR (MR1) or by the group I of mGluR (mGluR1/5) antagonists. These results suggest the existence of spatiotemporal cooperativity between cholinergic and glutamatergic pathways where activation of mAChR serves as a metaplastic switch making glutamatergic synapses capable to induce long-term potentiation at inhibitory synapses, that may contribute to the modulation of brain mechanisms of learning and memory.
Collapse
Affiliation(s)
- Koyam Morales-Weil
- Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile; Programa de Doctorado en Ciencias, mención Neurociencias, Universidad de Valparaíso, Chile
| | - Macarena Moreno
- Centro interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Chile
| | - Juan Ahumada
- Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile; Programa de Doctorado en Ciencias, mención Neurociencias, Universidad de Valparaíso, Chile
| | - Jorge Arriagada
- Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Chile
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile.
| |
Collapse
|
7
|
Cieślik P, Domin H, Chocyk A, Gruca P, Litwa E, Płoska A, Radulska A, Pelikant-Małecka I, Brański P, Kalinowski L, Wierońska JM. Simultaneous activation of mGlu 2 and muscarinic receptors reverses MK-801-induced cognitive decline in rodents. Neuropharmacology 2019; 174:107866. [PMID: 31785263 DOI: 10.1016/j.neuropharm.2019.107866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/09/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022]
Abstract
The activity of an allosteric agonist of muscarinic M1 receptor, VU0357017, and a positive allosteric modulator (PAM) of M5 receptor, VU0238429, were investigated alone or in combination with the mGlu2 receptor PAM, LY487379 using the following behavioural tests: prepulse inhibition (PPI), novel object recognition (NOR), and spatial delayed alternation (SDA). VU0357017 (10 and 20 mg/kg) and VU0238429 (5 and 10 mg/kg) reversed deficits in PPI while VU0238429 (2.5 and 5 mg/kg) was effective in SDA. The simultaneous administration of subeffective doses of M1 or M5 activators (5, 1, or 0.25 mg/kg) with LY487379 (0.5 mg/kg) induced the same effect as that observed for the active dose of each compound. Selective M1 or M5 receptor blockers antagonized the effect exerted by these combinations, and pharmacokinetic studies confirmed independent transport through the blood-brain barrier. The expression of both receptors (M1 and M5) was established in brain structures involved in cognition (neocortex, hippocampus, and entorhinal cortex) in both the rat and the mouse brains by immunofluorescence staining. Specifically, double neuronal staining of mGlu2-M1 and mGlu2-M5 receptors was observed in many areas of the rat brain, while the number of double-stained mGlu2-M1 receptors was moderate in the mouse brain with no mGlu2-M5 colocalization. Finally, the combined administration of subeffective doses of the compounds did not alter prolactin levels or motor coordination, in contrast to the compounds given alone at the highest dose or in combination with standard neuroleptics.
Collapse
Affiliation(s)
- Paulina Cieślik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Helena Domin
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Agnieszka Chocyk
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Piotr Gruca
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Ewa Litwa
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Iwona Pelikant-Małecka
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Piotr Brański
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Dębinki 7, 80-211, Gdańsk, Poland; Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdańsk, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343, Kraków, 12 Smetna Street, Poland.
| |
Collapse
|
8
|
Palacios-Filardo J, Mellor JR. Neuromodulation of hippocampal long-term synaptic plasticity. Curr Opin Neurobiol 2018; 54:37-43. [PMID: 30212713 PMCID: PMC6367596 DOI: 10.1016/j.conb.2018.08.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022]
Abstract
Acetylcholine, noradrenaline, dopamine and serotonin all facilitate long-term synaptic plasticity. Neuromodulators facilitate long-term synaptic plasticity by common and divergent mechanisms. Common mechanisms include NMDA receptor facilitation by potassium channel inhibition, gliotransmission and disinhibition. Divergent mechanisms include diversity of disinhibition and temporal and spatial neuromodulator release.
Multiple neuromodulators including acetylcholine, noradrenaline, dopamine and serotonin are released in response to uncertainty to focus attention on events where the predicted outcome does not match observed reality. In these situations, internal representations need to be updated, a process that requires long-term synaptic plasticity. Through a variety of common and divergent mechanisms, it is recently shown that all these neuromodulators facilitate the induction and/or expression of long-term synaptic plasticity within the hippocampus. Under physiological conditions, this may be critical for suprathreshold induction of plasticity endowing neuromodulators with a gating function and providing a mechanism by which neuromodulators enable the targeted updating of memory with relevant information to improve the accuracy of future predictions.
Collapse
Affiliation(s)
- Jon Palacios-Filardo
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
9
|
Domínguez S, Fernández de Sevilla D, Buño W. Acetylcholine Facilitates a Depolarization-Induced Enhancement of Inhibition in Rat CA1 Pyramidal Neurons. Cereb Cortex 2018; 27:852-862. [PMID: 26620268 DOI: 10.1093/cercor/bhv276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cholinergic mechanisms in the hippocampus regulate forms of synaptic plasticity linked with cognition and spatial navigation, but the underlying mechanisms remain largely unknown. Here, in rat hippocampal CA1 pyramidal cells under blockade of ionotropic glutamate receptors, we report that a single acetylcholine pulse and repeated depolarization activated a robust and enduring postsynaptic depolarization-induced enhancement of inhibition (DEI) that masked a presynaptic depolarization-induced suppression of inhibition (DSI). Increased cytosolic Ca2+ and M1-muscarinic receptor activation caused the rise in voltage-sensitive α5βγ2-containing γ-aminobutyric acid type-A receptors that generated DEI. In summary, this muscarinic-mediated activity-dependent plasticity rapidly transfers depolarization effects on inhibition from presynaptic suppression or DSI to postsynaptic enhancement or DEI, a change potentially relevant in behavior.
Collapse
Affiliation(s)
| | - David Fernández de Sevilla
- Instituto Cajal, CSIC, 28002 Madrid, Spain.,Depto. Anatomía, Histología y Neurociencia, Facultad de Medicina UAM, 28029 Madrid, Spain
| | | |
Collapse
|
10
|
Naser PV, Kuner R. Molecular, Cellular and Circuit Basis of Cholinergic Modulation of Pain. Neuroscience 2017; 387:135-148. [PMID: 28890048 PMCID: PMC6150928 DOI: 10.1016/j.neuroscience.2017.08.049] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
Abstract
In addition to being a key component of the autonomic nervous system, acetylcholine acts as a prominent neurotransmitter and neuromodulator upon release from key groups of cholinergic projection neurons and interneurons distributed across the central nervous system. It has been more than forty years since it was discovered that cholinergic transmission profoundly modifies the perception of pain. Directly activating cholinergic receptors or extending the action of endogenous acetylcholine via pharmacological blockade of acetylcholine esterase reduces pain in rodents as well as humans; conversely, inhibition of muscarinic cholinergic receptors induces nociceptive hypersensitivity. Here, we aim to review the considerable progress in our understanding of peripheral, spinal and brain contributions to cholinergic modulation of pain. We discuss the distribution of cholinergic neurons, muscarinic and nicotinic receptors over the central nervous system and the synaptic and circuit-level modulation by cholinergic signaling. AchRs profoundly regulate nociceptive transmission at the level of the spinal cord via pre- as well as postsynaptic mechanisms. Moreover, we attempt to provide an overview of how some of the salient regions in the pain network spanning the brain, such as the primary somatosensory cortex, insular cortex, anterior cingulate cortex, the medial prefrontal cortex and descending modulatory systems are influenced by cholinergic modulation. Finally, we critically discuss the clinical relevance of cholinergic signaling to pain therapy. Cholinergic mechanisms contribute to several both conventional as well as unorthodox forms of pain treatments, and reciprocal interactions between cholinergic and opioidergic modulation impact on the function and efficacy of both opioids and cholinomimetic drugs.
Collapse
Affiliation(s)
- Paul V Naser
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany; Cell Networks Cluster of Excellence, Heidelberg University, Germany.
| |
Collapse
|
11
|
Thorn CA, Popiolek M, Stark E, Edgerton JR. Effects of M1 and M4 activation on excitatory synaptic transmission in CA1. Hippocampus 2017; 27:794-810. [PMID: 28422371 PMCID: PMC5573954 DOI: 10.1002/hipo.22732] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/24/2017] [Accepted: 03/31/2017] [Indexed: 01/23/2023]
Abstract
Hippocampal networks are particularly susceptible to dysfunction in many neurodegenerative diseases and neuropsychiatric disorders including Alzheimer's disease, Lewy body dementia, and schizophrenia. CA1, a major output region of the hippocampus, receives glutamatergic input from both hippocampal CA3 and entorhinal cortex, via the Schaffer collateral (SC) and temporoammonic (TA) pathways, respectively. SC and TA inputs to CA1 are thought to be differentially involved in the retrieval of previously stored memories versus the encoding of novel information, and switching between these two crucial hippocampal functions is thought to critically depend on acetylcholine (ACh) acting at muscarinic receptors. In this study, we aimed to determine the roles of specific subtypes of muscarinic receptors in mediating the neuromodulatory effects of ACh on glutamatergic synaptic transmission in the SC and TA pathways of CA1. Using selective pharmacological activation of M1 or M4 receptors along with extracellular and intracellular electrophysiology recordings from adult rat hippocampal slices, we demonstrate that activation of M1 receptors increases spontaneous spike rates of neuronal ensembles in CA1 and increases the intrinsic excitability of pyramidal neurons and interneurons. Selective activation of M4 receptors inhibits glutamate release in the SC pathway, while leaving synaptic transmission in the TA pathway comparatively intact. These results suggest specific mechanisms by which M1 and M4 activation may normalize CA1 circuit activity following disruptions of signaling that accompany neurodegenerative dementias or neuropsychiatric disorders. These findings are of particular interest in light of clinical findings that xanomeline, an M1/M4 preferring agonist, was able to improve cognitive and behavioral symptoms in patients with Alzheimer's disease or schizophrenia.
Collapse
Affiliation(s)
| | - Michael Popiolek
- Pfizer Internal Medicine Research UnitCambridgeMassachusetts02139
| | - Eda Stark
- Pfizer Internal Medicine Research UnitCambridgeMassachusetts02139
| | | |
Collapse
|
12
|
Vallejo M, Carlini V, Gabach L, Ortega MG, L Cabrera J, de Barioglio SR, Pérez M, Agnese AM. Sauroxine reduces memory retention in rats and impairs hippocampal long-term potentiation generation. Pharmacotherapy 2017; 91:155-161. [PMID: 28458154 DOI: 10.1016/j.biopha.2017.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/01/2017] [Accepted: 04/10/2017] [Indexed: 11/29/2022]
Abstract
In the present paper it was investigated the role of sauroxine, an alkaloid of Phlegmariurus saururus, as a modulator of some types of learning and memory, considering the potential nootropic properties previously reported for the alkaloid extract and the main alkaloid sauroine. Sauroxine was isolated by means of an alkaline extraction, purified by several chromatographic techniques, and assayed in electrophysiological experiments on rat hippocampus slices, tending towards the elicitation of the long-term potentiation (LTP) phenomena. It was also studied the effects of intrahippocampal administration of sauroxine on memory retention in vivo using a Step-down test. Being the bio distribution of a drug an important parameter to be considered, the concentration of sauroxine in rat brain was determined by GLC-MS. Sauroxine blocked LTP generation at both doses used, 3.65 and 3.610-2μM. In the behavioral test, the animals injected with this alkaloid (3.6510-3nmol) exhibited a significant decrease on memory retention compared with control animals. It was also showed that sauroxine reached the brain (3.435μg/g tissue), after an intraperitoneal injection, displaying its ability to cross the blood-brain barrier. Thus, sauroxine demonstrated to exert an inhibition on these mnemonic phenomena. The effect here established for 1 is defeated by other constituents according to the excellent results obtained for P. saururus alkaloid extract as well as for the isolated alkaloid sauroine.
Collapse
Affiliation(s)
- Mariana Vallejo
- IMBIV-CONICET and Farmacognosia, Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Valeria Carlini
- INICSA-CONICET and Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Gabach
- IFEC-CONICET and Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M G Ortega
- IMBIV-CONICET and Farmacognosia, Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José L Cabrera
- IMBIV-CONICET and Farmacognosia, Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Susana Rubiales de Barioglio
- IFEC-CONICET and Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariela Pérez
- IFEC-CONICET and Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alicia M Agnese
- IMBIV-CONICET and Farmacognosia, Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
13
|
Yu P, Zhou W, Liu L, Tang YB, Song Y, Lu JJ, Hou LN, Chen HZ, Cui YY. L-Satropane Prevents Retinal Neuron Damage by Attenuating Cell Apoptosis and Aβ Production via Activation of M1 Muscarinic Acetylcholine Receptor. Curr Eye Res 2017. [PMID: 28632409 DOI: 10.1080/02713683.2017.1315142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Muscarinic acetylcholine receptor (mAChR) agonists have been used to treat glaucoma due to their intraocular pressure-lowering effects. Recently, it has been reported that retinal mAChRs activation can also stimulate neuroprotective pathways. PURPOSE In our study, we evaluated the potential neuroprotective effect of L-satropane, a novel mAChR agonist, on retinal neuronal injury induced by cobalt chloride (CoCl2) and ischemia/reperfusion (I/R). METHODS CoCl2-induced hypoxia injury in cultured cell models and I/R-induced retinal neuronal damage in rats in vivo were used to evaluate the abilities of L-satropane. In detail, we measured the occurrence of retinal pathological changes including molecular markers of neuronal apoptosis and Aβ expression. RESULTS Pretreatment with L-satropane protects against CoCl2-induced neurotoxicity in PC12 and primary retinal neuron (PRN) cells in a dose-dependent manner by increasing retinal neuron survival. CoCl2 or I/R-induced cell apoptosis by upregulating Bax expression and downregulating Bcl-2 expression, which resulted in an increased Bax/Bcl-2 ratio, and upregulating caspase-3 expression/activity was significantly reversed by L-satropane treatment. In addition, L-satropane significantly inhibited the upregulation of Aβ production in both retinal neurons and tissue. We also found that I/R-induced histopathological retinal changes including cell loss in the retinal ganglion cell layer (GCL) and increased TUNEL positive retinal ganglion cells in GCL and thinning of the inner plexiform layer (IPL) and inner nuclear layer (INL) were markedly improved by L-satropane. The effects of L-satropane were largely abolished by the nonselective mAChRs antagonist atropine and M1-selective mAChR antagonist pirenzepine. CONCLUSION These results demonstrated that L-satropane might be effective in preventing retinal neuron damage caused by CoCl2 or I/R. The neuroprotective effects of L-satropane may be attributed to decreasing cell apoptosis and Aβ production through activation of M1 mAChR.
Collapse
Affiliation(s)
- Ping Yu
- a Department of Pharmacology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Wei Zhou
- b Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Lu Liu
- c Department of Physiology & Pharmacology, School of Medical Sciences , University of New South Wales , Sydney , Australia
| | - Ya-Bin Tang
- a Department of Pharmacology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yun Song
- a Department of Pharmacology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Juan-Juan Lu
- a Department of Pharmacology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Li-Na Hou
- a Department of Pharmacology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Hong-Zhuan Chen
- a Department of Pharmacology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yong-Yao Cui
- a Department of Pharmacology , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
14
|
Díez-García A, Barros-Zulaica N, Núñez Á, Buño W, Fernández de Sevilla D. Bidirectional Hebbian Plasticity Induced by Low-Frequency Stimulation in Basal Dendrites of Rat Barrel Cortex Layer 5 Pyramidal Neurons. Front Cell Neurosci 2017; 11:8. [PMID: 28203145 PMCID: PMC5285403 DOI: 10.3389/fncel.2017.00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/12/2017] [Indexed: 11/15/2022] Open
Abstract
According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca2+ spike and Ca2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information.
Collapse
Affiliation(s)
- Andrea Díez-García
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Natali Barros-Zulaica
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Ángel Núñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid Madrid, Spain
| | - Washington Buño
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain
| | - David Fernández de Sevilla
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de MadridMadrid, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC)Madrid, Spain
| |
Collapse
|
15
|
Domínguez S, Fernández de Sevilla D, Buño W. Muscarinic Long-Term Enhancement of Tonic and Phasic GABA A Inhibition in Rat CA1 Pyramidal Neurons. Front Cell Neurosci 2016; 10:244. [PMID: 27833531 PMCID: PMC5080370 DOI: 10.3389/fncel.2016.00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/06/2016] [Indexed: 01/23/2023] Open
Abstract
Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABAARs). Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA) and puff-evoked GABAA currents (pGABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals.
Collapse
Affiliation(s)
- Soledad Domínguez
- Instituto Cajal - Consejo Superior de Investigaciones CientificasMadrid, Spain; Centre National de la Recherche Scientifique, Paris Descartes University, UMR 8118, ParisFrance
| | - David Fernández de Sevilla
- Instituto Cajal - Consejo Superior de Investigaciones CientificasMadrid, Spain; Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autonoma de MadridMadrid, Spain
| | - Washington Buño
- Instituto Cajal - Consejo Superior de Investigaciones Cientificas Madrid, Spain
| |
Collapse
|
16
|
Prince LY, Bacon TJ, Tigaret CM, Mellor JR. Neuromodulation of the Feedforward Dentate Gyrus-CA3 Microcircuit. Front Synaptic Neurosci 2016; 8:32. [PMID: 27799909 PMCID: PMC5065980 DOI: 10.3389/fnsyn.2016.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
The feedforward dentate gyrus-CA3 microcircuit in the hippocampus is thought to activate ensembles of CA3 pyramidal cells and interneurons to encode and retrieve episodic memories. The creation of these CA3 ensembles depends on neuromodulatory input and synaptic plasticity within this microcircuit. Here we review the mechanisms by which the neuromodulators aceylcholine, noradrenaline, dopamine, and serotonin reconfigure this microcircuit and thereby infer the net effect of these modulators on the processes of episodic memory encoding and retrieval.
Collapse
Affiliation(s)
- Luke Y Prince
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Travis J Bacon
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Cezar M Tigaret
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol Bristol, UK
| |
Collapse
|