1
|
Morgan BJ, Song R, McDermott I, Brinkman JA, Holbert K, Oler AT, Dresen AS, Sandbo N, Bernau K, Teodorescu M. Altered control of breathing in a rat model of allergic lower airway inflammation. J Neurophysiol 2024; 132:1650-1666. [PMID: 39382982 PMCID: PMC11573259 DOI: 10.1152/jn.00301.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
Obstructive sleep apnea (OSA) is highly prevalent in patients with asthma. Asthma, dose-dependently to its duration, promotes incident OSA, suggesting that asthma plays a role in OSA pathogenesis. We hypothesized that asthma-related inflammation alters breathing control mechanisms, specifically the carotid chemoreflex. Accordingly, we measured hypoxic ventilatory responses (HVR) in awake, unrestrained, ovalbumin (OVA)-sensitized Brown Norway rats and compared them with responses in sham-sensitized (SALINE) controls. To differentiate the role of allergic inflammation from bronchoconstriction, we repeated hypoxic ventilatory response (HVR) after administration of formoterol, a long-acting bronchodilator. Blood and bronchoalveolar lavage (BAL) fluid were collected for quantification of inflammatory cytokines. The rise in ventilatory equivalent for O2 evoked by acute exposure to hypoxia was augmented following sensitization by OVA, whereas it remained stable after SALINE. This augmentation was driven by increased breathing frequency with no change in tidal volume. Tachypneic hyperventilation in normoxia was also observed with OVA. Neither the increased HVR nor excessive normoxic ventilation was affected by formoterol, suggesting that they were not secondary to lung mechanical constraints. Higher levels of inflammatory cytokines were observed in BAL fluid and serum of OVA versus SALINE. In OVA, serum interleukin-5 levels significantly correlated with change from baseline in ventilatory responses to severe hypoxia ([Formula: see text], 0.09). These observations are consistent with inflammation-induced enhancement of carotid chemoreflex function, i.e., increased controller gain, and they suggest a possible role for asthma-related allergic inflammation in the ventilatory instability known to promote upper airway collapse and sleep apnea in humans.NEW & NOTEWORTHY Asthma is a risk factor for obstructive sleep apnea (OSA); however, the mechanisms are incompletely understood. In a rat model of allergic inflammation associated with asthma, we found that ventilation in normoxia and ventilatory responses to hypoxia were markedly enhanced and related with systemic inflammation. These alterations indicating carotid chemoreflex sensitization, known to promote ventilatory instability during sleep in humans, may contribute to the increased OSA risk in asthma.
Collapse
Affiliation(s)
- Barbara J Morgan
- Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Ruolin Song
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Ivy McDermott
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Jacqueline A Brinkman
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Kelsey Holbert
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Angie T Oler
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Amy S Dresen
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Nathan Sandbo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Ksenija Bernau
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Mihaela Teodorescu
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
- William S. Middleton Memorial VA Medical Center, Madison, Wisconsin, United States
| |
Collapse
|
2
|
Prabhakar NR, Peng YJ, Nanduri J. Carotid body hypersensitivity in intermittent hypoxia and obtructive sleep apnoea. J Physiol 2023; 601:5481-5494. [PMID: 37029496 DOI: 10.1113/jp284111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Carotid bodies are the principal sensory organs for detecting changes in arterial blood oxygen concentration, and the carotid body chemoreflex is a major regulator of the sympathetic tone, blood pressure and breathing. Intermittent hypoxia is a hallmark manifestation of obstructive sleep apnoea (OSA), which is a widespread respiratory disorder. In the first part of this review, we discuss the role of carotid bodies in heightened sympathetic tone and hypertension in rodents treated with intermittent hypoxia, and the underlying cellular, molecular and epigenetic mechanisms. We also present evidence for hitherto-uncharacterized role of carotid body afferents in triggering cellular and molecular changes induced by intermittent hypoxia. In the second part of the review, we present evidence for a contribution of a hypersensitive carotid body to OSA and potential therapeutic intervention to mitigate OSA in a murine model.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Ramirez JM, Carroll MS, Burgraff N, Rand CM, Weese-Mayer DE. A narrative review of the mechanisms and consequences of intermittent hypoxia and the role of advanced analytic techniques in pediatric autonomic disorders. Clin Auton Res 2023; 33:287-300. [PMID: 37326924 DOI: 10.1007/s10286-023-00958-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Disorders of autonomic functions are typically characterized by disturbances in multiple organ systems. These disturbances are often comorbidities of common and rare diseases, such as epilepsy, sleep apnea, Rett syndrome, congenital heart disease or mitochondrial diseases. Characteristic of many autonomic disorders is the association with intermittent hypoxia and oxidative stress, which can cause or exaggerate a variety of other autonomic dysfunctions, making the treatment and management of these syndromes very complex. In this review we discuss the cellular mechanisms by which intermittent hypoxia can trigger a cascade of molecular, cellular and network events that result in the dysregulation of multiple organ systems. We also describe the importance of computational approaches, artificial intelligence and the analysis of big data to better characterize and recognize the interconnectedness of the various autonomic and non-autonomic symptoms. These techniques can lead to a better understanding of the progression of autonomic disorders, ultimately resulting in better care and management.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA
| | - Casey M Rand
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
5
|
Salyha N, Oliynyk I. Hypoxia modeling techniques: A review. Heliyon 2023; 9:e13238. [PMID: 36718422 PMCID: PMC9877323 DOI: 10.1016/j.heliyon.2023.e13238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Hypoxia is the main cause and effect of a large number of diseases, including the most recent one facing the world, the coronavirus disease (COVID-19). Hypoxia is divided into short-term, long-term, and periodic, it can be the result of diseases, climate change, or living and traveling in the high mountain regions of the world. Since each type of hypoxia can be a cause and a consequence of various physiological changes, the methods for modeling these hypoxias are also different. There are many techniques for modeling hypoxia under experimental conditions. The most common animal for modeling hypoxia is a rat. Hypoxia models (hypoxia simulations) in rats are a tool to study the effect of various conditions on the oxygen supply of the body. These models can provide a necessary information to understand hypoxia and also provide effective treatment, highlighting the importance of various reactions of the body to hypoxia. The main parameters when choosing a model should be reproducibility and the goal that the scientist wants to achieve. Hypoxia in rats can be reproduced both ways exogenously and endogenously. The reason for writing this review was the aim to systematize the models of rats available in the literature in order to facilitate their selection by scientists. The relative strengths and limitations of each model need to be identified and understood in order to evaluate the information obtained from these models and extrapolate these results to humans to develop the necessary generalizations. Despite these problems, animal models have been and remain vital to understanding the mechanisms involved in the development and progression of hypoxia. The eligibility criteria for the selected studies was a comprehensive review of the methods and results obtained from the studies. This made it possible to make generalizations and give recommendations on the application of these methods. The review will assist scientists in choosing an appropriate hypoxia simulation method, as well as assist in interpreting the results obtained with these methods.
Collapse
Affiliation(s)
- Nataliya Salyha
- Institute of Animal Biology NAAS, Lviv, Ukraine,Corresponding author
| | | |
Collapse
|
6
|
Bełtowski J, Kowalczyk-Bołtuć J. Hydrogen sulfide in the experimental models of arterial hypertension. Biochem Pharmacol 2023; 208:115381. [PMID: 36528069 DOI: 10.1016/j.bcp.2022.115381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Hydrogen sulfide (H2S) is the third member of gasotransmitter family together with nitric oxide and carbon monoxide. H2S is involved in the regulation of blood pressure by controlling vascular tone, sympathetic nervous system activity and renal sodium excretion. Moderate age-dependent hypertension and endothelial dysfunction develop in mice with knockout of cystathionine γ-lyase (CSE), the enzyme involved in H2S production in the cardiovascular system. Decreased H2S concentration as well as the expression and activities of H2S-producing enzymes have been observed in most commonly used animal models of hypertension such as spontaneously hypertensive rats, Dahl salt-sensitive rats, chronic administration of NO synthase inhibitors, angiotensin II infusion and two-kidney-one-clip hypertension, the model of renovascular hypertension. Administration of H2S donors decreases blood pressure in these models but has no major effects on blood pressure in normotensive animals. H2S donors not only reduce blood pressure but also end-organ injury such as vascular and myocardial hypertrophy and remodeling, hypertension-associated kidney injury or erectile dysfunction. H2S level and signaling are modulated by some antihypertensive medications as well as natural products with antihypertensive activity such as garlic polysulfides or plant-derived isothiocyanates as well as non-pharmacological interventions. Modifying H2S signaling is the potential novel therapeutic approach for the management of hypertension, however, more experimental clinical studies about the role of H2S in hypertension are required.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland.
| | - Jolanta Kowalczyk-Bołtuć
- Endocrinology and Metabolism Clinic, Internal Medicine Clinic with Hypertension Department, Medical Institute of Rural Health, Lublin, Poland.
| |
Collapse
|
7
|
Browe BM, Peng YJ, Nanduri J, Prabhakar NR, Garcia AJ. Gasotransmitter modulation of hypoglossal motoneuron activity. eLife 2023; 12:e81978. [PMID: 36656752 PMCID: PMC9977277 DOI: 10.7554/elife.81978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by sporadic collapse of the upper airway leading to periodic disruptions in breathing. Upper airway patency is governed by genioglossal nerve activity that originates from the hypoglossal motor nucleus. Mice with targeted deletion of the gene Hmox2, encoding the carbon monoxide (CO) producing enzyme, heme oxygenase-2 (HO-2), exhibit OSA, yet the contribution of central HO-2 dysregulation to the phenomenon is unknown. Using the rhythmic brainstem slice preparation that contains the preBötzinger complex (preBötC) and the hypoglossal nucleus, we tested the hypothesis that central HO-2 dysregulation weakens hypoglossal motoneuron output. Disrupting HO-2 activity increased the occurrence of subnetwork activity from the preBötC, which was associated with an increased irregularity of rhythmogenesis. These phenomena were also associated with the intermittent inability of the preBötC rhythm to drive output from the hypoglossal nucleus (i.e. transmission failures), and a reduction in the input-output relationship between the preBötC and the motor nucleus. HO-2 dysregulation reduced excitatory synaptic currents and intrinsic excitability in inspiratory hypoglossal neurons. Inhibiting activity of the CO-regulated H2S producing enzyme, cystathionine-γ-lyase (CSE), reduced transmission failures in HO-2 null brainstem slices, which also normalized excitatory synaptic currents and intrinsic excitability of hypoglossal motoneurons. These findings demonstrate a hitherto uncharacterized modulation of hypoglossal activity through mutual interaction of HO-2/CO and CSE/H2S, and support the potential importance of centrally derived gasotransmitter activity in regulating upper airway control.
Collapse
Affiliation(s)
- Brigitte M Browe
- Institute for Integrative Physiology, University of ChicagoChicagoUnited States
- The University of Chicago Neuroscience Institute, The University of ChicagoChicagoUnited States
- Department of Medicine, Section of Emergency Medicine at The University of ChicagoUniversity of ChicagoUnited States
| | - Ying-Jie Peng
- Institute for Integrative Physiology, University of ChicagoChicagoUnited States
- Department of Medicine, Section of Emergency Medicine at The University of ChicagoUniversity of ChicagoUnited States
| | - Jayasri Nanduri
- Institute for Integrative Physiology, University of ChicagoChicagoUnited States
- Department of Medicine, Section of Emergency Medicine at The University of ChicagoUniversity of ChicagoUnited States
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology, University of ChicagoChicagoUnited States
- The University of Chicago Neuroscience Institute, The University of ChicagoChicagoUnited States
- Department of Medicine, Section of Emergency Medicine at The University of ChicagoUniversity of ChicagoUnited States
| | - Alfredo J Garcia
- Institute for Integrative Physiology, University of ChicagoChicagoUnited States
- The University of Chicago Neuroscience Institute, The University of ChicagoChicagoUnited States
- Department of Medicine, Section of Emergency Medicine at The University of ChicagoUniversity of ChicagoUnited States
| |
Collapse
|
8
|
Fabries P, Gomez-Merino D, Sauvet F, Malgoyre A, Koulmann N, Chennaoui M. Sleep loss effects on physiological and cognitive responses to systemic environmental hypoxia. Front Physiol 2022; 13:1046166. [PMID: 36579023 PMCID: PMC9792101 DOI: 10.3389/fphys.2022.1046166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
In the course of their missions or training, alpinists, but also mountain combat forces and mountain security services, professional miners, aircrew, aircraft and glider pilots and helicopter crews are regularly exposed to altitude without oxygen supplementation. At altitude, humans are exposed to systemic environmental hypoxia induced by the decrease in barometric pressure (<1,013 hPa) which decreases the inspired partial pressure of oxygen (PIO2), while the oxygen fraction is constant (equal to approximately 20.9%). Effects of altitude on humans occur gradually and depend on the duration of exposure and the altitude level. From 1,500 m altitude (response threshold), several adaptive responses offset the effects of hypoxia, involving the respiratory and the cardiovascular systems, and the oxygen transport capacity of the blood. Fatigue and cognitive and sensory disorders are usually observed from 2,500 m (threshold of prolonged hypoxia). Above 3,500 m (the threshold for disorders), the effects are not completely compensated and maladaptive responses occur and individuals develop altitude headache or acute altitude illness [Acute Mountain Sickness (AMS)]. The magnitude of effects varies considerably between different physiological systems and exhibits significant inter-individual variability. In addition to comorbidities, the factors of vulnerability are still little known. They can be constitutive (genetic) or circumstantial (sleep deprivation, fatigue, speed of ascent.). In particular, sleep loss, a condition that is often encountered in real-life settings, could have an impact on the physiological and cognitive responses to hypoxia. In this review, we report the current state of knowledge on the impact of sleep loss on responses to environmental hypoxia in humans, with the aim of identifying possible consequences for AMS risk and cognition, as well as the value of behavioral and non-pharmacological countermeasures.
Collapse
Affiliation(s)
- Pierre Fabries
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France,*Correspondence: Pierre Fabries,
| | - Danielle Gomez-Merino
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| | - Fabien Sauvet
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| | - Alexandra Malgoyre
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France
| | - Nathalie Koulmann
- Laboratoire de Biologie de l’Exercice pour la Performance et la Santé (LBEPS), UMR, Université Paris-Saclay, IRBA, Evry-Courcouronnes, France,French Military Health Academy—Ecole du Val-de-Grâce, Place Alphonse Laveran, Paris, France
| | - Mounir Chennaoui
- REF-Aero Department, French Armed Forces Biomedical Research Institute—IRBA, Brétigny-sur-Orge, France,Vigilance Fatigue Sommeil et Santé Publique (VIFASOM) URP 7330, Université de Paris Cité, Paris, France
| |
Collapse
|
9
|
Peng Y, Nanduri J, Wang N, Khan SA, Pamenter M, Prabhakar NR. Carotid body responses to O 2 and CO 2 in hypoxia-tolerant naked mole rats. Acta Physiol (Oxf) 2022; 236:e13851. [PMID: 35757963 PMCID: PMC9787741 DOI: 10.1111/apha.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/02/2023]
Abstract
AIM Naked mole rats (NMRs) exhibit blunted hypoxic (HVR) and hypercapnic ventilatory responses (HCVR). The mechanism(s) underlying these responses are largely unknown. We hypothesized that attenuated carotid body (CB) sensitivity to hypoxia and hypercapnia contributes to the near absence of ventilatory responses to hypoxia and CO2 in NMRs. METHODS We measured ex vivo CB sensory nerve activity, phrenic nerve activity (an estimation of ventilation), and blood gases in urethane-anesthetized NMRs and C57BL/6 mice breathing normoxic, hypoxic, or hypercapnic gases. CB morphology, carbon monoxide, and H2 S levels were also determined. RESULTS Relative to mice, NMRs had blunted CB and HVR. Morphologically, NMRs have larger CBs, which contained more glomus cells than in mice. Furthermore, NMR glomus cells form a dispersed pattern compared to a clustered pattern in mice. Hemeoxygenase (HO)-1 mRNA was elevated in NMR CBs, and an HO inhibitor increased CB sensitivity to hypoxia in NMRs. This increase was blocked by an H2 S synthesis inhibitor, suggesting that interrupted gas messenger signaling contributes to the blunted CB responses and HVR in NMRs. Regarding hypercapnia, CB and ventilatory responses to CO2 in NMRs were larger than in mice. Carbonic anhydrase (CA)-2 mRNA is elevated in NMR CBs, and a CA inhibitor blocked the augmented CB response to CO2 in NMRs, indicating CA activity regulates augmented CB response to CO2 . CONCLUSIONS Consistent with our hypothesis, impaired CB responses to hypoxia contribute in part to the blunted HVR in NMRs. Conversely, the HCVR and CB are more sensitive to CO2 in NMRs.
Collapse
Affiliation(s)
- Ying‐Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Ning Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Shakil A. Khan
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| | - Matthew E. Pamenter
- Department of BiologyUniversity of OttawaOttawaOntarioCanada,University of Ottawa Brain and Mind Research InstituteOttawaOntarioCanada
| | - Nanduri R. Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 SensingUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
10
|
Choi YK, Kim YM. Beneficial and Detrimental Roles of Heme Oxygenase-1 in the Neurovascular System. Int J Mol Sci 2022; 23:ijms23137041. [PMID: 35806040 PMCID: PMC9266949 DOI: 10.3390/ijms23137041] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Heme oxygenase (HO) has both beneficial and detrimental effects via its metabolites, including carbon monoxide (CO), biliverdin or bilirubin, and ferrous iron. HO-1 is an inducible form of HO that is upregulated by oxidative stress, nitric oxide, CO, and hypoxia, whereas HO-2 is a constitutive form that regulates vascular tone and homeostasis. In brains injured by trauma, ischemia-reperfusion, or Alzheimer’s disease (AD), the long-term expression of HO-1 can be detected, which can lead to cytotoxic ferroptosis via iron accumulation. In contrast, the transient induction of HO-1 in the peri-injured region may have regenerative potential (e.g., angiogenesis, neurogenesis, and mitochondrial biogenesis) and neurovascular protective effects through the CO-mediated signaling pathway, the antioxidant properties of bilirubin, and the iron-mediated ferritin synthesis. In this review, we discuss the dual roles of HO-1 and its metabolites in various neurovascular diseases, including age-related macular degeneration, ischemia-reperfusion injury, traumatic brain injury, Gilbert’s syndrome, and AD.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Bio/Molecular Informatics Center, Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: (Y.K.C.); (Y.-M.K.); Tel.: +82-2-450-0558 (Y.K.C.); +82-33-250-8831 (Y.-M.K.)
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (Y.K.C.); (Y.-M.K.); Tel.: +82-2-450-0558 (Y.K.C.); +82-33-250-8831 (Y.-M.K.)
| |
Collapse
|
11
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
12
|
Sun HJ, Wang ZC, Nie XW, Bian JS. Therapeutic potential of carbon monoxide in hypertension-induced vascular smooth muscle cell damage revisited: from physiology and pharmacology. Biochem Pharmacol 2022; 199:115008. [PMID: 35318039 DOI: 10.1016/j.bcp.2022.115008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 01/14/2023]
Abstract
As a chronic and progressive disorder, hypertension remains to be a serious public health problem around the world. Among the different types of hypertension, pulmonary arterial hypertension (PAH) is a devastating disease associated with pulmonary arteriole remodeling, right ventricular failure and death. The contemporary management of systemic hypertension and PAH has substantially grown since more therapeutic targets and/or agents have been developed. Evolving treatment strategies targeting the vascular remodeling lead to improving outcomes in patients with hypertension, nevertheless, significant advancement opportunities for developing better antihypertensive drugs remain. Carbon monoxide (CO), an active endogenous gasotransmitter along with hydrogen sulfide (H2S) and nitric oxide (NO), is primarily generated by heme oxygenase (HO). Cumulative evidence suggests that CO is considered as an important signaling molecule under both physiological and pathological conditions. Studies have shown that CO confers a number of biological and pharmacological properties, especially its involvement in the pathological process and treatment of hypertension-related vascular remodeling. This review will critically outline the roles of CO in hypertension-associated vascular remodeling and discuss the underlying mechanisms for the protective effects of CO against hypertension and vascular remodeling. In addition, we will propose the challenges and perspectives of CO in hypertensive vascular remodeling. It is expected that a comprehensive understanding of CO in the vasculature might be essential to translate CO to be a novel pharmacological agent for hypertension-induced vascular remodeling.
Collapse
Affiliation(s)
- Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xiao-Wei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, China.
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
13
|
Zhu C, Liu Q, Li X, Wei R, Ge T, Zheng X, Li B, Liu K, Cui R. Hydrogen sulfide: A new therapeutic target in vascular diseases. Front Endocrinol (Lausanne) 2022; 13:934231. [PMID: 36034427 PMCID: PMC9399516 DOI: 10.3389/fendo.2022.934231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Hydrogen sulfide (H2S) is one of most important gas transmitters. H2S modulates many physiological and pathological processes such as inflammation, oxidative stress and cell apoptosis that play a critical role in vascular function. Recently, solid evidence show that H2S is closely associated to various vascular diseases. However, specific function of H2S remains unclear. Therefore, in this review we systemically summarized the role of H2S in vascular diseases, including hypertension, atherosclerosis, inflammation and angiogenesis. In addition, this review also outlined a novel therapeutic perspective comprising crosstalk between H2S and smooth muscle cell function. Therefore, this review may provide new insight inH2S application clinically.
Collapse
Affiliation(s)
- Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Qing Liu
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Xin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ran Wei
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xiufen Zheng
- Department of Surgery, Western University, London, ON, Canada
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Ranji Cui, ; Kexiang Liu,
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Ranji Cui, ; Kexiang Liu,
| |
Collapse
|
14
|
Correlation between convection requirement and carotid body responses to hypoxia and hemoglobin affinity: comparison between two rat strains. J Comp Physiol B 2021; 191:1031-1045. [PMID: 33970341 DOI: 10.1007/s00360-021-01377-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
We tested the hypothesis that differences in ventilatory ([Formula: see text]) or convection requirement ([Formula: see text]/[Formula: see text]O2) response to hypoxia would be correlated with differences in hemoglobin (Hb) oxygen affinity between two strains of rats, as they have been shown to be among several species of mammals, birds and reptiles. Brown Norway (BN) rats reduce metabolism more than they increase ventilation in response to hypoxia and both the ventilatory and convection requirement responses to hypoxia are lower in the BN than the Sprague-Dawley (SD) rat. The lower threshold of the ventilation/convection requirement responses of the BN to hypoxia are associated with a higher affinity Hb than the SD rats, (P50 values of 32.4 (± 0.6) versus 34.4 (± 0.5), respectively (P < 0.05), and P75 values of 46.1 (± 0.5) for BN versus 50.7 (± 0.8) for SD (P < 0.001). This significant difference, particularly near the inflection point of the dissociation curve, supported our hypothesis. A reduced sensitivity of BN compared to SD carotid bodies was found. BN carotid bodies (from 36 20-60-day-olds) had a mean estimated volume of 26.64 ± 1.47 × 106 μm3, significantly (P < 0.0001) smaller than SD carotid bodies (from 46 16-40-day-olds) at 50.66 ± 3.41 × 106 μm3. Both genetic and epigenetic/developmental mechanisms may account for the observed inter-strain differences.
Collapse
|
15
|
Jendzjowsky NG, Roy A, Wilson RJA. Asthmatic allergen inhalation sensitises carotid bodies to lysophosphatidic acid. J Neuroinflammation 2021; 18:191. [PMID: 34465362 PMCID: PMC8408927 DOI: 10.1186/s12974-021-02241-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/17/2021] [Indexed: 11/10/2022] Open
Abstract
The carotid bodies are multimodal sensors that regulate various autonomic reflexes. Recent evidence demonstrates their role in immune reflex regulation. Our previous studies using the allergen (ovalbumin) sensitised and exposed Brown Norway rat model of asthma suggest that carotid bodies mediate asthmatic bronchoconstriction through a lysophosphatidic acid (LPA) receptor (LPAr)-protein kinase C epsilon (PKCε)-transient receptor potential vanilloid one channel (TRPV1) pathway. Whilst naïve carotid bodies respond to LPA, whether their response to LPA is enhanced in asthma is unknown. Here, we show that asthmatic sensitisation of Brown Norway rats involving repeated aerosolised allergen challenges over 6 days, results in an augmentation of the carotid bodies' acute sensitivity to LPA. Increased expression of LPAr in the carotid bodies and petrosal ganglia likely contributed to this sensitivity. Importantly, allergen sensitisation of the carotid bodies to LPA did not alter their hypoxic response, nor did hypoxia augment LPA sensitivity acutely. Our data demonstrate the ability of allergens to sensitise the carotid bodies, highlighting the likely role of the carotid bodies and blood-borne inflammatory mediators in asthma.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Department of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Rm 209 Martin Research Building, 1124 West Carson Street, Torrance, CA, 90502, USA.
| | - Arijit Roy
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Rm 203 Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Rm 203 Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
16
|
Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 2021; 101:1177-1235. [PMID: 33570461 PMCID: PMC8526340 DOI: 10.1152/physrev.00039.2019] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is the main peripheral chemoreceptor for arterial respiratory gases O2 and CO2 and pH, eliciting reflex ventilatory, cardiovascular, and humoral responses to maintain homeostasis. This review examines the fundamental biology underlying CB chemoreceptor function, its contribution to integrated physiological responses, and its role in maintaining health and potentiating disease. Emphasis is placed on 1) transduction mechanisms in chemoreceptor (type I) cells, highlighting the role played by the hypoxic inhibition of O2-dependent K+ channels and mitochondrial oxidative metabolism, and their modification by intracellular molecules and other ion channels; 2) synaptic mechanisms linking type I cells and petrosal nerve terminals, focusing on the role played by the main proposed transmitters and modulatory gases, and the participation of glial cells in regulation of the chemosensory process; 3) integrated reflex responses to CB activation, emphasizing that the responses differ dramatically depending on the nature of the physiological, pathological, or environmental challenges, and the interactions of the chemoreceptor reflex with other reflexes in optimizing oxygen delivery to the tissues; and 4) the contribution of enhanced CB chemosensory discharge to autonomic and cardiorespiratory pathophysiology in obstructive sleep apnea, congestive heart failure, resistant hypertension, and metabolic diseases and how modulation of enhanced CB reactivity in disease conditions may attenuate pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, and Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Julio Alcayaga
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mark W Chapleau
- Department of Internal Medicine, University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, Iowa
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Petrovic D, Kouroussis E, Vignane T, Filipovic MR. The Role of Protein Persulfidation in Brain Aging and Neurodegeneration. Front Aging Neurosci 2021; 13:674135. [PMID: 34248604 PMCID: PMC8261153 DOI: 10.3389/fnagi.2021.674135] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Hydrogen sulfide (H2S), originally considered a toxic gas, is now a recognized gasotransmitter. Numerous studies have revealed the role of H2S as a redox signaling molecule that controls important physiological/pathophysiological functions. The underlying mechanism postulated to serve as an explanation of these effects is protein persulfidation (P-SSH, also known as S-sulfhydration), an oxidative posttranslational modification of cysteine thiols. Protein persulfidation has remained understudied due to its instability and chemical reactivity similar to other cysteine modifications, making it very difficult to selectively label. Recent developments of persulfide labeling techniques have started unraveling the role of this modification in (patho)physiology. PSSH levels are important for the cellular defense against oxidative injury, albeit they decrease with aging, leaving proteins vulnerable to oxidative damage. Aging is one of the main risk factors for many neurodegenerative diseases. Persulfidation has been shown to be dysregulated in Parkinson's, Alzheimer's, Huntington's disease, and Spinocerebellar ataxia 3. This article reviews the latest discoveries that link protein persulfidation, aging and neurodegeneration, and provides future directions for this research field that could result in development of targeted drug design.
Collapse
Affiliation(s)
- Dunja Petrovic
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Emilia Kouroussis
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Thibaut Vignane
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Milos R Filipovic
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| |
Collapse
|
18
|
Wang B, Peng YJ, Su X, Zhang C, Nagati JS, Garcia JA, Prabhakar NR. Olfactory receptor 78 regulates erythropoietin and cardiorespiratory responses to hypobaric hypoxia. J Appl Physiol (1985) 2021; 130:1122-1132. [PMID: 33539264 DOI: 10.1152/japplphysiol.00817.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Olfactory receptor (Olfr) 78 is expressed in the carotid bodies (CB) and participates in CB responses to acute hypoxia. Olfr78 is also expressed in the kidney, which is a major site of erythropoietin (Epo) production by hypoxia. The present study examined the role of Olfr78 in cardiorespiratory and renal Epo gene responses to hypobaric hypoxia (HH), simulating low O2 condition experienced at high altitude. Studies were performed on adult, male wild-type (WT) and Olfr78 null mice treated with 18 h of HH (0.4 atmospheres). HH-treated WT mice exhibited increased baseline breathing, augmented hypoxic ventilatory response, elevated blood pressure, and plasma norepinephrine (NE) levels. These effects were associated with increased baseline CB sensory nerve activity and augmented CB sensory nerve response to subsequent acute hypoxia. In contrast, HH-treated Olfr78 null mice showed an absence of cardiorespiratory and CB sensory nerve responses, suggesting impaired CB-dependent cardiorespiratory adaptations. WT mice responded to HH with activation of the renal Epo gene expression and elevated plasma Epo levels, and these effects were attenuated or absent in Olfr78 null mice. The attenuated Epo activation by HH was accompanied with markedly reduced hypoxia-inducible factor (HIF)-2α protein and reduced activation of HIF-2 target gene Sod-1 in Olfr78 null mice, suggesting impaired transcriptional activation of HIF-2 contributes to attenuated Epo responses to HH. These results demonstrate a hitherto uncharacterized role for Olfr78 in cardiorespiratory adaptations and renal Epo gene activation by HH such as that experienced at high altitude.NEW & NOTEWORTHY In this study, we delineated a previously uncharacterized role for olfactory receptor 78 (Olfr78), a G-protein-coupled receptor in regulation of erythropoietin and cardiorespiratory responses to hypobaric hypoxia. Our results demonstrate a striking loss of cardiorespiratory adaptations accompanied by an equally striking absence of carotid body sensory nerve responses to hypobaric hypoxia in Olfr78 null mice. We further demonstrate a hitherto uncharacterized role for Olfr78 in erythropoietin activation by hypobaric hypoxia.
Collapse
Affiliation(s)
- Benjamin Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Xiaoyu Su
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Chongxu Zhang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Jason S Nagati
- Department of Medicine, Division of Cardiology, Columbia University, New York, New York
| | - Joseph A Garcia
- Department of Medicine, Division of Cardiology, Columbia University, New York, New York
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| |
Collapse
|
19
|
Gridina A, Su X, Khan SA, Peng YJ, Wang B, Nanduri J, Fox AP, Prabhakar NR. Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells. J Neurophysiol 2021; 125:1533-1542. [PMID: 33729866 DOI: 10.1152/jn.00669.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Emerging evidence suggests that gaseous molecules, carbon monoxide (CO), and hydrogen sulfide (H2S) generated by heme oxygenase (HO)-2 and cystathionine γ-lyase (CSE), respectively, function as transmitters in the nervous system. Present study examined the roles of CO and H2S in hypoxia-induced catecholamine (CA) release from adrenal medullary chromaffin cells (AMCs). Studies were performed on AMCs from adult (≥6 wk of age) wild-type (WT), HO-2 null, CSE null, and HO-2/CSE double null mice of either gender. CA secretion was determined by carbon fiber amperometry and [Ca2+]i by microflurometry using Fura-2. HO-2- and CSE immunoreactivities were seen in WT AMC, which were absent in HO-2 and CSE null mice. Hypoxia (medium Po2 30-38 mmHg) evoked CA release and elevated [Ca2+]i. The magnitude of hypoxic response was greater in HO-2 null mice and in HO inhibitor-treated WT AMC compared with controls. H2S levels were elevated in HO-2 null AMC. Either pharmacological inhibition or genetic deletion of CSE prevented the augmented hypoxic responses of HO-2 null AMC and H2S donor rescued AMC responses to hypoxia in HO-2/CSE double null mice. CORM3, a CO donor, prevented the augmented hypoxic responses in WT and HO-2 null AMC. CO donor reduced H2S levels in WT AMC. The effects of CO donor were blocked by either ODQ or 8pCT, inhibitors of soluble guanylyl cyclase (SGC) or protein kinase G, respectively. These results suggest that HO-2-derived CO inhibits hypoxia-evoked CA secretion from adult murine AMC involving soluble guanylyl cyclase (SGC)-protein kinase G (PKG)-dependent regulation of CSE-derived H2S.NEW & NOTEWORTHY Catecholamine secretion from adrenal chromaffin cells is an important physiological mechanism for maintaining homeostasis during hypoxia. Here, we delineate carbon monoxide (CO)-sensitive hydrogen sulfide (H2S) signaling as an important mediator of hypoxia-induced catecholamine secretion from murine adrenal chromaffin cells. Heme oxygenase-2 derived CO is a physiological inhibitor of catcholamince secretion by hypoxia and the effects of CO involve inhibition of cystathionine γ-lyase-derived H2S production through soluble guanylyl cyclase-protein kinase G signaling cascade.
Collapse
Affiliation(s)
- Anna Gridina
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Xiaoyu Su
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Shakil A Khan
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Benjamin Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| | - Aaron P Fox
- Department of Neuroscience, Physiology and Pharmacology, Biological Science Division, University of Chicago, Chicago, Illinois
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Yan YR, Zhang L, Lin YN, Sun XW, Ding YJ, Li N, Li HP, Li SQ, Zhou JP, Li QY. Chronic intermittent hypoxia-induced mitochondrial dysfunction mediates endothelial injury via the TXNIP/NLRP3/IL-1β signaling pathway. Free Radic Biol Med 2021; 165:401-410. [PMID: 33571641 DOI: 10.1016/j.freeradbiomed.2021.01.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 11/17/2022]
Abstract
Oxidative stress and inflammation induced by chronic intermittent hypoxia (CIH) are trigger factors of cardiovascular diseases in patients with obstructive sleep apnea (OSA). This study aimed to investigate the role of CIH-induced mitochondrial dysfunction in vascular endothelial injury both in vivo and in vitro. Human umbilical vein endothelial cells and Sprague Dawley rats were exposed to CIH. CIH promoted the production of intracellular reactive oxygen species, caused mitochondrial dysfunction, and induced cell apoptosis in human umbilical vein endothelial cells. RNA-Seq analysis revealed that the NOD-like receptor signaling pathway was involved in endothelial injury induced by CIH. TXNIP/NLRP3/IL-1β pathway was found to be upregulated by CIH. Knock-down of TNXIP rescued the endothelial cells from CIH-induced apoptosis, indicating that activation of the TXNIP/NLRP3/IL-1β pathway mediated the CIH-induced endothelial apoptosis. Administration of the mitochondria-targeted antioxidant mito-TEMPO improved mitochondrial function and suppressed upregulation of the TXNIP/NLRP3/IL-1β pathway, thereby alleviating CIH-induced endothelial apoptosis. In vivo experiments confirmed the results, where mito-TEMPO was found to ameliorate endothelial injury in rat aortas exposed to CIH. The results imply that CIH-induced mitochondrial dysfunction mediates endothelial injury implication of TXNIP/NLRP3/IL-1β signaling pathway.
Collapse
Affiliation(s)
- Ya Ru Yan
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200 025, China
| | - Liu Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200 025, China
| | - Ying Ni Lin
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200 025, China
| | - Xian Wen Sun
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200 025, China
| | - Yong Jie Ding
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200 025, China
| | - Ning Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200 025, China
| | - Hong Peng Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200 025, China
| | - Shi Qi Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200 025, China
| | - Jian Ping Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200 025, China
| | - Qing Yun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Institute of Respiratory Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, 200 025, China.
| |
Collapse
|
21
|
Prabhakar NR, Peng YJ, Nanduri J. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest 2021; 130:5042-5051. [PMID: 32730232 DOI: 10.1172/jci137560] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intermittent hypoxia (IH) is a hallmark manifestation of obstructive sleep apnea (OSA), a widespread disorder of breathing. This Review focuses on the role of hypoxia-inducible factors (HIFs) in hypertension, type 2 diabetes (T2D), and cognitive decline in experimental models of IH patterned after O2 profiles seen in OSA. IH increases HIF-1α and decreases HIF-2α protein levels. Dysregulated HIFs increase reactive oxygen species (ROS) through HIF-1-dependent activation of pro-oxidant enzyme genes in addition to reduced transcription of antioxidant genes by HIF-2. ROS in turn activate chemoreflex and suppress baroreflex, thereby stimulating the sympathetic nervous system and causing hypertension. We also discuss how increased ROS generation by HIF-1 contributes to IH-induced insulin resistance and T2D as well as disrupted NMDA receptor signaling in the hippocampus, resulting in cognitive decline.
Collapse
|
22
|
Alzahrani AA, Cao LL, Aldossary HS, Nathanael D, Fu J, Ray CJ, Brain KL, Kumar P, Coney AM, Holmes AP. β-Adrenoceptor blockade prevents carotid body hyperactivity and elevated vascular sympathetic nerve density induced by chronic intermittent hypoxia. Pflugers Arch 2021; 473:37-51. [PMID: 33210151 PMCID: PMC7782391 DOI: 10.1007/s00424-020-02492-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
Carotid body (CB) hyperactivity promotes hypertension in response to chronic intermittent hypoxia (CIH). The plasma concentration of adrenaline is reported to be elevated in CIH and our previous work suggests that adrenaline directly activates the CB. However, a role for chronic adrenergic stimulation in mediating CB hyperactivity is currently unknown. This study evaluated whether beta-blocker treatment with propranolol (Prop) prevented the development of CB hyperactivity, vascular sympathetic nerve growth and hypertension caused by CIH. Adult male Wistar rats were assigned into 1 of 4 groups: Control (N), N + Prop, CIH and CIH + Prop. The CIH paradigm consisted of 8 cycles h-1, 8 h day-1, for 3 weeks. Propranolol was administered via drinking water to achieve a dose of 40 mg kg-1 day-1. Immunohistochemistry revealed the presence of both β1 and β2-adrenoceptor subtypes on the CB type I cell. CIH caused a 2-3-fold elevation in basal CB single-fibre chemoafferent activity and this was prevented by chronic propranolol treatment. Chemoafferent responses to hypoxia and mitochondrial inhibitors were attenuated by propranolol, an effect that was greater in CIH animals. Propranolol decreased respiratory frequency in normoxia and hypoxia in N and CIH. Propranolol also abolished the CIH mediated increase in vascular sympathetic nerve density. Arterial blood pressure was reduced in propranolol groups during hypoxia. Propranolol exaggerated the fall in blood pressure in most (6/7) CIH animals during hypoxia, suggestive of reduced sympathetic tone. These findings therefore identify new roles for β-adrenergic stimulation in evoking CB hyperactivity, sympathetic vascular hyperinnervation and altered blood pressure control in response to CIH.
Collapse
Affiliation(s)
- Abdulaziz A Alzahrani
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Respiratory Care Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lily L Cao
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hayyaf S Aldossary
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- College of Medicine, Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Demitris Nathanael
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jiarong Fu
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Clare J Ray
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Keith L Brain
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Prem Kumar
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew M Coney
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Andrew P Holmes
- Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
23
|
Chaddha A, Broytman O, Teodorescu M. Effects of allergic airway inflammation and chronic intermittent hypoxia on systemic blood pressure. Am J Physiol Regul Integr Comp Physiol 2020; 319:R566-R574. [PMID: 32903041 DOI: 10.1152/ajpregu.00325.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asthma and obstructive sleep apnea (OSA) are highly prevalent chronic conditions, and both are associated with systemic hypertension. Additionally, asthma and OSA reciprocally interact, mutually exacerbating each other. In this study, we tested the effect of allergen-induced lower airway inflammation and concurrent chronic intermittent hypoxia (CIH) on systemic blood pressure (BP), pulmonary function, and proinflammatory cytokines, in a rat model. Brown Norway rats were exposed to 43 days of normoxia (NORM) or CIH, concurrent with weekly house dust mite (HDM) challenges. BP was measured 1 day after the last HDM challenge. On day 44, pulmonary function was tested, and blood for Th-2 and Th-1 cytokine levels was collected. HDM significantly increased mean (P = 0.002), systolic (P = 0.003), and diastolic (P = 0.004) BP compared with saline-challenged controls. Higher mean BP significantly correlated to increased total respiratory system resistance (R2 = 0.266, P = 0.002), driven by an association with parenchymal tissue dampening (R2 = 0.166, P = 0.016). HDM relative to saline-challenged controls increased the expression of serum IL-6 (P = 0.008), but no relationships of systemic BP with IL-6 or any other cytokines were found. CIH did not alter the allergen-induced responses on BP, although it tended to increase the expression of serum IL-6 (P = 0.06) and monocyte chemoattractant protein-1 (MCP-1, P = 0.09), regardless of HDM challenge. Chronic allergen-induced airway inflammation results in systemic hypertension that is correlated to the degree of distal airway obstruction induced by the allergen. These effects do not appear to be explained by the associated systemic inflammation.
Collapse
Affiliation(s)
- Ashish Chaddha
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
| | - Oleg Broytman
- Department of Medicine, University of Wisconsin, Madison, Wisconsin.,William S. Middleton Memorial Veterans Affairs Medical Center, Madison, Wisconsin
| | - Mihaela Teodorescu
- Department of Medicine, University of Wisconsin, Madison, Wisconsin.,William S. Middleton Memorial Veterans Affairs Medical Center, Madison, Wisconsin
| |
Collapse
|
24
|
Kim LJ, Polotsky VY. Carotid Body and Metabolic Syndrome: Mechanisms and Potential Therapeutic Targets. Int J Mol Sci 2020; 21:E5117. [PMID: 32698380 PMCID: PMC7404212 DOI: 10.3390/ijms21145117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
The carotid body (CB) is responsible for the peripheral chemoreflex by sensing blood gases and pH. The CB also appears to act as a peripheral sensor of metabolites and hormones, regulating the metabolism. CB malfunction induces aberrant chemosensory responses that culminate in the tonic overactivation of the sympathetic nervous system. The sympatho-excitation evoked by CB may contribute to the pathogenesis of metabolic syndrome, inducing systemic hypertension, insulin resistance and sleep-disordered breathing. Several molecular pathways are involved in the modulation of CB activity, and their pharmacological manipulation may lead to overall benefits for cardiometabolic diseases. In this review, we will discuss the role of the CB in the regulation of metabolism and in the pathogenesis of the metabolic dysfunction induced by CB overactivity. We will also explore the potential pharmacological targets in the CB for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Lenise J. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA;
| | | |
Collapse
|
25
|
Liu T, Mukosera GT, Blood AB. The role of gasotransmitters in neonatal physiology. Nitric Oxide 2019; 95:29-44. [PMID: 31870965 DOI: 10.1016/j.niox.2019.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 11/07/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
The gasotransmitters, nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO), are endogenously-produced volatile molecules that perform signaling functions throughout the body. In biological tissues, these small, lipid-permeable molecules exist in free gaseous form for only seconds or less, and thus they are ideal for paracrine signaling that can be controlled rapidly by changes in their rates of production or consumption. In addition, tissue concentrations of the gasotransmitters are influenced by fluctuations in the level of O2 and reactive oxygen species (ROS). The normal transition from fetus to newborn involves a several-fold increase in tissue O2 tensions and ROS, and requires rapid morphological and functional adaptations to the extrauterine environment. This review summarizes the role of gasotransmitters as it pertains to newborn physiology. Particular focus is given to the vasculature, ventilatory, and gastrointestinal systems, each of which uniquely illustrate the function of gasotransmitters in the birth transition and newborn periods. Moreover, given the relative lack of studies on the role that gasotransmitters play in the newborn, particularly that of H2S and CO, important gaps in knowledge are highlighted throughout the review.
Collapse
Affiliation(s)
- Taiming Liu
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - George T Mukosera
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Arlin B Blood
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
26
|
Peng YJ, Makarenko VV, Gridina A, Chupikova I, Zhang X, Kumar GK, Fox AP, Prabhakar NR. H 2S mediates carotid body response to hypoxia but not anoxia. Respir Physiol Neurobiol 2019; 259:75-85. [PMID: 30086385 PMCID: PMC6252114 DOI: 10.1016/j.resp.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 02/05/2023]
Abstract
The role of cystathionine-γ-lyase (CSE) derived H2S in the hypoxic and anoxic responses of the carotid body (CB) were examined. Experiments were performed on Sprague-Dawley rats, wild type and CSE knockout mice on C57BL/6 J background. Hypoxia (pO2 = 37 ± 3 mmHg) increased the CB sensory nerve activity and elevated H2S levels in rats. In contrast, anoxia (pO2 = 5 ± 4 mmHg) produced only a modest CB sensory excitation with no change in H2S levels. DL-propargylglycine (DL-PAG), a blocker of CSE, inhibited hypoxia but not anoxia-evoked CB sensory excitation and [Ca2+]i elevation of glomus cells. The inhibitory effects of DL-PAG on hypoxia were seen: a) when it is dissolved in saline but not in dimethyl sulfoxide (DMSO), and b) in glomus cells cultured for18 h but not in cells either soon after isolation or after prolonged culturing (72 h) requiring 1-3 h of incubation. On the other hand, anoxia-induced [Ca2+]i responses of glomus cell were blocked by high concentration of DL-PAG (300μM) either alone or in combination with aminooxyacetic acid (AOAA; 300μM) with a decreased cell viability. Anoxia produced a weak CB sensory excitation and robust [Ca2+]i elevation in glomus cells of both wild-type and CSE null mice. As compared to wild-type, CSE null mice exhibited impaired CB chemo reflex as evidenced by attenuated efferent phrenic nerve responses to brief hyperoxia (Dejours test), and hypoxia. Inhalation of 100% N2 (anoxia) depressed breathing in both CSE null and wild-type mice. These observations demonstrate that a) hypoxia and anoxia are not analogous stimuli for studying CB physiology and b) CSE-derived H2S contributes to CB response to hypoxia but not to that of anoxia.
Collapse
Affiliation(s)
- Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2Sensing, University of Chicago, Chicago, IL, 60637, USA.
| | - Vladislav V Makarenko
- Institute for Integrative Physiology and Center for Systems Biology of O2Sensing, University of Chicago, Chicago, IL, 60637, USA
| | - Anna Gridina
- Institute for Integrative Physiology and Center for Systems Biology of O2Sensing, University of Chicago, Chicago, IL, 60637, USA
| | - Irina Chupikova
- Institute for Integrative Physiology and Center for Systems Biology of O2Sensing, University of Chicago, Chicago, IL, 60637, USA
| | - Xiuli Zhang
- Institute for Integrative Physiology and Center for Systems Biology of O2Sensing, University of Chicago, Chicago, IL, 60637, USA
| | - Ganesh K Kumar
- Institute for Integrative Physiology and Center for Systems Biology of O2Sensing, University of Chicago, Chicago, IL, 60637, USA
| | - Aaron P Fox
- Institute for Integrative Physiology and Center for Systems Biology of O2Sensing, University of Chicago, Chicago, IL, 60637, USA
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2Sensing, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
27
|
Prabhakar NR, Peng YJ, Nanduri J. Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Res 2018; 7. [PMID: 30631432 PMCID: PMC6284772 DOI: 10.12688/f1000research.16247.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2018] [Indexed: 01/05/2023] Open
Abstract
Hypoxia resulting from reduced oxygen (O
2) levels in the arterial blood is sensed by the carotid body (CB) and triggers reflex stimulation of breathing and blood pressure to maintain homeostasis. Studies in the past five years provided novel insights into the roles of heme oxygenase-2 (HO-2), a carbon monoxide (CO)-producing enzyme, and NADH dehydrogenase Fe-S protein 2, a subunit of the mitochondrial complex I, in hypoxic sensing by the CB. HO-2 is expressed in type I cells, the primary O2-sensing cells of the CB, and binds to O
2 with low affinity. O
2-dependent CO production from HO-2 mediates hypoxic response of the CB by regulating H
2S generation. Mice lacking NDUFS2 show that complex I-generated reactive oxygen species acting on K
+ channels confer type I cell response to hypoxia. Whether these signaling pathways operate synergistically or independently remains to be studied.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL, 60637, USA
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL, 60637, USA
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
28
|
Matsui T, Sugiyama R, Sakanashi K, Tamura Y, Iida M, Nambu Y, Higuchi T, Suematsu M, Ikeda-Saito M. Hydrogen sulfide bypasses the rate-limiting oxygen activation of heme oxygenase. J Biol Chem 2018; 293:16931-16939. [PMID: 30237172 DOI: 10.1074/jbc.ra118.004641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
Discovery of unidentified protein functions is of biological importance because it often provides new paradigms for many research areas. Mammalian heme oxygenase (HO) enzyme catalyzes the O2-dependent degradation of heme into carbon monoxide (CO), iron, and biliverdin through numerous reaction intermediates. Here, we report that H2S, a gaseous signaling molecule, is part of a novel reaction pathway that drastically alters HO's products, reaction mechanism, and catalytic properties. Our prediction of this interplay is based on the unique reactivity of H2S with one of the HO intermediates. We found that in the presence of H2S, HO produces new linear tetrapyrroles, which we identified as isomers of sulfur-containing biliverdin (SBV), and that only H2S, but not GSH, cysteine, and polysulfides, induces SBV formation. As BV is converted to bilirubin (BR), SBV is enzymatically reduced to sulfur-containing bilirubin (SBR), which shares similar properties such as antioxidative effects with normal BR. SBR was detected in culture media of mouse macrophages, confirming the existence of this H2S-induced reaction in mammalian cells. H2S reacted specifically with a ferric verdoheme intermediate of HO, and verdoheme cleavage proceeded through an O2-independent hydrolysis-like mechanism. This change in activation mode diminished O2 dependence of the overall HO activity, circumventing the rate-limiting O2 activation of HO. We propose that H2S could largely affect O2 sensing by mammalian HO, which is supposed to relay hypoxic signals by decreasing CO output to regulate cellular functions. Moreover, the novel H2S-induced reaction identified here helps sustain HO's heme-degrading and antioxidant-generating capacity under highly hypoxic conditions.
Collapse
Affiliation(s)
- Toshitaka Matsui
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan,
| | - Ryota Sugiyama
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Kenta Sakanashi
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Yoko Tamura
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Masaki Iida
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Yukari Nambu
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho, Nagoya 467-8603, Japan, and
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinano-machi, Shinjyuku, Tokyo 160-8582, Japan
| | - Masao Ikeda-Saito
- From the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan,
| |
Collapse
|
29
|
Holmes AP, Ray CJ, Thompson EL, Alshehri Z, Coney AM, Kumar P. Adrenaline activation of the carotid body: Key to CO 2 and pH homeostasis in hypoglycaemia and potential pathological implications in cardiovascular disease. Respir Physiol Neurobiol 2018; 265:92-99. [PMID: 29807139 DOI: 10.1016/j.resp.2018.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 12/30/2022]
Abstract
Ventilatory and neuroendocrine counter-regulatory responses during hypoglycaemia are essential in order to maintain glycolysis and prevent rises in PaCO2 leading to systemic acidosis. The mammalian carotid body has emerged as an important driver of hyperpnoea and glucoregulation in hypoglycaemia. However, the adequate stimulus for CB stimulation in hypoglycaemia has remained controversial for over a decade. The recent finding that adrenaline is a physiological activator of CB in hypoglycaemia raises the intriguing possibility that CB stimulation and hyperpnoea may be necessary to maintain pH in other adrenaline-related hypermetabolic states such as exercise. This review will therefore focus on 1) The important functional contribution of the CB in the counter-regulatory and ventilatory response to hypoglycaemia, 2) the proposed mechanisms that cause CB stimulation in hypoglycaemia including hormonal activation by adrenaline and direct low glucose sensing and 3) the possible pathological consequences of repetitive CB activation by adrenaline that could potentially be targeted to reduce CB-mediated cardiovascular disease.
Collapse
Affiliation(s)
- Andrew P Holmes
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Clare J Ray
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Emma L Thompson
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Ziyad Alshehri
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Andrew M Coney
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK
| | - Prem Kumar
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B12 2TT, UK.
| |
Collapse
|
30
|
Hydrogen Sulfide as an O 2 Sensor: A Critical Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:261-276. [PMID: 29047091 DOI: 10.1007/978-3-319-63245-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is increasing interest in the physiological actions and therapeutic potential of the gasotransmitter hydrogen sulfide (H2S). In addition to exerting antihypertensive, anti-inflammatory, antioxidant, and pro-angiogenic effects, H2S has been suggested to play a central and ubiquitous role in O2 sensing. According to this concept, because H2S is metabolized by oxidation, its cellular concentration varies inversely with the ambient pO2 such that hypoxia causes a rise in intracellular [H2S]; this then acts to induce appropriate cellular responses. In particular, it has been proposed that H2S underpins O2 sensing in the carotid body, which triggers increases in ventilation in response to hypoxemia, and also in pulmonary arteries, which constrict in response to local alveolar hypoxia. This process, termed hypoxic pulmonary vasoconstriction (HPV), acts to divert blood to better-oxygenated regions of the lung, thereby maintaining the ventilation-perfusion ratio and minimizing hypoxia-induced falls in blood O2 saturation. In this chapter, we present a critical review of the evidence supporting and questioning this model in both HPV and the carotid body.
Collapse
|
31
|
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H 2S Signaling through Persulfidation. Chem Rev 2018; 118:1253-1337. [PMID: 29112440 PMCID: PMC6029264 DOI: 10.1021/acs.chemrev.7b00205] [Citation(s) in RCA: 692] [Impact Index Per Article: 98.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
32
|
Phenylethanolamine N-methyltransferase gene expression in PC12 cells exposed to intermittent hypoxia. Neurosci Lett 2018; 666:169-174. [DOI: 10.1016/j.neulet.2017.12.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/26/2017] [Indexed: 11/22/2022]
|
33
|
Abstract
Immunohistochemistry (IHC) enables the detection and distribution of proteins in cells of tissues. IHC has become an indispensable approach for studying oxygen sensing by the carotid body (CB). This chapter provides a detailed description of IHC of CB tissue and isolated CB cells.
Collapse
|
34
|
Peng YJ, Zhang X, Nanduri J, Prabhakar NR. Therapeutic Targeting of the Carotid Body for Treating Sleep Apnea in a Pre-clinical Mouse Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:109-114. [PMID: 30357741 DOI: 10.1007/978-3-319-91137-3_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sleep apnea with periodic cessation of breathing during sleep is a highly prevalent respiratory disorder affecting an estimated 10% of adults. Patients with sleep apnea exhibit several co-morbidities including hypertension, stroke, disrupted sleep, and neurocognitive and metabolic complications. Emerging evidence suggests that a hyperactive carotid body (CB) chemo reflex is an important driver of apneas in sleep apnea patients. Gasotransmitters carbon monoxide (CO) and hydrogen sulfide (H2S) play important roles in oxygen sensing by the CB. We tested the hypothesis that an augmented CB chemo reflex stemming from disrupted CO-H2S signaling may lead to sleep apnea. This possibility was tested in mice deficient in hemeoxygenase-2 (HO-2), an enzyme involved in CO synthesis, which were shown to exhibit hyperactive CB activity due to high H2S levels. We found that HO-2-/- mice exhibit a high incidence of apneas during sleep compared to wild type mice. Blocking the CB hyperactivity with L-propargylglycine, an inhibitor of cystathionine-γ-lyase (CSE), which catalyzes H2S synthesis, prevented apneas in HO-2-/- mice. These findings suggest that targeting CB with inhibitors of CSE might be a novel therapeutic strategy for preventing sleep apnea.
Collapse
Affiliation(s)
- Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of Oxygen Sensing, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Xiuli Zhang
- Institute for Integrative Physiology and Center for Systems Biology of Oxygen Sensing, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of Oxygen Sensing, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of Oxygen Sensing, Biological Sciences Division, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
35
|
Prabhakar NR. Carotid body chemoreflex: a driver of autonomic abnormalities in sleep apnoea. Exp Physiol 2018; 101:975-85. [PMID: 27474260 DOI: 10.1113/ep085624] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022]
Abstract
What is the topic of this review? This article presents emerging evidence for heightened carotid body chemoreflex activity as a major driver of sympathetic activation and hypertension in sleep apnoea patients. What advances does it heighlight? This article discusses the recent advances on cellular, molecular and epigenetic mechanisms underlying the exaggerated chemoreflex in experimental models of sleep apnoea. The carotid bodies are the principal peripheral chemoreceptors for detecting changes in arterial blood oxygen concentration, and the resulting chemoreflex is a potent regulator of the sympathetic tone, blood pressure and breathing. Sleep apnoea is a disease of the respiratory system that affects several million adult humans. Apnoeas occur during sleep, often as a result of obstruction of the upper airway (obstructive sleep apnoea) or because of defective respiratory rhythm generation by the CNS (central sleep apnoea). Patients with sleep apnoea exhibit several co-morbidities, with the most notable among them being heightened sympathetic nerve activity and hypertension. Emerging evidence suggests that intermittent hypoxia resulting from periodic apnoea stimulates the carotid body, and the ensuing chemoreflex mediates the increased sympathetic tone and hypertension in sleep apnoea patients. Rodent models of intermittent hypoxia that simulate the O2 saturation profiles encountered during sleep apnoea have provided important insights into the cellular and molecular mechanisms underlying the heightened carotid body chemoreflex. This article describes how intermittent hypoxia affects the carotid body function and discusses the cellular, molecular and epigenetic mechanisms underlying the exaggerated chemoreflex.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| |
Collapse
|
36
|
Soboleva T, Benninghoff AD, Berreau LM. An H 2S-sensing/CO-releasing Flavonol that Operates via Logic Gates. Chempluschem 2017; 82:1408-1412. [PMID: 30167353 PMCID: PMC6110398 DOI: 10.1002/cplu.201700524] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Signaling molecules, including H2S and CO, are involved in a complex interplay within cells to maintain cellular homeostasis. In order to investigate the intracellular interplay of different gasotransmitters, new molecular tools are needed that combine sensing and release capabilities of different small molecules in a single, multifunctional, and highly-regulated molecular platform. This report gives the first example of a combined H2S sensor/CO-releasing molecule. This flavonol-based molecular tool operates intracellularly via a highly regulated AND logic gated input-output sequence and provides fluorescent feedback for the H2S detection and CO release steps. This linear sequence can be combined with a fluorescent molecular sensor for CO detection via a third distinct emission. Overall, this is the first molecular framework that can combine the sensing of H2S with the controlled release of CO, two gaseous molecules that are known to exhibit reciprocal regulation and have overlapping targets in cellular environments.
Collapse
Affiliation(s)
- Tatiana Soboleva
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT 84322-0300
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4815
| | - Lisa M Berreau
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT 84322-0300
| |
Collapse
|
37
|
Abstract
SIGNIFICANCE The family of gasotransmitter molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), has emerged as an important mediator of numerous cellular signal transduction and pathophysiological responses. As such, these molecules have been reported to influence a diverse array of biochemical, molecular, and cell biology events often impacting one another. Recent Advances: Discrete regulation of gasotransmitter molecule formation, movement, and reaction is critical to their biological function. Due to the chemical nature of these molecules, they can move rapidly throughout cells and tissues acting on targets through reactions with metal groups, reactive chemical species, and protein amino acids. CRITICAL ISSUES Given the breadth and complexity of gasotransmitter reactions, this field of research is expanding into exciting, yet sometimes confusing, areas of study with significant promise for understanding health and disease. The precise amounts of tissue and cellular gasotransmitter levels and where they are formed, as well as how they react with molecular targets or themselves, all remain poorly understood. FUTURE DIRECTIONS Elucidation of specific molecular targets, characteristics of gasotransmitter molecule heterotypic interactions, and spatiotemporal formation and metabolism are all important to better understand their true pathophysiological importance in various organ systems. Antioxid. Redox Signal. 26, 936-960.
Collapse
Affiliation(s)
- Gopi K Kolluru
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Xinggui Shen
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Shuai Yuan
- 2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Christopher G Kevil
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,3 Department of Molecular and Cellular Physiology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| |
Collapse
|
38
|
Sabino JPJ, Soriano RN, Donatti AF, Fernandez RR, Kwiatkoski M, Francescato HD, Coimbra TM, Branco LG. Involvement of endogenous central hydrogen sulfide (H2S) in hypoxia-induced hypothermia in spontaneously hypertensive rats. Can J Physiol Pharmacol 2017; 95:157-162. [DOI: 10.1139/cjpp-2016-0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spontaneously hypertensive rats (SHR) display autonomic imbalance and abnormal body temperature (Tb) adjustments. Hydrogen sulfide (H2S) modulates hypoxia-induced hypothermia, but its role in SHR thermoregulation is unknown. We tested the hypothesis that SHR display peculiar thermoregulatory response to hypoxia and that endogenous H2S overproduced in the caudal nucleus of the solitary tract (NTS) of SHR modulates this response. SHR and Wistar rats were microinjected into the fourth ventricle with aminooxyacetate (AOA, H2S-synthezing enzyme inhibitor) or sodium sulfide (Na2S, H2S donor) and exposed to normoxia (21% inspired O2) or hypoxia (10% inspired O2, 30 min). Tb was continuously measured, and H2S production rate was assessed in caudal NTS homogenates. In both groups, AOA, Na2S, or saline (i.e., control; 1 μL) did not affect euthermia. Hypoxia caused similar decreases in Tb in both groups. AOA presented a longer latency to potentiate hypoxic hypothermia in SHR. Caudal NTS H2S production rate was higher in SHR. We suggest that increased bioavailability of H2S in the caudal NTS of SHR enables the adequate modulation of excitability of peripheral chemoreceptor-activated NTS neurons that ultimately induce suppression of brown adipose tissue thermogenesis, thus accounting for the normal hypoxic hypothermia.
Collapse
Affiliation(s)
- João Paulo J. Sabino
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renato N. Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, 35020-220, Governador Valadares, MG, Brazil
| | - Alberto F. Donatti
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Marcelo Kwiatkoski
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Heloísa D.C. Francescato
- School of Medicine of Ribeirão Preto, 14040-904, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Terezila M. Coimbra
- School of Medicine of Ribeirão Preto, 14040-904, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G.S. Branco
- Dental School of Ribeirão Preto, 14040-904, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
39
|
Abstract
Sleep apnea, which is the periodic cessation of breathing during sleep, is a major health problem affecting over 10 million people in the United States and is associated with several sequelae, including hypertension and stroke. Clinical studies suggest that abnormal carotid body (CB) activity may be a driver of sleep apnea. Because gaseous molecules are important determinants of CB activity, aberrations in their signaling could lead to sleep apnea. Here, we report that mice deficient in heme oxygenase-2 (HO-2), which generates the gaseous molecule carbon monoxide (CO), exhibit sleep apnea characterized by high apnea and hypopnea indices during rapid eye movement (REM) sleep. Similar high apnea and hypopnea indices were also noted in prehypertensive spontaneously hypertensive (SH) rats, which are known to exhibit CB hyperactivity. We identified the gaseous molecule hydrogen sulfide (H2S) as the major effector molecule driving apneas. Genetic ablation of the H2S-synthesizing enzyme cystathionine-γ-lyase (CSE) normalized breathing in HO-2-/- mice. Pharmacologic inhibition of CSE with l-propargyl glycine prevented apneas in both HO-2-/- mice and SH rats. These observations demonstrate that dysregulated CO and H2S signaling in the CB leads to apneas and suggest that CSE inhibition may be a useful therapeutic intervention for preventing CB-driven sleep apnea.
Collapse
|
40
|
Prabhakar NR, Peng YJ. Oxygen Sensing by the Carotid Body: Past and Present. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 977:3-8. [PMID: 28685420 DOI: 10.1007/978-3-319-55231-6_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is now well established that carotid bodies are sensory organs for monitoring arterial blood oxygen levels and trigger reflexes that are critical for maintaining homeostasis during hypoxemia. This review article provides a brief account of the early studies leading to the discovery of the carotid body as a sensory receptor and addresses current views of O2 sensing mechanism(s) in the carotid body and their physiological importance.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA.
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
41
|
Abstract
The discovery of carotid bodies as sensory receptors for detecting arterial blood oxygen levels, and the identification and elucidation of the roles of hypoxia-inducible factors (HIFs) in oxygen homeostasis have propelled the field of oxygen biology. This review highlights the gas-messenger signaling mechanisms associated with oxygen sensing, as well as transcriptional and non-transcriptional mechanisms underlying the maintenance of oxygen homeostasis by HIFs and their relevance to physiology and pathology.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois;
| | - Gregg L Semenza
- Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland; and McKusick-Nathans Institute of Genetic Medicine and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
42
|
Abstract
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.
Collapse
Affiliation(s)
- Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Abolfazl Zarjou
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Anupam Agarwal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
43
|
Sabino JPJ, Traslaviña GAA, Branco LG. Role of central hydrogen sulfide on ventilatory and cardiovascular responses to hypoxia in spontaneous hypertensive rats. Respir Physiol Neurobiol 2016; 231:21-7. [DOI: 10.1016/j.resp.2016.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 11/24/2022]
|
44
|
Narkiewicz K, Ratcliffe LEK, Hart EC, Briant LJB, Chrostowska M, Wolf J, Szyndler A, Hering D, Abdala AP, Manghat N, Burchell AE, Durant C, Lobo MD, Sobotka PA, Patel NK, Leiter JC, Engelman ZJ, Nightingale AK, Paton JFR. Unilateral Carotid Body Resection in Resistant Hypertension: A Safety and Feasibility Trial. ACTA ACUST UNITED AC 2016; 1:313-324. [PMID: 27766316 PMCID: PMC5063532 DOI: 10.1016/j.jacbts.2016.06.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/17/2022]
Abstract
Animal and human data indicate pathological afferent signaling emanating from the carotid body that drives sympathetically mediated elevations in blood pressure in conditions of hypertension. This first-in-man, proof-of-principle study tested the safety and feasibility of unilateral carotid body resection in 15 patients with drug-resistant hypertension. The procedure proved to be safe and feasible. Overall, no change in blood pressure was found. However, 8 patients showed significant reductions in ambulatory blood pressure coinciding with decreases in sympathetic activity. The carotid body may be a novel target for treating an identifiable subpopulation of humans with hypertension.
Collapse
Key Words
- ABP, ambulatory blood pressure
- ASBP, ambulatory systolic blood pressure
- BRS, baroreceptor reflex sensitivity
- CB, carotid body
- HRV, heart rate variability
- HVR, hypoxic ventilatory response
- MSNA, muscle sympathetic nerve activity
- OBP, office blood pressure
- OSBP, office systolic blood pressure
- afferent drive
- baroreceptor reflex
- hypertension
- hypoxia
- peripheral chemoreceptor
- sympathetic nervous system
- uCB, unilateral carotid body
Collapse
Affiliation(s)
- Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Laura E K Ratcliffe
- CardioNomics Research Group, Clinical Research & Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Emma C Hart
- CardioNomics Research Group, Clinical Research & Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom; School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Linford J B Briant
- CardioNomics Research Group, Clinical Research & Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Marzena Chrostowska
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Wolf
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Szyndler
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Dagmara Hering
- Department of Hypertension and Diabetology, Medical University of Gdansk, Gdansk, Poland
| | - Ana P Abdala
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Nathan Manghat
- CardioNomics Research Group, Clinical Research & Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Amy E Burchell
- CardioNomics Research Group, Clinical Research & Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Claire Durant
- CardioNomics Research Group, Clinical Research & Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Melvin D Lobo
- NIHR Barts Cardiovascular Biomedical Research Unit, William Harvey Research Institute, QMUL, Charterhouse Square, London, United Kingdom
| | - Paul A Sobotka
- Department of Internal Medicine, Division of Cardiovascular Diseases, The Ohio State University, Columbus, Ohio
| | - Nikunj K Patel
- Neurosurgery, North Bristol NHS Trust, Southmead Hospital, Bristol, United Kingdom
| | - James C Leiter
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | | | - Angus K Nightingale
- CardioNomics Research Group, Clinical Research & Imaging Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Julian F R Paton
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
45
|
Yuan G, Peng YJ, Khan SA, Nanduri J, Singh A, Vasavda C, Semenza GL, Kumar GK, Snyder SH, Prabhakar NR. H2S production by reactive oxygen species in the carotid body triggers hypertension in a rodent model of sleep apnea. Sci Signal 2016; 9:ra80. [PMID: 27531649 DOI: 10.1126/scisignal.aaf3204] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sleep apnea is a prevalent respiratory disease in which episodic cessation of breathing causes intermittent hypoxia. Patients with sleep apnea and rodents exposed to intermittent hypoxia exhibit hypertension. The carotid body senses changes in blood O2 concentrations, and an enhanced carotid body chemosensory reflex contributes to hypertension in sleep apnea patients. A rodent model of intermittent hypoxia that mimics blood O2 saturation profiles of patients with sleep apnea has shown that increased generation of reactive oxygen species (ROS) in the carotid body enhances the chemosensory reflex and triggers hypertension. CO generated by heme oxygenase-2 (HO-2) induces a signaling pathway that inhibits hydrogen sulfide (H2S) production by cystathionine γ-lyase (CSE), leading to suppression of carotid body activity. We found that ROS inhibited CO generation by HO-2 in the carotid body and liver through a mechanism that required Cys(265) in the heme regulatory motif of heterologously expressed HO-2. We showed that ROS induced by intermittent hypoxia inhibited CO production and increased H2S concentrations in the carotid body, which stimulated its neural activity. In rodents, blockade of H2S synthesis by CSE, by either pharmacologic or genetic approaches, inhibited carotid body activation and hypertension induced by intermittent hypoxia. Thus, our results indicate that oxidant-induced inactivation of HO-2, which leads to increased CSE-dependent H2S production in the carotid body, is a critical trigger of hypertension in rodents exposed to intermittent hypoxia.
Collapse
Affiliation(s)
- Guoxiang Yuan
- Institute for Integrative Physiology and Center for Systems Biology for O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology for O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Shakil A Khan
- Institute for Integrative Physiology and Center for Systems Biology for O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology for O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Amritha Singh
- Institute for Integrative Physiology and Center for Systems Biology for O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Chirag Vasavda
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gregg L Semenza
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ganesh K Kumar
- Institute for Integrative Physiology and Center for Systems Biology for O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology for O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
López-Barneo J, González-Rodríguez P, Gao L, Fernández-Agüera MC, Pardal R, Ortega-Sáenz P. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol 2016; 310:C629-42. [PMID: 26764048 DOI: 10.1152/ajpcell.00265.2015] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxygen (O2) is fundamental for cell and whole-body homeostasis. Our understanding of the adaptive processes that take place in response to a lack of O2(hypoxia) has progressed significantly in recent years. The carotid body (CB) is the main arterial chemoreceptor that mediates the acute cardiorespiratory reflexes (hyperventilation and sympathetic activation) triggered by hypoxia. The CB is composed of clusters of cells (glomeruli) in close contact with blood vessels and nerve fibers. Glomus cells, the O2-sensitive elements in the CB, are neuron-like cells that contain O2-sensitive K(+)channels, which are inhibited by hypoxia. This leads to cell depolarization, Ca(2+)entry, and the release of transmitters to activate sensory fibers terminating at the respiratory center. The mechanism whereby O2modulates K(+)channels has remained elusive, although several appealing hypotheses have been postulated. Recent data suggest that mitochondria complex I signaling to membrane K(+)channels plays a fundamental role in acute O2sensing. CB activation during exposure to low Po2is also necessary for acclimatization to chronic hypoxia. CB growth during sustained hypoxia depends on the activation of a resident population of stem cells, which are also activated by transmitters released from the O2-sensitive glomus cells. These advances should foster further studies on the role of CB dysfunction in the pathogenesis of highly prevalent human diseases.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - M Carmen Fernández-Agüera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
47
|
Park EC, Rongo C. The p38 MAP kinase pathway modulates the hypoxia response and glutamate receptor trafficking in aging neurons. eLife 2016; 5. [PMID: 26731517 PMCID: PMC4775213 DOI: 10.7554/elife.12010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/04/2016] [Indexed: 01/07/2023] Open
Abstract
Neurons are sensitive to low oxygen (hypoxia) and employ a conserved pathway to combat its effects. Here, we show that p38 MAP Kinase (MAPK) modulates this hypoxia response pathway in C. elegans. Mutants lacking p38 MAPK components pmk-1 or sek-1 resemble mutants lacking the hypoxia response component and prolyl hydroxylase egl-9, with impaired subcellular localization of Mint orthologue LIN-10, internalization of glutamate receptor GLR-1, and depression of GLR-1-mediated behaviors. Loss of p38 MAPK impairs EGL-9 protein localization in neurons and activates the hypoxia-inducible transcription factor HIF-1, suggesting that p38 MAPK inhibits the hypoxia response pathway through EGL-9. As animals age, p38 MAPK levels decrease, resulting in GLR-1 internalization; this age-dependent downregulation can be prevented through either p38 MAPK overexpression or removal of CDK-5, an antagonizing kinase. Our findings demonstrate that p38 MAPK inhibits the hypoxia response pathway and determines how aging neurons respond to hypoxia through a novel mechanism. DOI:http://dx.doi.org/10.7554/eLife.12010.001 The brain accounts for 2% of our body weight, but consumes about 20% of our oxygen intake. This oxygen gluttony is due to the tremendous appetite of brain cells for energy, which neurons satisfy through oxygen-dependent (aerobic) metabolism. As a result, the loss of oxygen to the brain during a stroke, heart attack, or due to another medical condition can be very damaging to cells in the brain. Human and other animal cells use a communication system called the hypoxia response pathway to sense oxygen and trigger a protective response when oxygen is low. This pathway includes an enzyme called prolyl hydroxylase, which senses oxygen and modifies another protein in the pathway that regulates the production of enzymes involved in metabolism. This alters the balance of enzymes involved in aerobic and oxygen-independent (anaerobic) metabolism in the cell. However, it is not clear how the activity of the prolyl hydroxylase is regulated. Much of our knowledge about the hypoxia response pathway has been gained from studies using a small worm called C. elegans. This worm uses the pathway to cope with hypoxia in the harsh environment of the soil. Mutant worms that lack the prolyl hydroxylase have several abnormalities including higher levels of anaerobic metabolism even in the presence of oxygen, and defects in the connections between neurons. Park and Rongo used C. elegans to study the pathway in more detail. The experiments show that another enzyme called p38 MAPK activates the prolyl hydroxylase. Mutant worms that lack this enzyme have similar abnormalities in the hypoxia response pathway as animals that lack the prolyl hydroxylase. In normal worms, decreasing levels of p38 MAPK as the animals grow older contribute to the decline in the nervous system. The p38 MAPK enzyme appears to work by regulating the activity of the prolyl hydroxylase and its location inside neurons. These findings provide a new target for the development of drugs that may help to protect us from tissue damage caused by hypoxia. Future challenges are to find out what activates p38 MAPK, and how it influences the location of prolyl hydroxylase in neurons. DOI:http://dx.doi.org/10.7554/eLife.12010.002
Collapse
Affiliation(s)
- Eun Chan Park
- The Waksman Institute, Rutgers The State University of New Jersey, New Jersey, United States.,Department of Genetics, Rutgers The State University of New Jersey, New Jersey, United States
| | - Christopher Rongo
- The Waksman Institute, Rutgers The State University of New Jersey, New Jersey, United States.,Department of Genetics, Rutgers The State University of New Jersey, New Jersey, United States
| |
Collapse
|
48
|
Prabhakar NR, Peng YJ, Kumar GK, Nanduri J. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Compr Physiol 2016; 5:561-77. [PMID: 25880505 DOI: 10.1002/cphy.c140039] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Carotid bodies are the principal peripheral chemoreceptors for detecting changes in arterial blood oxygen levels, and the resulting chemoreflex is a potent regulator of blood pressure. Recurrent apnea with intermittent hypoxia (IH) is a major clinical problem in adult humans and infants born preterm. Adult patients with recurrent apnea exhibit heightened sympathetic nerve activity and hypertension. Adults born preterm are predisposed to early onset of hypertension. Available evidence suggests that carotid body chemoreflex contributes to hypertension caused by IH in both adults and neonates. Experimental models of IH provided important insights into cellular and molecular mechanisms underlying carotid body chemoreflex-mediated hypertension. This article provides a comprehensive appraisal of how IH affects carotid body function, underlying cellular, molecular, and epigenetic mechanisms, and the contribution of chemoreflex to the hypertension.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology for O2 Sensing, Biological Sciences Division, University of Chicago, Illinois, USA
| | | | | | | |
Collapse
|
49
|
Oliveira-Sales EB, Colombari E, Abdala AP, Campos RR, Paton JFR. Sympathetic overactivity occurs before hypertension in the two-kidney, one-clip model. Exp Physiol 2015; 101:67-80. [PMID: 26537847 DOI: 10.1113/ep085390] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022]
Abstract
Our knowledge of mechanisms responsible for both the development and the maintenance of hypertension remains incomplete in the Goldblatt (two-kidney, one-clip; 2K1C) model. We tested the hypothesis that elevated sympathetic nerve activity (SNA) occurs before the onset of hypertension in 2K1C rats, considering the time course of the increase in SNA in relationship to the onset of the hypertension. We used a decorticated in situ working heart-brainstem preparation of three groups of male Wistar rats, namely sham-operated animals (SHAM, n = 7) and animals 3 weeks post-2K1C, of which some were hypertensive (2K1C-H, n = 6) and others normotensive (2K1C-N, n = 9), as determined in vivo a priori. Perfusion pressure was higher in both 2K1C groups (2K1C-H, 76 ± 1 mmHg; 2K1C-N, 74 ± 3 mmHg; versus SHAM, 60 ± 2 mmHg, P < 0.05). The SNA was significantly elevated in both 2K1C groups (2K1C-H, 47.7 ± 6.1 μV; 2K1C-N, 32.8 ± 2.8 μV; versus SHAM, 20.5 ± 2.5 μV, P < 0.05) owing to its increased respiratory modulation; the chemoreflex was augmented and baroreflex depressed. Precollicular transection reduced SNA in all groups (2K1C-H, -32.5 ± 7.5%; 2K1C-NH, -48 ± 6.9%; versus SHAM, -13.2 ± 1%, P < 0.05). Subsequent medullary spinal cord transection abolished SNA in both SHAM and 2K1C-N groups, but decreased it by only 57 ± 5.5% in 2K1C-H preparations. Thus, SNA is raised before the onset of hypertension, by the third week after renal artery clipping, and this originates, in part, from its enhanced respiratory modulation. Spinal circuits contribute to the elevation of SNA in the 2K1C model, but only after hypertension has developed.
Collapse
Affiliation(s)
- Elizabeth B Oliveira-Sales
- School of Physiology & Pharmacology, Bristol Heart Institute, University of Bristol, Bristol, UK.,Department of Physiology, Federal University of Sao Paulo, UNIFESP, SP, Brazil
| | - Eduardo Colombari
- School of Physiology & Pharmacology, Bristol Heart Institute, University of Bristol, Bristol, UK.,Department of Physiology & Pathology, School of Dentistry of Araraquara, São Paulo State University, UNESP, Araraquara, SP, Brazil
| | - Ana Paula Abdala
- School of Physiology & Pharmacology, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Ruy R Campos
- Department of Physiology, Federal University of Sao Paulo, UNIFESP, SP, Brazil
| | - Julian F R Paton
- School of Physiology & Pharmacology, Bristol Heart Institute, University of Bristol, Bristol, UK
| |
Collapse
|
50
|
Meng G, Ma Y, Xie L, Ferro A, Ji Y. Emerging role of hydrogen sulfide in hypertension and related cardiovascular diseases. Br J Pharmacol 2015; 172:5501-11. [PMID: 25204754 PMCID: PMC4667855 DOI: 10.1111/bph.12900] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022] Open
Abstract
Hydrogen sulfide (H2 S) has traditionally been viewed as a highly toxic gas; however, recent studies have implicated H2 S as a third member of the gasotransmitter family, exhibiting properties similar to NO and carbon monoxide. Accumulating evidence has suggested that H2 S influences a wide range of physiological and pathological processes, among which blood vessel relaxation, cardioprotection and atherosclerosis have been particularly studied. In the cardiovascular system, H2 S production is predominantly catalyzed by cystathionine γ-lyase (CSE). Decreased endogenous H2 S levels have been found in hypertensive patients and animals, and CSE(-/-) mice develop hypertension with age, suggesting that a deficiency in H2 S contributes importantly to BP regulation. H2 S supplementation attenuates hypertension in different hypertensive animal models. The mechanism by which H2 S was originally proposed to attenuate hypertension was by virtue of its action on vascular tone, which may be related to effects on different ion channels. Both H2 S and NO cause vasodilatation and there is cross-talk between these two molecules to regulate BP. Suppression of oxidative stress may also contribute to antihypertensive effects of H2 S. This review also summarizes the state of research on H2 S and hypertension in China. A better understanding of the role of H2 S in hypertension and related cardiovascular diseases will allow novel strategies to be devised for their treatment.
Collapse
Affiliation(s)
- Guoliang Meng
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| | - Yan Ma
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| | - Liping Xie
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| | - Albert Ferro
- Department of Clinical PharmacologyCardiovascular DivisionSchool of MedicineKing's College LondonLondonUK
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| |
Collapse
|