1
|
Carmina E. The Role of Gene Alterations in the Pathogenesis of Polycystic Ovary Syndrome. J Clin Med 2025; 14:3347. [PMID: 40429342 PMCID: PMC12112259 DOI: 10.3390/jcm14103347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/20/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Family studies have shown that polycystic ovary syndrome (PCOS) has probable genetic transmission because of a high incidence of relatives who present clinical or biochemical characters of the syndrome. However, initial candidate gene studies were unsuccessful. Genome wide association studies (GWASs) have shown that at least 29 gene alterations are common in PCOS, but it has been calculated that the altered genes found by GWASs may represent only 10% of affected patients. Rare altered uncoding genes may explain the syndrome in an additional group of patients. In many other patients, the altered genes found by GWASs may represent a risk condition for the development of the syndrome, and new candidate gene studies have shown that some gene alterations that mainly concern androgen production may be common in PCOS. Finally, in most patients, epigenetic and environmental factors may be necessary to transform a risk condition into this common and important syndrome.
Collapse
Affiliation(s)
- Enrico Carmina
- Endocrinology Unit, School of Medicine, University of Palermo, 90139 Palermo, Italy
| |
Collapse
|
2
|
Wu F, Feng J, Wang H, Wang S, Cui X, Liu Y, Yan L, Ye K, Thorne RF, Zhang XD, La T. Efficacy of toripalimab in combination with anlotinib in recurrent undifferentiated pleomorphic sarcoma of the sinonasal region: a case report with biomarker analysis. Front Immunol 2025; 16:1541209. [PMID: 40416963 PMCID: PMC12098334 DOI: 10.3389/fimmu.2025.1541209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/17/2025] [Indexed: 05/27/2025] Open
Abstract
Background Soft tissue sarcoma (STS) typically originates in the muscles and is associated with a poor prognosis. Undifferentiated pleomorphic sarcoma (UPS) is the most commonly diagnosed subtype of STS; however, UPS occurring in the sinonasal region is exceedingly rare and lacks effective treatment options. Objective This case report presents a patient with sinonasal UPS who experienced disease progression after surgery and chemotherapy but showed a positive response to combination therapy with toripalimab and anlotinib. Additionally, it explores the underlying biomarkers associated with this case. Case A 63-year-old woman with no significant past medical history was diagnosed with sinonasal UPS. The lesions recurred despite seven extensive surgical resections, and standard chemotherapy failed to control the disease, leading to progressive disease (PD). Results The patient was treated with a combination of toripalimab and anlotinib, resulting in a significant partial response (PR) after just two cycles. Continued PR was observed after an additional six cycles, indicating the potential for a prolonged response with ongoing therapy. Genotyping and immunohistochemistry revealed that the sarcoma cells were rapidly dividing and enriched in vasculature prior to systemic treatment. Conclusion These findings suggest that the combination of toripalimab and anlotinib may be an effective treatment option for advanced cases of UPS in the sinonasal region.
Collapse
Affiliation(s)
- Fang Wu
- Department of Oncology, the First Affiliated Hospital of The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Junqiao Feng
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hong Wang
- Precision Medical Research Institute, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shan Wang
- Precision Medical Research Institute, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaoguang Cui
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ying Liu
- Department of Radiology, the First Affiliated Hospital of The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Linli Yan
- Department of Pathology, the First Affiliated Hospital of The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Kaihong Ye
- Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Rick F. Thorne
- Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Dong Zhang
- Translational Research Institute of Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ting La
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Stener-Victorin E, Deng Q. Epigenetic inheritance of PCOS by developmental programming and germline transmission. Trends Endocrinol Metab 2025; 36:472-481. [PMID: 39732517 DOI: 10.1016/j.tem.2024.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder, affecting approximately 11-13% of women of reproductive age. Women with PCOS experience a higher prevalence of infertility, pregnancy complications, and cardiometabolic disorders such as obesity, insulin resistance, and type 2 diabetes mellitus. Furthermore, psychiatric comorbidities, including depression and anxiety, significantly impact the quality of life in this population. Although obesity exacerbates these health risks, the exact etiology and pathophysiology of PCOS remain complex and only partially understood. Emerging research suggests potential transgenerational inheritance through genetic and epigenetic mechanisms, highlighting the possibility of PCOS-related risks affecting subsequent generations, including sons. This review synthesizes recent findings on PCOS inheritance patterns and underscores areas for future clinical and research exploration.
Collapse
Affiliation(s)
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
4
|
Rasouli MA, Katz J, Dumesic DA. Interface between reproductive and metabolic dysfunction in polycystic ovary syndrome. Curr Opin Obstet Gynecol 2025:00001703-990000000-00186. [PMID: 40299715 DOI: 10.1097/gco.0000000000001037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
PURPOSE OF REVIEW New concepts have emerged regarding how interrelationships of hyperandrogenism and hyperinsulinemia from systemic insulin resistance contribute to the origins of polycystic ovary syndrome (PCOS). Although these androgen-insulin interrelationships are associated with several reproductive and metabolic variables, their specific cause and effect relationships remain unclear. This review examines specific causal relationships between hyperandrogenism and hyperinsulinemia from systemic insulin resistance to understand how these complex interactions contribute to the phenotypic expression of PCOS. RECENT FINDINGS Clinical interventions for the treatments of hyperandrogenism and hyperinsulinemia from systemic insulin resistance as well as in-vitro studies of androgen and insulin actions on critical target tissues are examined to understand why androgen-insulin interrelationships are central to the origins of PCOS. SUMMARY Bidirectional interrelationships between hyperandrogenism and hyperinsulinemia from systemic insulin resistance in normal-weight PCOS women may have originally evolved as an ancient metabolic adaptation to simultaneously favor fat storage and energy utilization for survival and reproduction during famine. These androgen-insulin interactions in PCOS now predispose to metabolic diseases and pregnancy complications in today's obesogenic environment and, therefore, require improved preventive healthcare to optimize the long-term health of PCOS women and their children.
Collapse
Affiliation(s)
- Melody A Rasouli
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | |
Collapse
|
5
|
Dharani V, Nishu S, Hariprasath L. PCOS and genetics: Exploring the heterogeneous role of potential genes in ovarian dysfunction, a hallmark of PCOS - A review. Reprod Biol 2025; 25:101017. [PMID: 40222066 DOI: 10.1016/j.repbio.2025.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/08/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
PCOS is an endocrine disorder that affects women of reproductive age. The root of PCOS is ovarian dysfunction, which presents as hormonal disturbances affecting normal ovarian function to cause the symptoms and complications of the disease. This dysfunction causes symptoms like impaired maturation of follicles and disorders of various origins with multiple treatment regimens that are not always clear. Therefore, the present review mainly concentrates on the genetic level of ovarian dysfunction of PCOS. The articles were identified through a vigorous literature search where search engines such as PubMed, Google Scholar, databases, and Science Direct were used, and the articles published from 2015 to 2025 were referred. We identified that the key genes involved in the ovarian dysfunctions in PCOS include CYP11A1, CYP17A1, CYP19A1, AR, FSHR, LHCGR, AMH, INSR, SHBG, IRS1, GATA4, ADIPOQ, YAP1, TCF7L2, and DENND1A, which play a role in gonadotropin action, steroidogenesis, and folliculogenesis. Furthermore, epigenetic factors and miRNAs miR-93, 222, 155, 146a, 132, 320, 27a, 483, 21, 378, 17-92 Cluster, and 375, 221 are also involved in it. Abnormal expression of these genes is known to play a critical role in the etiology and pathogenesis of PCOS. Present treatment includes the use of oral contraceptives, anti-androgen agents, insulin-sensitizing agents, and ovulation-inducing agents, and future treatment may consist of miRNA therapy, drug repositioning, and genetic markers that might be used for early identification and better management of ovarian dysfunction. Thus, the current review discusses ovarian dysfunction in PCOS, the involvement of potential genes and epigenetic factors, and miRNAs concerning ovulation and its therapeutic implications.
Collapse
Affiliation(s)
- V Dharani
- Department of Biotechnology, School of Life Sciences (Ooty Campus), JSS Academy of Higher Education & Research, Longwood, Ooty, Tamil Nadu 643001, India
| | - S Nishu
- Department of Biotechnology, School of Life Sciences (Ooty Campus), JSS Academy of Higher Education & Research, Longwood, Ooty, Tamil Nadu 643001, India.
| | - L Hariprasath
- Department of Biochemistry, School of Life Sciences (Ooty Campus), JSS Academy of Higher Education & Research, Longwood, Ooty, Tamil Nadu 643001, India
| |
Collapse
|
6
|
Joseph S, Ubba V, Wang Z, Feng M, dSilva MK, Suero S, Waheed D, Snyder NW, Yang X, Wang H, Richards JS, Ko CJ, Wu S. Ovarian-Specific Cyp17A1 Overexpression in Female Mice: A Novel Model of Endogenous Testosterone Excess. Endocrinology 2025; 166:bqaf071. [PMID: 40208112 PMCID: PMC12006740 DOI: 10.1210/endocr/bqaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/13/2025] [Accepted: 04/08/2025] [Indexed: 04/11/2025]
Abstract
Excessive androgen levels can severely affect female health. However, most existing models of androgen excess rely on exogenous androgen administration, which does not fully capture the effect of elevated local ovarian testosterone on reproductive and metabolic functions. Here, we report the development of a novel hyperandrogenic mouse model, Cyp17TM-625, generated by combining CRISPR-Cas9 and a Tet-On doxycycline system to induce Cyp17A1 overexpression in ovarian theca-interstitial cells. As a result, Cyp17TM-625 mice exhibited significantly elevated Cyp17A1 messenger RNA and protein levels, accompanied by increased testosterone concentrations without alterations in basal levels of estradiol, progesterone, luteinizing hormone, or follicle-stimulating hormone. These mice demonstrated subfertility, evident by smaller and fewer litters, prolonged estrous cycles, and an increased number of unhealthy follicles with abnormally shaped oocytes. Despite these marked reproductive changes, body weight and glucose homeostasis remained comparable to Con-625 mice. Notably, withdrawal of doxycycline reversed testosterone overexpression and restored fertility over time. This model recapitulates reproductive dysfunction but not the metabolic disturbances, commonly observed in exogenous androgen models. The Cyp17TM-625 mouse line is a unique model for investigating the effects of local excess androgens on ovarian function. It also serves as a valuable tool for studying fertility restoration following the withdrawal of testosterone.
Collapse
Affiliation(s)
- Serene Joseph
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Vaibhave Ubba
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Zhiqiang Wang
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mingxiao Feng
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Milan K dSilva
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Sofia Suero
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Danielle Waheed
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - CheMyong J Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Sheng Wu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
7
|
Tinano FR, Machado IFR, Latronico AC, Gomes LG. Shared Pathophysiological Mechanisms and Genetic Factors in Early Menarche and Polycystic Ovary Syndrome. J Neurosci 2025; 45:e1681242024. [PMID: 40074331 PMCID: PMC11905354 DOI: 10.1523/jneurosci.1681-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 03/14/2025] Open
Abstract
Early age at menarche (early AAM) and polycystic ovary syndrome (PCOS) are reproductive and metabolic disorders with overlapping pathophysiological and genetic features. Epidemiological studies suggest a link between these two conditions, both of which are characterized by dysregulation of the neuroendocrine pathways that control pulsatile gonadotropin-releasing hormone secretion, thus affecting gonadotropin release, particularly luteinizing hormone secretion. A common pathophysiology involving positive energy balance and abnormal metabolic status is evident in both disorders. Genetic and epigenetic factors influence the onset of puberty and reproductive outcomes. Genome-wide association studies have identified common genetic variants associated with AAM and PCOS, particularly in genes related to the neuroendocrine axis (e.g., FSHB) and obesity (e.g., FTO). In addition, high-throughput sequencing has revealed rare loss-of-function variants in the DLK1 gene in women with central precocious puberty (CPP), early menarche, and PCOS, who experienced adverse metabolic outcomes in adulthood. This review explores the shared pathophysiological mechanisms between CPP/early AAM and PCOS, examines potential genetic and epigenetic factors that may link these neuroendocrine reproductive conditions, and offers insights into future research and treatment strategies. Understanding these connections may provide new targets for therapeutic interventions and improve outcomes for individuals with these reproductive disorders.
Collapse
Affiliation(s)
- Flavia Rezende Tinano
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| | - Iza Franklin Roza Machado
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| | - Larissa Garcia Gomes
- Discipline of Endocrinology & Metabolism, Department of Internal Medicine, University of Sao Paulo Medical School, University of Sao Paulo, Sao Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
8
|
Shao S, Xu Q, Zi Y, Zheng X, Chen S, Qin C, Zhao H, Li X. The genetic association between polycystic ovary syndrome and the risk of hypertensive disorders of pregnancy: A Mendelian randomization study. Eur J Obstet Gynecol Reprod Biol 2025; 305:351-355. [PMID: 39742733 DOI: 10.1016/j.ejogrb.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE In observational studies, polycystic ovary syndrome (PCOS) has been associated with an increased risk of hypertensive disorders of pregnancy (HDPs); however, the causality between these conditions remains to be determined. This study aimed to investigate the causal relationship between PCOS and HDPs. METHODS This genome-wide association study (GWAS), conducted from November to December 2023, aimed to investigate the causal relationships between PCOS and HDPs, gestational hypertension and preeclampsia/eclampsia via two-sample Mendelian randomization (MR) analysis. European-lineage GWAS summary statistics were obtained from a PCOS GWAS meta-analysis, the FinnGen consortium and the UK Biobank. The primary method employed was inverse-variance weighted MR, with several sensitivity analyses and evaluations of instrumental variable strength conducted to ensure result reliability. RESULTS The odds ratios (ORs) for the effects of PCOS on the risk of HDPs, gestational hypertension and preeclampsia/eclampsia were 1.007 (95 % confidence interval [CI]: 0.888-1.142; P = 0.911), 1.024 (95 % CI: 0.901-1.163; P = 0.719) and 0.992 (95 % CI: 0.828-1.187; P = 0.926), respectively. These results were found to be robust following confirmation via the Q test, MR-Egger intercept analysis, and MR-PRESSO analysis. Furthermore, a sensitivity analysis excluding the single nucleotide polymorphisms associated with body mass index (BMI) also supported the convincing nature of the findings. CONCLUSIONS Our findings do not offer conclusive evidence of the impact of PCOS on HDPs. In light of these results, efforts to prevent HDPs in women with PCOS should focus on women with high-risk features rather than all women with PCOS.
Collapse
Affiliation(s)
- Shuyi Shao
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China; Women and Children's Medical Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Qixin Xu
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China; Women and Children's Medical Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Yang Zi
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China; Women and Children's Medical Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Xiujie Zheng
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China; Women and Children's Medical Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Shiguo Chen
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China; Women and Children's Medical Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Chunrong Qin
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China; Women and Children's Medical Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Huanqiang Zhao
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China; Women and Children's Medical Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China.
| | - Xiaotian Li
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China; Women and Children's Medical Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China.
| |
Collapse
|
9
|
Dou Y, Zhao R, Wu H, Yu Z, Yin C, Yang J, Yang C, Luan X, Cheng Y, Huang T, Bian Y, Han S, Zhang Y, Xu X, Chen ZJ, Zhao H, Zhao S. DENND1A desensitizes granulosa cells to FSH by arresting intracellular FSHR transportation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1620-1634. [PMID: 38709439 DOI: 10.1007/s11427-023-2438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/27/2023] [Indexed: 05/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder. Genome-wide association studies (GWAS) have identified several genes associated with this condition, including DENND1A. DENND1A encodes a clathrin-binding protein that functions as a guanine nucleotide exchange factor involved in vesicular transport. However, the specific role of DENND1A in reproductive hormone abnormalities and follicle development disorders in PCOS remain poorly understood. In this study, we investigated DENND1A expression in ovarian granulosa cells (GCs) from PCOS patients and its correlation with hormones. Our results revealed an upregulation of DENND1A expression in GCs from PCOS cases, which was positively correlated with testosterone levels. To further explore the functional implications of DENND1A, we generated a transgenic mouse model overexpressing Dennd1a (TG mice). These TG mice exhibited subfertility, irregular estrous cycles, and increased testosterone production following PMSG stimulation. Additionally, the TG mice displayed diminished responsiveness to FSH, characterized by smaller ovary size, less well-developed follicles, and abnormal expressions of FSH-priming genes. Mechanistically, we found that Dennd1a overexpression disrupted the intracellular trafficking of follicle stimulating hormone receptor (FSHR), promoting its internalization and inhibiting recycling. These findings shed light on the reproductive role of DENND1A and uncover the underlying mechanisms, thereby contributing valuable insights into the pathogenesis of PCOS and providing potential avenues for drug design in PCOS treatment.
Collapse
Affiliation(s)
- Yunde Dou
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Rusong Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, 215008, China
- Gusu School, Nanjing Medical University, Suzhou, 215000, China
| | - Han Wu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Zhiheng Yu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Changjian Yin
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Jie Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Chaoyan Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Xiaohua Luan
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Yixiao Cheng
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Tao Huang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Yuehong Bian
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Shan Han
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China
| | - Yuqing Zhang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Xin Xu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Han Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China.
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| | - Shigang Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China.
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| |
Collapse
|
10
|
Rosenfield RL. The Search for the Causes of Common Hyperandrogenism, 1965 to Circa 2015. Endocr Rev 2024; 45:553-592. [PMID: 38457123 DOI: 10.1210/endrev/bnae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/23/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
From 1965 to 2015, immense strides were made into understanding the mechanisms underlying the common androgen excess disorders, premature adrenarche and polycystic ovary syndrome (PCOS). The author reviews the critical discoveries of this era from his perspective investigating these disorders, commencing with his early discoveries of the unique pattern of plasma androgens in premature adrenarche and the elevation of an index of the plasma free testosterone concentration in most hirsute women. The molecular genetic basis, though not the developmental biologic basis, for adrenarche is now known and 11-oxytestosterones shown to be major bioactive adrenal androgens. The evolution of the lines of research into the pathogenesis of PCOS is historically traced: research milestones are cited in the areas of neuroendocrinology, insulin resistance, hyperinsulinism, type 2 diabetes mellitus, folliculogenesis, androgen secretion, obesity, phenotyping, prenatal androgenization, epigenetics, and complex genetics. Large-scale genome-wide association studies led to the 2014 discovery of an unsuspected steroidogenic regulator DENND1A (differentially expressed in normal and neoplastic development). The splice variant DENND1A.V2 is constitutively overexpressed in PCOS theca cells in long-term culture and accounts for their PCOS-like phenotype. The genetics are complex, however: DENND1A intronic variant copy number is related to phenotype severity, and recent data indicate that rare variants in a DENND1A regulatory network and other genes are related to PCOS. Obesity exacerbates PCOS manifestations via insulin resistance and proinflammatory cytokine excess; excess adipose tissue also forms testosterone. Polycystic ovaries in 40 percent of apparently normal women lie on the PCOS functional spectrum. Much remains to be learned.
Collapse
Affiliation(s)
- Robert L Rosenfield
- Department of Pediatrics and Medicine, The University of Chicago, Chicago, IL 94109, USA
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Chen Y, Wang G, Chen J, Wang C, Dong X, Chang HM, Yuan S, Zhao Y, Mu L. Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome. Endocr Rev 2024; 45:437-459. [PMID: 38298137 DOI: 10.1210/endrev/bnae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
The treatment of polycystic ovary syndrome (PCOS) faces challenges as all known treatments are merely symptomatic. The US Food and Drug Administration has not approved any drug specifically for treating PCOS. As the significance of genetics and epigenetics rises in drug development, their pivotal insights have greatly enhanced the efficacy and success of drug target discovery and validation, offering promise for guiding the advancement of PCOS treatments. In this context, we outline the genetic and epigenetic advancement in PCOS, which provide novel insights into the pathogenesis of this complex disease. We also delve into the prospective method for harnessing genetic and epigenetic strategies to identify potential drug targets and ensure target safety. Additionally, we shed light on the preliminary evidence and distinctive challenges associated with gene and epigenetic therapies in the context of PCOS.
Collapse
Affiliation(s)
- Yi Chen
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Guiquan Wang
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Reproduction and Genetics, Xiamen University, Xiamen 361023, China
| | - Jingqiao Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Congying Wang
- The Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 322000, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40400, Taiwan
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm 171 65, Sweden
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100007, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing 100191, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Dubey P, Reddy S, Sharma K, Johnson S, Hardy G, Dwivedi AK. Polycystic Ovary Syndrome, Insulin Resistance, and Cardiovascular Disease. Curr Cardiol Rep 2024; 26:483-495. [PMID: 38568339 DOI: 10.1007/s11886-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE OF REVIEW Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder in women of reproductive age. It has been associated with metabolic, reproductive, and psychiatric disorders. Despite its association with insulin resistance (IR) and cardiovascular disease (CVD) risk factors, the association between PCOS and CVD outcomes has been conflicting. This review reports the updated evidence between PCOS, insulin resistance, and CVD events. RECENT FINDINGS IR is highly prevalent occurring in 50 to 95% of general and obese PCOS women. The etiology of PCOS involves IR and hyperandrogenism, which lead to CVD risk factors, subclinical CVD, and CVD outcomes. Multiple studies including meta-analysis confirmed a strong association between PCOS and CVD events including ischemic heart disease, stroke, atrial fibrillation, and diabetes, particularly among premenopausal women, and these associations were mediated by metabolic abnormalities. PCOS is highly familial and has substantial CVD risk and transgenerational effects regardless of obesity. A personalized approach to the CVD risk assessment and management of symptom manifestations should be conducted according to its phenotypes. Lifestyle modifications and reduction in environmental stressors should be encouraged for CVD prevention among PCOS women.
Collapse
Affiliation(s)
- Pallavi Dubey
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA.
| | - Sireesha Reddy
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Kunal Sharma
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Sarah Johnson
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Ghislain Hardy
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Alok Kumar Dwivedi
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| |
Collapse
|
13
|
Rashid G, Khan NA, Elsori D, Youness RA, Hassan H, Siwan D, Seth N, Kamal MA, Rizvi S, Babker AM, Hafez W. miRNA expression in PCOS: unveiling a paradigm shift toward biomarker discovery. Arch Gynecol Obstet 2024; 309:1707-1723. [PMID: 38316651 DOI: 10.1007/s00404-024-07379-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disorder that affects a substantial percentage of women, estimated at around 9-21%. This condition can lead to anovulatory infertility in women of childbearing age and is often accompanied by various metabolic disturbances, including hyperandrogenism, insulin resistance, obesity, type-2 diabetes, and elevated cholesterol levels. The development of PCOS is influenced by a combination of epigenetic alterations, genetic mutations, and changes in the expression of non-coding RNAs, particularly microRNAs (miRNAs). MicroRNAs, commonly referred to as non-coding RNAs, are approximately 22 nucleotides in length and primarily function in post-transcriptional gene regulation, facilitating mRNA degradation and repressing translation. Their dynamic expression in different cells and tissues contributes to the regulation of various biological and cellular pathways. As a result, they have become pivotal biomarkers for various diseases, including PCOS, demonstrating intricate associations with diverse health conditions. The aberrant expression of miRNAs has been detected in the serum of women with PCOS, with overexpression and dysregulation of these miRNAs playing a central role in the atypical expression of endocrine hormones linked to PCOS. This review takes a comprehensive approach to explore the upregulation and downregulation of various miRNAs present in ovarian follicular cells, granulosa cells, and theca cells of women diagnosed with PCOS. Furthermore, it discusses the potential for a theragnostic approach using miRNAs to better understand and manage PCOS.
Collapse
Affiliation(s)
- Gowhar Rashid
- Department of Medical Lab Technology, Amity Medical School, Amity University Haryana, Gurugram, India.
| | - Nihad Ashraf Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, Delhi, 110025, India
| | | | - Rana A Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo, Egypt
| | - Homa Hassan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Deepali Siwan
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Namrata Seth
- Department of Biotechnology, Indian Institute of Science and Technology, Bhopal, 462066, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Saliha Rizvi
- Department of Biotechnology, Era University, Lucknow, India
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Wael Hafez
- The Medical Research Division, Department of Internal Medicine, the National Research Centre, Cairo, Egypt
| |
Collapse
|
14
|
Stener-Victorin E, Teede H, Norman RJ, Legro R, Goodarzi MO, Dokras A, Laven J, Hoeger K, Piltonen TT. Polycystic ovary syndrome. Nat Rev Dis Primers 2024; 10:27. [PMID: 38637590 DOI: 10.1038/s41572-024-00511-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Despite affecting ~11-13% of women globally, polycystic ovary syndrome (PCOS) is a substantially understudied condition. PCOS, possibly extending to men's health, imposes a considerable health and economic burden worldwide. Diagnosis in adults follows the International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome, requiring two out of three criteria - clinical or biochemical hyperandrogenism, ovulatory dysfunction, and/or specific ovarian morphological characteristics or elevated anti-Müllerian hormone. However, diagnosing adolescents omits ovarian morphology and anti-Müllerian hormone considerations. PCOS, marked by insulin resistance and hyperandrogenism, strongly contributes to early-onset type 2 diabetes, with increased odds for cardiovascular diseases. Reproduction-related implications include irregular menstrual cycles, anovulatory infertility, heightened risks of pregnancy complications and endometrial cancer. Beyond physiological manifestations, PCOS is associated with anxiety, depression, eating disorders, psychosexual dysfunction and negative body image, collectively contributing to diminished health-related quality of life in patients. Despite its high prevalence persisting into menopause, diagnosing PCOS often involves extended timelines and multiple health-care visits. Treatment remains ad hoc owing to limited understanding of underlying mechanisms, highlighting the need for research delineating the aetiology and pathophysiology of the syndrome. Identifying factors contributing to PCOS will pave the way for personalized medicine approaches. Additionally, exploring novel biomarkers, refining diagnostic criteria and advancing treatment modalities will be crucial in enhancing the precision and efficacy of interventions that will positively impact the lives of patients.
Collapse
Affiliation(s)
| | - Helena Teede
- Monash Centre for Health Research and Implementation, Monash Health and Monash University, Melbourne, Victoria, Australia
| | - Robert J Norman
- Robinson Research Institute, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Richard Legro
- Department of Obstetrics and Gynecology, Penn State College of Medicine, Hershey, PA, USA
- Department of Public Health Science, Penn State College of Medicine, Hershey, PA, USA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anuja Dokras
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joop Laven
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, Netherlands
| | - Kathleen Hoeger
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
15
|
Candelaria NR, Richards JS. Targeted deletion of NR2F2 and VCAM1 in theca cells impacts ovarian follicular development: insights into polycystic ovary syndrome?†. Biol Reprod 2024; 110:782-797. [PMID: 38224314 PMCID: PMC11017119 DOI: 10.1093/biolre/ioae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/16/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Abstract
Defining features of polycystic ovary syndrome (PCOS) include elevated expression of steroidogenic genes, theca cell androgen biosynthesis, and peripheral levels of androgens. In previous studies, we identified vascular cell adhesion molecule 1 (VCAM1) as a selective androgen target gene in specific NR2F2/SF1 (+/+) theca cells. By deleting NR2F2 and VCAM1 selectively in CYP17A1 theca cells in mice, we documented that NR2F2 and VCAM1 impact distinct and sometimes opposing theca cell functions that alter ovarian follicular development in vivo: including major changes in ovarian morphology, steroidogenesis, gene expression profiles, immunolocalization images (NR5A1, CYP11A1, NOTCH1, CYP17A1, INSL3, VCAM1, NR2F2) as well as granulosa cell functions. We propose that theca cells impact follicle integrity by regulating androgen production and action, as well as granulosa cell differentiation/luteinization in response to androgens and gonadotropins that may underlie PCOS.
Collapse
Affiliation(s)
- Nicholes R Candelaria
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - JoAnne S Richards
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Abbott DH, Hutcherson B, Dumesic DA. Anti-Müllerian Hormone: A Molecular Key to Unlocking Polycystic Ovary Syndrome? Semin Reprod Med 2024; 42:41-48. [PMID: 38908381 PMCID: PMC12107497 DOI: 10.1055/s-0044-1787525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Anti-Müllerian hormone (AMH) is an important component within androgen receptor (AR)-regulated pathways governing the hyperandrogenic origin of polycystic ovary syndrome (PCOS). In women with PCOS, granulosa cell AMH overexpression in developing ovarian follicles contributes to elevated circulating AMH levels beginning at birth and continuing in adolescent daughters of PCOS women. A 6 to 7% incidence among PCOS women of gene variants coding for AMH or its receptor, AMHR2, suggests genetic contributions to AMH-related pathogenesis. Discrete gestational AMH administration to pregnant mice induces hypergonadotropic hyperandrogenic, PCOS-like female offspring with high circulating AMH levels that persist over three generations, suggesting epigenetic contributions to PCOS through developmental programming. Moreover, adult-onset, selective hyperactivation of hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH) induces hypergonadotropic hyperandrogenism and PCOS-like traits in female mice. Both gestational and adult AMH inductions of PCOS-like traits are prevented by GnRH antagonist coadministration, implicating luteinizing hormone-dependent ovarian theca cell testosterone (T) action, mediated through the AR in AMH-induced pathogenesis. Interestingly, gestational or peripubertal exogenous T or dihydrotestosterone induction of PCOS-like traits in female mice, rats, sheep, and monkeys fails to elicit ovarian AMH hypersecretion; thus, AMH excess per se may lead to a distinct pathogenic contribution to hyperandrogenic PCOS origins.
Collapse
Affiliation(s)
- David H Abbott
- Department of Obstetrics and Gynecology
- Wisconsin National Primate Research Center
- Endocrinology and Reproductive Physiology Training Program
| | - Beverly Hutcherson
- Wisconsin National Primate Research Center
- Endocrinology and Reproductive Physiology Training Program
- Dean’s Office, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, University of California, Los Angeles, California, United States
| |
Collapse
|
17
|
Burns K, Mullin BH, Moolhuijsen LME, Laisk T, Tyrmi JS, Cui J, Actkins KV, Louwers YV, Davis LK, Dudbridge F, Azziz R, Goodarzi MO, Laivuori H, Mägi R, Visser JA, Laven JSE, Wilson SG, Day FR, Stuckey BGA. Body mass index stratified meta-analysis of genome-wide association studies of polycystic ovary syndrome in women of European ancestry. BMC Genomics 2024; 25:208. [PMID: 38408933 PMCID: PMC10895801 DOI: 10.1186/s12864-024-09990-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex multifactorial disorder with a substantial genetic component. However, the clinical manifestations of PCOS are heterogeneous with notable differences between lean and obese women, implying a different pathophysiology manifesting in differential body mass index (BMI). We performed a meta-analysis of genome-wide association study (GWAS) data from six well-characterised cohorts, using a case-control study design stratified by BMI, aiming to identify genetic variants associated with lean and overweight/obese PCOS subtypes. RESULTS The study comprised 254,588 women (5,937 cases and 248,651 controls) from individual studies performed in Australia, Estonia, Finland, the Netherlands and United States of America, and separated according to three BMI stratifications (lean, overweight and obese). Genome-wide association analyses were performed for each stratification within each cohort, with the data for each BMI group meta-analysed using METAL software. Almost half of the total study population (47%, n = 119,584) were of lean BMI (≤ 25 kg/m2). Two genome-wide significant loci were identified for lean PCOS, led by rs12000707 within DENND1A (P = 1.55 × 10-12) and rs2228260 within XBP1 (P = 3.68 × 10-8). One additional locus, LINC02905, was highlighted as significantly associated with lean PCOS through gene-based analyses (P = 1.76 × 10-6). There were no significant loci observed for the overweight or obese sub-strata when analysed separately, however, when these strata were combined, an association signal led by rs569675099 within DENND1A reached genome-wide significance (P = 3.22 × 10-9) and a gene-based association was identified with ERBB4 (P = 1.59 × 10-6). Nineteen of 28 signals identified in previous GWAS, were replicated with consistent allelic effect in the lean stratum. There were less replicated signals in the overweight and obese groups, and only 4 SNPs were replicated in each of the three BMI strata. CONCLUSIONS Genetic variation at the XBP1, LINC02905 and ERBB4 loci were associated with PCOS within unique BMI strata, while DENND1A demonstrated associations across multiple strata, providing evidence of both distinct and shared genetic features between lean and overweight/obese PCOS-affected women. This study demonstrated that PCOS-affected women with contrasting body weight are not only phenotypically distinct but also show variation in genetic architecture; lean PCOS women typically display elevated gonadotrophin ratios, lower insulin resistance, higher androgen levels, including adrenal androgens, and more favourable lipid profiles. Overall, these findings add to the growing body of evidence supporting a genetic basis for PCOS as well as differences in genetic patterns relevant to PCOS BMI-subtype.
Collapse
Affiliation(s)
- Kharis Burns
- Department of Endocrinology and Diabetes, Royal Perth Hospital, Perth, WA, 6009, Australia.
- Medical School, University of Western Australia, Nedlands, WA, Australia.
| | - Benjamin H Mullin
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Loes M E Moolhuijsen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Triin Laisk
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jaakko S Tyrmi
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Jinrui Cui
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ky'Era V Actkins
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yvonne V Louwers
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank Dudbridge
- Population Health Sciences, University of Leicester, Leicester, UK
| | - Ricardo Azziz
- Obstetrics & Gynecology, Medicine, and Healthcare Organization & Policy, Schools of Medicine and Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hannele Laivuori
- Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
- Institute for Molecular Medicine Finland, FIMM, hiLIFE, University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Scott G Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Felix R Day
- MRC Epidemiology Unit, Cambridge Biomedical Campus, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Bronwyn G A Stuckey
- Medical School, University of Western Australia, Nedlands, WA, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
- Keogh Institute for Medical Research, Nedlands, WA, Australia
| |
Collapse
|
18
|
Cao P, Li H, Wang P, Zhang X, Guo Y, Zhao K, Guo J, Li X, Nashun B. DNA Hypomethylation-Mediated Transcription Dysregulation Participates in Pathogenesis of Polycystic Ovary Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00072-5. [PMID: 38403164 DOI: 10.1016/j.ajpath.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a highly heterogeneous and genetically complex endocrine disorder. Although the etiology remains mostly elusive, growing evidence suggested abnormal changes of DNA methylation correlate well with systemic and tissue-specific dysfunctions in PCOS. A dehydroepiandrosterone-induced PCOS-like mouse model was generated, which has a similar metabolic and reproductive phenotype as human patients with PCOS, and was used to experimentally validate the potential role of aberrant DNA methylation in PCOS in this study. Integrated DNA methylation and transcriptome analysis revealed the potential role of genomic DNA hypomethylation in transcription regulation of PCOS and identified several key candidate genes, including BMP4, Adcy7, Tnfaip3, and Fas, which were regulated by aberrant DNA hypomethylation. Moreover, i.p. injection of S-adenosylmethionine increased the overall DNA methylation level of PCOS-like mice and restored expression of the candidate genes to similar levels as the control, alleviating reproductive and metabolic abnormalities in PCOS-like mice. These findings provided direct evidence showing the importance of normal DNA methylation in epigenetic regulation of PCOS and potential targets for diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Pengbo Cao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; Inner Mongolia Qilu Pharmaceutical Company, Hohhot, China
| | - Haoran Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Peijun Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xinna Zhang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yuxuan Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Keyu Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jiaojiao Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, China
| | - Buhe Nashun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
19
|
Jin Y, Sun F, Yang A, Yu X, Li Y, Liang S, Jing X, Wang K, Zhang L, Xiao S, Zhang W, Wang X, Zhao G, Gao B. Insulin-like growth factor binding protein-1 and insulin in polycystic ovary syndrome: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1279717. [PMID: 38174331 PMCID: PMC10762309 DOI: 10.3389/fendo.2023.1279717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Background Insulin-like growth factor binding protein-1 (IGFBP-1) is considered a decline in polycystic ovary syndrome (PCOS), but it remains controversial that whether such reduction is attributed to obesity. Aims This systematic review aims to explore whether IGFBP-1 is reduced in PCOS, and whether such reduction is associated with obesity. Results Our pooled study included 12 studies with a total of 450 participants. IGFBP-1 levels in PCOS were significantly lower than that in non-PCOS (SMD (95%CI)=-0.49(-0.89, -0.09), P=0.02). No significant difference in IGFBP-1 levels between patients with or without PCOS classified by BMI. Whilst, stratification by PCOS status revealed a significant decrease in IGFBP-1 in overweight (SMD (95%CI)=-0.92(-1.46, -0.37), P=0.001). When comparing fasting insulin in the same way, PCOS patients had significantly elevated fasting insulin level but not statistically declined IGFBP-1 after classified by BMI. Conclusion This meta-analysis provides evidence that the decrease of IGFBP-1 in PCOS was more strongly influenced by comorbid obesity than by PCOS itself. Additionally, contrast to previous findings that insulin significantly suppresses IGFBP-1, our results suggested that the suppression of PCOS-related hyperinsulinemia on IGFBP-1 seemed diminished. Overall, our work may provide a novel perspective on the mechanism between insulin and IGFBP-1 underlying PCOS development.
Collapse
Affiliation(s)
- Yuxin Jin
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Fei Sun
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Aili Yang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xinwen Yu
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Yi Li
- Department of Gynaecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Shengru Liang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiaorui Jing
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Kai Wang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Lan Zhang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Sa Xiao
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - WenCheng Zhang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiaoguang Wang
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Guohong Zhao
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
20
|
Wang K, Li Y, Chen Y. Androgen excess: a hallmark of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1273542. [PMID: 38152131 PMCID: PMC10751361 DOI: 10.3389/fendo.2023.1273542] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a metabolic, reproductive, and psychological disorder affecting 6-20% of reproductive women worldwide. However, there is still no cure for PCOS, and current treatments primarily alleviate its symptoms due to a poor understanding of its etiology. Compelling evidence suggests that hyperandrogenism is not just a primary feature of PCOS. Instead, it may be a causative factor for this condition. Thus, figuring out the mechanisms of androgen synthesis, conversion, and metabolism is relatively important. Traditionally, studies of androgen excess have largely focused on classical androgen, but in recent years, adrenal-derived 11-oxygenated androgen has also garnered interest. Herein, this Review aims to investigate the origins of androgen excess, androgen synthesis, how androgen receptor (AR) signaling mediates adverse PCOS traits, and the role of 11-oxygenated androgen in the pathophysiology of PCOS. In addition, it provides therapeutic strategies targeting hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
21
|
Kulkarni S, Gupta K, Ratre P, Mishra PK, Singh Y, Biharee A, Thareja S. Polycystic ovary syndrome: Current scenario and future insights. Drug Discov Today 2023; 28:103821. [PMID: 37935329 DOI: 10.1016/j.drudis.2023.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Polycystic ovary syndrome (PCOS) prevails in approximately 33% of females of reproductive age globally. Although the root cause of the disease is unknown, attempts are made to clinically manage the disturbed hormone levels and symptoms arising due to hyperandrogenism, a hallmark of PCOS. This review presents detailed insights on the etiology, risk factors, current treatment strategies, and challenges therein. Medicinal agents currently in clinical trials and those in the development pipeline are emphasized. The significance of the inclusion of herbal supplements in PCOS and the benefits of improved lifestyle are also explained. Last, emerging therapeutic targets for treating PCOS are elaborated. The present review will assist the research fraternity working in the concerned domain to access significant knowledge associated with PCOS.
Collapse
Affiliation(s)
- Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Khushi Gupta
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Pooja Ratre
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India; Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh 462030, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh 462030, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Avadh Biharee
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
22
|
Elsayed AM, Al-Kaabi LS, Al-Abdulla NM, Al-Kuwari MS, Al-Mulla AA, Al-Shamari RS, Alhusban AK, AlNajjar AA, Doi SAR. Clinical Phenotypes of PCOS: a Cross-Sectional Study. Reprod Sci 2023; 30:3261-3272. [PMID: 37217826 PMCID: PMC10643327 DOI: 10.1007/s43032-023-01262-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
This cross-sectional study examines the Doi-Alshoumer PCOS clinical phenotype classification in relation to measured clinical and biochemical characteristics of women with polycystic ovary syndrome (PCOS). Two cohorts of women (Kuwait and Rotterdam) diagnosed with PCOS (FAI > 4.5%) were examined. These phenotypes were created using neuroendocrine dysfunction (IRMA LH/FSH ratio > 1 or LH > 6 IU/L) and menstrual cycle status (oligo/amenorrhea) to create three phenotypes: (A) neuroendocrine dysfunction and oligo/amenorrhea, (B) without neuroendocrine dysfunction but with oligo/amenorrhea, and (C) without neuroendocrine dysfunction and with regular cycles. These phenotypes were compared in terms of hormonal, biochemical, and anthropometric measures. The three suggested phenotypes (A, B, and C) were shown to be sufficiently distinct in terms of hormonal, biochemical, and anthropometric measures. Patients who were classified as phenotype A had neuroendocrine dysfunction, excess LH (and LH/FSH ratio), irregular cycles, excess A4, infertility, excess T, highest FAI and E2, and excess 17αOHPG when compared to the other phenotypes. Patients classified as phenotype B had irregular cycles, no neuroendocrine dysfunction, obesity, acanthosis nigricans, and insulin resistance. Lastly, patients classified as phenotype C had regular cycles, acne, hirsutism, excess P4, and the highest P4 to E2 molar ratio. The differences across phenotypes suggested distinct phenotypic expression of this syndrome, and the biochemical and clinical correlates of each phenotype are likely to be useful in the management of women with PCOS. These phenotypic criteria are distinct from criteria used for diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Suhail A R Doi
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
23
|
Hadidi M, Karimabadi K, Ghanbari E, Rezakhani L, Khazaei M. Stem cells and exosomes: as biological agents in the diagnosis and treatment of polycystic ovary syndrome (PCOS). Front Endocrinol (Lausanne) 2023; 14:1269266. [PMID: 37964963 PMCID: PMC10642184 DOI: 10.3389/fendo.2023.1269266] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023] Open
Abstract
A typical condition of the female reproductive system is polycystic ovary syndrome (PCOS). Hyperinsulinemia, insulin resistance, obesity, and hyperandrogenism are just a few of the metabolic abnormalities linked to this disease. Type 2 diabetes, hypertension, and cardiovascular disease are further issues related to PCOS. One consequence of this syndrome for which numerous treatment procedures have been developed is infertility. Metformin and clomiphene, two common allopathic medications used to treat PCOS, both have drawbacks and are ineffective. It is vital to seek novel therapeutic modalities to address these constraints. Exosomes (EXOs) are a particular class of extracellular vesicles that cells release, and they are known to play a significant role in mediating intercellular communication. A wide range of cargo, including lipids, proteins, mRNA, miRNAs, and numerous other noncoding RNAs, are contained in the nanoscale lipid bilayer exosomes. The cytokine effects of stem cells and EXOs derived from them enable the defense against metabolic diseases like PCOS. Moreover, EXO microRNAs can potentially be employed as biomarkers in the detection and management of PCOS. In this study, the potential of stem cells and exosomes are specifically investigated in the diagnosis and treatment of PCOS as one of the diseases of the female reproductive system.
Collapse
Affiliation(s)
- Mahta Hadidi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
24
|
Dumesic DA, Abbott DH, Chazenbalk GD. An Evolutionary Model for the Ancient Origins of Polycystic Ovary Syndrome. J Clin Med 2023; 12:6120. [PMID: 37834765 PMCID: PMC10573644 DOI: 10.3390/jcm12196120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy of reproductive-aged women, characterized by hyperandrogenism, oligo-anovulation and insulin resistance and closely linked with preferential abdominal fat accumulation. As an ancestral primate trait, PCOS was likely further selected in humans when scarcity of food in hunter-gatherers of the late Pleistocene additionally programmed for enhanced fat storage to meet the metabolic demands of reproduction in later life. As an evolutionary model for PCOS, healthy normal-weight women with hyperandrogenic PCOS have subcutaneous (SC) abdominal adipose stem cells that favor fat storage through exaggerated lipid accumulation during development to adipocytes in vitro. In turn, fat storage is counterbalanced by reduced insulin sensitivity and preferential accumulation of highly lipolytic intra-abdominal fat in vivo. This metabolic adaptation in PCOS balances energy storage with glucose availability and fatty acid oxidation for optimal energy use during reproduction; its accompanying oligo-anovulation allowed PCOS women from antiquity sufficient time and strength for childrearing of fewer offspring with a greater likelihood of childhood survival. Heritable PCOS characteristics are affected by today's contemporary environment through epigenetic events that predispose women to lipotoxicity, with excess weight gain and pregnancy complications, calling for an emphasis on preventive healthcare to optimize the long-term, endocrine-metabolic health of PCOS women in today's obesogenic environment.
Collapse
Affiliation(s)
- Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| | - David H. Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715, USA;
| | - Gregorio D. Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| |
Collapse
|
25
|
Harris RA, McAllister JM, Strauss JF. Single-Cell RNA-Seq Identifies Pathways and Genes Contributing to the Hyperandrogenemia Associated with Polycystic Ovary Syndrome. Int J Mol Sci 2023; 24:10611. [PMID: 37445796 DOI: 10.3390/ijms241310611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by hyperandrogenemia of ovarian thecal cell origin, resulting in anovulation/oligo-ovulation and infertility. Our previous studies established that ovarian theca cells isolated and propagated from ovaries of normal ovulatory women and women with PCOS have distinctive molecular and cellular signatures that underlie the increased androgen biosynthesis in PCOS. To evaluate differences between gene expression in single-cells from passaged cultures of theca cells from ovaries of normal ovulatory women and women with PCOS, we performed single-cell RNA sequencing (scRNA-seq). Results from these studies revealed differentially expressed pathways and genes involved in the acquisition of cholesterol, the precursor of steroid hormones, and steroidogenesis. Bulk RNA-seq and microarray studies confirmed the theca cell differential gene expression profiles. The expression profiles appear to be directed largely by increased levels or activity of the transcription factors SREBF1, which regulates genes involved in cholesterol acquisition (LDLR, LIPA, NPC1, CYP11A1, FDX1, and FDXR), and GATA6, which regulates expression of genes encoding steroidogenic enzymes (CYP17A1) in concert with other differentially expressed transcription factors (SP1, NR5A2). This study provides insights into the molecular mechanisms underlying the hyperandrogenemia associated with PCOS and highlights potential targets for molecular diagnosis and therapeutic intervention.
Collapse
Affiliation(s)
- R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jan M McAllister
- Department of Pathology, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Chen M, Guo X, Zhong Y, Liu Y, Cai B, Wu R, Huang C, Zhou C. AMH inhibits androgen production in human theca cells. J Steroid Biochem Mol Biol 2023; 226:106216. [PMID: 36356855 DOI: 10.1016/j.jsbmb.2022.106216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
Both excessive ovarian production of AMH and androgen are important features of polycystic ovary syndrome (PCOS). Present study aimed to explore the direct effect of AMH on androgen production in human theca cells. Primary cultured human theca cells were treated with AMH, an ALK2 (the BMP type 1 receptor) inhibitor and an ALK5 (the TGFβ type 1 receptor) inhibitor. AMH significantly suppresses the expression of the androgen synthesis-related enzyme CYP17A1 and reduces the production of androstenedione and testosterone in normal human theca cells and PCOS theca cells. Inhibitors of ALK2/3 and ALK5 antagonize the effect of AMH on the expression of CYP17A1. Although both ALK5 and ALK2 interact with AMHR2 in the presence of AMH, AMH activated neither TGFβR-Smads (Smad 2/3) nor BMPR-Smads (Smad 1/5/8). Our data suggested that AMH suppresses androgen synthesis-related enzyme CYP17A1 expression and inhibits androgen production in human theca cells, which process may be mediated by ALK2 and ALK5.
Collapse
Affiliation(s)
- Minghui Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Xi Guo
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiping Zhong
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Liu
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing Cai
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rihan Wu
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuan Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
27
|
The exosome: a review of current therapeutic roles and capabilities in human reproduction. Drug Deliv Transl Res 2023; 13:473-502. [PMID: 35980542 PMCID: PMC9794547 DOI: 10.1007/s13346-022-01225-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 12/31/2022]
Abstract
Exosomes are nano-vesicles (30-150 nm) which may be useful as therapeutic delivery vehicles and as diagnostic biomarkers. Exosomes are produced naturally within the human body and therefore are not prone to immunogenicity effects which would otherwise destroy unelicited foreign bodies. Clinically, they have been regarded as ideal candidates for applications relating to biomarker developments for the early detection of different diseases. Furthermore, exosomes may be of interest as potential drug delivery vehicles, which may improve factors such as bioavailability of loaded molecular cargo, side effect profiles, off-target effects, and pharmacokinetics of drug molecules. In this review, the therapeutic potential of exosomes and their use as clinical biomarkers for early diagnostics will be explored, alongside exosomes as therapeutic delivery vehicles. This review will evaluate techniques for cargo loading, and the capacity of loaded exosomes to improve various reproductive disease states. It becomes important, therefore, to consider factors such as loading efficiency, loading methods, cell viability, exosomal sources, exosome isolation, and the potential therapeutic benefits of exosomes. Issues related to targeted drug delivery will also be discussed. Finally, the variety of therapeutic cargo and the application of appropriate loading methods is explored, in the context of establishing clinical utility. Exosomes have more recently been widely accpeted as potential tools for disease diagnostics and the targeted delivery of certain therapeutic molecules-and in due time exosomes will be utilised more commonly within the clinical setting. Specifically, exosomal biomarkers can be identified and related to various detrimental conditions which occur during pregnancy. Considering, this review will explore the potential future of exosomes as both diagnostic tools and therapeutic delivery vehicles to treat related conditions, including the challenges which exist towards incorporating exosomes within the clinical environment to benefit patients.
Collapse
|
28
|
Jozkowiak M, Piotrowska-Kempisty H, Kobylarek D, Gorska N, Mozdziak P, Kempisty B, Rachon D, Spaczynski RZ. Endocrine Disrupting Chemicals in Polycystic Ovary Syndrome: The Relevant Role of the Theca and Granulosa Cells in the Pathogenesis of the Ovarian Dysfunction. Cells 2022; 12:cells12010174. [PMID: 36611967 PMCID: PMC9818374 DOI: 10.3390/cells12010174] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disorder among women of reproductive age. The pathogenesis of PCOS remains elusive; however, there is evidence suggesting the potential contribution of genetic interactions or predispositions combined with environmental factors. Among these, endocrine disrupting chemicals (EDCs) have been proposed to potentially contribute to the etiology of PCOS. Granulosa and theca cells are known to cooperate to maintain ovarian function, and any disturbance can lead to endocrine disorders, such as PCOS. This article provides a review of the recent knowledge on PCOS pathophysiology, the role of granulosa and theca cells in PCOS pathogenesis, and the evidence linking exposure to EDCs with reproductive disorders such as PCOS.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-61847-0721
| | - Dominik Kobylarek
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Natalia Gorska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dominik Rachon
- Department of Clinical and Experimental Endocrinology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Robert Z. Spaczynski
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Pastelowa 8, 60-198 Poznan, Poland
| |
Collapse
|
29
|
DeCherney AH, Brolinson M, Whiteley G, Legro RS, Santoro N. Is the "E" being removed from Reproductive Endocrinology to be replaced by a "G" for Genetics? Fertil Steril 2022; 118:1036-1043. [PMID: 36357198 DOI: 10.1016/j.fertnstert.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Alan H DeCherney
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Marja Brolinson
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Grace Whiteley
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Richard S Legro
- Department of Obstetrics and Gynecology, Pennsylvania State University, Hershey, Pennsylvania
| | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, Colorado.
| |
Collapse
|
30
|
Dapas M, Dunaif A. Deconstructing a Syndrome: Genomic Insights Into PCOS Causal Mechanisms and Classification. Endocr Rev 2022; 43:927-965. [PMID: 35026001 PMCID: PMC9695127 DOI: 10.1210/endrev/bnac001] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/16/2023]
Abstract
Polycystic ovary syndrome (PCOS) is among the most common disorders in women of reproductive age, affecting up to 15% worldwide, depending on the diagnostic criteria. PCOS is characterized by a constellation of interrelated reproductive abnormalities, including disordered gonadotropin secretion, increased androgen production, chronic anovulation, and polycystic ovarian morphology. It is frequently associated with insulin resistance and obesity. These reproductive and metabolic derangements cause major morbidities across the lifespan, including anovulatory infertility and type 2 diabetes (T2D). Despite decades of investigative effort, the etiology of PCOS remains unknown. Familial clustering of PCOS cases has indicated a genetic contribution to PCOS. There are rare Mendelian forms of PCOS associated with extreme phenotypes, but PCOS typically follows a non-Mendelian pattern of inheritance consistent with a complex genetic architecture, analogous to T2D and obesity, that reflects the interaction of susceptibility genes and environmental factors. Genomic studies of PCOS have provided important insights into disease pathways and have indicated that current diagnostic criteria do not capture underlying differences in biology associated with different forms of PCOS. We provide a state-of-the-science review of genetic analyses of PCOS, including an overview of genomic methodologies aimed at a general audience of non-geneticists and clinicians. Applications in PCOS will be discussed, including strengths and limitations of each study. The contributions of environmental factors, including developmental origins, will be reviewed. Insights into the pathogenesis and genetic architecture of PCOS will be summarized. Future directions for PCOS genetic studies will be outlined.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Andrea Dunaif
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
31
|
Transgenic Mouse Models to Study the Development and Maintenance of the Adrenal Cortex. Int J Mol Sci 2022; 23:ijms232214388. [PMID: 36430866 PMCID: PMC9693478 DOI: 10.3390/ijms232214388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The cortex of the adrenal gland is organized into concentric zones that produce distinct steroid hormones essential for body homeostasis in mammals. Mechanisms leading to the development, zonation and maintenance of the adrenal cortex are complex and have been studied since the 1800s. However, the advent of genetic manipulation and transgenic mouse models over the past 30 years has revolutionized our understanding of these mechanisms. This review lists and details the distinct Cre recombinase mouse strains available to study the adrenal cortex, and the remarkable progress total and conditional knockout mouse models have enabled us to make in our understanding of the molecular mechanisms regulating the development and maintenance of the adrenal cortex.
Collapse
|
32
|
Abstract
Polycystic ovary syndrome (PCOS) is a complex disease affecting up to 15% of women of reproductive age. Women with PCOS suffer from reproductive dysfunctions with excessive androgen secretion and irregular ovulation, leading to reduced fertility and pregnancy complications. The syndrome is associated with a wide range of comorbidities including type 2 diabetes, obesity, and psychiatric disorders. Despite the high prevalence of PCOS, its etiology remains unclear. To understand the pathophysiology of PCOS, how it is inherited, and how to predict PCOS, and prevent and treat women with the syndrome, animal models provide an important approach to answering these fundamental questions. This minireview summarizes recent investigative efforts on PCOS-like rodent models aiming to define underlying mechanisms of the disease and provide guidance in model selection. The focus is on new genetic rodent models, on a naturally occurring rodent model, and provides an update on prenatal and peripubertal exposure models.
Collapse
|
33
|
Combined Transcriptomic and Metabolomic Analysis of Women with Polycystic Ovary Syndrome. DISEASE MARKERS 2022; 2022:4000424. [PMID: 36072900 PMCID: PMC9441417 DOI: 10.1155/2022/4000424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
Abstract
Background. Polycystic ovary syndrome (PCOS) is a complex class of endocrine disorders with insulin resistance, compensatory hyperinsulinemia, and obesity. However, the pathogenesis and therapies of PCOS have not been fully elucidated. Exosomal miRNAs have the potential to serve as biomarkers and therapies for a wide range of medical conditions. Method. We collected follicular fluid from 5 PCOS patients and 5 healthy people. High-throughput sequencing technology to identify differentially expressed miRNAs and untargeted metabolome identify differential metabolites in follicular fluid exosomal. RT-qPCR and AUC analysis were performed. Result. miRNA high-throughput sequencing identified 124 differential miRNAs. RT-qPCR analysis confirmed the sequencing results. These differential miRNA target genes are mainly involved in metabolic pathways. Metabolomics studies identified 31 differential metabolites. miRNA and lncRNA coexpression networks in metabolic pathways rigorously screened 28 differentially expressed miRNAs. This network would identify miRNA signatures associated with metabolic processes in PCOS. Meanwhile, the area under curve of receiver operating characteristic revealed that hsa-miR-196a-3p, hsa-miR-143-5p, hsa-miR-106a-3p, hsa-miR-34a-5p, and hsa-miR-20a-5p were potential biomarkers for the diagnosis of PCOS. Conclusion. Collectively, these results demonstrate the potential pathogenesis of PCOS, and follicular fluid exosomal miRNAs may be efficient targets for the diagnosis and treatment of PCOS in long-term clinical studies.
Collapse
|
34
|
Waterbury JS, Teves ME, Gaynor A, Han AX, Mavodza G, Newell J, Strauss JF, McAllister JM. The PCOS GWAS Candidate Gene ZNF217 Influences Theca Cell Expression of DENND1A.V2, CYP17A1, and Androgen Production. J Endocr Soc 2022; 6:bvac078. [PMID: 35668995 PMCID: PMC9155636 DOI: 10.1210/jendso/bvac078] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 12/25/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), a common endocrine disorder of women, is characterized by increased ovarian androgen production and anovulatory infertility. Genome-wide association studies (GWAS) have identified more than 20 PCOS candidate loci. One GWAS candidate locus encompasses ZNF217, a zinc finger transcription factor. Immunohistochemical staining of ovarian tissue demonstrated significantly lower staining intensity for ZNF217 protein in PCOS theca interna compared to ovarian tissue from normal ovulatory women. Immunofluorescence staining of normal and PCOS theca cells demonstrated nuclear localization of ZNF217, with lower intensity in PCOS cells. Western blotting showed reduced ZNF217 protein in PCOS theca cells compared to normal theca cells, and that treatment with forskolin, which mimics the action of luteinizing hormone (LH), reduces ZNF217 expression. Lower ZNF217 expression in PCOS theca cells was confirmed by quantitative reverse transcription polymerase chain reaction. Notably, there was an inverse relationship between ZNF217 messenger RNA (mRNA) levels and theca cell androgen (dehydroepiandrosterone; DHEA) synthesis. The abundance of mRNA encoding a splice variant of DENND1A (DENND1A.V2), a PCOS candidate gene that positively regulates androgen biosynthesis, was also inversely related to ZNF217 mRNA levels. This relationship may be driven by increased miR-130b-3p, which targets DENND1A.V2 transcripts and is directly correlated with ZNF217 expression. Forced expression of ZNF217 in PCOS theca cells reduced androgen production, CYP17A1 and DENND1A.V2 mRNA, while increasing mIR-130b-3p. Conversely, knockdown of ZNF217 in normal theca cells with short hairpin RNA-expressing lentivirus particles increased DENND1A.V2 and CYP17A1 mRNA. These observations suggest that ZNF217 is part of a network of PCOS candidate genes regulating thecal cell androgen production involving DENND1A.V2 and miR-130b-3p.
Collapse
Affiliation(s)
- Jamaia S Waterbury
- Department of Pathology, Penn State Hershey College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Alison Gaynor
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Angela X Han
- Department of Pathology, Penn State Hershey College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Grace Mavodza
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Jordan Newell
- Department of Pathology, Penn State Hershey College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | - Jan M McAllister
- Correspondence: Jan M. McAllister, PhD, Department of Pathology, Penn State Hershey College of Medicine, 500 University Dr, Hershey, PA 17033, USA.
| |
Collapse
|
35
|
Silva MSB, Campbell RE. Polycystic Ovary Syndrome and the Neuroendocrine Consequences of Androgen Excess. Compr Physiol 2022; 12:3347-3369. [PMID: 35578968 DOI: 10.1002/cphy.c210025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a major endocrine disorder strongly associated with androgen excess and frequently leading to female infertility. Although classically considered an ovarian disease, altered neuroendocrine control of gonadotropin-releasing hormone (GnRH) neurons in the brain and abnormal gonadotropin secretion may underpin PCOS presentation. Defective regulation of GnRH pulse generation in PCOS promotes high luteinizing hormone (LH) pulsatile secretion, which in turn overstimulates ovarian androgen production. Early and emerging evidence from preclinical models suggests that maternal androgen excess programs abnormalities in developing neuroendocrine circuits that are associated with PCOS pathology, and that these abnormalities are sustained by postpubertal elevation of endogenous androgen levels. This article will discuss experimental evidence, from the clinic and in preclinical animal models, that has significantly contributed to our understanding of how androgen excess influences the assembly and maintenance of neuroendocrine impairments in the female brain. Abnormal central gamma-aminobutyric acid (GABA) signaling has been identified in both patients and preclinical models as a possible link between androgen excess and elevated GnRH/LH secretion. Enhanced GABAergic innervation and drive to GnRH neurons is suspected to contribute to the pathogenesis and early manifestation of neuroendocrine derangement in PCOS. Accordingly, this article also provides an overview of GABA regulation of GnRH neuron function from prenatal development to adulthood to discuss possible avenues for future discovery research and therapeutic interventions. © 2022 American Physiological Society. Compr Physiol 12:3347-3369, 2022.
Collapse
Affiliation(s)
- Mauro S B Silva
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
36
|
Nautiyal H, Imam SS, Alshehri S, Ghoneim MM, Afzal M, Alzarea SI, Güven E, Al-Abbasi FA, Kazmi I. Polycystic Ovarian Syndrome: A Complex Disease with a Genetics Approach. Biomedicines 2022; 10:biomedicines10030540. [PMID: 35327342 PMCID: PMC8945152 DOI: 10.3390/biomedicines10030540] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a complex endocrine disorder affecting females in their reproductive age. The early diagnosis of PCOS is complicated and complex due to overlapping symptoms of this disease. The most accepted diagnostic approach today is the Rotterdam Consensus (2003), which supports the positive diagnosis of PCOS when patients present two out of the following three symptoms: biochemical and clinical signs of hyperandrogenism, oligo, and anovulation, also polycystic ovarian morphology on sonography. Genetic variance, epigenetic changes, and disturbed lifestyle lead to the development of pathophysiological disturbances, which include hyperandrogenism, insulin resistance, and chronic inflammation in PCOS females. At the molecular level, different proteins and molecular and signaling pathways are involved in disease progression, which leads to the failure of a single genetic diagnostic approach. The genetic approach to elucidate the mechanism of pathogenesis of PCOS was recently developed, whereby four phenotypic variances of PCOS categorize PCOS patients into classic, ovulatory, and non-hyperandrogenic types. Genetic studies help to identify the root cause for the development of this PCOS. PCOS genetic inheritance is autosomal dominant but the latest investigations revealed it as a multigene origin disease. Different genetic loci and specific genes have been identified so far as being associated with this disease. Genome-wide association studies (GWAS) and related genetic studies have changed the scenario for the diagnosis and treatment of this reproductive and metabolic condition known as PCOS. This review article briefly discusses different genes associated directly or indirectly with disease development and progression.
Collapse
Affiliation(s)
- Himani Nautiyal
- Siddhartha Institute of Pharmacy, Near IT-Park, Sahastradhara Road, Dehradun 248001, India;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Correspondence: (M.A.); (I.K.)
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Emine Güven
- Biomedical Engineering Department, Faculty of Engineering, Düzce University, Düzce 81620, Turkey;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (M.A.); (I.K.)
| |
Collapse
|
37
|
Dumesic DA, Padmanabhan V, Chazenbalk GD, Abbott DH. Polycystic ovary syndrome as a plausible evolutionary outcome of metabolic adaptation. Reprod Biol Endocrinol 2022; 20:12. [PMID: 35012577 PMCID: PMC8744313 DOI: 10.1186/s12958-021-00878-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
As a common endocrinopathy of reproductive-aged women, polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, oligo-anovulation and polycystic ovarian morphology. It is linked with insulin resistance through preferential abdominal fat accumulation that is worsened by obesity. Over the past two millennia, menstrual irregularity, male-type habitus and sub-infertility have been described in women and confirm that these clinical features of PCOS were common in antiquity. Recent findings in normal-weight hyperandrogenic PCOS women show that exaggerated lipid accumulation by subcutaneous (SC) abdominal stem cells during development to adipocytes in vitro occurs in combination with reduced insulin sensitivity and preferential accumulation of highly-lipolytic intra-abdominal fat in vivo. This PCOS phenotype may be an evolutionary metabolic adaptation to balance energy storage with glucose availability and fatty acid oxidation for optimal energy use during reproduction. This review integrates fundamental endocrine-metabolic changes in healthy, normal-weight PCOS women with similar PCOS-like traits present in animal models in which tissue differentiation is completed during fetal life as in humans to support the evolutionary concept that PCOS has common ancestral and developmental origins.
Collapse
Affiliation(s)
- Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Room 22-178 CHS, Los Angeles, CA 90095 USA
| | | | - Gregorio D. Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Room 22-178 CHS, Los Angeles, CA 90095 USA
| | - David H. Abbott
- Department of Obstetrics and Gynecology, University of Wisconsin and Wisconsin National Primate Research Center, 1223 Capitol Court, Madison, WI 53715 USA
| |
Collapse
|
38
|
Yates AG, Pink RC, Erdbrügger U, Siljander PR, Dellar ER, Pantazi P, Akbar N, Cooke WR, Vatish M, Dias‐Neto E, Anthony DC, Couch Y. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo: Part II: Pathology: Part II: Pathology. J Extracell Vesicles 2022; 11:e12190. [PMID: 35041301 PMCID: PMC8765328 DOI: 10.1002/jev2.12190] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
It is clear from Part I of this series that extracellular vesicles (EVs) play a critical role in maintaining the homeostasis of most, if not all, normal physiological systems. However, the majority of our knowledge about EV signalling has come from studying them in disease. Indeed, EVs have consistently been associated with propagating disease pathophysiology. The analysis of EVs in biofluids, obtained in the clinic, has been an essential of the work to improve our understanding of their role in disease. However, to interfere with EV signalling for therapeutic gain, a more fundamental understanding of the mechanisms by which they contribute to pathogenic processes is required. Only by discovering how the EV populations in different biofluids change-size, number, and physicochemical composition-in clinical samples, may we then begin to unravel their functional roles in translational models in vitro and in vivo, which can then feedback to the clinic. In Part II of this review series, the functional role of EVs in pathology and disease will be discussed, with a focus on in vivo evidence and their potential to be used as both biomarkers and points of therapeutic intervention.
Collapse
Affiliation(s)
- Abi G. Yates
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of Biomedical SciencesFaculty of MedicineUniversity of QueenslandSt LuciaAustralia
| | - Ryan C. Pink
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Uta Erdbrügger
- Department of Medicine, Division of NephrologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Pia R‐M. Siljander
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Elizabeth R. Dellar
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Paschalia Pantazi
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityOxfordUK
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - William R. Cooke
- Nuffield Department of Women's and Reproductive HealthJohn Radcliffe Hospital, HeadingtonOxfordUK
| | - Manu Vatish
- Nuffield Department of Women's and Reproductive HealthJohn Radcliffe Hospital, HeadingtonOxfordUK
| | - Emmanuel Dias‐Neto
- Laboratory of Medical Genomics. A.C. Camargo Cancer CentreSão PauloBrazil
- Laboratory of Neurosciences (LIM‐27) Institute of PsychiatrySão Paulo Medical SchoolSão PauloBrazil
| | | | - Yvonne Couch
- Acute Stroke Programme ‐ Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
39
|
Liu X, Xu M, Qian M, Yang L. CYP17 T/C (rs74357) gene polymorphism contributes to polycystic ovary syndrome susceptibility: evidence from a meta-analysis. Endocr Connect 2021; 10:R305-R316. [PMID: 34788226 PMCID: PMC8679930 DOI: 10.1530/ec-21-0327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022]
Abstract
The cytochrome P450 family 17 (CYP17) is associated with hyperandrogenism in women, and the association between CYP17 gene polymorphism and the risk of polycystic ovary syndrome (PCOS) is not definitive. In order to determine whether the CYP17 T/C (rs74357) gene polymorphism is an exposure risk for PCOS, a comprehensive meta-analysis summarizing 19 studies was performed. The pooled odds ratio (OR) and the corresponding 95% CI were measured under five genetic models, and the stratified analyses by ethnicity, Hardy-Weinberg equilibrium, testosterone levels and BMI in controls were carried out to identify the causes of substantial heterogeneity. The overall results validated that the CYP17 T/C (rs74357) gene polymorphism was significantly associated with PCOS risk in four genetic models. Moreover, the outcomes of subgroup analysis by ethnicity indicated that the frequencies of the C allele of CYP17 T/C (rs74357) polymorphism were markedly higher in women from Asia than in Caucasians (T vs C: OR 0.85, 95% CI = 0.74-0.99, P < 0.05). Therefore, these findings suggested that the CYP17 T/C (rs74357) gene polymorphism played an indispensable part in increasing the susceptibility of PCOS when carrying the C allele, which proposed that the polymorphism of the CYP17 gene may be a predictive factor for the risk of PCOS or an important pathway in PCOS-associated metabolic and hormonal dysregulation.
Collapse
Affiliation(s)
- Xingyan Liu
- Department of Obstetrics & Gynecology, General Hospital of PLA Eastern Theater (Nanjing General Hospital of Nanjing Military Command), Command, Nanjing, China
| | - Mei Xu
- Department of Obstetrics & Gynecology, General Hospital of PLA Eastern Theater (Nanjing General Hospital of Nanjing Military Command), Command, Nanjing, China
| | - Min Qian
- Department of Obstetrics & Gynecology, General Hospital of PLA Eastern Theater (Nanjing General Hospital of Nanjing Military Command), Command, Nanjing, China
| | - Lindong Yang
- Department of Obstetrics & Gynecology, General Hospital of PLA Eastern Theater (Nanjing General Hospital of Nanjing Military Command), Command, Nanjing, China
| |
Collapse
|
40
|
Liu Y, Chen Y, Zhou Z, He X, Tao L, Jiang Y, Lan R, Hong Q, Chu M. chi-miR-324-3p Regulates Goat Granulosa Cell Proliferation by Targeting DENND1A. Front Vet Sci 2021; 8:732440. [PMID: 34869714 PMCID: PMC8636700 DOI: 10.3389/fvets.2021.732440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Granulosa cell (GC) proliferation provides essential conditions for ovulation in animals. A previous study showed that DENND1A plays a significant role in polycystic ovary syndrome. However, the modulation of DENND1A in GCs remains unclear. Our previous integrated analysis of miRNA–mRNA revealed that the 3'-untranslated region of DENND1A could be a target of chi-miR-324-3p. In this study, we used quantitative reverse transcription polymerase chain reaction (RT-qPCR) to investigate DENND1A expression in ovarian tissues of high- and low-yielding goats. Furthermore, dual-fluorescent reporter vector experiments, Cell Counting Kit-8 (CCK-8) assay, and RT-qPCR were used to elucidate the regulatory pathway of chi-miR-324-3p-DENND1A in GCs. The results revealed an opposite tendency between the expressions of chi-miR-324-3p and DENND1A in the ovaries of high- and low-yielding goats. The CCK-8 assay indicated that chi-miR-324-3p overexpression significantly suppressed GC proliferation, whereas chi-miR-324-3p inhibition promoted GC proliferation. In addition, the expressions of GC proliferation markers LHR, Cylin D2, and CDK4 showed the same tendency. The dual-fluorescent reporter assay revealed that chi-miR-324-3p directly targeted DENND1A, and the RT-qPCR results revealed that DENND1A expression was inhibited by chi-miR-324-3p. In summary, chi-miR-324-3p inhibited the proliferation of GCs by targeting DENND1A.
Collapse
Affiliation(s)
- Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zuyang Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
41
|
Exploration of Alternative Splicing (AS) Events in MDV-Infected Chicken Spleens. Genes (Basel) 2021; 12:genes12121857. [PMID: 34946806 PMCID: PMC8701255 DOI: 10.3390/genes12121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
Marek’s disease (MD) was an immunosuppression disease induced by Marek’s disease virus (MDV). MD caused huge economic loss to the global poultry industry, but it also provided an ideal model for studying diseases induced by the oncogenic virus. Alternative splicing (AS) simultaneously produced different isoform transcripts, which are involved in various diseases and individual development. To investigate AS events in MD, RNA-Seq was performed in tumorous spleens (TS), spleens from the survivors (SS) without any lesion after MDV infection, and non-infected chicken spleens (NS). In this study, 32,703 and 25,217 AS events were identified in TS and SS groups with NS group as the control group, and 1198, 1204, and 348 differently expressed (DE) AS events (p-value < 0.05 and FDR < 0.05) were identified in TS vs. NS, TS vs. SS, SS vs. NS, respectively. Additionally, Function enrichment analysis showed that ubiquitin-mediated proteolysis, p53 signaling pathway, and phosphatidylinositol signaling system were significantly enriched (p-value < 0.05). Small structural variations including SNP and indel were analyzed based on RNA-Seq data, and it showed that the TS group possessed more variants on the splice site region than those in SS and NS groups, which might cause more AS events in the TS group. Combined with previous circRNA data, we found that 287 genes could produce both circular and linear RNAs, which suggested these genes were more active in MD lymphoma transformation. This study has expanded the understanding of the MDV infection process and provided new insights for further analysis of resistance/susceptibility mechanisms.
Collapse
|
42
|
Ramanathan B, Murugan J, Velayutham K. Pilot study on evaluation and determination of the prevalence of Polycystic Ovarian Syndrome (PCOS) associated gene markers in the South Indian population. Indian J Endocrinol Metab 2021; 25:551-558. [PMID: 35355907 PMCID: PMC8959196 DOI: 10.4103/ijem.ijem_340_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) is typically characterized by a spectrum of manifestations that include menstrual irregularities, anovulation, cysts, hyperandrogenic features like hirsutism, acne, alopecia, and various metabolic complications. The pathology of PCOS is complex and several mechanisms have been potentially involved in the genetic abnormalities/dysfunctions. Hence, the present study aims to examine the prevalence and association of polymorphisms in candidate genes (thyroid adenoma-associated gene [THADA], luteinizing hormone and human chorionic gonadotropin receptor [LHCGR], DENN domain containing 1A [DENND1A], follicle-stimulating hormone receptor [FSHR], Connexin37 [CX37], angiotensin-converting enzyme [ACE], insulin receptor [INSR] and calpain 10 [CAPN10]) in PCOS patients of the South Indian regional population. METHODS The study group included 20 PCOS cases and 10 controls, whose deoxyribonucleic acid (DNA) were genotyped by the polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism (RFLP), and PCR product sequencing to determine the prevalence of the DENND1A (rs10818854), LHCGR (rs13405728), FSHR (rs2349415), THADA (rs13429458), CX37 (rs1764391), ACE (rs1799752), INSR (rs1799817), and CAPN10 (rs2975760) polymorphisms. Clinical examinations including anthropometric measurements, biochemical investigations relevant to glucose metabolism, and hormones were measured. RESULTS A significant difference was observed in the DENND1A (rs10818854) polymorphism between the control and PCOS patients (P = 0.001). The variants of LHCGR, FSHR, THADA, CX37, ACE, INSR, and CAPN10 were not statistically significant with PCOS. The body mass index (BMI) (P = 0.01), triglycerides (P = 0.01), and dehydroepiandrosterone sulfate (DHEAS) (P = 0.05) were significantly different between the PCOS patients and controls. Significant results were observed in rs1799817 single nucleotide polymorphisms (SNP) of INSR with elevated levels of triglycerides and rs10818854 of DENND1A, rs13429458 of THADA, rs2349415 of FSHR with the high levels of DHEAS. CONCLUSION In the study population, the presence of rs10818854 of DENND1A polymorphism may be associated with the risk of PCOS and high levels of DHEAS.
Collapse
Affiliation(s)
- Balaji Ramanathan
- Department of Molecular Genetics, Alpha Health Foundation, Madurai, Tamil Nadu, India
| | - Jeyasudha Murugan
- Department of Molecular Genetics, Alpha Health Foundation, Madurai, Tamil Nadu, India
| | - Kumaravel Velayutham
- Department of Molecular Genetics, Alpha Health Foundation, Madurai, Tamil Nadu, India
| |
Collapse
|
43
|
Replication study and meta-analysis of selected genetic variants and polycystic ovary syndrome susceptibility in Asian population. J Assist Reprod Genet 2021; 38:2781-2789. [PMID: 34403018 DOI: 10.1007/s10815-021-02291-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is a highly complex disorder influenced by genetic and environmental factors. Previous association studies have identified multiple PCOS-susceptible loci, but there is no consistent conclusion, which calls for further investigations. METHODS In the present case-control study, FSHR gene variants (rs2268361, rs6165, and rs6166), LHCGR gene variant (rs13405728), THADA gene variant (rs13429458), DENND1A gene variants (rs10818854 and rs2479106), and INSR gene variants (rs2059807 and rs1799817) were genotyped with Sanger sequencing in a total of 400 PCOS women and 480 healthy women. RESULTS After Bonferroni correction, our results showed that rs13405728, rs13429458, rs2479106, rs10818854, and rs2059807 were significantly associated with PCOS risk in Chinese women. To improve the statistical strength, a further meta-analysis in Asian population was conducted. Although rs6166 and rs1799817 were not associated with PCOS risk in the present study, they were identified to be strongly associated with PCOS risk in the pooled Koreans and Chinese respectively. No significant association with PCOS risk was consistently found for rs2268361 or rs6165. Moreover, the pooled results further confirmed the significant association with PCOS risk for rs13405728, rs13429458, rs2479106, rs10818854, and rs2059807. CONCLUSIONS Collectively, the rs6166, rs13405728, rs13429458, rs2479106, rs10818854, rs2059807, and rs1799817 may indeed be the genetic risk factors for PCOS in Asian population, which requires further investigation using larger independent sets of samples in different ethnic populations.
Collapse
|
44
|
Zheng J, Deng T, Jiang E, Li J, Wijayanti D, Wang Y, Ding X, Lan X. Genetic variations of bovine PCOS-related DENND1A gene identified in GWAS significantly affect female reproductive traits. Gene 2021; 802:145867. [PMID: 34352299 DOI: 10.1016/j.gene.2021.145867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022]
Abstract
Genome-wide association studies (GWAS) have identified DENND1A as a potential candidate gene linked to the fertility-related phenotypes in dairy cows. However, to date, no studies have examined the association of the DENND1A insertion/deletions (indels) to bovine fertility on a large scale. Herein, two indel sites, including P4-del-26-bp and P8-ins-15-bp were identified in 1064 Holstein cows. The values of the minor allelic frequency (MAF) ranged between 0.471 (deletion) and 0.230 (deletion), respectively, and combined four different haplotypes by analyzing the haplotype combination. It is noteworthy that P4-del-26-bp is associated with the ovarian width (P = 0.0004) and corpus luteum diameter (P = 0.004). Meanwhile, P8-ins-15-bp was found to have a significant association with the ovarian width (P = 0.020), ovarian weight (P = 0.004), the number of mature follicles (P = 0.020), and diameter of the mature follicles (P = 0.016). Furthermore, the combinatorial analysis showed that the two indel combined-genotypes were significantly related to several reproductive traits (ovarian width, ovarian weight, etc.). Collectively, our findings indicated that these two novel indels and their combinations are correlated with the reproductive traits, and hence, they can serve in the marker-assisted selection (MAS) in cattle breeding. Nevertheless, further functional experiments are needed for understanding the mechanisms of these indels in cattle reproduction in a better way.
Collapse
Affiliation(s)
- Juanshan Zheng
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyu Deng
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Enhui Jiang
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Li
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dwi Wijayanti
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Xianyong Lan
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
45
|
Chugh RM, Park HS, El Andaloussi A, Elsharoud A, Esfandyari S, Ulin M, Bakir L, Aboalsoud A, Ali M, Ashour D, Igboeli P, Ismail N, McAllister J, Al-Hendy A. Mesenchymal stem cell therapy ameliorates metabolic dysfunction and restores fertility in a PCOS mouse model through interleukin-10. Stem Cell Res Ther 2021; 12:388. [PMID: 34233746 PMCID: PMC8261924 DOI: 10.1186/s13287-021-02472-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrine and metabolic disorder in reproductive-age women. Excessive inflammation and elevated androgen production from ovarian theca cells are key features of PCOS. Human bone marrow mesenchymal stem cells (BM-hMSC) and their secreted factors (secretome) exhibit robust anti-inflammatory capabilities in various biological systems. We evaluated the therapeutic efficacy of BM-hMSC and its secretome in both in vitro and in vivo PCOS models. METHODS For in vitro experiment, we treated conditioned media from BM-hMSC to androgen-producing H293R cells and analyzed androgen-producing gene expression. For in vivo experiment, BM-hMSC were implanted into letrozole (LTZ)-induced PCOS mouse model. BM-hMSC effect in androgen-producing cells or PCOS model mice was assessed by monitoring cell proliferation (immunohistochemistry), steroidogenic gene expression (quantitative real-time polymerase chain reaction [qRT-PCR] and Western blot, animal tissue assay (H&E staining), and fertility by pup delivery. RESULTS BM-hMSC significantly downregulate steroidogenic gene expression, curb inflammation, and restore fertility in treated PCOS animals. The anti-inflammatory cytokine interleukin-10 (IL-10) played a key role in mediating the effects of BM-hMSC in our PCOS models. We demonstrated that BM-hMSC treatment was improved in metabolic and reproductive markers in our PCOS model and able to restore fertility. CONCLUSION Our study demonstrates for the first time the efficacy of intra-ovarian injection of BM-hMSC or its secretome to treat PCOS-related phenotypes, including both metabolic and reproductive dysfunction. This approach may represent a novel therapeutic option for women with PCOS. Our results suggest that BM-hMSC can reverse PCOS-induced inflammation through IL-10 secretion. BM-hMSC might be a novel and robust therapeutic approach for PCOS treatment.
Collapse
Affiliation(s)
- Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Abdeljabar El Andaloussi
- Department of Pathology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
| | - Amro Elsharoud
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
| | - Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
| | - Mara Ulin
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
| | - Lale Bakir
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
| | - Alshimaa Aboalsoud
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
- Department of pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Ali
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Dalia Ashour
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
| | - Prosper Igboeli
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
| | - Nahed Ismail
- Department of Pathology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA
| | - Jan McAllister
- Department of Pathology, Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Ayman Al-Hendy
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA.
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
46
|
Li J, Cui L, Jiang X, Zhao H, Zhao S, Shi Y, Wei D, You L, Ma J, Chen ZJ. Transmission of polycystic ovary syndrome susceptibility single-nucleotide polymorphisms and their association with phenotype changes in offspring. Hum Reprod 2021; 35:1711-1718. [PMID: 32619219 DOI: 10.1093/humrep/deaa125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Does the inheritance of polycystic ovary syndrome (PCOS) susceptibility single-nucleotide polymorphism affect the phenotype of offspring? SUMMARY ANSWER Male offspring who inherit PCOS-related genetic variations from PCOS mothers were more susceptible to developing the metabolic abnormality in their later life. WHAT IS KNOWN ALREADY Genetic factors are considered the major etiology of PCOS. Previous studies have highlighted that offspring of women with PCOS had an increased risk of the same disease or PCOS-like symptoms. STUDY DESIGN, SIZE, DURATION The study involved 172 children born to women with PCOS and 529 children born to non-PCOS women. All offspring were conceived by assisted reproductive technologies. PARTICIPANTS/MATERIALS, SETTING, METHODS The offspring ranged from 1 to 8 years old. Metabolic phenotype analyses were performed in offspring aged from 2 to 8 (N = 619). Sanger sequencing, TaqMan and Sequenom MassARRAY were used to sequence the samples. MAIN RESULTS AND THE ROLE OF CHANCE In male offspring, the fasting insulin (FINS) (P = 0.037) homeostasis model assessment of insulin resistance (HOMA-IR) (P = 0.038) and the homeostasis model assessment of pancreatic beta-cell function (HOMA-β) (P = 0.038) levels were higher in offspring of PCOS mothers compared to controls. In female offspring, PCOS offspring had a significantly higher anti-Müllerian hormone levels (P = 0.001) compared to those from control mothers. In male offspring of PCOS mothers, subjects with a T allele at rs2349415 in the gene FSHR had higher FINS (P = 0.023), HOMA-IR (P = 0.030) and HOMA-β levels (P = 0.013) than those in the homozygous CC group. The same increased trend in FINS, HOMA-IR and HOMA-β levels could be found in the CC and TC group in rs2268361 located in gene FSHR compared to the TT group (P = 0.029, P = 0.030, P = 0.046, respectively). As for rs10818854 in the DENND1A gene, the AA and AG group had a higher FINS (P = 0.037) and HOMA-β (P = 0.008) levels than the homozygous CC group. LIMITATIONS, REASONS FOR CAUTION Firstly, the offspring may be too young to see any phenotype changes. Secondly, this study only analyzed the differences of genotype frequency using the dominant model instead of all three models due to the limited sample size of the homozygous model. The results, therefore, should be replicated and performed in a larger sample size population. Thirdly, environmental impacts cannot be ruled out. WIDER IMPLICATIONS OF THE FINDINGS The findings presented in this thesis add to our understanding the changes in offspring born to PCOS women and remind us to consider early intervention to avoid more severe effects. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Key Research and Development Program of China 2017YFC1001000 (to Z.-J.C.), the National Natural Science Foundation of China 81430029 (to Z.-J.C.), 81622021 and 31571548 (to H.Z.), the National Natural Science Foundation of Shandong Province JQ201816 (to H.Z.) and Shandong Provincial Key Research and Development Program 2017G006036 (to L.-L.C.) and 2018YFJH0504 (to Z.-J.C.). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jingyu Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Linlin Cui
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Xiao Jiang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Yuhua Shi
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Daimin Wei
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Li You
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong 250012, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200000, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| |
Collapse
|
47
|
Bruni V, Capozzi A, Lello S. The Role of Genetics, Epigenetics and Lifestyle in Polycystic Ovary Syndrome Development: the State of the Art. Reprod Sci 2021; 29:668-679. [DOI: 10.1007/s43032-021-00515-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
|
48
|
Abstract
Polycystic ovary syndrome (PCOS) is a complex genetic disorder with many genetic loci contributing small risk. Large genome-wide association studies identified 21 genetic risk loci for PCOS in European and Han Chinese women. The genetic architecture is similar across PCOS diagnostic categories. The next wave of analysis will incorporate large genotyped datasets linked to medical records, increasing numbers and ethnic subsets. The resulting genetic risk loci can then be used to create robust genetic risk scores enhanced with clinical information, environment and lifestyle data for a precision medicine approach to PCOS diagnosis and treatment.
Collapse
Affiliation(s)
- Corrine K Welt
- Division of Endocrinology, Metabolism and Diabetes, University of Utah School of Medicine, 15 North 2030 East, 2110A, Salt Lake City, UT 84112, USA.
| |
Collapse
|
49
|
Abstract
Polycystic ovarian syndrome and its associated endocrine abnormalities comprise one of the most common metabolic spectrum disorders within the human race. Because of the variance in phenotypic expression among individuals and within family lineages, attention has been turned to genetic and epigenetic changes in which the root cause of the disorder may lie. Further understanding of DNA/histone methylation and microRNA patterns may help to improve the accuracy of diagnosis and lead to future treatment options.
Collapse
Affiliation(s)
- Joshua C Combs
- Eunice Kennedy Shriver National Institute of Child Health and Human Development
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Micah J Hill
- Eunice Kennedy Shriver National Institute of Child Health and Human Development
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Alan H Decherney
- Eunice Kennedy Shriver National Institute of Child Health and Human Development
| |
Collapse
|
50
|
Zeber-Lubecka N, Hennig EE. Genetic Susceptibility to Joint Occurrence of Polycystic Ovary Syndrome and Hashimoto's Thyroiditis: How Far Is Our Understanding? Front Immunol 2021; 12:606620. [PMID: 33746952 PMCID: PMC7968419 DOI: 10.3389/fimmu.2021.606620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) and Hashimoto’s thyroiditis (HT) are endocrine disorders that commonly occur among young women. A higher prevalence of HT in women with PCOS, relative to healthy individuals, is observed consistently. Combined occurrence of both diseases is associated with a higher risk of severe metabolic and reproductive complications. Genetic factors strongly impact the pathogenesis of both PCOS and HT and several susceptibility loci associated with a higher risk of both disorders have been identified. Furthermore, some candidate gene polymorphisms are thought to be functionally relevant; however, few genetic variants are proposed to be causally associated with the incidence of both disorders together.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Ewa E Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|