1
|
Bashtrykov P, Rajaram N, Jeltsch A. Efficient Targeted DNA Methylation with dCas9-Coupled DNMT3A-DNMT3L Methyltransferase. Methods Mol Biol 2023; 2577:177-188. [PMID: 36173573 DOI: 10.1007/978-1-0716-2724-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Epigenome editing is a powerful approach for the establishment of a chromatin environment with desired properties at a selected genomic locus, which is used to influence the transcription of target genes and to study properties and functions of gene regulatory elements. Targeted DNA methylation is one of the most often used types of epigenome editing, which typically aims for gene silencing by methylation of gene promoters. Here, we describe the design principles of EpiEditors for targeted DNA methylation and provide step-by-step guidelines for the realization of this approach. We focus on the dCas9 protein as the state-of-the-art DNA targeting module fused to 10×SunTag as the most frequently used system for editing enhancement. Further, we discuss different flavors of DNA methyltransferase modules used for this purpose including the most specific variants developed recently. Finally, we explain the principles of gRNA selection, outline the setup of the cell culture experiments, and briefly introduce the available options for the downstream DNA methylation data analysis.
Collapse
Affiliation(s)
- Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany.
| | - Nivethika Rajaram
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
2
|
Polycomb-lamina antagonism partitions heterochromatin at the nuclear periphery. Nat Commun 2022; 13:4199. [PMID: 35859152 PMCID: PMC9300685 DOI: 10.1038/s41467-022-31857-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022] Open
Abstract
The genome can be divided into two spatially segregated compartments, A and B, which partition active and inactive chromatin states. While constitutive heterochromatin is predominantly located within the B compartment near the nuclear lamina, facultative heterochromatin marked by H3K27me3 spans both compartments. How epigenetic modifications, compartmentalization, and lamina association collectively maintain heterochromatin architecture remains unclear. Here we develop Lamina-Inducible Methylation and Hi-C (LIMe-Hi-C) to jointly measure chromosome conformation, DNA methylation, and lamina positioning. Through LIMe-Hi-C, we identify topologically distinct sub-compartments with high levels of H3K27me3 and differing degrees of lamina association. Inhibition of Polycomb repressive complex 2 (PRC2) reveals that H3K27me3 is essential for sub-compartment segregation. Unexpectedly, PRC2 inhibition promotes lamina association and constitutive heterochromatin spreading into H3K27me3-marked B sub-compartment regions. Consistent with this repositioning, genes originally marked with H3K27me3 in the B compartment, but not the A compartment, remain largely repressed, suggesting that constitutive heterochromatin spreading can compensate for H3K27me3 loss at a transcriptional level. These findings demonstrate that Polycomb sub-compartments and their antagonism with lamina association are fundamental features of genome structure. More broadly, by jointly measuring nuclear position and Hi-C contacts, our study demonstrates how compartmentalization and lamina association represent distinct but interdependent modes of heterochromatin regulation.
Collapse
|
3
|
Ahmad K. Mapping beads on strings. Nat Methods 2022; 19:651-652. [PMID: 35595967 DOI: 10.1038/s41592-022-01519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kami Ahmad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
4
|
Thomson K, Game J, Karouta C, Morgan IG, Ashby R. Correlation between small-scale methylation changes and gene expression during the development of myopia. FASEB J 2021; 36:e22129. [PMID: 34958689 DOI: 10.1096/fj.202101487r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
Visually induced changes in the expression of early growth response-1 (EGR1), FBJ osteosarcoma oncogene (FOS), and NGFI-A binding protein-2 (NAB2) appear to form a part of a retinal network fundamental to ocular growth regulation, and thus, the development of myopia (short-sightedness). However, it is unclear how environmental (visual) cues are translated into these molecular changes. One possibility is through epigenetic modifications such as DNA methylation, a known regulator of such processes. By sequencing bisulfite-converted DNA amplicons, this study examined whether changes in DNA methylation occur within specific regulatory and promoter regions of EGR1, FOS, and NAB2 during the periods of increased and decreased ocular growth in chicks. Visually induced changes in ocular growth rates were associated with single-point, but not large-scale, shifts in methylation levels within the investigated regions. Analysis of methylation pattern variability (entropy) demonstrated that the observed methylation changes are occurring within small subpopulations of retinal cells. This concurs with previous observations that EGR1 and FOS are differentially regulated at the peptide level within specific retinal cell types. Together, the findings of this study support a potential role for DNA methylation in the translation of external visual cues into molecular changes critical for ocular growth regulation and myopia development.
Collapse
Affiliation(s)
- Kate Thomson
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Jeremy Game
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Cindy Karouta
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Ian G Morgan
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Regan Ashby
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.,Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
5
|
Minnoye L, Marinov GK, Krausgruber T, Pan L, Marand AP, Secchia S, Greenleaf WJ, Furlong EEM, Zhao K, Schmitz RJ, Bock C, Aerts S. Chromatin accessibility profiling methods. NATURE REVIEWS. METHODS PRIMERS 2021; 1:10. [PMID: 38410680 PMCID: PMC10895463 DOI: 10.1038/s43586-020-00008-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Chromatin accessibility, or the physical access to chromatinized DNA, is a widely studied characteristic of the eukaryotic genome. As active regulatory DNA elements are generally 'accessible', the genome-wide profiling of chromatin accessibility can be used to identify candidate regulatory genomic regions in a tissue or cell type. Multiple biochemical methods have been developed to profile chromatin accessibility, both in bulk and at the single-cell level. Depending on the method, enzymatic cleavage, transposition or DNA methyltransferases are used, followed by high-throughput sequencing, providing a view of genome-wide chromatin accessibility. In this Primer, we discuss these biochemical methods, as well as bioinformatics tools for analysing and interpreting the generated data, and insights into the key regulators underlying developmental, evolutionary and disease processes. We outline standards for data quality, reproducibility and deposition used by the genomics community. Although chromatin accessibility profiling is invaluable to study gene regulation, alone it provides only a partial view of this complex process. Orthogonal assays facilitate the interpretation of accessible regions with respect to enhancer-promoter proximity, functional transcription factor binding and regulatory function. We envision that technological improvements including single-molecule, multi-omics and spatial methods will bring further insight into the secrets of genome regulation.
Collapse
Affiliation(s)
- Liesbeth Minnoye
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lixia Pan
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Stefano Secchia
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | | | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Stein Aerts
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Abstract
DNA methylation plays important roles in determining cellular identity, disease, and environmental responses, but little is known about the mechanisms that drive methylation changes during cellular differentiation and tumorigenesis. Meanwhile, the causal relationship between DNA methylation and transcription remains incompletely understood. Recently developed targeted DNA methylation manipulation tools can address these gaps in knowledge, leading to new insights into how methylation governs gene expression. Here, we summarize technological developments in the DNA methylation editing field and discuss the remaining challenges facing current tools, as well as potential future directions.
Collapse
Affiliation(s)
- Yong Lei
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yung-Hsin Huang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Fujii W, Onuma A, Yoshioka S, Nagashima K, Sugiura K, Naito K. Finding of a highly efficient ZFN pair for Aqpep gene functioning in murine zygotes. J Reprod Dev 2015; 61:589-93. [PMID: 26460691 PMCID: PMC4685226 DOI: 10.1262/jrd.2015-087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The generation efficiencies of mutation-induced mice when using engineered zinc-finger nucleases (ZFNs) have
been generally 10 to 20% of obtained pups in previous studies. The discovery of high-affinity DNA-binding
modules can contribute to the generation of various kinds of novel artificial chromatin-targeting tools, such
as zinc-finger acetyltransferases, zinc-finger histone kinases and so on, as well as improvement of reported
zinc-finger recombinases and zinc-finger methyltransferases. Here, we report a novel ZFN pair that has a
highly efficient mutation-induction ability in murine zygotes. The ZFN pair induced mutations in all obtained
mice in the target locus, exon 17 of aminopeptidase Q gene, and almost all of the pups had biallelic
mutations. This high efficiency was also shown in the plasmid DNA transfected in a cultured human cell line.
The induced mutations were inherited normally in the next generation. The zinc-finger modules of this ZFN pair
are expected to contribute to the development of novel ZF-attached chromatin-targeting tools.
Collapse
Affiliation(s)
- Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Dyachenko OV, Tarlachkov SV, Marinitch DV, Shevchuk TV, Buryanov YI. Expression of exogenous DNA methyltransferases: application in molecular and cell biology. BIOCHEMISTRY (MOSCOW) 2015; 79:77-87. [PMID: 24794723 DOI: 10.1134/s0006297914020011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DNA methyltransferases might be used as powerful tools for studies in molecular and cell biology due to their ability to recognize and modify nitrogen bases in specific sequences of the genome. Methylation of the eukaryotic genome using exogenous DNA methyltransferases appears to be a promising approach for studies on chromatin structure. Currently, the development of new methods for targeted methylation of specific genetic loci using DNA methyltransferases fused with DNA-binding proteins is especially interesting. In the present review, expression of exogenous DNA methyltransferase for purposes of in vivo analysis of the functional chromatin structure along with investigation of the functional role of DNA methylation in cell processes are discussed, as well as future prospects for application of DNA methyltransferases in epigenetic therapy and in plant selection.
Collapse
Affiliation(s)
- O V Dyachenko
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | |
Collapse
|
9
|
Chaikind B, Ostermeier M. Directed evolution of improved zinc finger methyltransferases. PLoS One 2014; 9:e96931. [PMID: 24810747 PMCID: PMC4014571 DOI: 10.1371/journal.pone.0096931] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/14/2014] [Indexed: 01/09/2023] Open
Abstract
The ability to target DNA methylation toward a single, user-designated CpG site in vivo may have wide applicability for basic biological and biomedical research. A tool for targeting methylation toward single sites could be used to study the effects of individual methylation events on transcription, protein recruitment to DNA, and the dynamics of such epigenetic alterations. Although various tools for directing methylation to promoters exist, none offers the ability to localize methylation solely to a single CpG site. In our ongoing research to create such a tool, we have pursued a strategy employing artificially bifurcated DNA methyltransferases; each methyltransferase fragment is fused to zinc finger proteins with affinity for sequences flanking a targeted CpG site for methylation. We sought to improve the targeting of these enzymes by reducing the methyltransferase activity at non-targeted sites while maintaining high levels of activity at a targeted site. Here we demonstrate an in vitro directed evolution selection strategy to improve methyltransferase specificity and use it to optimize an engineered zinc finger methyltransferase derived from M.SssI. The unusual restriction enzyme McrBC is a key component of this strategy and is used to select against methyltransferases that methylate multiple sites on a plasmid. This strategy allowed us to quickly identify mutants with high levels of methylation at the target site (up to ∼80%) and nearly unobservable levels of methylation at a off-target sites (<1%), as assessed in E. coli. We also demonstrate that replacing the zinc finger domains with new zinc fingers redirects the methylation to a new target CpG site flanked by the corresponding zinc finger binding sequences.
Collapse
Affiliation(s)
- Brian Chaikind
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Mao C, Brown CR, Griesenbeck J, Boeger H. Occlusion of regulatory sequences by promoter nucleosomes in vivo. PLoS One 2011; 6:e17521. [PMID: 21408617 PMCID: PMC3048331 DOI: 10.1371/journal.pone.0017521] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/03/2011] [Indexed: 01/30/2023] Open
Abstract
Nucleosomes are believed to inhibit DNA binding by transcription factors. Theoretical attempts to understand the significance of nucleosomes in gene expression and regulation are based upon this assumption. However, nucleosomal inhibition of transcription factor binding to DNA is not complete. Rather, access to nucleosomal DNA depends on a number of factors, including the stereochemistry of transcription factor-DNA interaction, the in vivo kinetics of thermal fluctuations in nucleosome structure, and the intracellular concentration of the transcription factor. In vitro binding studies must therefore be complemented with in vivo measurements. The inducible PHO5 promoter of yeast has played a prominent role in this discussion. It bears two binding sites for the transcriptional activator Pho4, which at the repressed promoter are positioned within a nucleosome and in the linker region between two nucleosomes, respectively. Earlier studies suggested that the nucleosomal binding site is inaccessible to Pho4 binding in the absence of chromatin remodeling. However, this notion has been challenged by several recent reports. We therefore have reanalyzed transcription factor binding to the PHO5 promoter in vivo, using ‘chromatin endogenous cleavage’ (ChEC). Our results unambiguously demonstrate that nucleosomes effectively interfere with the binding of Pho4 and other critical transcription factors to regulatory sequences of the PHO5 promoter. Our data furthermore suggest that Pho4 recruits the TATA box binding protein to the PHO5 promoter.
Collapse
Affiliation(s)
- Changhui Mao
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Christopher R. Brown
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Joachim Griesenbeck
- Department of Biochemistry III, University of Regensburg, Regensburg, Germany
| | - Hinrich Boeger
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Jurkowska RZ, Jeltsch A. Silencing of gene expression by targeted DNA methylation: concepts and approaches. Methods Mol Biol 2010; 649:149-61. [PMID: 20680833 DOI: 10.1007/978-1-60761-753-2_9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Targeted DNA methylation is a novel and attractive approach for stable silencing of gene expression by epigenetic mechanisms. The potential applications of this concept include cancer treatment, treatment of viral infections and, in general, treatment of any disease that could be attenuated by the stable repression of known target genes. We review the literature on targeted DNA methylation and gene silencing, summarize the achievements and the challenges that remain, and discuss technical issues critical for this approach.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Biochemistry Lab, School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | | |
Collapse
|
12
|
Meister GE, Chandrasegaran S, Ostermeier M. Heterodimeric DNA methyltransferases as a platform for creating designer zinc finger methyltransferases for targeted DNA methylation in cells. Nucleic Acids Res 2010; 38:1749-59. [PMID: 20007601 PMCID: PMC2836561 DOI: 10.1093/nar/gkp1126] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 12/17/2022] Open
Abstract
The ability to target methylation to specific genomic sites would further the study of DNA methylation's biological role and potentially offer a tool for silencing gene expression and for treating diseases involving abnormal hypomethylation. The end-to-end fusion of DNA methyltransferases to zinc fingers has been shown to bias methylation to desired regions. However, the strategy is inherently limited because the methyltransferase domain remains active regardless of whether the zinc finger domain is bound at its cognate site and can methylate non-target sites. We demonstrate an alternative strategy in which fragments of a DNA methyltransferase, compromised in their ability to methylate DNA, are fused to two zinc fingers designed to bind 9 bp sites flanking a methylation target site. Using the naturally heterodimeric DNA methyltransferase M.EcoHK31I, which methylates the inner cytosine of 5'-YGGCCR-3', we demonstrate that this strategy can yield a methyltransferase capable of significant levels of methylation at the target site with undetectable levels of methylation at non-target sites in Escherichia coli. However, some non-target methylation could be detected at higher expression levels of the zinc finger methyltransferase indicating that further improvements will be necessary to attain the desired exclusive target specificity.
Collapse
Affiliation(s)
- Glenna E. Meister
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 and Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Srinivasan Chandrasegaran
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 and Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 and Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Rebelo AP, Williams SL, Moraes CT. In vivo methylation of mtDNA reveals the dynamics of protein-mtDNA interactions. Nucleic Acids Res 2009; 37:6701-15. [PMID: 19740762 PMCID: PMC2777446 DOI: 10.1093/nar/gkp727] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To characterize the organization of mtDNA–protein complexes (known as nucleoids) in vivo, we have probed the mtDNA surface exposure using site-specific DNA methyltransferases targeted to the mitochondria. We have observed that DNA methyltransferases have different accessibility to different sites on the mtDNA based on the levels of protein occupancy. We focused our studies on selected regions of mtDNA that are believed to be major regulatory regions involved in transcription and replication. The transcription termination region (TERM) within the tRNALeu(UUR) gene was consistently and strongly protected from methylation, suggesting frequent and high affinity binding of mitochondrial transcription termination factor 1 (mTERF1) to the site. Protection from methylation was also observed in other regions of the mtDNA, including the light and heavy strand promoters (LSP, HSP) and the origin of replication of the light strand (OL). Manipulations aiming at increasing or decreasing the levels of the mitochondrial transcription factor A (TFAM) led to decreased in vivo methylation, whereas manipulations that stimulated mtDNA replication led to increased methylation. We also analyzed the effect of ATAD3 and oxidative stress in mtDNA exposure. Our data provide a map of human mtDNA accessibility and demonstrate that nucleoids are dynamically associated with proteins.
Collapse
Affiliation(s)
- Adriana P Rebelo
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
14
|
Coupling phosphate homeostasis to cell cycle-specific transcription: mitotic activation of Saccharomyces cerevisiae PHO5 by Mcm1 and Forkhead proteins. Mol Cell Biol 2009; 29:4891-905. [PMID: 19596791 DOI: 10.1128/mcb.00222-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cells devote considerable resources to nutrient homeostasis, involving nutrient surveillance, acquisition, and storage at physiologically relevant concentrations. Many Saccharomyces cerevisiae transcripts coding for proteins with nutrient uptake functions exhibit peak periodic accumulation during M phase, indicating that an important aspect of nutrient homeostasis involves transcriptional regulation. Inorganic phosphate is a central macronutrient that we have previously shown oscillates inversely with mitotic activation of PHO5. The mechanism of this periodic cell cycle expression remains unknown. To date, only two sequence-specific activators, Pho4 and Pho2, were known to induce PHO5 transcription. We provide here evidence that Mcm1, a MADS-box protein, is essential for PHO5 mitotic activation. In addition, we found that cells simultaneously lacking the forkhead proteins, Fkh1 and Fkh2, exhibited a 2.5-fold decrease in PHO5 expression. The Mcm1-Fkh2 complex, first shown to transactivate genes within the CLB2 cluster that drive G(2)/M progression, also associated directly at the PHO5 promoter in a cell cycle-dependent manner in chromatin immunoprecipitation assays. Sds3, a component specific to the Rpd3L histone deacetylase complex, was also recruited to PHO5 in G(1). These findings provide (i) further mechanistic insight into PHO5 mitotic activation, (ii) demonstrate that Mcm1-Fkh2 can function combinatorially with other activators to yield late M/G(1) induction, and (iii) couple the mitotic cell cycle progression machinery to cellular phosphate homeostasis.
Collapse
|
15
|
DNA methyltransferase probing of chromatin structure within populations and on single molecules. Methods Mol Biol 2009; 523:41-65. [PMID: 19381922 DOI: 10.1007/978-1-59745-190-1_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Non-invasive methods for mapping chromatin structure are necessary for creating an accurate view of genome function and dynamics in vivo. Ectopic induction of cytosine-5 DNA methyltransferases (C5 MTases) in Saccharomyces cerevisiae is a powerful technique for probing chromatin structure with minimal disruption to yeast physiology. Accessibility of MTases to their cognate sites is impaired based on the strength and span of the protein-DNA interaction to be probed. Methylated cytosines that resist chemical deamination are detected positively by the PCR-based technique of bisulfite genomic sequencing. PCR amplicons can be sequenced directly yielding an average m(5)C frequency or accessibility of each target site within the population, a technique termed methyltransferase accessibility protocol (MAP). More recently, the sequencing of cloned molecules in MAP for individual templates (MAPit) enables assignment of the methylation status of each target site along a continuous DNA strand from a single cell. The unique capability to score methylation at multiple sites in single molecules permits detection of inherent structural variability in chromatin. Here, MAPit analysis of the repressed and induced PHO5 promoter of budding yeast, using a C5 MTase with dinucleotide recognition specificity, reveals considerable cell-to-cell heterogeneity in chromatin structure. Substantial variation is observed in the extent to which the MTase gains entry to each of the nucleosomes positioned at PHO5, suggesting differences in their intrinsic thermodynamic stability in vivo. MAPit should be readily adaptable to the analysis of chromatin structure and non-histone protein-DNA interactions in a variety of model systems.
Collapse
|
16
|
Meister GE, Chandrasegaran S, Ostermeier M. An engineered split M.HhaI-zinc finger fusion lacks the intended methyltransferase specificity. Biochem Biophys Res Commun 2008; 377:226-30. [PMID: 18835252 PMCID: PMC2586766 DOI: 10.1016/j.bbrc.2008.09.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 09/24/2008] [Indexed: 11/20/2022]
Abstract
The ability to site-specifically methylate DNA in vivo would have wide applicability to the study of basic biomedical problems as well as enable studies on the potential of site-specific DNA methylation as a therapeutic strategy for the treatment of diseases. Natural DNA methyltransferases lack the specificity required for these applications. Nomura and Barbas [W. Nomura, C.F. Barbas 3rd, In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase, J. Am. Chem. Soc. 129 (2007) 8676-8677] have reported that an engineered DNA methyltransferase comprised of fragments of M.HhaI methyltransferase and zinc finger proteins has very high specificity for the chosen target site. Our analysis of this engineered enzyme shows that the fusion protein methylates target and non-target sites with similar efficiency.
Collapse
Affiliation(s)
- Glenna E. Meister
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218
| | - Srinivasan Chandrasegaran
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218
| |
Collapse
|
17
|
Pondugula S, Kladde MP. Single-molecule analysis of chromatin: changing the view of genomes one molecule at a time. J Cell Biochem 2008; 105:330-7. [PMID: 18615586 PMCID: PMC2930150 DOI: 10.1002/jcb.21849] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Wrapping DNA into chromatin provides a wealth of regulatory mechanisms that ensure normal growth and development in eukaryotes. Our understanding of chromatin structure, including nucleosomes and non-histone protein-DNA interactions, has benefited immensely from nuclease and chemical digestion techniques. DNA-bound proteins, such as histones or site-specific factors, protect DNA against nuclease cleavage and generate large nucleosomal or small regulatory factor footprints. Chromatin subject to distinct modes of regulation often coincides with sites of nuclease hypersensitivity or nucleosome positioning. An inherent limitation of cleavage-based analyses has been the inability to reliably analyze regions of interest when levels of digestion depart from single-hit kinetics. Moreover, cleavage-based techniques provide views that are averaged over all the molecules in a sample population. Therefore, in cases of occupancy of multiple regulatory elements by factors, one cannot define whether the factors are bound to the same or different molecules in the population. The recent development of DNA methyltransferase-based, single-molecule MAP-IT technology overcomes limitations of ensemble approaches and has opened numerous new avenues in chromatin research. Here, we review the strengths, limitations, applications and future prospects of MAP-IT ranging from structural issues to mechanistic questions in eukaryotic chromatin regulation.
Collapse
Affiliation(s)
- Santhi Pondugula
- Department of Biochemistry and Molecular Biology and UF Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, 1376 Mowry Road, Box 103633, Gainesville, Florida 32610-3633
| | - Michael P. Kladde
- Department of Biochemistry and Molecular Biology and UF Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, 1376 Mowry Road, Box 103633, Gainesville, Florida 32610-3633
| |
Collapse
|
18
|
Jeltsch A, Jurkowska RZ, Jurkowski TP, Liebert K, Rathert P, Schlickenrieder M. Application of DNA methyltransferases in targeted DNA methylation. Appl Microbiol Biotechnol 2007; 75:1233-40. [PMID: 17431611 DOI: 10.1007/s00253-007-0966-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/21/2007] [Accepted: 03/21/2007] [Indexed: 12/31/2022]
Abstract
DNA methylation is an essential epigenetic modification. In bacteria, it is involved in gene regulation, DNA repair, and control of cell cycle. In eukaryotes, it acts in concert with other epigenetic modifications to regulate gene expression and chromatin structure. In addition to these biological roles, DNA methyltransferases have several interesting applications in biotechnology, which are the main focus of this review, namely, (1) in vivo footprinting: as several bacterial DNA methyltransferases cannot methylate DNA bound to histone proteins, the pattern of DNA methylation after expression of DNA methyltransferases in the cell allows determining nucleosome positioning; (2) mapping the binding specificity of DNA binding proteins: after fusion of a DNA methyltransferase to a DNA-binding protein and expression of the fusion protein in a cell, the DNA methylation pattern reflects the DNA-binding specificity of the DNA-binding protein; and (3) targeted gene silencing: after fusion of a DNA methyltransferase to a suitable DNA-binding domain, DNA methylation can be directed to promoter regions of target genes. Thereby, gene expression can be switched off specifically, efficiently, and stably, which has a number of potential medical applications.
Collapse
Affiliation(s)
- Albert Jeltsch
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Kilgore JA, Hoose SA, Gustafson TL, Porter W, Kladde MP. Single-molecule and population probing of chromatin structure using DNA methyltransferases. Methods 2007; 41:320-32. [PMID: 17309843 PMCID: PMC2923433 DOI: 10.1016/j.ymeth.2006.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 08/15/2006] [Indexed: 11/20/2022] Open
Abstract
Probing chromatin structure with DNA methyltransferases offers advantages over more commonly used nuclease-based and chromatin immunoprecipitation methods for detection of nucleosomes and non-histone protein-DNA interactions. Here, we describe two related methods in which the readout of MTase accessibility is obtained by assaying 5-methylcytosine in DNA through the PCR-based technique of bisulfite genomic sequencing. The methyltransferase accessibility protocol (MAP) determines the relative frequency at which the enzyme accesses each of its target sites over an entire population of PCR amplified product. While MAP yields much quantitative information about relative accessibility of a region of chromatin, a complementary single-molecule view of methyltransferase accessibility, termed MAP for individual templates (MAP-IT), is provided by analysis of cloned PCR products. Absolute rather than relative methylation frequencies in a region are obtained by summing the methylation status at each site over a cohort of clones. Moreover, as the integrity of individual molecules is maintained in MAP-IT, unique information about the distribution of multiple footprints along continuous regions is gleaned. In principle, the population MAP and single-molecule MAP-IT strategies can be used to analyze chromatin structure in a variety of model systems. Here, we describe the application of MAP in living Saccharomyces cerevisiae cells and MAP-IT in the analysis of a mammalian tumor suppressor gene in nuclei. This application of MAP-IT provides the first means to simultaneously determine CpG methylation of mammalian genes and their overlying chromatin structure in the same single DNA molecule.
Collapse
Affiliation(s)
- Jessica A. Kilgore
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Scott A. Hoose
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Tanya L. Gustafson
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Weston Porter
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Michael P. Kladde
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| |
Collapse
|
20
|
Li F, Papworth M, Minczuk M, Rohde C, Zhang Y, Ragozin S, Jeltsch A. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res 2006; 35:100-12. [PMID: 17151075 PMCID: PMC1761428 DOI: 10.1093/nar/gkl1035] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/25/2006] [Accepted: 11/07/2006] [Indexed: 01/06/2023] Open
Abstract
Gene silencing by targeted DNA methylation has potential applications in basic research and therapy. To establish targeted methylation in human cell lines, the catalytic domains (CDs) of mouse Dnmt3a and Dnmt3b DNA methyltransferases (MTases) were fused to different DNA binding domains (DBD) of GAL4 and an engineered Cys2His2 zinc finger domain. We demonstrated that (i) Dense DNA methylation can be targeted to specific regions in gene promoters using chimeric DNA MTases. (ii) Site-specific methylation leads to repression of genes controlled by various cellular or viral promoters. (iii) Mutations affecting any of the DBD, MTase or target DNA sequences reduce targeted methylation and gene silencing. (iv) Targeted DNA methylation is effective in repressing Herpes Simplex Virus type 1 (HSV-1) infection in cell culture with the viral titer reduced by at least 18-fold in the presence of an MTase fused to an engineered zinc finger DBD, which binds a single site in the promoter of HSV-1 gene IE175k. In short, we show here that it is possible to direct DNA MTase activity to predetermined sites in DNA, achieve targeted gene silencing in mammalian cell lines and interfere with HSV-1 propagation.
Collapse
Affiliation(s)
- Fuyang Li
- Institut für Biochemie, FB 08, Heinrich-Buff-Ring 58, Justus-Liebig-Universität Giessen35392 Giessen, Germany
| | - Monika Papworth
- Medical Research Council, Laboratory of Molecular Biology, Structural Studies DivisionHills Road, Cambridge CB2 2QH, UK
| | - Michal Minczuk
- Medical Research Council, Laboratory of Molecular Biology, Structural Studies DivisionHills Road, Cambridge CB2 2QH, UK
| | - Christian Rohde
- International University Bremen, School of Engineering and ScienceCampus Ring 1, 28759 Bremen, Germany
| | - Yingying Zhang
- International University Bremen, School of Engineering and ScienceCampus Ring 1, 28759 Bremen, Germany
| | - Sergei Ragozin
- International University Bremen, School of Engineering and ScienceCampus Ring 1, 28759 Bremen, Germany
| | - Albert Jeltsch
- Institut für Biochemie, FB 08, Heinrich-Buff-Ring 58, Justus-Liebig-Universität Giessen35392 Giessen, Germany
- International University Bremen, School of Engineering and ScienceCampus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
21
|
Radlinska M, Kondrzycka-Dada A, Piekarowicz A, Bujnicki JM. Identification of amino acids important for target recognition by the DNA:m5C methyltransferase M.NgoPII by alanine-scanning mutagenesis of residues at the protein-DNA interface. Proteins 2006; 58:263-70. [PMID: 15558546 DOI: 10.1002/prot.20297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
DNA:m(5)C MTases comprise a catalytic domain with conserved residues of the active site and a strongly diverged TRD with variable residues involved in DNA recognition and binding. To date, crystal structures of 2 DNA:m(5)C MTases complexed with the substrate DNA have been obtained; however, for none of these enzymes has the importance of the whole set of DNA-binding residues been comprehensively studied. We built a comparative model of M.NgoPII, a close homologue and isomethylomer of M.HaeIII, and systematically analyzed the effect of alanine substitutions for the complete set of amino acid residues from its TRD predicted to be important for DNA binding and target recognition. Our data demonstrate that only 1 Arg residue is indispensable for the MTase activity in vivo and in vitro, and that mutations of only a few other residues cause significant reduction of the activity in vitro, with little effect on the activity in vivo. The identification of dispensable protein-DNA contacts in the wild-type MTase will serve as a platform for exhaustive combinatorial mutagenesis aimed at the design of new contacts, and thus construction of enzyme variants that retain the activity but exhibit potentially new substrate preferences.
Collapse
|
22
|
Jessen WJ, Dhasarathy A, Hoose SA, Carvin CD, Risinger AL, Kladde MP. Mapping chromatin structure in vivo using DNA methyltransferases. Methods 2005; 33:68-80. [PMID: 15039089 DOI: 10.1016/j.ymeth.2003.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2003] [Indexed: 11/24/2022] Open
Abstract
Cytosine-5 DNA methyltransferases (C5 DMTases) are effective reagents for analyzing chromatin and footprinting DNA-bound factors in vivo. Cytosine methylation in accessible regions is assayed positively by the PCR-based technique of bisulfite sequencing. In this article, we outline two complementary uses for the DNA methyltransferase CviPI (M.CviPI, GC specificity) in probing chromatin organization. First, we describe the use of the naturally occurring, free enzyme as a diffusible probe to map changes in nucleosome structure and to footprint factor interactions at cis-regulatory sequences. In a second application, termed targeted gene methylation (TAGM), the DMTase is targeted via in-frame fusion to a DNA-binding factor. The rapid accumulation of DNA methylation enables highly sensitive detection of factor binding. Both strategies can be applied with any C5 DMTase, such as M.SssI, which also possesses a short-recognition specificity (CG). A description of methods for constructing C5 DMTase-expressing strains of Saccharomyces cerevisiae and analyzing chromatin regions is provided. We also include comprehensive protocols for the isolation and bisulfite treatment of genomic DNA as well as the subsequent bisulfite sequencing steps. Data demonstrating the efficacy of both DMTase probing techniques, theoretical considerations, and experimental analyses are presented at GAL1 and PHO5.
Collapse
Affiliation(s)
- Walter J Jessen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | | | | | | | | | |
Collapse
|
23
|
Dhasarathy A, Kladde MP. Promoter occupancy is a major determinant of chromatin remodeling enzyme requirements. Mol Cell Biol 2005; 25:2698-707. [PMID: 15767675 PMCID: PMC1061642 DOI: 10.1128/mcb.25.7.2698-2707.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatin creates transcriptional barriers that are overcome by coactivator activities such as histone acetylation by Gcn5 and ATP-dependent chromatin remodeling by SWI/SNF. Factors defining the differential coactivator requirements in the transactivation of various promoters remain elusive. Induction of the Saccharomyces cerevisiae PHO5 promoter does not require Gcn5 or SWI/SNF under fully inducing conditions of no phosphate. We show that PHO5 activation is highly dependent on both coactivators at intermediate phosphate concentrations, conditions that reduce the nuclear concentration of the Pho4 transactivator and severely diminish its association with PHO5 in the absence of Gcn5 or SWI/SNF. Conversely, physiological increases in Pho4 nuclear concentration and binding at PHO5 suppress the need for both Gcn5 and SWI/SNF, suggesting that coactivator redundancy is established at high Pho4 binding site occupancy. Consistent with this, we demonstrate, using chromatin immunoprecipitation, that Gcn5 and SWI/SNF are directly recruited to PHO5 and other strongly transcribed promoters, including GAL1-10, RPL19B, RPS22B, PYK1, and EFT2, which do not require either coactivator for expression. These results show that activator concentration and binding site occupancy play crucial roles in defining the extent to which transcription requires individual chromatin remodeling enzymes. In addition, Gcn5 and SWI/SNF associate with many more genomic targets than previously appreciated.
Collapse
Affiliation(s)
- Archana Dhasarathy
- Department of Biochemistry and Biophysics, 2128 TAMU, Texas A&M University, College Station, TX 77843-2128, USA
| | | |
Collapse
|
24
|
Buryanov Y, Shevchuk T. The use of prokaryotic DNA methyltransferases as experimental and analytical tools in modern biology. Anal Biochem 2005; 338:1-11. [PMID: 15707929 DOI: 10.1016/j.ab.2004.02.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Indexed: 11/23/2022]
Abstract
Prokaryotic DNA methyltransferases (MTases) are used as experimental and research tools in molecular biology and molecular genetics due to their ability to recognize and transfer methyl groups to target bases in specific DNA sequences. As a practical tool, prokaryotic DNA MTases can be used in recombinant DNA technology for in vitro alteration and enhancing of cleavage specificity of restriction endonucleases. The ability of prokaryotic DNA MTases to methylate cytosine residues in specific sequences, which are also methylated in eukaryotic DNA, makes it possible to use them as analytical reagent for determination of the site-specific level of methylation in eukaryotic DNA. In vivo DNA methylation by prokaryotic DNA MTases is used in different techniques for probing chromatin structure and protein-DNA interactions. Additional prospects are opened by development of the methods of DNA methylation targeted to predetermined DNA sequences by fusion of DNA MTases to DNA binding proteins. This review will discuss the application of prokaryotic DNA MTases of Type II in the methods and approaches mentioned above.
Collapse
Affiliation(s)
- Yaroslav Buryanov
- Shemyakin-Ovchinnikov Institute of Bioorganik Chemistry, Pushchino Branch, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast, Russia
| | | |
Collapse
|
25
|
Carvin CD, Kladde MP. Effectors of lysine 4 methylation of histone H3 in Saccharomyces cerevisiae are negative regulators of PHO5 and GAL1-10. J Biol Chem 2004; 279:33057-62. [PMID: 15180994 PMCID: PMC3697737 DOI: 10.1074/jbc.m405033200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modifications of histone amino-terminal tails are a key determinant in gene expression. Histone methylation plays a dual role in gene regulation. Methylation of lysine 9 of histone H3 in higher eukaryotes is associated with transcriptionally inactive heterochromatin, whereas H3 lysine 4 methylation correlates with active chromatin. Methylation of lysine 4 of H3 via Set1, a component of the Saccharomyces cerevisiae COMPASS complex, is regulated by the transcriptional elongation Paf1-Rtf1 and histone ubiquitination Rad6-Bre1 complexes, which are required for the expression of a subset of genes. This suggests that lysine 4 methylation of histone H3 may play an activating role in transcription; however, the mechanism of Set1 function remains unclear. We show here that H3 lysine 4 methylation also negatively regulated gene expression, as strains without Set1 showed enhanced expression of PHO5, wherein chromatin structure plays an important transcriptional regulatory role. Di- and trimethylation of H3 lysine 4 was detected at the PHO5 promoter, and a strain expressing a mutant version of histone H3 with lysine 4 changed to arginine, (which cannot be methylated) exhibited PHO5 derepression. Moreover, PHO5 was derepressed in strains that lacked components of either the Paf1-Rtf1 elongation or Rad6-Bre1 histone ubiquitination complexes. Lastly, PHO84 and GAL1-10 transcription was also increased in set1Delta cells. These results suggest that H3 methylation at lysine 4, in conjunction with transcriptional elongation, may function in a negative feedback pathway for basal transcription of some genes, although being a positive effector at others.
Collapse
Affiliation(s)
| | - Michael P. Kladde
- To whom correspondence should be addressed: Dept. of Biochemistry & Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128. Tel.: 979-862-6677; Fax: 979-845-4946;
| |
Collapse
|
26
|
Carvin CD, Parr RD, Kladde MP. Site-selective in vivo targeting of cytosine-5 DNA methylation by zinc-finger proteins. Nucleic Acids Res 2004; 31:6493-501. [PMID: 14602907 PMCID: PMC275549 DOI: 10.1093/nar/gkg853] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytosine-5 DNA methylation is a critical signal defining heritable epigenetic states of transcription. As aberrant methylation patterns often accompany disease states, the ability to target cytosine methylation to preselected regions could prove valuable in re-establishing proper gene regulation. We employ the strategy of targeted gene methylation in yeast, which has a naturally unmethylated genome, selectively directing de novo DNA methylation via the fusion of C5 DNA methyltransferases to heterologous DNA-binding proteins. The zinc-finger proteins Zif268 and Zip53 can target DNA methylation by M.CviPI or M.SssI 5-52 nt from single zinc-factor binding sites. Modification at specific GC (M.CviPI) or CG (M.SssI) sites is enhanced as much as 20-fold compared with strains expressing either the free enzyme or a fusion protein with the zinc-finger protein moiety unable to bind to DNA. Interestingly, methylation is also selectively targeted as far as 353 nt from the zinc-finger protein binding sites, possibly indicative of looping, nucleosomes or higher-order chromatin structure. These data demonstrate that methylation can be targeted in vivo to a potentially broad range of sequences using specifically engineered zinc-finger proteins. Further more, the selective targeting of methylation by zinc-finger proteins demonstrates that binding of distinct classes of factors can be monitored in living cells.
Collapse
Affiliation(s)
- Christopher D Carvin
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | | | | |
Collapse
|