1
|
Banerjee M, Volpert V. Stochastic intracellular regulation can remove oscillations in a model of tissue growth. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2020; 37:551-568. [PMID: 32735317 DOI: 10.1093/imammb/dqaa009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/28/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023]
Abstract
The work is devoted to the analysis of cell population dynamics where cells make a choice between differentiation and apoptosis. This choice is based on the values of intracellular proteins whose concentrations are described by a system of ordinary differential equations with bistable dynamics. Intracellular regulation and cell fate are controlled by the extracellular regulation through the number of differentiated cells. It is shown that the total cell number necessarily oscillates if the initial condition in the intracellular regulation is fixed. These oscillations can be suppressed if the initial condition is a random variable with a sufficiently large variation. Thus, the result of the work suggests a possible answer to the question about the role of stochasticity in the intracellular regulation.
Collapse
Affiliation(s)
- M Banerjee
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - V Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France.,INRIA, Université de Lyon, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 Novembre 1918, 69200 Villeurbanne Cedex, France.,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| |
Collapse
|
2
|
Dawson J, Lee PS, van Rienen U, Appali R. A General Theoretical Framework to Study the Influence of Electrical Fields on Mesenchymal Stem Cells. Front Bioeng Biotechnol 2020; 8:557447. [PMID: 33195123 PMCID: PMC7606877 DOI: 10.3389/fbioe.2020.557447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell dynamics involve cell proliferation and cell differentiation into cells of distinct functional type, such as osteoblasts, adipocytes, or chondrocytes. Electrically active implants influence these dynamics for the regeneration of the cells in damaged tissues. How applied electric field influences processes of individual stem cells is a problem mostly unaddressed. The mathematical approaches to study stem cell dynamics have focused on the stem cell population as a whole, without resolving individual cells and intracellular processes. In this paper, we present a theoretical framework to describe the dynamics of a population of stem cells, taking into account the processes of the individual cells. We study the influence of the applied electric field on the cellular processes. We test our mean-field theory with the experiments from the literature, involving in vitro electrical stimulation of stem cells. We show that a simple model can quantitatively describe the experimentally observed time-course behavior of the total number of cells and the total alkaline phosphate activity in a population of mesenchymal stem cells. Our results show that the stem cell differentiation rate is dependent on the applied electrical field, confirming published experimental findings. Moreover, our analysis supports the cell density-dependent proliferation rate. Since the experimental results are averaged over many cells, our theoretical framework presents a robust and sensitive method for determining the effect of applied electric fields at the scale of the individual cell. These results indicate that the electric field stimulation may be effective in promoting bone regeneration by accelerating osteogenic differentiation.
Collapse
Affiliation(s)
- Jonathan Dawson
- Department of Computer Science and Electrical Engineering, Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | - Poh Soo Lee
- Max Bergmann Center for Biomaterials, Institute for Materials Science, Technical University of Dresden, Dresden, Germany
| | - Ursula van Rienen
- Department of Computer Science and Electrical Engineering, Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.,Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.,Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Revathi Appali
- Department of Computer Science and Electrical Engineering, Institute of General Electrical Engineering, University of Rostock, Rostock, Germany.,Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Single cell analysis reveals a biophysical aspect of collective cell-state transition in embryonic stem cell differentiation. Sci Rep 2018; 8:11965. [PMID: 30097661 PMCID: PMC6086879 DOI: 10.1038/s41598-018-30461-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/31/2018] [Indexed: 11/09/2022] Open
Abstract
In the stem cell research field, the molecular regulatory network used to define cellular states has been extensively studied, however, the general driving force guiding the collective state dynamics remains to be identified from biophysical aspects. Here we monitored the time-development of the cell-state transition at the single-cell and colony levels, simultaneously, during the early differentiation process in mouse embryonic stem cells. Our quantitative analyses revealed that cellular heterogeneity was a result of spontaneous fluctuation of cellular state and cell-cell cooperativity. We considered that the cell state is like a ball fluctuating on a potential landscape, and found that the cooperativity affects the fluctuation. Importantly, the cooperativity temporarily decreased and increased in the intermediate state of cell differentiation, leading to cell-state transition in unison. This process can be explained using the mathematical equation of flashing-ratchet behaviour, which suggests that a general mechanism is driving the collective decision-making of stem cells.
Collapse
|
4
|
Situ Q, Lei J. A mathematical model of stem cell regeneration with epigenetic state transitions. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2018; 14:1379-1397. [PMID: 29161866 DOI: 10.3934/mbe.2017071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we study a mathematical model of stem cell regeneration with epigenetic state transitions. In the model, the heterogeneity of stem cells is considered through the epigenetic state of each cell, and each epigenetic state defines a subpopulation of stem cells. The dynamics of the subpopulations are modeled by a set of ordinary differential equations in which epigenetic state transition in cell division is given by the transition probability. We present analysis for the existence and linear stability of the equilibrium state. As an example, we apply the model to study the dynamics of state transition in breast cancer stem cells.
Collapse
Affiliation(s)
- Qiaojun Situ
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
| | - Jinzhi Lei
- Zhou Pei-Yuan Center for Applied Mathematics, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Zhou JY, Chen M, Ma L, Wang X, Chen YG, Liu SL. Role of CD44(high)/CD133(high) HCT-116 cells in the tumorigenesis of colon cancer. Oncotarget 2016; 7:7657-66. [PMID: 26840024 PMCID: PMC4884945 DOI: 10.18632/oncotarget.7084] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/13/2016] [Indexed: 12/21/2022] Open
Abstract
This study aimed to explore cell surface biomarkers related to cancer stem cells (CSCs) and their role in the tumorigenesis of colon cancer. Various colon cancer cell lines were screened for CD133 and CD44 expression. CD44high/CD133high and CD44low/CD133low cells were separately isolated by Fluorescence-Activated Cell Sorting (FACS). The cell proliferation, colony formation, cell cycle characteristics, and tumorigenic properties in CD44high/CD133high and CD44low/CD133low cells were investigated through in vitro experiments and in vivo tumor xenograft models. The expression profiles of stem cell-related genes were examined by RT-PCR. With HCT-116 cells, flow cytometry analysis revealed that CD44high/CD133high cells had higher proliferation potency than CD44low/CD133low cells. Compared to CD44low/CD133low cells, CD44high/CD133high cells had more stem cell-related genes, and displayed increased tumorigenic ability. In summary, CD44high/CD133high cells isolated from HCT-116 cells harbor CSC properties that may be related to the tumor growth of colon cancer. These results suggest that CD44 and CD133 could be strong markers of colorectal cancer stem cells.
Collapse
Affiliation(s)
- Jin-Yong Zhou
- Central Laboratory, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Min Chen
- Department of Internal Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Long Ma
- Department of Urology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xiaoxiao Wang
- Department of Medical Science Research, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Yu-Gen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Shen-Lin Liu
- Department of Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Peng S, Hu GQ. Colorectal cancer stem cells. Shijie Huaren Xiaohua Zazhi 2016; 24:3953-3962. [DOI: 10.11569/wcjd.v24.i28.3953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive system, and its initiation, promotion and prognosis are closely related to cancer stem cells (CSCs). CSCs are defined as a minority population of cancer cells with self-renewal ability, multi-lineage differentiation potential and highly aggressive behaviors, which have been identified in many types of cancers including CRC as one of the key mediators driving cancer metastasis and progression. The presence of these CSCs can be attributed to the failure of cancer treatments as these cells are believed to exhibit therapy resistance. Here, we review the current understanding of colorectal CSCs, with an emphasis on candidate markers, biological properties, related signaling pathways, and clinical applications.
Collapse
|
7
|
Stumpf PS, Ewing R, MacArthur BD. Single-cell pluripotency regulatory networks. Proteomics 2016; 16:2303-12. [PMID: 27357612 DOI: 10.1002/pmic.201500528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022]
Abstract
Pluripotent stem cells (PSCs) are a popular model system for investigating development, tissue regeneration, and repair. Although much is known about the molecular mechanisms that regulate the balance between self-renewal and lineage commitment in PSCs, the spatiotemporal integration of responsive signaling pathways with core transcriptional regulatory networks are complex and only partially understood. Moreover, measurements made on populations of cells reveal only average properties of the underlying regulatory networks, obscuring their fine detail. Here, we discuss the reconstruction of regulatory networks in individual cells using novel single-cell transcriptomics and proteomics, in order to expand our understanding of the molecular basis of pluripotency, including the role of cell-cell variability within PSC populations, and ways in which networks may be controlled in order to reliably manipulate cell behavior.
Collapse
Affiliation(s)
- Patrick S Stumpf
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Rob Ewing
- Institute for Life Sciences, University of Southampton, Southampton, UK.,Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Ben D MacArthur
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, UK. .,Institute for Life Sciences, University of Southampton, Southampton, UK. .,Department of Mathematics, University of Southampton, Southampton, UK.
| |
Collapse
|
8
|
Hjelmborg JB, Dalgård C, Mangino M, Spector TD, Halekoh U, Möller S, Kimura M, Horvath K, Kark JD, Christensen K, Kyvik KO, Aviv A. Paternal age and telomere length in twins: the germ stem cell selection paradigm. Aging Cell 2015; 14:701-3. [PMID: 25865872 PMCID: PMC4531084 DOI: 10.1111/acel.12334] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2015] [Indexed: 12/31/2022] Open
Abstract
Telomere length, a highly heritable trait, is longer in offspring of older fathers. This perplexing feature has been attributed to the longer telomeres in sperm of older men and it might be an ‘epigenetic’ mechanism through which paternal age plays a role in telomere length regulation in humans. Based on two independent (discovery and replication) twin studies, comprising 889 twin pairs, we show an increase in the resemblance of leukocyte telomere length between dizygotic twins of older fathers, which is not seen in monozygotic twins. This phenomenon might result from a paternal age-dependent germ stem cell selection process, whereby the selected stem cells have longer telomeres, are more homogenous with respect to telomere length, and share resistance to aging.
Collapse
Affiliation(s)
- Jacob B. Hjelmborg
- Department of Epidemiology, Biostatistics and Biodemography Institute of Public Health University of Southern Denmark Odense 5000 Denmark
- The Danish Twin Registry University of Southern Denmark Odense 5000 Denmark
| | - Christine Dalgård
- Department of Environmental Medicine Institute of Public Health University of Southern Denmark Odense 5000 Denmark
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology King's College London London UK
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology King's College London London UK
| | - Ulrich Halekoh
- Department of Epidemiology, Biostatistics and Biodemography Institute of Public Health University of Southern Denmark Odense 5000 Denmark
| | - Sören Möller
- Department of Epidemiology, Biostatistics and Biodemography Institute of Public Health University of Southern Denmark Odense 5000 Denmark
| | - Masayuki Kimura
- Center of Human Development and Aging Rutgers, The State University of New Jersey New Jersey Medical School Newark NJ 07103 USA
| | - Kent Horvath
- Center of Human Development and Aging Rutgers, The State University of New Jersey New Jersey Medical School Newark NJ 07103 USA
| | - Jeremy D. Kark
- Epidemiology Unit Hebrew University‐Hadassah School of Public Health and Community Medicine Jerusalem 91120 Israel
| | - Kaare Christensen
- Department of Epidemiology, Biostatistics and Biodemography Institute of Public Health University of Southern Denmark Odense 5000 Denmark
- The Danish Twin Registry University of Southern Denmark Odense 5000 Denmark
| | - Kirsten O. Kyvik
- Institute of Regional Health Services Research University of Southern Denmark and Odense Patient data Explorative Network (OPEN) Odense University Hospital Odense Denmark
| | - Abraham Aviv
- Center of Human Development and Aging Rutgers, The State University of New Jersey New Jersey Medical School Newark NJ 07103 USA
| |
Collapse
|
9
|
Zeuner A, Todaro M, Stassi G, De Maria R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell 2015; 15:692-705. [PMID: 25479747 DOI: 10.1016/j.stem.2014.11.012] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since their first discovery, investigations of colorectal cancer stem cells (CSCs) have revealed some unexpected properties, including a high degree of heterogeneity and plasticity. By exploiting a combination of genetic, epigenetic, and microenvironmental factors, colorectal CSCs metastasize, resist chemotherapy, and continually adapt to a changing microenvironment, representing a formidable challenge to cancer eradication. Here, we review the current understanding of colorectal CSCs, including their origin, relationship to stem cells of the intestine, phenotypic characterization, and underlying regulatory mechanisms. We also discuss limitations to current preclinical models of colorectal cancer and how understanding CSC plasticity can improve the development of clinical strategies.
Collapse
Affiliation(s)
- Ann Zeuner
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Matilde Todaro
- Department of Surgical and Oncological Sciences, Via del Vespro 131, University of Palermo, 90127 Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical and Oncological Sciences, Via del Vespro 131, University of Palermo, 90127 Palermo, Italy
| | - Ruggero De Maria
- Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy.
| |
Collapse
|
10
|
Dynamic regulation of the cancer stem cell compartment by Cripto-1 in colorectal cancer. Cell Death Differ 2015; 22:1700-13. [PMID: 26343543 PMCID: PMC4563784 DOI: 10.1038/cdd.2015.19] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
Stemness was recently depicted as a dynamic condition in normal and tumor cells. We found that the embryonic protein Cripto-1 (CR1) was expressed by normal stem cells at the bottom of colonic crypts and by cancer stem cells (CSCs) in colorectal tumor tissues. CR1-positive populations isolated from patient-derived tumor spheroids exhibited increased clonogenic capacity and expression of stem-cell-related genes. CR1 expression in tumor spheroids was variable over time, being subject to a complex regulation of the intracellular, surface and secreted protein, which was related to changes of the clonogenic capacity at the population level. CR1 silencing induced CSC growth arrest in vitro with a concomitant decrease of Src/Akt signaling, while in vivo it inhibited the growth of CSC-derived tumor xenografts and reduced CSC numbers. Importantly, CR1 silencing in established xenografts through an inducible expression system decreased CSC growth in both primary and metastatic tumors, indicating an essential role of CR1 in the regulation the CSC compartment. These results point to CR1 as a novel and dynamically regulated effector of stem cell functions in colorectal cancer.
Collapse
|