1
|
Donnio L, Giglia‐Mari G. Keep calm and reboot - how cells restart transcription after DNA damage and DNA repair. FEBS Lett 2025; 599:275-294. [PMID: 38991979 PMCID: PMC11771587 DOI: 10.1002/1873-3468.14964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 07/13/2024]
Abstract
The effects of genotoxic agents on DNA and the processes involved in their removal have been thoroughly studied; however, very little is known about the mechanisms governing the reinstatement of cellular activities after DNA repair, despite restoration of the damage-induced block of transcription being essential for cell survival. In addition to impeding transcription, DNA lesions have the potential to disrupt the precise positioning of chromatin domains within the nucleus and alter the meticulously organized architecture of the nucleolus. Alongside the necessity of resuming transcription mediated by RNA polymerase 1 and 2 transcription, it is crucial to restore the structure of the nucleolus to facilitate optimal ribosome biogenesis and ensure efficient and error-free translation. Here, we examine the current understanding of how transcriptional activity from RNA polymerase 2 is reinstated following DNA repair completion and explore the mechanisms involved in reassembling the nucleolus to safeguard the correct progression of cellular functions. Given the lack of information on this vital function, this Review seeks to inspire researchers to explore deeper into this specific subject and offers essential suggestions on how to investigate this complex and nearly unexplored process further.
Collapse
Affiliation(s)
- Lise‐Marie Donnio
- Institut NeuroMyoGène‐Pathophysiology and Genetics of Neuron and Muscle (INMG_PGNM), CNRS UMR 5261, INSERM U1315Université Claude Bernard Lyon 1Lyon69008France
| | - Giuseppina Giglia‐Mari
- Institut NeuroMyoGène‐Pathophysiology and Genetics of Neuron and Muscle (INMG_PGNM), CNRS UMR 5261, INSERM U1315Université Claude Bernard Lyon 1Lyon69008France
| |
Collapse
|
2
|
Selvam K, Wyrick JJ, Parra MA. DNA Repair in Nucleosomes: Insights from Histone Modifications and Mutants. Int J Mol Sci 2024; 25:4393. [PMID: 38673978 PMCID: PMC11050016 DOI: 10.3390/ijms25084393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
DNA repair pathways play a critical role in genome stability, but in eukaryotic cells, they must operate to repair DNA lesions in the compact and tangled environment of chromatin. Previous studies have shown that the packaging of DNA into nucleosomes, which form the basic building block of chromatin, has a profound impact on DNA repair. In this review, we discuss the principles and mechanisms governing DNA repair in chromatin. We focus on the role of histone post-translational modifications (PTMs) in repair, as well as the molecular mechanisms by which histone mutants affect cellular sensitivity to DNA damage agents and repair activity in chromatin. Importantly, these mechanisms are thought to significantly impact somatic mutation rates in human cancers and potentially contribute to carcinogenesis and other human diseases. For example, a number of the histone mutants studied primarily in yeast have been identified as candidate oncohistone mutations in different cancers. This review highlights these connections and discusses the potential importance of DNA repair in chromatin to human health.
Collapse
Affiliation(s)
- Kathiresan Selvam
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Michael A. Parra
- Department of Chemistry, Susquehanna University, Selinsgrove, PA 17870, USA
| |
Collapse
|
3
|
Fanourgakis S, Synacheri AC, Lavigne MD, Konstantopoulos D, Fousteri M. Histone H2Bub dynamics in the 5' region of active genes are tightly linked to the UV-induced transcriptional response. Comput Struct Biotechnol J 2022; 21:614-629. [PMID: 36659919 PMCID: PMC9823127 DOI: 10.1016/j.csbj.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The timing and location of writing and erasing of histone modifications determine gene expression programs and are tightly controlled processes. One such modification is the monoubiquitination of histone H2B (H2Bub), whose precise level during transcription elongation is dynamically regulated by the synergistic action of RNF20/40 ubiquitin-ligase and the de-ubiquitinase (DUB) of the ATXN7L3-containing DUB modules. Here, we characterize the dynamics of H2Bub in transcription and explore its role in perspective with the recently updated model of UV damage-induced transcription reorganization. Employing integrative analysis of genome-wide high-throughput approaches, transcription inhibitors and ATXN7L3-DUB knockdown cells, we find that H2Bub levels and patterns depend on intron-exon architecture both in steady state and upon UV. Importantly, our analysis reveals a widespread redistribution of this histone mark, rather than a uniform loss as previously suggested, which closely mirrors the post-UV dynamics of elongating RNA Polymerase II (RNAPII) at transcribed loci. The observed effects are due to a direct inter-dependence on RNAPII local concentration and speed, and we show that deficient ATXN7L3-mediated DUB activity leads to increased elongation rates in both non-irradiated and irradiated conditions. Our data and the implementation of a high-resolution computational framework reveal that the H2Bub pattern follows that of RNAPII, both in the ATXNL3 knockdown and in response to UV guaranteeing faithful elongation speed, especially in the context of the transcription-driven DNA damage response.
Collapse
|
4
|
Characterizing and exploiting the many roles of aberrant H2B monoubiquitination in cancer pathogenesis. Semin Cancer Biol 2022; 86:782-798. [PMID: 34953650 DOI: 10.1016/j.semcancer.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023]
Abstract
Monoubiquitination of histone H2B on lysine 120 (H2Bub1) is implicated in the control of multiple essential processes, including transcription, DNA damage repair and mitotic chromosome segregation. Accordingly, aberrant regulation of H2Bub1 can induce transcriptional reprogramming and genome instability that may promote oncogenesis. Remarkably, alterations of the ubiquitin ligases and deubiquitinating enzymes regulating H2Bub1 are emerging as ubiquitous features in cancer, further supporting the possibility that the misregulation of H2Bub1 is an underlying mechanism contributing to cancer pathogenesis. To date, aberrant H2Bub1 dynamics have been reported in multiple cancer types and are associated with transcriptional changes that promote oncogenesis in a cancer type-specific manner. Owing to the multi-functional nature of H2Bub1, misregulation of its writers and erasers may drive disease initiation and progression through additional synergistic processes. Accordingly, understanding the molecular determinants and pathogenic impacts associated with aberrant H2Bub1 regulation may reveal novel drug targets and therapeutic vulnerabilities that can be exploited to develop innovative precision medicine strategies that better combat cancer. In this review, we present the normal functions of H2Bub1 in the control of DNA-associated processes and describe the pathogenic implications associated with its misregulation in cancer. We further discuss the challenges coupled with the development of therapeutic strategies targeting H2Bub1 misregulation and expose the potential benefits of designing treatments that synergistically exploit the multiple functionalities of H2Bub1 to improve treatment selectivity and efficacy.
Collapse
|
5
|
Lashgari A, Kougnassoukou Tchara PE, Lambert JP, Côté J. New insights into the DNA repair pathway choice with NuA4/TIP60. DNA Repair (Amst) 2022; 113:103315. [PMID: 35278769 DOI: 10.1016/j.dnarep.2022.103315] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
Abstract
In eukaryotic cells, DNA double-strand breaks (DSBs) can be repaired through two main pathways, non-homologous end-joining (NHEJ) or homologous recombination (HR). The selection of the repair pathway choice is governed by an antagonistic relationship between repair factors specific to each pathway, in a cell cycle-dependent manner. The molecular mechanisms of this decision implicate post-translational modifications of chromatin surrounding the break. Here, we discuss the recent advances regarding the function of the NuA4/TIP60 histone acetyltransferase/chromatin remodeling complex during DSBs repair. In particular, we emphasise the contribution of NuA4/TIP60 in repair pathway choice, in collaboration with the SAGA acetyltransferase complex, and how they regulate chromatin dynamics, modify non-histone substrates to allow DNA end resection and recombination.
Collapse
Affiliation(s)
- Anahita Lashgari
- St-Patrick Research Group in Basic Oncology, Canada; Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada; Department of Molecular Medicine, Big Data Research Center, Université Laval, Quebec, Canada
| | - Pata-Eting Kougnassoukou Tchara
- Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada; Department of Molecular Medicine, Big Data Research Center, Université Laval, Quebec, Canada
| | - Jean-Philippe Lambert
- Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada; Department of Molecular Medicine, Big Data Research Center, Université Laval, Quebec, Canada.
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Canada; Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada.
| |
Collapse
|
6
|
Li W, Jones K, Burke TJ, Hossain MA, Lariscy L. Epigenetic Regulation of Nucleotide Excision Repair. Front Cell Dev Biol 2022; 10:847051. [PMID: 35465333 PMCID: PMC9023881 DOI: 10.3389/fcell.2022.847051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022] Open
Abstract
Genomic DNA is constantly attacked by a plethora of DNA damaging agents both from endogenous and exogenous sources. Nucleotide excision repair (NER) is the most versatile repair pathway that recognizes and removes a wide range of bulky and/or helix-distorting DNA lesions. Even though the molecular mechanism of NER is well studied through in vitro system, the NER process inside the cell is more complicated because the genomic DNA in eukaryotes is tightly packaged into chromosomes and compacted into a nucleus. Epigenetic modifications regulate gene activity and expression without changing the DNA sequence. The dynamics of epigenetic regulation play a crucial role during the in vivo NER process. In this review, we summarize recent advances in our understanding of the epigenetic regulation of NER.
Collapse
|
7
|
Rezaei-Lotfi S, Vujovic F, Simonian M, Hunter N, Farahani RM. Programmed genomic instability regulates neural transdifferentiation of human brain microvascular pericytes. Genome Biol 2021; 22:334. [PMID: 34886891 PMCID: PMC8656028 DOI: 10.1186/s13059-021-02555-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transdifferentiation describes transformation in vivo of specialized cells from one lineage into another. While there is extensive literature on forced induction of lineage reprogramming in vitro, endogenous mechanisms that govern transdifferentiation remain largely unknown. The observation that human microvascular pericytes transdifferentiate into neurons provided an opportunity to explore the endogenous molecular basis for lineage reprogramming. RESULTS We show that abrupt destabilization of the higher-order chromatin topology that chaperones lineage memory of pericytes is driven by transient global transcriptional arrest. This leads within minutes to localized decompression of the repressed competing higher-order chromatin topology and expression of pro-neural genes. Transition to neural lineage is completed by probabilistic induction of R-loops in key myogenic loci upon re-initiation of RNA polymerase activity, leading to depletion of the myogenic transcriptome and emergence of the neurogenic transcriptome. CONCLUSIONS These findings suggest that the global transcriptional landscape not only shapes the functional cellular identity of pericytes, but also stabilizes lineage memory by silencing the competing neural program within a repressed chromatin state.
Collapse
Affiliation(s)
- Saba Rezaei-Lotfi
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006 Australia
| | - Filip Vujovic
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006 Australia
| | - Mary Simonian
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Westmead, NSW 2145 Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
8
|
Adamowicz M, Hailstone R, Demin AA, Komulainen E, Hanzlikova H, Brazina J, Gautam A, Wells SE, Caldecott KW. XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair. Nat Cell Biol 2021; 23:1287-1298. [PMID: 34811483 PMCID: PMC8683375 DOI: 10.1038/s41556-021-00792-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Genetic defects in the repair of DNA single-strand breaks (SSBs) can result in neurological disease triggered by toxic activity of the single-strand-break sensor protein PARP1. However, the mechanism(s) by which this toxic PARP1 activity triggers cellular dysfunction are unclear. Here we show that human cells lacking XRCC1 fail to rapidly recover transcription following DNA base damage, a phenotype also observed in patient-derived fibroblasts with XRCC1 mutations and Xrcc1−/− mouse neurons. This defect is caused by excessive/aberrant PARP1 activity during DNA base excision repair, resulting from the loss of PARP1 regulation by XRCC1. We show that aberrant PARP1 activity suppresses transcriptional recovery during base excision repair by promoting excessive recruitment and activity of the ubiquitin protease USP3, which as a result reduces the level of monoubiquitinated histones important for normal transcriptional regulation. Importantly, inhibition and/or deletion of PARP1 or USP3 restores transcriptional recovery in XRCC1−/− cells, highlighting PARP1 and USP3 as possible therapeutic targets in neurological disease. Adamowicz et al. report that toxic PARP1 activity, induced by ataxia-associated mutations in XRCC1, impairs the recovery of global transcription during DNA base excision repair by promoting aberrant recruitment and activity of the histone ubiquitin protease USP3.
Collapse
Affiliation(s)
- Marek Adamowicz
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Richard Hailstone
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Annie A Demin
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Emilia Komulainen
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Hana Hanzlikova
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK.,Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic
| | - Jan Brazina
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Amit Gautam
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Sophie E Wells
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Keith W Caldecott
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK. .,Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic.
| |
Collapse
|
9
|
Feng T, Ling S, Xu C, Ying L, Su D, Xu X. Ubiquitin-specific peptidase 22 in cancer. Cancer Lett 2021; 514:30-37. [PMID: 33989708 DOI: 10.1016/j.canlet.2021.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Recently, many studies have shown that deubiquitination modification of proteins is of great significance in major physiological processes such as cell proliferation, apoptosis, and differentiation. The ubiquitin-specific peptidase (USP) family is one of the most numerous and structurally diverse of the deubiquitinates known to date. USP22, an important member of the USP family, has been found to be closely associated with tumor cell cycle regulation, stemness maintenance, invasion and metastasis, chemoresistance, and immune regulation. We focus on recent advances regarding USP22's function in cancer and discuss the prospect of USP22 in this review.
Collapse
Affiliation(s)
- Tingting Feng
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Department of Colorectal Medicine, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Sunbin Ling
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Chenyang Xu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Lisha Ying
- Cancer Research Institute, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Dan Su
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
10
|
Control of the chromatin response to DNA damage: Histone proteins pull the strings. Semin Cell Dev Biol 2021; 113:75-87. [DOI: 10.1016/j.semcdb.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
|
11
|
Zhu L, Cheng H, Peng G, Wang S, Zhang Z, Ni E, Fu X, Zhuang C, Liu Z, Zhou H. Ubiquitinome Profiling Reveals the Landscape of Ubiquitination Regulation in Rice Young Panicles. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:305-320. [PMID: 33147495 PMCID: PMC7801245 DOI: 10.1016/j.gpb.2019.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/06/2018] [Accepted: 01/11/2019] [Indexed: 02/04/2023]
Abstract
Ubiquitination, an essential post-transcriptional modification (PTM), plays a vital role in nearly every biological process, including development and growth. Despite its functions in plant reproductive development, its targets in rice panicles remain unclear. In this study, we used proteome-wide profiling of lysine ubiquitination in rice (O. sativa ssp. indica) young panicles. We created the largest ubiquitinome dataset in rice to date, identifying 1638 lysine ubiquitination sites on 916 unique proteins. We detected three conserved ubiquitination motifs, noting that acidic glutamic acid (E) and aspartic acid (D) were most frequently present around ubiquitinated lysine. Enrichment analysis of Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of these ubiquitinated proteins revealed that ubiquitination plays an important role in fundamental cellular processes in rice young panicles. Interestingly, enrichment analysis of protein domains indicated that ubiquitination was enriched on a variety of receptor-like kinases and cytoplasmic tyrosine and serine-threonine kinases. Furthermore, we analyzed the crosstalk between ubiquitination, acetylation, and succinylation, and constructed a potential protein interaction network within our rice ubiquitinome. Moreover, we identified ubiquitinated proteins related to pollen and grain development, indicating that ubiquitination may play a critical role in the physiological functions in young panicles. Taken together, we reported the most comprehensive lysine ubiquitinome in rice so far, and used it to reveal the functional role of lysine ubiquitination in rice young panicles.
Collapse
Affiliation(s)
- Liya Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Han Cheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoqing Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shuansuo Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Centre for Plant Gene Research, Beijing 100101, China
| | - Zhiguo Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Erdong Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, National Centre for Plant Gene Research, Beijing 100101, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zexian Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Suresh HG, Pascoe N, Andrews B. The structure and function of deubiquitinases: lessons from budding yeast. Open Biol 2020; 10:200279. [PMID: 33081638 PMCID: PMC7653365 DOI: 10.1098/rsob.200279] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination is a key post-translational modification that regulates diverse cellular processes in eukaryotic cells. The specificity of ubiquitin (Ub) signalling for different bioprocesses and pathways is dictated by the large variety of mono-ubiquitination and polyubiquitination events, including many possible chain architectures. Deubiquitinases (DUBs) reverse or edit Ub signals with high sophistication and specificity, forming an integral arm of the Ub signalling machinery, thus impinging on fundamental cellular processes including DNA damage repair, gene expression, protein quality control and organellar integrity. In this review, we discuss the many layers of DUB function and regulation, with a focus on insights gained from budding yeast. Our review provides a framework to understand key aspects of DUB biology.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Natasha Pascoe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Brenda Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
13
|
Nuño-Cabanes C, Rodríguez-Navarro S. The promiscuity of the SAGA complex subunits: Multifunctional or moonlighting proteins? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194607. [PMID: 32712338 DOI: 10.1016/j.bbagrm.2020.194607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Gene expression, the decoding of DNA information into accessible instructions for protein synthesis, is a complex process in which multiple steps, including transcription, mRNA processing and mRNA export, are regulated by different factors. One of the first steps in this process involves chemical and structural changes in chromatin to allow transcription. For such changes to occur, histone tail and DNA epigenetic modifications foster the binding of transcription factors to promoter regions. The SAGA coactivator complex plays a crucial role in this process by mediating histone acetylation through Gcn5, and histone deubiquitination through Ubp8 enzymes. However, most SAGA subunits interact physically with other proteins beyond the SAGA complex. These interactions could represent SAGA-independent functions or a mechanism to widen SAGA multifunctionality. Among the different mechanisms to perform more than one function, protein moonlighting defines unrelated molecular activities for the same polypeptide sequence. Unlike pleiotropy, where a single gene can affect different phenotypes, moonlighting necessarily involves separate functions of a protein at the molecular level. In this review we describe in detail some of the alternative physical interactions of several SAGA subunits. In some cases, the alternative role constitutes a clear moonlighting function, whereas in most of them the lack of molecular evidence means that we can only define these interactions as promiscuous that require further work to verify if these are moonlighting functions.
Collapse
Affiliation(s)
- Carme Nuño-Cabanes
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, E-46010 Valencia, Spain
| | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, E-46010 Valencia, Spain.
| |
Collapse
|
14
|
Abstract
Chromatin is a highly dynamic structure that closely relates with gene expression in eukaryotes. ATP-dependent chromatin remodelling, histone post-translational modification and DNA methylation are the main ways that mediate such plasticity. The histone variant H2A.Z is frequently encountered in eukaryotes, and can be deposited or removed from nucleosomes by chromatin remodelling complex SWR1 or INO80, respectively, leading to altered chromatin state. H2A.Z has been found to be involved in a diverse range of biological processes, including genome stability, DNA repair and transcriptional regulation. Due to their formidable production of secondary metabolites, filamentous fungi play outstanding roles in pharmaceutical production, food safety and agriculture. During the last few years, chromatin structural changes were proven to be a key factor associated with secondary metabolism in fungi. However, studies on the function of H2A.Z are scarce. Here, we summarize current knowledge of H2A.Z functions with a focus on filamentous fungi. We propose that H2A.Z is a potential target involved in the regulation of secondary metabolite biosynthesis by fungi.
Collapse
|
15
|
Serrano-Quílez J, Roig-Soucase S, Rodríguez-Navarro S. Sharing Marks: H3K4 Methylation and H2B Ubiquitination as Features of Meiotic Recombination and Transcription. Int J Mol Sci 2020; 21:ijms21124510. [PMID: 32630409 PMCID: PMC7350030 DOI: 10.3390/ijms21124510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Meiosis is a specialized cell division that gives raise to four haploid gametes from a single diploid cell. During meiosis, homologous recombination is crucial to ensure genetic diversity and guarantee accurate chromosome segregation. Both the formation of programmed meiotic DNA double-strand breaks (DSBs) and their repair using homologous chromosomes are essential and highly regulated pathways. Similar to other processes that take place in the context of chromatin, histone posttranslational modifications (PTMs) constitute one of the major mechanisms to regulate meiotic recombination. In this review, we focus on specific PTMs occurring in histone tails as driving forces of different molecular events, including meiotic recombination and transcription. In particular, we concentrate on the influence of H3K4me3, H2BK123ub, and their corresponding molecular machineries that write, read, and erase these histone marks. The Spp1 subunit within the Complex of Proteins Associated with Set1 (COMPASS) is a critical regulator of H3K4me3-dependent meiotic DSB formation. On the other hand, the PAF1c (RNA polymerase II associated factor 1 complex) drives the ubiquitination of H2BK123 by Rad6-Bre1. We also discuss emerging evidence obtained by cryo-electron microscopy (EM) structure determination that has provided new insights into how the "cross-talk" between these two marks is accomplished.
Collapse
|
16
|
Slobodin B, Bahat A, Sehrawat U, Becker-Herman S, Zuckerman B, Weiss AN, Han R, Elkon R, Agami R, Ulitsky I, Shachar I, Dikstein R. Transcription Dynamics Regulate Poly(A) Tails and Expression of the RNA Degradation Machinery to Balance mRNA Levels. Mol Cell 2020; 78:434-444.e5. [PMID: 32294471 DOI: 10.1016/j.molcel.2020.03.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 03/14/2020] [Indexed: 02/02/2023]
Abstract
Gene expression is regulated by the rates of synthesis and degradation of mRNAs, but how these processes are coordinated is poorly understood. Here, we show that reduced transcription dynamics of specific genes leads to enhanced m6A deposition, preferential activity of the CCR4-Not complex, shortened poly(A) tails, and reduced stability of the respective mRNAs. These effects are also exerted by internal ribosome entry site (IRES) elements, which we found to be transcriptional pause sites. However, when transcription dynamics, and subsequently poly(A) tails, are globally altered, cells buffer mRNA levels by adjusting the expression of mRNA degradation machinery. Stress-provoked global impediment of transcription elongation leads to a dramatic inhibition of the mRNA degradation machinery and massive mRNA stabilization. Accordingly, globally enhanced transcription, such as following B cell activation or glucose stimulation, has the opposite effects. This study uncovers two molecular pathways that maintain balanced gene expression in mammalian cells by linking transcription to mRNA stability.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anat Bahat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Urmila Sehrawat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shirly Becker-Herman
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binyamin Zuckerman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Amanda N Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ruiqi Han
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Igor Ulitsky
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Idit Shachar
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
17
|
Nardi IK, Stark JM, Larsen A, Salgia R, Raz DJ. USP22 Interacts with PALB2 and Promotes Chemotherapy Resistance via Homologous Recombination of DNA Double-Strand Breaks. Mol Cancer Res 2019; 18:424-435. [PMID: 31685642 PMCID: PMC9285637 DOI: 10.1158/1541-7786.mcr-19-0053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/15/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022]
Abstract
Homologous recombination (HR) is a highly conserved pathway that can facilitate the repair of DNA double-strand breaks (DSB). Several Deubiquitinases (DUB) have been implicated as key players in DNA damage repair (DDR) through HR. Here, we report USP22, a DUB that is highly overexpressed in multiple cancer types, is necessary for HR through a direct interaction with PALB2 through its C-terminal WD40 domain. This interaction stimulates USP22 catalytic activity in vitro. Furthermore, we show USP22 is necessary for BRCA2, PALB2, and Rad51 recruitment to DSBs and this is, in part, through USP22 stabilizing BRCA2 and PALB2 levels. Taken together, our results describe a role for USP22 in DNA repair. IMPLICATIONS: This research provides new and exciting mechanistic insights into how USP22 overexpression promotes chemoresistance in lung cancer. We believe this study, and others, will help aid in developing targeted drugs toward USP22 and known binding partners for lung cancer treatment.
Collapse
Affiliation(s)
- Isaac K Nardi
- Division of Thoracic Surgery, Baum Family Thoracic Oncology Laboratory, City of Hope National Medical Center, Duarte, California.
- Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, City of Hope National Medical Center, Duarte, California
| | - Adrien Larsen
- Department of Computational Therapeutics, City of Hope National Medical Center, Duarte, California
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Dan J Raz
- Division of Thoracic Surgery, Baum Family Thoracic Oncology Laboratory, City of Hope National Medical Center, Duarte, California
- Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
18
|
Nune M, Morgan MT, Connell Z, McCullough L, Jbara M, Sun H, Brik A, Formosa T, Wolberger C. FACT and Ubp10 collaborate to modulate H2B deubiquitination and nucleosome dynamics. eLife 2019; 8:40988. [PMID: 30681413 PMCID: PMC6372288 DOI: 10.7554/elife.40988] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Monoubiquitination of histone H2B (H2B-Ub) plays a role in transcription and DNA replication, and is required for normal localization of the histone chaperone, FACT. In yeast, H2B-Ub is deubiquitinated by Ubp8, a subunit of SAGA, and Ubp10. Although they target the same substrate, loss of Ubp8 and Ubp10 cause different phenotypes and alter the transcription of different genes. We show that Ubp10 has poor activity on yeast nucleosomes, but that the addition of FACT stimulates Ubp10 activity on nucleosomes and not on other substrates. Consistent with a role for FACT in deubiquitinating H2B in vivo, a FACT mutant strain shows elevated levels of H2B-Ub. Combination of FACT mutants with deletion of Ubp10, but not Ubp8, confers increased sensitivity to hydroxyurea and activates a cryptic transcription reporter, suggesting that FACT and Ubp10 may coordinate nucleosome assembly during DNA replication and transcription. Our findings reveal unexpected interplay between H2B deubiquitination and nucleosome dynamics.
Collapse
Affiliation(s)
- Melesse Nune
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Michael T Morgan
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zaily Connell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Laura McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Muhammad Jbara
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hao Sun
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Cynthia Wolberger
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
19
|
Hodges AJ, Plummer DA, Wyrick JJ. NuA4 acetyltransferase is required for efficient nucleotide excision repair in yeast. DNA Repair (Amst) 2018; 73:91-98. [PMID: 30473425 DOI: 10.1016/j.dnarep.2018.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/02/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
The nucleotide excision repair (NER) pathway is critical for removing damage induced by ultraviolet (UV) light and other helix-distorting lesions from cellular DNA. While efficient NER is critical to avoid cell death and mutagenesis, NER activity is inhibited in chromatin due to the association of lesion-containing DNA with histone proteins. Histone acetylation has emerged as an important mechanism for facilitating NER in chromatin, particularly acetylation catalyzed by the Spt-Ada-Gcn5 acetyltransferase (SAGA); however, it is not known if other histone acetyltransferases (HATs) promote NER activity in chromatin. Here, we report that the essential Nucleosome Acetyltransferase of histone H4 (NuA4) complex is required for efficient NER in Saccharomyces cerevisiae. Deletion of the non-essential Yng2 subunit of the NuA4 complex causes a general defect in repair of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast; in contrast, deletion of the Sas3 catalytic subunit of the NuA3 complex does not affect repair. Rapid depletion of the essential NuA4 catalytic subunit Esa1 using the anchor-away method also causes a defect in NER, particularly at the heterochromatic HML locus. We show that disrupting the Sds3 subunit of the Rpd3L histone deacetylase (HDAC) complex rescued the repair defect associated with loss of Esa1 activity, suggesting that NuA4-catalyzed acetylation is important for efficient NER in heterochromatin.
Collapse
Affiliation(s)
- Amelia J Hodges
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, United States
| | - Dalton A Plummer
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, United States
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, United States; Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, United States.
| |
Collapse
|
20
|
Hadwiger LA, Tanaka K. DNA Damage and Chromatin Conformation Changes Confer Nonhost Resistance: A Hypothesis Based on Effects of Anti-cancer Agents on Plant Defense Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:1056. [PMID: 30087685 PMCID: PMC6066612 DOI: 10.3389/fpls.2018.01056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/28/2018] [Indexed: 05/06/2023]
Abstract
Over the last decades, medical research has utilized DNA altering procedures in cancer treatments with the objective of killing cells or suppressing cell proliferation. Simultaneous research related to enhancing disease resistance in plants reported that alterations in DNA can enhance defense responses. These two opposite perspectives have in common their effects on the center for gene transcription, the nuclear chromatin. A review of selected research from both anticancer- and plant defense-related research provides examples of some specific DNA altering actions: DNA helical distortion, DNA intercalation, DNA base substitution, DNA single cleavage by DNases, DNA alkylation/methylation, and DNA binding/exclusion. The actions of the pertinent agents are compared, and their proposed modes of action are described in this study. Many of the DNA specific agents affecting resistance responses in plants, e.g., the model system using pea endocarp tissue, are indeed anticancer agents. The tumor cell death or growth suppression in cancer cells following high level treatments may be accompanied with chromatin distortions. Likewise, in plants, DNA-specific agents activate enhanced expression of many genes including defense genes, probably due to the chromatin alterations resulting from the agents. Here, we propose a hypothesis that DNA damage and chromatin structural changes are central mechanisms in initiating defense gene transcription during the nonhost resistance response in plants.
Collapse
Affiliation(s)
- Lee A. Hadwiger
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | | |
Collapse
|
21
|
mRNA Processing Factor CstF-50 and Ubiquitin Escort Factor p97 Are BRCA1/BARD1 Cofactors Involved in Chromatin Remodeling during the DNA Damage Response. Mol Cell Biol 2018; 38:MCB.00364-17. [PMID: 29180510 PMCID: PMC5789026 DOI: 10.1128/mcb.00364-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/14/2017] [Indexed: 02/08/2023] Open
Abstract
The cellular response to DNA damage is an intricate mechanism that involves the interplay among several pathways. In this study, we provide evidence of the roles of the polyadenylation factor cleavage stimulation factor 50 (CstF-50) and the ubiquitin (Ub) escort factor p97 as cofactors of BRCA1/BARD1 E3 Ub ligase, facilitating chromatin remodeling during the DNA damage response (DDR). CstF-50 and p97 formed complexes with BRCA1/BARD1, Ub, and some BRCA1/BARD1 substrates, such as RNA polymerase (RNAP) II and histones. Furthermore, CstF-50 and p97 had an additive effect on the activation of the ubiquitination of these BRCA1/BARD1 substrates during DDR. Importantly, as a result of these functional interactions, BRCA1/BARD1/CstF-50/p97 had a specific effect on the chromatin structure of genes that were differentially expressed. This study provides new insights into the roles of RNA processing, BRCA1/BARD1, the Ub pathway, and chromatin structure during DDR.
Collapse
|
22
|
Ubiquitin Specific Peptidase 22 Regulates Histone H2B Mono-Ubiquitination and Exhibits Both Oncogenic and Tumor Suppressor Roles in Cancer. Cancers (Basel) 2017; 9:cancers9120167. [PMID: 29210986 PMCID: PMC5742815 DOI: 10.3390/cancers9120167] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Ubiquitin-Specific Peptidase 22 (USP22) is a ubiquitin hydrolase, notably catalyzing the removal of the mono-ubiquitin moiety from histone H2B (H2Bub1). Frequent overexpression of USP22 has been observed in various cancer types and is associated with poor patient prognosis. Multiple mechanisms have been identified to explain how USP22 overexpression contributes to cancer progression, and thus, USP22 has been proposed as a novel drug target in cancer. However, gene re-sequencing data from numerous cancer types show that USP22 expression is frequently diminished, suggesting it may also harbor tumor suppressor-like properties. This review will examine the current state of knowledge on USP22 expression in cancers, describe its impact on H2Bub1 abundance and present the mechanisms through which altered USP22 expression may contribute to oncogenesis, including an emerging role for USP22 in the maintenance of genome stability in cancer. Clarifying the impact aberrant USP22 expression and abnormal H2Bub1 levels have in oncogenesis is critical before precision medicine therapies can be developed that either directly target USP22 overexpression or exploit the loss of USP22 expression in cancer cells.
Collapse
|
23
|
DNA damage-induced histone H1 ubiquitylation is mediated by HUWE1 and stimulates the RNF8-RNF168 pathway. Sci Rep 2017; 7:15353. [PMID: 29127375 PMCID: PMC5681673 DOI: 10.1038/s41598-017-15194-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/16/2017] [Indexed: 01/08/2023] Open
Abstract
The DNA damage response (DDR), comprising distinct repair and signalling pathways, safeguards genomic integrity. Protein ubiquitylation is an important regulatory mechanism of the DDR. To study its role in the UV-induced DDR, we characterized changes in protein ubiquitylation following DNA damage using quantitative di-Gly proteomics. Interestingly, we identified multiple sites of histone H1 that are ubiquitylated upon UV-damage. We show that UV-dependent histone H1 ubiquitylation at multiple lysines is mediated by the E3-ligase HUWE1. Recently, it was shown that poly-ubiquitylated histone H1 is an important signalling intermediate in the double strand break response. This poly-ubiquitylation is dependent on RNF8 and Ubc13 which extend pre-existing ubiquitin modifications to K63-linked chains. Here we demonstrate that HUWE1 depleted cells showed reduced recruitment of RNF168 and 53BP1 to sites of DNA damage, two factors downstream of RNF8 mediated histone H1 poly-ubiquitylation, while recruitment of MDC1, which act upstream of histone H1 ubiquitylation, was not affected. Our data show that histone H1 is a prominent target for ubiquitylation after UV-induced DNA damage. Our data are in line with a model in which HUWE1 primes histone H1 with ubiquitin to allow ubiquitin chain elongation by RNF8, thereby stimulating the RNF8-RNF168 mediated DDR.
Collapse
|
24
|
Abstract
DNA double strand breaks need to be repaired in an organized fashion to preserve genomic integrity. In the organization of faithful repair, histone ubiquitination plays a crucial role. Recent findings suggest an integrated model for DNA repair regulation through site-specific histone ubiquitination and crosstalk to other posttranslational modifications. Here we discuss how site-specific histone ubiquitination is achieved on a molecular level and how different multi-protein complexes work together to integrate different histone ubiquitination states. We propose a model where site-specific H2A ubiquitination organizes the spatio-temporal recruitment of DNA repair factors which will ultimately contribute to DNA repair pathway choice between homologous recombination and non-homologous end joining.
Collapse
Affiliation(s)
- Michael Uckelmann
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Centre, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Monoubiquitylation of histone H2B contributes to the bypass of DNA damage during and after DNA replication. Proc Natl Acad Sci U S A 2017; 114:E2205-E2214. [PMID: 28246327 PMCID: PMC5358361 DOI: 10.1073/pnas.1612633114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
DNA lesion bypass is mediated by DNA damage tolerance (DDT) pathways and homologous recombination (HR). The DDT pathways, which involve translesion synthesis and template switching (TS), are activated by the ubiquitylation (ub) of PCNA through components of the RAD6-RAD18 pathway, whereas the HR pathway is independent of RAD18 However, it is unclear how these processes are coordinated within the context of chromatin. Here we show that Bre1, an ubiquitin ligase specific for histone H2B, is recruited to chromatin in a manner coupled to replication of damaged DNA. In the absence of Bre1 or H2Bub, cells exhibit accumulation of unrepaired DNA lesions. Consequently, the damaged forks become unstable and resistant to repair. We provide physical, genetic, and cytological evidence that H2Bub contributes toward both Rad18-dependent TS and replication fork repair by HR. Using an inducible system of DNA damage bypass, we further show that H2Bub is required for the regulation of DDT after genome duplication. We propose that Bre1-H2Bub facilitates fork recovery and gap-filling repair by controlling chromatin dynamics in response to replicative DNA damage.
Collapse
|
26
|
Nucleotide Excision Repair: From Neurodegeneration to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:17-39. [PMID: 28840550 DOI: 10.1007/978-3-319-60733-7_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA damage poses a constant threat to genome integrity taking a variety of shapes and arising by normal cellular metabolism or environmental insults. Human syndromes, characterized by increased cancer pre-disposition or early onset of age-related pathology and developmental abnormalities, often result from defective DNA damage responses and compromised genome integrity. Over the last decades intensive research worldwide has made important contributions to our understanding of the molecular mechanisms underlying genomic instability and has substantiated the importance of DNA repair in cancer prevention in the general population. In this chapter, we discuss Nucleotide Excision Repair pathway, the causative role of its components in disease-related pathology and recent technological achievements that decipher mutational landscapes and may facilitate pathological classification and personalized therapy.
Collapse
|
27
|
Mao P, Wyrick JJ. Emerging roles for histone modifications in DNA excision repair. FEMS Yeast Res 2016; 16:fow090. [PMID: 27737893 DOI: 10.1093/femsyr/fow090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/27/2022] Open
Abstract
DNA repair is critical to maintain genome stability. In eukaryotic cells, DNA repair is complicated by the packaging of the DNA 'substrate' into chromatin. DNA repair pathways utilize different mechanisms to overcome the barrier presented by chromatin to efficiently locate and remove DNA lesions in the genome. DNA excision repair pathways are responsible for repairing a majority of DNA lesions arising in the genome. Excision repair pathways include nucleotide excision repair (NER) and base excision repair (BER), which repair bulky and non-bulky DNA lesions, respectively. Numerous studies have suggested that chromatin inhibits both NER and BER in vitro and in vivo Growing evidence demonstrates that histone modifications have important roles in regulating the activity of NER and BER enzymes in chromatin. Here, we will discuss the roles of different histone modifications and the corresponding modifying enzymes in DNA excision repair, highlighting the role of yeast as a model organism for many of these studies.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
28
|
Yu L, Rege M, Peterson CL, Volkert MR. RNA polymerase II depletion promotes transcription of alternative mRNA species. BMC Mol Biol 2016; 17:20. [PMID: 27578267 PMCID: PMC5004267 DOI: 10.1186/s12867-016-0074-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cells respond to numerous internal and external stresses, such as heat, cold, oxidative stress, DNA damage, and osmotic pressure changes. In most cases, the primary response to stress is transcriptional induction of genes that assist the cells in tolerating the stress and facilitate the repair of the cellular damage. However, when the transcription machinery itself is stressed, responding by such standard mechanisms may not be possible. RESULTS In this study, we demonstrate that depletion or inactivation of RNA polymerase II (RNAPII) changes the preferred polyadenylation site usage for several transcripts, and leads to increased transcription of a specific subset of genes. Surprisingly, depletion of RNA polymerase I (RNAPI) also promotes altered polyadenylation site usage, while depletion of RNA polymerase III (RNAPIII) does not appear to have an impact. CONCLUSIONS Our results demonstrate that stressing the transcription machinery by depleting either RNAPI or RNAPII leads to a novel transcriptional response that results in induction of specific mRNAs and altered polyadenylation of many of the induced transcripts.
Collapse
Affiliation(s)
- Lijian Yu
- Microbiological and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA
| | - Mayuri Rege
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605, USA.
| | - Michael R Volkert
- Microbiological and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA.
| |
Collapse
|
29
|
Melo-Cardenas J, Zhang Y, Zhang DD, Fang D. Ubiquitin-specific peptidase 22 functions and its involvement in disease. Oncotarget 2016; 7:44848-44856. [PMID: 27057639 PMCID: PMC5190139 DOI: 10.18632/oncotarget.8602] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/10/2016] [Indexed: 12/24/2022] Open
Abstract
Deubiquitylases remove ubiquitin moieties from different substrates to regulate protein activity and cell homeostasis. Since this posttranslational modification plays a role in several different cellular functions, its deregulation has been associated with different pathologies. Aberrant expression of the Ubiquitin-Specific Peptidase 22 (USP22) has been associated with poor cancer prognosis and neurological disorders. However, little is known about USP22 role in these pathologies or in normal physiology. This review summarizes the current knowledge about USP22 function from yeast to human and provides an overview of the possible mechanisms by which USP22 is emerging as a potential oncogene.
Collapse
Affiliation(s)
- Johanna Melo-Cardenas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yusi Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
30
|
Zhang Z, Chen L, Xing X, Li D, Gao C, He Z, Li J, Zhu X, Xiao X, Wang S, Wang F, Ren Z, Xiao Y, Dharmage SC, Dong G, Zheng Y, Chen W. Specific histone modifications were associated with the PAH-induced DNA damage response in coke oven workers. Toxicol Res (Camb) 2016; 5:1193-1201. [PMID: 30090425 PMCID: PMC6062299 DOI: 10.1039/c6tx00112b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022] Open
Abstract
To investigate whether polycyclic aromatic hydrocarbon (PAH) exposure is associated with specific histone modifications and whether DNA damage triggers epigenetic alterations, we recruited 190 male workers with occupational exposure to PAHs and 100 male control workers from Benxi Steel Plant, Liaoning province, China. Urinary 1-hydroxypyrene (1-OHP), DNA damage, specific histone modification levels and the expression of selected DNA damage response (DDR) genes were measured in peripheral blood lymphocytes (PBLCs) of the subjects. The results showed that trimethylated Lys 27 of histone H3 (H3K27me3) and trimethylated Lys 36 of histone H3 (H3K36me3) were elevated in the PAH-exposed group (both P < 0.001), while trimethylated Lys H3 of histone H3 (H3K4me3) was decreased compared to the unexposed group (P < 0.001). Notably, H3K36me3 was positively associated with the level of internal exposure marker 1-OHP (β = 0.197; P < 0.001) and the degree of DNA damage (β = 0.175; P < 0.001) in all subjects, indicating that the PAH-induced DNA damage response might be mediated by H3K36me3 and/or H3K4me3 modifications. Particularly, the ChIP-qPCR assay revealed that the modifications of H3K36me3 were enriched in the gene body of DDR genes, MGMT and MLH1. The up-regulation of MGMT and MLH1 was correlated with the elevated H3K36me3 in the PAH-exposed workers (P < 0.001). Collectively, we revealed that H3K36me3 could be an indicator of PAH exposure and might be involved in the transcriptional regulation of DNA repair genes in response to DNA damage.
Collapse
Affiliation(s)
- Zhengbao Zhang
- Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment , Department of Toxicology , School of Public Health , Sun Yat-sen University , Guangzhou , China . ; ; Tel: +011 86 20 87330599
| | - Liping Chen
- Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment , Department of Toxicology , School of Public Health , Sun Yat-sen University , Guangzhou , China . ; ; Tel: +011 86 20 87330599
| | - Xiumei Xing
- Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment , Department of Toxicology , School of Public Health , Sun Yat-sen University , Guangzhou , China . ; ; Tel: +011 86 20 87330599
| | - Daochuan Li
- Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment , Department of Toxicology , School of Public Health , Sun Yat-sen University , Guangzhou , China . ; ; Tel: +011 86 20 87330599
| | - Chen Gao
- Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment , Department of Toxicology , School of Public Health , Sun Yat-sen University , Guangzhou , China . ; ; Tel: +011 86 20 87330599
| | - Zhini He
- Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment , Department of Toxicology , School of Public Health , Sun Yat-sen University , Guangzhou , China . ; ; Tel: +011 86 20 87330599
| | - Jie Li
- Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment , Department of Toxicology , School of Public Health , Sun Yat-sen University , Guangzhou , China . ; ; Tel: +011 86 20 87330599
| | - Xiaonian Zhu
- Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment , Department of Toxicology , School of Public Health , Sun Yat-sen University , Guangzhou , China . ; ; Tel: +011 86 20 87330599
| | - Xinhua Xiao
- Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment , Department of Toxicology , School of Public Health , Sun Yat-sen University , Guangzhou , China . ; ; Tel: +011 86 20 87330599
| | - Shan Wang
- Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment , Department of Toxicology , School of Public Health , Sun Yat-sen University , Guangzhou , China . ; ; Tel: +011 86 20 87330599
| | - Fangping Wang
- Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment , Department of Toxicology , School of Public Health , Sun Yat-sen University , Guangzhou , China . ; ; Tel: +011 86 20 87330599
| | - Zefang Ren
- Department of Epidemiology , School of Public Health , Sun Yat-sen University , Guangzhou , China
| | - Yongmei Xiao
- Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment , Department of Toxicology , School of Public Health , Sun Yat-sen University , Guangzhou , China . ; ; Tel: +011 86 20 87330599
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit , Melbourne School of Population and Global Health , University of Melbourne , Australia
| | - Guanghui Dong
- Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment , Department of Toxicology , School of Public Health , Sun Yat-sen University , Guangzhou , China . ; ; Tel: +011 86 20 87330599
| | - Yuxin Zheng
- Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control , Chinese Center for Disease Control and Prevention , Beijing , China . ; ; Tel: +011 86 10 83132593
| | - Wen Chen
- Key Laboratory of Guangzhou Environmental Pollution and Risk Assessment , Department of Toxicology , School of Public Health , Sun Yat-sen University , Guangzhou , China . ; ; Tel: +011 86 20 87330599
| |
Collapse
|
31
|
Ramachandran S, Haddad D, Li C, Le MX, Ling AK, So CC, Nepal RM, Gommerman JL, Yu K, Ketela T, Moffat J, Martin A. The SAGA Deubiquitination Module Promotes DNA Repair and Class Switch Recombination through ATM and DNAPK-Mediated γH2AX Formation. Cell Rep 2016; 15:1554-1565. [PMID: 27160905 DOI: 10.1016/j.celrep.2016.04.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/26/2016] [Accepted: 04/05/2016] [Indexed: 01/06/2023] Open
Abstract
Class switch recombination (CSR) requires activation-induced deaminase (AID) to instigate double-stranded DNA breaks at the immunoglobulin locus. DNA breaks activate the DNA damage response (DDR) by inducing phosphorylation of histone H2AX followed by non-homologous end joining (NHEJ) repair. We carried out a genome-wide screen to identify CSR factors. We found that Usp22, Eny2, and Atxn7, members of the Spt-Ada-Gcn5-acetyltransferase (SAGA) deubiquitination module, are required for deubiquitination of H2BK120ub following DNA damage, are critical for CSR, and function downstream of AID. The SAGA deubiquitinase activity was required for optimal irradiation-induced γH2AX formation, and failure to remove H2BK120ub inhibits ATM- and DNAPK-induced γH2AX formation. Consistent with this effect, these proteins were found to function upstream of various double-stranded DNA repair pathways. This report demonstrates that deubiquitination of histone H2B impacts the early stages of the DDR and is required for the DNA repair phase of CSR.
Collapse
Affiliation(s)
- Shaliny Ramachandran
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Dania Haddad
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Conglei Li
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Michael X Le
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Alexanda K Ling
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Clare C So
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Rajeev M Nepal
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Jennifer L Gommerman
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Troy Ketela
- Princess Margaret Genomics Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jason Moffat
- Donnelly Centre and Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Medical Sciences Building, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
32
|
Abstract
DNA in human cells is constantly assaulted by endogenous and exogenous DNA damaging agents. It is vital for the cell to respond rapidly and precisely to DNA damage to maintain genome integrity and reduce the risk of mutagenesis. Sophisticated reactions occur in chromatin surrounding the damaged site leading to the activation of DNA damage response (DDR), including transcription reprogramming, cell cycle checkpoint, and DNA repair. Histone proteins around the DNA damage play essential roles in DDR, through extensive post-translational modifications (PTMs) by a variety of modifying enzymes. One PTM on histones, mono-ubiquitylation, has emerged as a key player in cellular response to DNA damage. In this review, we will (1) briefly summarize the history of histone H2A and H2B ubiquitylation (H2Aub and H2Bub, respectively), (2) discuss their roles in transcription, and (3) their functions in DDR.
Collapse
|
33
|
Mao P, Smerdon MJ. Rescue of DNA damage-stalled RNA Pol II: histone H2B in action. RNA & DISEASE (HOUSTON, TEX.) 2015; 1. [PMID: 25705722 DOI: 10.14800/rd.422;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RNA Pol II elongation in eukaryotes is coupled with a series of histone modifications. Elongating RNA Pol II can be strongly stalled by lesions on the DNA template. However, it is unclear whether RNA Pol II stalling affects elongation-associated histone modifications. We have explored this important question by investigating the function of histone H2B mono-ubiquitylation (H2Bub), a well-characterized epigenetic mark associated with RNA Pol II elongation, in the cellular response to DNA lesions induced by ultraviolet (UV) radiation. We found that, in contrast to transcription elongation, RNA Pol II stalling induced by UV lesions triggers rapid and significant H2B deubiquitylation that removes ubiquitin from H2B. Interestingly, in yeast mutant cells that lack H2B deubiquitylation enzymes, rescue of the stalled RNA Pol II by transcription-coupled repair (TCR) is significantly impaired. Thus, our study has established a direct connection between RNA Pol II stalling and a histone modification response.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520
| |
Collapse
|
34
|
Hadwiger LA. Anatomy of a nonhost disease resistance response of pea to Fusarium solani: PR gene elicitation via DNase, chitosan and chromatin alterations. FRONTIERS IN PLANT SCIENCE 2015; 6:373. [PMID: 26124762 PMCID: PMC4464173 DOI: 10.3389/fpls.2015.00373] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/11/2015] [Indexed: 05/18/2023]
Abstract
Of the multiplicity of plant pathogens in nature, only a few are virulent on a given plant species. Conversely, plants develop a rapid "nonhost" resistance response to the majority of the pathogens. The anatomy of the nonhost resistance of pea endocarp tissue against a pathogen of bean, Fusarium solani f.sp. phaseoli (Fsph) and the susceptibility of pea to F. solani f sp. pisi (Fspi) has been described cytologically, biochemically and molecular-biologically. Cytological changes have been followed by electron microscope and stain differentiation under white and UV light. The induction of changes in transcription, protein synthesis, expression of pathogenesis-related (PR) genes, and increases in metabolic pathways culminating in low molecular weight, antifungal compounds are described biochemically. Molecular changes initiated by fungal signals to host organelles, primarily to chromatin within host nuclei, are identified according to source of the signal and the mechanisms utilized in activating defense genes. The functions of some PR genes are defined. A hypothesis based on this data is developed to explain both why fungal growth is suppressed in nonhost resistance and why growth can continue in a susceptible reaction.
Collapse
Affiliation(s)
- Lee A. Hadwiger
- *Correspondence: Lee A. Hadwiger, Department of Plant Pathology, Washington State University, 100 Dairy Road, Pullman, WA 99163-6430, USA
| |
Collapse
|