1
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
2
|
Fu X, Jamison M, Jubb AM, Liao Y, Aspin A, Hayes K, Glein CR, Yang Z. Effect of copper salts on hydrothermal oxidative decarboxylation: a study of phenylacetic acid. Chem Commun (Camb) 2020; 56:2791-2794. [DOI: 10.1039/c9cc09825a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Efficient and selective effects of copper salts on hydrothermal oxidative decarboxylation have been discovered and studied.
Collapse
Affiliation(s)
- Xuan Fu
- Department of Chemistry
- Oakland University
- Rochester
- USA
| | - Megan Jamison
- Department of Chemistry
- Oakland University
- Rochester
- USA
| | - Aaron M. Jubb
- U.S. Geological Survey
- 12201 Sunrise Valley Drive
- Reston
- USA
| | - Yiju Liao
- Department of Chemistry
- Oakland University
- Rochester
- USA
| | | | - Kyle Hayes
- Department of Chemistry
- Oakland University
- Rochester
- USA
| | - Christopher R. Glein
- Space Science and Engineering Division
- Southwest Research Institute
- San Antonio
- USA
| | - Ziming Yang
- Department of Chemistry
- Oakland University
- Rochester
- USA
| |
Collapse
|
3
|
Olson KR. Hydrogen sulfide, reactive sulfur species and coping with reactive oxygen species. Free Radic Biol Med 2019; 140:74-83. [PMID: 30703482 DOI: 10.1016/j.freeradbiomed.2019.01.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/19/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
Life began in a ferruginous (anoxic and Fe2+ dominated) world around 3.8 billion years ago (bya). Hydrogen sulfide (H2S) and other sulfur molecules from hydrothermal vents and other fissures provided many key necessities for life's origin including catalytic platforms (primordial enzymes) that also served as primitive boundaries (cell walls), substrates for organic synthesis and a continuous source of energy in the form of reducing equivalents. Anoxigenic photosynthesis oxidizing H2S followed within a few hundred million years and laid the metabolic groundwork for oxidative photosynthesis some half-billion years later that slightly and episodically increased atmospheric oxygen around 2.3 bya. This oxidized terrestrial sulfur to sulfate which was washed to the sea where it was reduced creating vast euxinic (anoxic and sulfidic) areas. It was in this environment that eukaryotic cells appeared around 1.5 bya and where they evolved for nearly 1 billion additional years. Oxidative photosynthesis finally oxidized the oceans and around 0.6 bya oxygen levels in the atmosphere and oceans began to rise toward present day levels. This is purported to have been a life-threatening event due to the prevalence of reactive oxygen species (ROS) and thus necessitated the elaboration of chemical and enzymatic antioxidant mechanisms. However, these antioxidants initially appeared around the time of anoxigenic photosynthesis suggesting a commitment to metabolism of reactive sulfur species (RSS). This review examines these events and suggests that many of the biological attributes assigned to ROS may, in fact, be due to RSS. This is underscored by observations that ROS and RSS are chemically similar, often indistinguishable by analytical methods and the fact that the bulk of biochemical and physiological experiments are performed in unphysiologically oxic environments where ROS are artifactually favored over RSS.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, Raclin Carmichael Hall, 1234 Notre Dame Ave, South Bend, IN 46617, USA.
| |
Collapse
|
4
|
Miller CG, Holmgren A, Arnér ESJ, Schmidt EE. NADPH-dependent and -independent disulfide reductase systems. Free Radic Biol Med 2018; 127:248-261. [PMID: 29609022 PMCID: PMC6165701 DOI: 10.1016/j.freeradbiomed.2018.03.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
Abstract
Over the past seven decades, research on autotrophic and heterotrophic model organisms has defined how the flow of electrons ("reducing power") from high-energy inorganic sources, through biological systems, to low-energy inorganic products like water, powers all of Life's processes. Universally, an initial major biological recipient of these electrons is nicotinamide adenine dinucleotide-phosphate, which thereby transits from an oxidized state (NADP+) to a reduced state (NADPH). A portion of this reducing power is then distributed via the cellular NADPH-dependent disulfide reductase systems as sequential reductions of disulfide bonds. Along the disulfide reduction pathways, some enzymes have active sites that use the selenium-containing amino acid, selenocysteine, in place of the common but less reactive sulfur-containing cysteine. In particular, the mammalian/metazoan thioredoxin systems are usually selenium-dependent as, across metazoan phyla, most thioredoxin reductases are selenoproteins. Among the roles of the NADPH-dependent disulfide reductase systems, the most universal is that they provide the reducing power for the production of DNA precursors by ribonucleotide reductase (RNR). Some studies, however, have uncovered examples of NADPH-independent disulfide reductase systems that can also support RNR. These systems are summarized here and their implications are discussed.
Collapse
Affiliation(s)
- Colin G Miller
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Edward E Schmidt
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
5
|
Yellowstone Hot Springs are Organic Chemodiversity Hot Spots. Sci Rep 2018; 8:14155. [PMID: 30237444 PMCID: PMC6147864 DOI: 10.1038/s41598-018-32593-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/11/2018] [Indexed: 11/08/2022] Open
Abstract
Yellowstone National Park hydrothermal springs were investigated according to their organic geochemistry with a special focus on the Yellowstone hot spring dissolved organic matter (YDOM) that was solid-phase extracted. Here we show that YDOM has a unique chemodiversity that has not yet been observed anywhere else in aquatic surface environments and that Yellowstone hot springs are organic chemodiversity hot spots. Four main geochemically classified hot spring types (alkaline-chloride, mixed alkaline-chloride, acid-chloride-sulfate and travertine-precipitating) exhibited distinct organic molecular signatures that correlated remarkably well with the known inorganic geochemistry and manifested themselves in excitation emission matrix fluorescence, nuclear magnetic resonance, and ultrahigh resolution mass spectra. YDOM contained thousands of molecular formulas unique to Yellowstone of which 80% contained sulfur, even in low hydrogen sulfide containing alkaline-chloride springs. This unique YDOM reflects the extreme organic geochemistry present in the hydrothermal features of Yellowstone National Park.
Collapse
|
6
|
Pizzarello S, Shock E. Carbonaceous Chondrite Meteorites: the Chronicle of a Potential Evolutionary Path between Stars and Life. ORIGINS LIFE EVOL B 2017; 47:249-260. [PMID: 28078499 DOI: 10.1007/s11084-016-9530-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
The biogenic elements, H, C, N, O, P and S, have a long cosmic history, whose evolution can still be observed in diverse locales of the known universe, from interstellar clouds of gas and dust, to pre-stellar cores, nebulas, protoplanetary discs, planets and planetesimals. The best analytical window into this cosmochemical evolution as it neared Earth has been provided so far by the small bodies of the Solar System, some of which were not significantly altered by the high gravitational pressures and temperatures that accompanied the formation of larger planets and may carry a pristine record of early nebular chemistry. Asteroids have delivered such records, as their fragments reach the Earth frequently and become available for laboratory analyses. The Carbonaceous Chondrite meteorites (CC) are a group of such fragments with the further distinction of containing abundant organic materials with structures as diverse as kerogen-like macromolecules and simpler compounds with identical counterparts in Earth's biosphere. All have revealed a lineage to cosmochemical synthetic regimes. Several CC show that asteroids underwent aqueous alteration of their minerals or rock metamorphism but may yet yield clues to the reactivity of organic compounds during parent-body processes, on asteroids as well as larger ocean worlds and planets. Whether the exogenous delivery by meteorites held an advantage in Earth's molecular evolution remains an open question as many others regarding the origins of life are. Nonetheless, the natural samples of meteorites allow exploring the physical and chemical processes that might have led to a selected chemical pool amenable to the onset of life. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sandra Pizzarello
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
| | - Everett Shock
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
- School of Earth & Space Exploration, Arizona State University, Tempe, AZ, 85218, USA
| |
Collapse
|
7
|
Moro D, Valdrè G, Mesto E, Scordari F, Lacalamita M, Ventura GD, Bellatreccia F, Scirè S, Schingaro E. Hydrocarbons in phlogopite from Kasenyi kamafugitic rocks (SW Uganda): cross-correlated AFM, confocal microscopy and Raman imaging. Sci Rep 2017; 7:40663. [PMID: 28098185 PMCID: PMC5241660 DOI: 10.1038/srep40663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/08/2016] [Indexed: 12/03/2022] Open
Abstract
This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several μm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000–2800 cm−1, associated with weaker bands at 1655, 1438 and 1297 cm−1, indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons.
Collapse
Affiliation(s)
- Daniele Moro
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Piazza di Porta S. Donato 1, 40126 Bologna, Italy
| | - Giovanni Valdrè
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Piazza di Porta S. Donato 1, 40126 Bologna, Italy
| | - Ernesto Mesto
- Università degli Studi di Bari "Aldo Moro", Dipartimento di Scienze della Terra e Geoambientali, Via E. Orabona 4, 70125 Bari, Italy
| | - Fernando Scordari
- Università degli Studi di Bari "Aldo Moro", Dipartimento di Scienze della Terra e Geoambientali, Via E. Orabona 4, 70125 Bari, Italy
| | - Maria Lacalamita
- Università degli Studi di Bari "Aldo Moro", Dipartimento di Scienze della Terra e Geoambientali, Via E. Orabona 4, 70125 Bari, Italy
| | - Giancarlo Della Ventura
- Università Roma Tre, Dipartimento di Scienze, Largo S. Leonardo Murialdo 1, 00146 Rome, Italy
| | - Fabio Bellatreccia
- Università Roma Tre, Dipartimento di Scienze, Largo S. Leonardo Murialdo 1, 00146 Rome, Italy
| | - Salvatore Scirè
- Università degli Studi di Catania, Dipartimento di Scienze Chimiche, Viale A. Doria 6, 95125 Catania, Italy
| | - Emanuela Schingaro
- Università degli Studi di Bari "Aldo Moro", Dipartimento di Scienze della Terra e Geoambientali, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
8
|
Olson KR, Straub KD. The Role of Hydrogen Sulfide in Evolution and the Evolution of Hydrogen Sulfide in Metabolism and Signaling. Physiology (Bethesda) 2016; 31:60-72. [DOI: 10.1152/physiol.00024.2015] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The chemical versatility of sulfur and its abundance in the prebiotic Earth as reduced sulfide (H2S) implicate this molecule in the origin of life 3.8 billion years ago and also as a major source of energy in the first seven-eighths of evolution. The tremendous increase in ambient oxygen ∼600 million years ago brought an end to H2S as an energy source, and H2S-dependent animals either became extinct, retreated to isolated sulfide niches, or adapted. The first 3 billion years of molecular tinkering were not lost, however, and much of this biochemical armamentarium easily adapted to an oxic environment where it contributes to metabolism and signaling even in humans. This review examines the role of H2S in evolution and the evolution of H2S metabolism and signaling.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Indiana University School of Medicine, South Bend, South Bend, Indiana; and
| | - Karl D. Straub
- Central Arkansas Veteran's Healthcare System and University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
9
|
Abstract
Oxidations of phenylacetic acid to benzaldehyde, benzyl alcohol to benzaldehyde, and benzaldehyde to benzoic acid have been observed, in water as the solvent and using only copper(II) chloride as the oxidant. The reactions are performed at 250 °C and 40 bar, conditions that mimic hydrothermal reactions that are geochemically relevant. Speciation calculations show that the oxidizing agent is not freely solvated copper(II) ions, but complexes of copper(II) with chloride and carboxylate anions. Measurements of the reaction stoichiometries and also of substituent effects on reactivity allow plausible mechanisms to be proposed. These oxidation reactions are relevant to green chemistry in that they proceed in high chemical yield in water as the solvent and avoid the use of toxic heavy metal oxidizing reagents.
Collapse
Affiliation(s)
- Ziming Yang
- The School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Hilairy E Hartnett
- The School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States.,School of Earth and Space Exploration, Arizona State University , Tempe, Arizona 85287, United States
| | - Everett L Shock
- The School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States.,School of Earth and Space Exploration, Arizona State University , Tempe, Arizona 85287, United States
| | - Ian R Gould
- The School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|