1
|
Bennett SA, Cobos SN, Fisher RMA, Son E, Frederic R, Segal R, Yousuf H, Chan K, Dansu DK, Torrente MP. Direct and Indirect Protein Interactions Link FUS Aggregation to Histone Post-Translational Modification Dysregulation and Growth Suppression in an ALS/FTD Yeast Model. J Fungi (Basel) 2025; 11:58. [PMID: 39852477 PMCID: PMC11766905 DOI: 10.3390/jof11010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are incurable neurodegenerative disorders sharing pathological and genetic features, including mutations in the FUS gene. FUS is an RNA-binding protein that mislocalizes to the cytoplasm and aggregates in ALS/FTD. In a yeast model, FUS proteinopathy is connected to changes in the epigenome, including reductions in the levels of H3S10ph, H3K14ac, and H3K56ac. Exploiting the same model, we reveal novel connections between FUS aggregation and epigenetic dysregulation. We show that the histone-modifying enzymes Ipl1 and Rtt109-responsible for installing H3S10ph and H3K56ac-are excluded from the nucleus in the context of FUS proteinopathy. Furthermore, we found that Ipl1 colocalizes with FUS, but does not bind it directly. We identified Nop1 and Rrp5, a histone methyltransferase and rRNA biogenesis protein, respectively, as FUS binding partners involved in the growth suppression phenotype connected to FUS proteinopathy. We propose that the nuclear exclusion of Ipl1 through indirect interaction with FUS drives the dysregulation of H3S10ph as well as H3K14ac via crosstalk. We found that the knockdown of Nop1 interferes with these processes. In a parallel mechanism, Rtt109 mislocalization results in reduced levels of H3K56ac. Our results highlight the contribution of epigenetic mechanisms to ALS/FTD and identify novel targets for possible therapeutic intervention.
Collapse
Affiliation(s)
- Seth A. Bennett
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY 11210, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Samantha N. Cobos
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Raven M. A. Fisher
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY 11210, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Elizaveta Son
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY 11210, USA
| | - Rania Frederic
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY 11210, USA
| | - Rianna Segal
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY 11210, USA
| | - Huda Yousuf
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY 11210, USA
| | - Kaitlyn Chan
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY 11210, USA
| | - David K. Dansu
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY 10031, USA
| | - Mariana P. Torrente
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY 11210, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Ph.D. Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
2
|
Malysa A, Zhang XM, Bepler G. Minichromosome Maintenance Proteins: From DNA Replication to the DNA Damage Response. Cells 2024; 14:12. [PMID: 39791713 PMCID: PMC11719910 DOI: 10.3390/cells14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The DNA replication machinery is highly conserved from bacteria to eukaryotic cells. Faithful DNA replication is vital for cells to transmit accurate genetic information to the next generation. However, both internal and external DNA damages threaten the intricate DNA replication process, leading to the activation of the DNA damage response (DDR) system. Dysfunctional DNA replication and DDR are a source of genomic instability, causing heritable mutations that drive cancer evolutions. The family of minichromosome maintenance (MCM) proteins plays an important role not only in DNA replication but also in DDR. Here, we will review the current strides of MCM proteins in these integrated processes as well as the acetylation/deacetylation of MCM proteins and the value of MCMs as biomarkers in cancer.
Collapse
Affiliation(s)
| | | | - Gerold Bepler
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA; (A.M.); (X.M.Z.)
| |
Collapse
|
3
|
Tye BK. Four decades of Eukaryotic DNA replication: From yeast genetics to high-resolution cryo-EM structures of the replisome. Proc Natl Acad Sci U S A 2024; 121:e2415231121. [PMID: 39365830 PMCID: PMC11494305 DOI: 10.1073/pnas.2415231121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/22/2024] [Indexed: 10/06/2024] Open
Abstract
I had my eyes set on DNA replication research when I took my first molecular biology course in graduate school. My election to the National Academy of Sciences came just when I was retiring from active research. It gives me an opportunity to reflect on my personal journey in eukaryotic DNA replication research, which started as a thought experiment and culminated in witnessing the determination of the cryoelectron microscopic structure of the yeast replisome in the act of transferring histone-encoded epigenetic information at the replication fork. I would like to dedicate this inaugural article to my talented trainees and valuable collaborators in gratitude for the joy they gave me in this journey. I also want to thank my mentors who instilled in me the purpose of science. I hope junior scientists will not be disheartened by the marathon nature of research, but mindful enough to integrate and pause for other equally fun and meaningful activities of life into the marathon.
Collapse
Affiliation(s)
- Bik-Kwoon Tye
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
4
|
Baxter JS, Brough R, Krastev DB, Song F, Sridhar S, Gulati A, Alexander J, Roumeliotis TI, Kozik Z, Choudhary JS, Haider S, Pettitt SJ, Tutt ANJ, Lord CJ. Cancer-associated FBXW7 loss is synthetic lethal with pharmacological targeting of CDC7. Mol Oncol 2024; 18:369-385. [PMID: 37866880 PMCID: PMC10850818 DOI: 10.1002/1878-0261.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/29/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
The F-box and WD repeat domain containing 7 (FBXW7) tumour suppressor gene encodes a substrate-recognition subunit of Skp, cullin, F-box (SCF)-containing complexes. The tumour-suppressive role of FBXW7 is ascribed to its ability to drive ubiquitination and degradation of oncoproteins. Despite this molecular understanding, therapeutic approaches that target defective FBXW7 have not been identified. Using genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screens, focussed RNA-interference screens and whole and phospho-proteome mass spectrometry profiling in multiple FBXW7 wild-type and defective isogenic cell lines, we identified a number of FBXW7 synthetic lethal targets, including proteins involved in the response to replication fork stress and proteins involved in replication origin firing, such as cell division cycle 7-related protein kinase (CDC7) and its substrate, DNA replication complex GINS protein SLD5 (GINS4). The CDC7 synthetic lethal effect was confirmed using small-molecule inhibitors. Mechanistically, FBXW7/CDC7 synthetic lethality is dependent upon the replication factor telomere-associated protein RIF1 (RIF1), with RIF1 silencing reversing the FBXW7-selective effects of CDC7 inhibition. The delineation of FBXW7 synthetic lethal effects we describe here could serve as the starting point for subsequent drug discovery and/or development in this area.
Collapse
Affiliation(s)
- Joseph S. Baxter
- The CRUK Gene Function LaboratoryThe Institute of Cancer ResearchLondonUK
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Rachel Brough
- The CRUK Gene Function LaboratoryThe Institute of Cancer ResearchLondonUK
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Dragomir B. Krastev
- The CRUK Gene Function LaboratoryThe Institute of Cancer ResearchLondonUK
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Feifei Song
- The CRUK Gene Function LaboratoryThe Institute of Cancer ResearchLondonUK
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Sandhya Sridhar
- The CRUK Gene Function LaboratoryThe Institute of Cancer ResearchLondonUK
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Aditi Gulati
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - John Alexander
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | | | - Zuza Kozik
- Functional Proteomics LaboratoryThe Institute of Cancer ResearchLondonUK
| | - Jyoti S. Choudhary
- Functional Proteomics LaboratoryThe Institute of Cancer ResearchLondonUK
| | - Syed Haider
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Stephen J. Pettitt
- The CRUK Gene Function LaboratoryThe Institute of Cancer ResearchLondonUK
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Andrew N. J. Tutt
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| | - Christopher J. Lord
- The CRUK Gene Function LaboratoryThe Institute of Cancer ResearchLondonUK
- Breast Cancer Now Toby Robins Breast Cancer Research CentreThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
5
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
6
|
Sheu YJ, Kawaguchi RK, Gillis J, Stillman B. Prevalent and dynamic binding of the cell cycle checkpoint kinase Rad53 to gene promoters. eLife 2022; 11:e84320. [PMID: 36520028 PMCID: PMC9797190 DOI: 10.7554/elife.84320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Replication of the genome must be coordinated with gene transcription and cellular metabolism, especially following replication stress in the presence of limiting deoxyribonucleotides. The Saccharomyces cerevisiae Rad53 (CHEK2 in mammals) checkpoint kinase plays a major role in cellular responses to DNA replication stress. Cell cycle regulated, genome-wide binding of Rad53 to chromatin was examined. Under replication stress, the kinase bound to sites of active DNA replication initiation and fork progression, but unexpectedly to the promoters of about 20% of genes encoding proteins involved in multiple cellular functions. Rad53 promoter binding correlated with changes in expression of a subset of genes. Rad53 promoter binding to certain genes was influenced by sequence-specific transcription factors and less by checkpoint signaling. However, in checkpoint mutants, untimely activation of late-replicating origins reduces the transcription of nearby genes, with concomitant localization of Rad53 to their gene bodies. We suggest that the Rad53 checkpoint kinase coordinates genome-wide replication and transcription under replication stress conditions.
Collapse
Affiliation(s)
- Yi-Jun Sheu
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | | | - Jesse Gillis
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Bruce Stillman
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| |
Collapse
|
7
|
Pauzaite T, Tollitt J, Sopaci B, Caprani L, Iwanowytsch O, Thacker U, Hardy JG, Allinson SL, Copeland NA. Dbf4-Cdc7 (DDK) Inhibitor PHA-767491 Displays Potent Anti-Proliferative Effects via Crosstalk with the CDK2-RB-E2F Pathway. Biomedicines 2022; 10:biomedicines10082012. [PMID: 36009559 PMCID: PMC9405858 DOI: 10.3390/biomedicines10082012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Precise regulation of DNA replication complex assembly requires cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) activities to activate the replicative helicase complex and initiate DNA replication. Chemical probes have been essential in the molecular analysis of DDK-mediated regulation of MCM2-7 activation and the initiation phase of DNA replication. Here, the inhibitory activity of two distinct DDK inhibitor chemotypes, PHA-767491 and XL-413, were assessed in cell-free and cell-based proliferation assays. PHA-767491 and XL-413 show distinct effects at the level of cellular proliferation, initiation of DNA replication and replisome activity. XL-413 and PHA-767491 both reduce DDK-specific phosphorylation of MCM2 but show differential potency in prevention of S-phase entry. DNA combing and DNA replication assays show that PHA-767491 is a potent inhibitor of the initiation phase of DNA replication but XL413 has weak activity. Importantly, PHA-767491 decreased E2F-mediated transcription of the G1/S regulators cyclin A2, cyclin E1 and cyclin E2, and this effect was independent of CDK9 inhibition. Significantly, the enhanced inhibitory profile of PHA-767491 is mediated by potent inhibition of both DDK and the CDK2-Rb-E2F transcriptional network, that provides the molecular basis for its increased anti-proliferative effects in RB+ cancer cell lines.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - James Tollitt
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Betul Sopaci
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Louise Caprani
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Olivia Iwanowytsch
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Urvi Thacker
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - John G. Hardy
- Materials Science Institute, Lancaster University, Lancaster LA1 4YW, UK
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YB, UK
| | - Sarah L. Allinson
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Nikki A. Copeland
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
- Materials Science Institute, Lancaster University, Lancaster LA1 4YW, UK
- Correspondence:
| |
Collapse
|
8
|
Li Q, Yuan Q, Jiang N, Zhang Y, Su Z, Lv L, Sang X, Chen R, Feng Y, Chen Q. Dihydroartemisinin regulates immune cell heterogeneity by triggering a cascade reaction of CDK and MAPK phosphorylation. Signal Transduct Target Ther 2022; 7:222. [PMID: 35811310 PMCID: PMC9271464 DOI: 10.1038/s41392-022-01028-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/04/2022] [Accepted: 05/13/2022] [Indexed: 12/28/2022] Open
Abstract
Artemisinin (ART) and dihydroartemisinin (DHA), apart from their profound anti-malaria effect, can also beneficially modulate the host immune system; however, the underlying molecular mechanisms remain unclear. Here, we report that DHA selectively induced T-cell activation, with an increased proportion of Ki67+CD4+ T cells, CD25+CD4+ T cells, interferon (IFN)-γ-producing CD8+ T cells, Brdu+ CD8+ T cells and neutrophils, which was found to enhance cellular immunity to experimental malaria and overcome immunosuppression in mice. We further revealed that DHA upregulated the expression of cell proliferation-associated proteins by promoting the phosphorylation of mitogen-activated protein kinase (MAPK), cyclin-dependent kinases (CDKs), and activator protein 1 in the spleen. This study is the first to provide robust evidence that DHA selectively induced the expansion of subsets of splenic T cells through phosphorylated CDKs and MAPK to enhance cellular immune responses under non-pathological or pathological conditions. The data significantly deepened our knowledge in the mechanism underlying DHA-mediated immunomodulation.
Collapse
|
9
|
Gillespie PJ, Blow JJ. DDK: The Outsourced Kinase of Chromosome Maintenance. BIOLOGY 2022; 11:biology11060877. [PMID: 35741398 PMCID: PMC9220011 DOI: 10.3390/biology11060877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
The maintenance of genomic stability during the mitotic cell-cycle not only demands that the DNA is duplicated and repaired with high fidelity, but that following DNA replication the chromatin composition is perpetuated and that the duplicated chromatids remain tethered until their anaphase segregation. The coordination of these processes during S phase is achieved by both cyclin-dependent kinase, CDK, and Dbf4-dependent kinase, DDK. CDK orchestrates the activation of DDK at the G1-to-S transition, acting as the ‘global’ regulator of S phase and cell-cycle progression, whilst ‘local’ control of the initiation of DNA replication and repair and their coordination with the re-formation of local chromatin environments and the establishment of chromatid cohesion are delegated to DDK. Here, we discuss the regulation and the multiple roles of DDK in ensuring chromosome maintenance. Regulation of replication initiation by DDK has long been known to involve phosphorylation of MCM2-7 subunits, but more recent results have indicated that Treslin:MTBP might also be important substrates. Molecular mechanisms by which DDK regulates replisome stability and replicated chromatid cohesion are less well understood, though important new insights have been reported recently. We discuss how the ‘outsourcing’ of activities required for chromosome maintenance to DDK allows CDK to maintain outright control of S phase progression and the cell-cycle phase transitions whilst permitting ongoing chromatin replication and cohesion establishment to be completed and achieved faithfully.
Collapse
|
10
|
Greiwe JF, Miller TCR, Locke J, Martino F, Howell S, Schreiber A, Nans A, Diffley JFX, Costa A. Structural mechanism for the selective phosphorylation of DNA-loaded MCM double hexamers by the Dbf4-dependent kinase. Nat Struct Mol Biol 2022; 29:10-20. [PMID: 34963704 PMCID: PMC8770131 DOI: 10.1038/s41594-021-00698-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/05/2021] [Indexed: 12/04/2022]
Abstract
Loading of the eukaryotic replicative helicase onto replication origins involves two MCM hexamers forming a double hexamer (DH) around duplex DNA. During S phase, helicase activation requires MCM phosphorylation by Dbf4-dependent kinase (DDK), comprising Cdc7 and Dbf4. DDK selectively phosphorylates loaded DHs, but how such fidelity is achieved is unknown. Here, we determine the cryogenic electron microscopy structure of Saccharomyces cerevisiae DDK in the act of phosphorylating a DH. DDK docks onto one MCM ring and phosphorylates the opposed ring. Truncation of the Dbf4 docking domain abrogates DH phosphorylation, yet Cdc7 kinase activity is unaffected. Late origin firing is blocked in response to DNA damage via Dbf4 phosphorylation by the Rad53 checkpoint kinase. DDK phosphorylation by Rad53 impairs DH phosphorylation by blockage of DDK binding to DHs, and also interferes with the Cdc7 active site. Our results explain the structural basis and regulation of the selective phosphorylation of DNA-loaded MCM DHs, which supports bidirectional replication.
Collapse
Affiliation(s)
- Julia F Greiwe
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Thomas C R Miller
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
- Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Julia Locke
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
| | - Fabrizio Martino
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK
- Human Technopole, Milan, Italy
| | - Steven Howell
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Anne Schreiber
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, London, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
Dolson A, Sauty SM, Shaban K, Yankulov K. Dbf4-Dependent Kinase: DDK-ated to post-initiation events in DNA replication. Cell Cycle 2021; 20:2348-2360. [PMID: 34662256 DOI: 10.1080/15384101.2021.1986999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dbf4-Dependent Kinase (DDK) has a well-established essential role at origins of DNA replication, where it phosphorylates and activates the replicative MCM helicase. It also acts in the response to mutagens and in DNA repair as well as in key steps during meiosis. Recent studies have indicated that, in addition to the MCM helicase, DDK phosphorylates several substrates during the elongation stage of DNA replication or upon replication stress. However, these activities of DDK are not essential for viability. Dbf4-Dependent Kinase is also emerging as a key factor in the regulation of genome-wide origin firing and in replication-coupled chromatin assembly. In this review, we summarize recent progress in our understanding of the diverse roles of DDK.
Collapse
Affiliation(s)
- Andrew Dolson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Spotlight on the Replisome: Aetiology of DNA Replication-Associated Genetic Diseases. Trends Genet 2021; 37:317-336. [DOI: 10.1016/j.tig.2020.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022]
|
13
|
Jones MJK, Gelot C, Munk S, Koren A, Kawasoe Y, George KA, Santos RE, Olsen JV, McCarroll SA, Frattini MG, Takahashi TS, Jallepalli PV. Human DDK rescues stalled forks and counteracts checkpoint inhibition at unfired origins to complete DNA replication. Mol Cell 2021; 81:426-441.e8. [PMID: 33545059 PMCID: PMC8211091 DOI: 10.1016/j.molcel.2021.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Eukaryotic genomes replicate via spatially and temporally regulated origin firing. Cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) promote origin firing, whereas the S phase checkpoint limits firing to prevent nucleotide and RPA exhaustion. We used chemical genetics to interrogate human DDK with maximum precision, dissect its relationship with the S phase checkpoint, and identify DDK substrates. We show that DDK inhibition (DDKi) leads to graded suppression of origin firing and fork arrest. S phase checkpoint inhibition rescued origin firing in DDKi cells and DDK-depleted Xenopus egg extracts. DDKi also impairs RPA loading, nascent-strand protection, and fork restart. Via quantitative phosphoproteomics, we identify the BRCA1-associated (BRCA1-A) complex subunit MERIT40 and the cohesin accessory subunit PDS5B as DDK effectors in fork protection and restart. Phosphorylation neutralizes autoinhibition mediated by intrinsically disordered regions in both substrates. Our results reveal mechanisms through which DDK controls the duplication of large vertebrate genomes.
Collapse
Affiliation(s)
- Mathew J K Jones
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Camille Gelot
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephanie Munk
- University of Copenhagen and Novo Nordisk Foundation Center for Protein Research, Copenhagen 2200, Denmark
| | - Amnon Koren
- Cornell University, Department of Molecular Biology and Genetics, Ithaca, NY 14853, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yoshitaka Kawasoe
- Graduate School of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kelly A George
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruth E Santos
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jesper V Olsen
- University of Copenhagen and Novo Nordisk Foundation Center for Protein Research, Copenhagen 2200, Denmark
| | | | - Mark G Frattini
- Division of Hematology/Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Tatsuro S Takahashi
- Graduate School of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Prasad V Jallepalli
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
14
|
Sedlackova H, Rask MB, Gupta R, Choudhary C, Somyajit K, Lukas J. Equilibrium between nascent and parental MCM proteins protects replicating genomes. Nature 2020; 587:297-302. [PMID: 33087936 DOI: 10.1038/s41586-020-2842-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Minichromosome maintenance proteins (MCMs) are DNA-dependent ATPases that bind to replication origins and license them to support a single round of DNA replication. A large excess of MCM2-7 assembles on chromatin in G1 phase as pre-replication complexes (pre-RCs), of which only a fraction become the productive CDC45-MCM-GINS (CMG) helicases that are required for genome duplication1-4. It remains unclear why cells generate this surplus of MCMs, how they manage to sustain it across multiple generations, and why even a mild reduction in the MCM pool compromises the integrity of replicating genomes5,6. Here we show that, for daughter cells to sustain error-free DNA replication, their mother cells build up a nuclear pool of MCMs both by recycling chromatin-bound (parental) MCMs and by synthesizing new (nascent) MCMs. Although all MCMs can form pre-RCs, it is the parental pool that is inherently stable and preferentially matures into CMGs. By contrast, nascent MCM3-7 (but not MCM2) undergo rapid proteolysis in the cytoplasm, and their stabilization and nuclear translocation require interaction with minichromosome-maintenance complex-binding protein (MCMBP), a distant MCM paralogue7,8. By chaperoning nascent MCMs, MCMBP safeguards replicating genomes by increasing chromatin coverage with pre-RCs that do not participate on replication origins but adjust the pace of replisome movement to minimize errors during DNA replication. Consequently, although the paucity of pre-RCs in MCMBP-deficient cells does not alter DNA synthesis overall, it increases the speed and asymmetry of individual replisomes, which leads to DNA damage. The surplus of MCMs therefore increases the robustness of genome duplication by restraining the speed at which eukaryotic cells replicate their DNA. Alterations in physiological fork speed might thus explain why even a minor reduction in MCM levels destabilizes the genome and predisposes to increased incidence of tumour formation.
Collapse
Affiliation(s)
- Hana Sedlackova
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maj-Britt Rask
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rajat Gupta
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chunaram Choudhary
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kumar Somyajit
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jiri Lukas
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Hu Y, Tareen A, Sheu YJ, Ireland WT, Speck C, Li H, Joshua-Tor L, Kinney JB, Stillman B. Evolution of DNA replication origin specification and gene silencing mechanisms. Nat Commun 2020; 11:5175. [PMID: 33056978 PMCID: PMC7560902 DOI: 10.1038/s41467-020-18964-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
DNA replication in eukaryotic cells initiates from replication origins that bind the Origin Recognition Complex (ORC). Origin establishment requires well-defined DNA sequence motifs in Saccharomyces cerevisiae and some other budding yeasts, but most eukaryotes lack sequence-specific origins. A 3.9 Å structure of S. cerevisiae ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) bound to origin DNA revealed that a loop within Orc2 inserts into a DNA minor groove and an α-helix within Orc4 inserts into a DNA major groove. Using a massively parallel origin selection assay coupled with a custom mutual-information-based modeling approach, and a separate analysis of whole-genome replication profiling, here we show that the Orc4 α-helix contributes to the DNA sequence-specificity of origins in S. cerevisiae and Orc4 α-helix mutations change genome-wide origin firing patterns. The DNA sequence specificity of replication origins, mediated by the Orc4 α-helix, has co-evolved with the gain of ORC-Sir4-mediated gene silencing and the loss of RNA interference.
Collapse
Affiliation(s)
- Y Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - A Tareen
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Y-J Sheu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - W T Ireland
- Department of Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - C Speck
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, W12 0NN, London, UK
| | - H Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - L Joshua-Tor
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- W. M. Keck Structural Biology Laboratory, Howard Hughes Medical Institute, Cold Spring Harbor, NY, 11724, USA
| | - J B Kinney
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - B Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
16
|
Lynch KL, Alvino GM, Kwan EX, Brewer BJ, Raghuraman MK. The effects of manipulating levels of replication initiation factors on origin firing efficiency in yeast. PLoS Genet 2019; 15:e1008430. [PMID: 31584938 PMCID: PMC6795477 DOI: 10.1371/journal.pgen.1008430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/16/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
Chromosome replication in Saccharomyces cerevisiae is initiated from ~300 origins that are regulated by DNA sequence and by the limited abundance of six trans-acting initiation proteins (Sld2, Sld3, Dpb11, Dbf4, Sld7 and Cdc45). We set out to determine how the levels of individual factors contribute to time of origin activation and/or origin efficiency using induced depletion of single factors and overexpression of sets of multiple factors. Depletion of Sld2 or Sld3 slows growth and S phase progression, decreases origin efficiency across the genome and impairs viability as a result of incomplete replication of the rDNA. We find that the most efficient early origins are relatively unaffected by depletion of either Sld2 or Sld3. However, Sld3 levels, and to a lesser extent Sld2 levels, are critical for firing of the less efficient early origins. Overexpression of Sld3 simultaneously with Sld2, Dpb11 and Dbf4 preserves the relative efficiency of origins. Only when Cdc45 and Sld7 are also overexpressed is origin efficiency equalized between early- and late-firing origins. Our data support a model in which Sld3 together with Cdc45 (and/or Sld7) is responsible for the differential efficiencies of origins across the yeast genome. Eukaryotic chromosome duplication begins at sites called origins of replication along the chromosomal DNA. A conserved property of eukaryotic origins is that they vary in efficiency—the proportion of cells in a population in which they “fire”—and in the average time of activation within S phase, but the molecular details underlying this variation are not well understood. Previous work has shown that limiting concentrations of a set of conserved replication initiation proteins referred to as “SSDDCS” (Sld2, Sld3, Dbf4, Dpb11, Cdc45, and Sld7) are rate limiting for origin activation in budding yeast and other eukaryotes; combined overexpression of these proteins increases and/or advances origin firing. However, it remained possible that different factors affect different aspects of origin activation (e.g., timing vs. efficiency). Here, by depleting individual factors or by overexpressing sets of factors in budding yeast, we demonstrate that it is levels of Sld3, Cdc45 and/or Sld7 levels are primarily responsible for modulating the differences in relative origin efficiency and timing. This work gives further insights into what shapes the landscape of genome duplication.
Collapse
Affiliation(s)
- Kelsey L. Lynch
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Gina M. Alvino
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth X. Kwan
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Bonita J. Brewer
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - M. K. Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
17
|
Casar Tena T, Maerz LD, Szafranski K, Groth M, Blätte TJ, Donow C, Matysik S, Walther P, Jeggo PA, Burkhalter MD, Philipp M. Resting cells rely on the DNA helicase component MCM2 to build cilia. Nucleic Acids Res 2019; 47:134-151. [PMID: 30329080 PMCID: PMC6326816 DOI: 10.1093/nar/gky945] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues.
Collapse
Affiliation(s)
- Teresa Casar Tena
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Lars D Maerz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Karol Szafranski
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Tamara J Blätte
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Sabrina Matysik
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Martin D Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
18
|
Wang X, Ishimi Y. Function of the amino-terminal region of human MCM4 in helicase activity. J Biochem 2019; 164:449-460. [PMID: 30184107 DOI: 10.1093/jb/mvy072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/03/2018] [Indexed: 01/08/2023] Open
Abstract
The amino-terminal region of eukaryotic MCM4 is characteristic of the presence of a number of phosphorylation sites for CDK and DDK, suggesting that the region plays regulatory roles in the MCM2-7 helicase function. However, the roles are not fully understood. We analyzed the role of the amino-terminal region of human MCM4 by using MCM4/6/7 helicase as a model for MCM2-7 helicase. First we found that deletion of 35 amino acids at the amino-terminal end resulted in inhibition of DNA helicase activity of the MCM4/6/7 complex. Conversion of arginine at amino acid no. 10 and 11 to alanine had similar effect to the deletion mutant of Δ1-35, suggesting that these arginine play a role in the DNA helicase activity. The data suggest that expression of these mutant MCM4 in HeLa cells perturbed the progression of the S phase. Substitution of six CDK phosphorylation sites (3, 7, 19, 32, 54 and 110) in the amino-terminal region by phospho-mimetic glutamic acids affected the hexamer formation of the MCM4/6/7 complex. MCM4 phosphorylation by CDK may play a role in DNA replication licensing system, and the present results suggest that the phosphorylation interferes MCM function by lowering stability of MCM complex.
Collapse
Affiliation(s)
- Xuan Wang
- College of Science, Ibaraki University, Mito, Ibaraki, Japan
| | - Yukio Ishimi
- College of Science, Ibaraki University, Mito, Ibaraki, Japan
| |
Collapse
|
19
|
Abstract
Recently published structural and functional analyses of the CMG complex have provided insight into the mechanism of its DNA helicase function and into the distinct roles of its central six component proteins MCM2-MCM7 (MCM2-7). To activate CMG helicase, the two protein kinases CDK and DDK, as well as MCM10, are required. In addition to the initiation of DNA replication, MCM function must be regulated at the DNA replication steps of elongation and termination. Polyubiquitylation of MCM7 is involved in terminating MCM function. Reinitiation of DNA replication in a single cell cycle, which is prevented mainly by CDK, is understood at the molecular level. MCM2-7 gene expression is regulated during cellular aging and the cell cycle, and the expression depends on oxygen concentration. These regulatory processes have been described recently. Genomic structural alteration, which is an essential element in cancer progression, is mainly generated by disruptions of DNA replication fork structures. A point mutation in MCM4 that disturbs MCM2-7 function results in genomic instability, leading to the generation of cancer cells. In this review, I focus on the following points: 1) function of the MCM2-7 complex, 2) activation of MCM2-7 helicase, 3) regulation of MCM2-7 function, 4) MCM2-7 expression, and 5) the role of MCM mutation in cancer progression.
Collapse
|
20
|
Kucherlapati M. Examining transcriptional changes to DNA replication and repair factors over uveal melanoma subtypes. BMC Cancer 2018; 18:818. [PMID: 30107825 PMCID: PMC6092802 DOI: 10.1186/s12885-018-4705-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Background Uncontrolled replication is a process common to all cancers facilitated by the summation of changes accumulated as tumors progress. The aim of this study was to examine small groups of genes with known biology in replication and repair at the transcriptional and genomic levels, correlating alterations with survival in uveal melanoma tumor progression. Selected components of Pre-Replication, Pre-Initiation, and Replisome Complexes, DNA Damage Response and Mismatch Repair have been observed. Methods Two groups have been generated for selected genes above and below the average alteration level and compared for expression and survival across The Cancer Genome Atlas uveal melanoma subtypes. Significant differences in expression between subtypes monosomic or disomic for chromosome 3 have been identified by Fisher’s exact test. Kaplan Meier survival distribution based on disease specific survival has been compared by Log-rank test. Results Genes with significant alteration include MCM2, MCM4, MCM5, CDC45, MCM10, CIZ1, PCNA, FEN1, LIG1, POLD1, POLE, HUS1, CHECK1, ATRIP, MLH3, and MSH6. Exon 4 skipping in CIZ1 previously identified as a cancer variant, and reportedly used as an early serum biomarker in lung cancer was found. Mismatch Repair protein MLH3 was found to have splicing variations with deletions to both Exon 5 and Exon 7 simultaneously. PCNA, FEN1, and LIG1 had increased relative expression levels not due to mutation or to copy number variation. Conclusion The current study proposes changes in relative and differential expression to replication and repair genes that support the concept their products are causally involved in uveal melanoma. Specific avenues for early biomarker identification and therapeutic approach are suggested.
Collapse
Affiliation(s)
- Melanie Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA. .,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, 77 Avenue Louis Pasteur NRB 160B, Boston, 02115, MA, USA.
| |
Collapse
|
21
|
Fei L, Xu H. Role of MCM2-7 protein phosphorylation in human cancer cells. Cell Biosci 2018; 8:43. [PMID: 30062004 PMCID: PMC6056998 DOI: 10.1186/s13578-018-0242-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/17/2018] [Indexed: 01/12/2023] Open
Abstract
A heterohexameric complex composed of minichromosome maintenance protein 2–7 (MCM2–7), which acts as a key replicative enzyme in eukaryotes, is crucial for initiating DNA synthesis only once per cell cycle. The MCM complex remains inactive through the G1 phase, until the S phase, when it is activated to initiate replication. During the transition from the G1 to S phase, the MCM undergoes multisite phosphorylation, an important change that promotes subsequent assembly of other replisome members. Phosphorylation is crucial for the regulation of MCM activity and function. MCMs can be phosphorylated by multiple kinases and these phosphorylation events are involved not only in DNA replication but also cell cycle progression and checkpoint response. Dysfunctional phosphorylation of MCMs appears to correlate with the occurrence and development of cancers. In this review, we summarize the currently available data regarding the regulatory mechanisms and functional consequences of MCM phosphorylation and seek the probability that protein kinase inhibitor can be used therapeutically to target MCM phosphorylation in cancer.
Collapse
Affiliation(s)
- Liangru Fei
- Department of Pathology, College of Basic Medical Sciences and the First Affiliated Hospital, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China
| | - Hongtao Xu
- Department of Pathology, College of Basic Medical Sciences and the First Affiliated Hospital, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122 Liaoning Province People's Republic of China
| |
Collapse
|
22
|
High speed of fork progression induces DNA replication stress and genomic instability. Nature 2018; 559:279-284. [DOI: 10.1038/s41586-018-0261-5] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 05/22/2018] [Indexed: 12/27/2022]
|
23
|
You Z, Masai H. Potent DNA strand annealing activity associated with mouse Mcm2∼7 heterohexameric complex. Nucleic Acids Res 2017; 45:6494-6506. [PMID: 28449043 PMCID: PMC5499727 DOI: 10.1093/nar/gkx269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/05/2017] [Indexed: 01/08/2023] Open
Abstract
Mini-chromosome maintenance (Mcm) is a central component for DNA unwinding reaction during eukaryotic DNA replication. Mcm2∼7, each containing a conserved ATPase motif, form a six subunit-heterohexamer. Although the reconstituted Mcm2∼7–Cdc45–GINS (CMG) complex displays DNA unwinding activity, the Mcm2∼7 complex does not generally exhibit helicase activity under a normal assay condition. We detected a strong DNA strand annealing activity in the purified mouse Mcm2∼7 heterohexamer, which promotes rapid reassociation of displaced complementary single-stranded DNAs, suggesting a potential cause for its inability to exhibit DNA helicase activity. Indeed, DNA unwinding activity of Mcm2∼7 could be detected in the presence of a single-stranded DNA that is complementary to the displaced strand, which would prevent its reannealing to the template. ATPase-deficient mutations in Mcm2, 4, 5 and 6 subunits inactivated the annealing activity, while those in Mcm2 and 5 subunits alone did not. The annealing activity of Mcm2∼7 does not require Mg2+ and ATP, and is adversely inhibited by the presence of high concentration of Mg2+ and ATP while activated by similar concentrations of ADP. Our findings show that the DNA helicase activity of Mcm2∼7 may be masked by its unexpectedly strong annealing activity, and suggest potential physiological roles of strand annealing activity of Mcm during replication stress responses.
Collapse
Affiliation(s)
- Zhiying You
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| |
Collapse
|
24
|
ATR kinase inhibition induces unscheduled origin firing through a Cdc7-dependent association between GINS and And-1. Nat Commun 2017; 8:1392. [PMID: 29123096 PMCID: PMC5680267 DOI: 10.1038/s41467-017-01401-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/13/2017] [Indexed: 11/09/2022] Open
Abstract
ATR kinase activity slows replication forks and prevents origin firing in damaged cells. Here we describe proteomic analyses that identified mechanisms through which ATR kinase inhibitors induce unscheduled origin firing in undamaged cells. ATR-Chk1 inhibitor-induced origin firing is mediated by Cdc7 kinase through previously undescribed phosphorylations on GINS that induce an association between GINS and And-1. ATR-Chk1 inhibitor-induced origin firing is blocked by prior exposure to DNA damaging agents showing that the prevention of origin firing does not require ongoing ATR activity. In contrast, ATR-Chk1 inhibitor-induced origins generate additional replication forks that are targeted by subsequent exposure to DNA damaging agents. Thus, the sequence of administration of an ATR kinase inhibitor and a DNA damaging agent impacts the DNA damage induced by the combination. Our experiments identify competing ATR and Cdc7 kinase-dependent mechanisms at replication origins in human cells.
Collapse
|
25
|
Riera A, Barbon M, Noguchi Y, Reuter LM, Schneider S, Speck C. From structure to mechanism-understanding initiation of DNA replication. Genes Dev 2017; 31:1073-1088. [PMID: 28717046 PMCID: PMC5538431 DOI: 10.1101/gad.298232.117] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this Review, Riera et al. review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2–7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability.
Collapse
Affiliation(s)
- Alberto Riera
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Marta Barbon
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
| | - Yasunori Noguchi
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - L Maximilian Reuter
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Sarah Schneider
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom.,Medical Research Council (MRC) London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
| |
Collapse
|
26
|
The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat Rev Genet 2017; 18:535-550. [DOI: 10.1038/nrg.2017.46] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
|
28
|
Stafford JL, Dyson G, Levin NK, Chaudhry S, Rosati R, Kalpage H, Wernette C, Petrucelli N, Simon MS, Tainsky MA. Reanalysis of BRCA1/2 negative high risk ovarian cancer patients reveals novel germline risk loci and insights into missing heritability. PLoS One 2017; 12:e0178450. [PMID: 28591191 PMCID: PMC5462348 DOI: 10.1371/journal.pone.0178450] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/12/2017] [Indexed: 12/30/2022] Open
Abstract
While up to 25% of ovarian cancer (OVCA) cases are thought to be due to inherited factors, the majority of genetic risk remains unexplained. To address this gap, we sought to identify previously undescribed OVCA risk variants through the whole exome sequencing (WES) and candidate gene analysis of 48 women with ovarian cancer and selected for high risk of genetic inheritance, yet negative for any known pathogenic variants in either BRCA1 or BRCA2. In silico SNP analysis was employed to identify suspect variants followed by validation using Sanger DNA sequencing. We identified five pathogenic variants in our sample, four of which are in two genes featured on current multi-gene panels; (RAD51D, ATM). In addition, we found a pathogenic FANCM variant (R1931*) which has been recently implicated in familial breast cancer risk. Numerous rare and predicted to be damaging variants of unknown significance were detected in genes on current commercial testing panels, most prominently in ATM (n = 6) and PALB2 (n = 5). The BRCA2 variant p.K3326*, resulting in a 93 amino acid truncation, was overrepresented in our sample (odds ratio = 4.95, p = 0.01) and coexisted in the germline of these women with other deleterious variants, suggesting a possible role as a modifier of genetic penetrance. Furthermore, we detected loss of function variants in non-panel genes involved in OVCA relevant pathways; DNA repair and cell cycle control, including CHEK1, TP53I3, REC8, HMMR, RAD52, RAD1, POLK, POLQ, and MCM4. In summary, our study implicates novel risk loci as well as highlights the clinical utility for retesting BRCA1/2 negative OVCA patients by genomic sequencing and analysis of genes in relevant pathways.
Collapse
Affiliation(s)
- Jaime L. Stafford
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Nancy K. Levin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Sophia Chaudhry
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Rita Rosati
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Hasini Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Courtney Wernette
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Nancie Petrucelli
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Michael S. Simon
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Michael A. Tainsky
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States of America
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States of America
- Molecular Therapeutics Program, Karmanos Cancer Institute at Wayne State University School of Medicine, Detroit, MI, United States of America
| |
Collapse
|
29
|
Liu C, Zhang YH, Huang T, Cai Y. Identification of transcription factors that may reprogram lung adenocarcinoma. Artif Intell Med 2017; 83:52-57. [PMID: 28377053 DOI: 10.1016/j.artmed.2017.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/19/2017] [Accepted: 03/22/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Lung adenocarcinoma is one of most threatening disease to human health. Although many efforts have been devoted to its genetic study, few researches have been focused on the transcription factors which regulate tumor initiation and progression by affecting multiple downstream gene transcription. It is proved that proper transcription factors may mediate the direct reprogramming of cancer cells, and reverse the tumorigenesis on the epigenetic and transcription levels. METHODS In this paper, a computational method is proposed to identify the core transcription factors that can regulate as many as possible lung adenocarcinoma associated genes with as little as possible redundancy. A greedy strategy is applied to find the smallest collection of transcription factors that can cover the differentially expressed genes by its downstream targets. The optimal subset which is mostly enriched in the differentially expressed genes is then selected. RESULTS Seven core transcription factors (MCM4, VWF, ECT2, RBMS3, LIMCH1, MYBL2 and FBXL7) are detected, and have been reported to contribute to tumorigenesis of lung adenocarcinoma. The identification of the transcription factors provides a new insight into its oncogenic role in tumor initiation and progression, and benefits the discovery of functional core set that may reverse malignant transformation and reprogram cancer cells.
Collapse
Affiliation(s)
- Chenglin Liu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China.
| |
Collapse
|
30
|
Mec1/ATR, the Program Manager of Nucleic Acids Inc. Genes (Basel) 2016; 8:genes8010010. [PMID: 28036033 PMCID: PMC5295005 DOI: 10.3390/genes8010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic cells are equipped with surveillance mechanisms called checkpoints to ensure proper execution of cell cycle events. Among these are the checkpoints that detect DNA damage or replication perturbations and coordinate cellular activities to maintain genome stability. At the forefront of damage sensing is an evolutionarily conserved molecule, known respectively in budding yeast and humans as Mec1 (Mitosis entry checkpoint 1) and ATR (Ataxia telangiectasia and Rad3-related protein). Through phosphorylation, Mec1/ATR activates downstream components of a signaling cascade to maintain nucleotide pool balance, protect replication fork integrity, regulate activation of origins of replication, coordinate DNA repair, and implement cell cycle delay. This list of functions continues to expand as studies have revealed that Mec1/ATR modularly interacts with various protein molecules in response to different cellular cues. Among these newly assigned functions is the regulation of RNA metabolism during checkpoint activation and the coordination of replication-transcription conflicts. In this review, I will highlight some of these new functions of Mec1/ATR with a focus on the yeast model organism.
Collapse
|
31
|
Duncker BP. Mechanisms Governing DDK Regulation of the Initiation of DNA Replication. Genes (Basel) 2016; 8:genes8010003. [PMID: 28025497 PMCID: PMC5294998 DOI: 10.3390/genes8010003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
The budding yeast Dbf4-dependent kinase (DDK) complex—comprised of cell division cycle (Cdc7) kinase and its regulatory subunit dumbbell former 4 (Dbf4)—is required to trigger the initiation of DNA replication through the phosphorylation of multiple minichromosome maintenance complex subunits 2-7 (Mcm2-7). DDK is also a target of the radiation sensitive 53 (Rad53) checkpoint kinase in response to replication stress. Numerous investigations have determined mechanistic details, including the regions of Mcm2, Mcm4, and Mcm6 phosphorylated by DDK, and a number of DDK docking sites. Similarly, the way in which the Rad53 forkhead-associated 1 (FHA1) domain binds to DDK—involving both canonical and non-canonical interactions—has been elucidated. Recent work has revealed mutual promotion of DDK and synthetic lethal with dpb11-1 3 (Sld3) roles. While DDK phosphorylation of Mcm2-7 subunits facilitates their interaction with Sld3 at origins, Sld3 in turn stimulates DDK phosphorylation of Mcm2. Details of a mutually antagonistic relationship between DDK and Rap1-interacting factor 1 (Rif1) have also recently come to light. While Rif1 is able to reverse DDK-mediated Mcm2-7 complex phosphorylation by targeting the protein phosphatase glycogen 7 (Glc7) to origins, there is evidence to suggest that DDK can counteract this activity by binding to and phosphorylating Rif1.
Collapse
Affiliation(s)
- Bernard P Duncker
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada.
| |
Collapse
|
32
|
Abstract
The machinery at the eukaryotic replication fork has seen many new structural advances using electron microscopy and crystallography. Recent structures of eukaryotic replisome components include the Mcm2-7 complex, the CMG helicase, DNA polymerases, a Ctf4 trimer hub and the first look at a core replisome of 20 different proteins containing the helicase, primase, leading polymerase and a lagging strand polymerase. The eukaryotic core replisome shows an unanticipated architecture, with one polymerase sitting above the helicase and the other below. Additionally, structures of Mcm2 bound to an H3/H4 tetramer suggest a direct role of the replisome in handling nucleosomes, which are important to DNA organization and gene regulation. This review provides a summary of some of the many recent advances in the structure of the eukaryotic replisome.
Collapse
Affiliation(s)
- Mike O'Donnell
- DNA Replication Lab, The Rockefeller University, 1230 York Avenue, New York, New York, USA; Howard Hughes Medical Institute.
| | - Huilin Li
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York, USA; Biology Department, Brookhaven National Laboratory, Upton, New York, USA.
| |
Collapse
|
33
|
Perez-Arnaiz P, Kaplan DL. An Mcm10 Mutant Defective in ssDNA Binding Shows Defects in DNA Replication Initiation. J Mol Biol 2016; 428:4608-4625. [PMID: 27751725 DOI: 10.1016/j.jmb.2016.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/28/2016] [Accepted: 10/07/2016] [Indexed: 11/25/2022]
Abstract
Mcm10 is an essential protein that functions to initiate DNA replication after the formation of the replication fork helicase. In this manuscript, we identified a budding yeast Mcm10 mutant (Mcm10-m2,3,4) that is defective in DNA binding in vitro. Moreover, this Mcm10-m2,3,4 mutant does not stimulate the phosphorylation of Mcm2 by Dbf4-dependent kinase (DDK) in vitro. When we expressed wild-type levels of mcm10-m2,3,4 in budding yeast cells, we observed a severe growth defect and a substantially decreased DNA replication. We also observed a substantially reduced replication protein A- chromatin immunoprecipitation signal at origins of replication, reduced levels of DDK-phosphorylated Mcm2, and diminished Go, Ichi, Ni, and San (GINS) association with Mcm2-7 in vivo. mcm5-bob1 bypasses the growth defect conferred by DDK-phosphodead Mcm2 in budding yeast. However, the growth defect observed by expressing mcm10-m2,3,4 is not bypassed by the mcm5-bob1 mutation. Furthermore, origin melting and GINS association with Mcm2-7 are substantially decreased for cells expressing mcm10-m2,3,4 in the mcm5-bob1 background. Thus, the origin melting and GINS-Mcm2-7 interaction defects we observed for mcm10-m2,3,4 are not explained by decreased Mcm2 phosphorylation by DDK, since the defects persist in an mcm5-bob1 background. These data suggest that DNA binding by Mcm10 is essential for the initiation of DNA replication.
Collapse
Affiliation(s)
- Patricia Perez-Arnaiz
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Daniel L Kaplan
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
34
|
Ranatunga NS, Forsburg SL. Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4. G3 (BETHESDA, MD.) 2016; 6:3049-3063. [PMID: 27473316 PMCID: PMC5068930 DOI: 10.1534/g3.116.033571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Abstract
The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+ Uniquely among known mcm4 alleles, this mutation causes sensitivity to the alkylation damaging agent methyl methanesulfonate (MMS). Even in the absence of treatment or temperature shift, mcm4-c106 cells show increased repair foci of RPA and Rad52, and require the damage checkpoint for viability, indicating genome stress. The mcm4-c106 mutant is synthetically lethal with mutations disrupting fork protection complex (FPC) proteins Swi1 and Swi3. Surprisingly, we found that the deletion of rif1+ suppressed the MMS-sensitive phenotype without affecting temperature sensitivity. Together, these data suggest that mcm4-c106 destabilizes replisome structure.
Collapse
Affiliation(s)
- Nimna S Ranatunga
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
35
|
Phosphorylation of CMG helicase and Tof1 is required for programmed fork arrest. Proc Natl Acad Sci U S A 2016; 113:E3639-48. [PMID: 27298353 DOI: 10.1073/pnas.1607552113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several important physiological transactions, including control of replicative life span (RLS), prevention of collision between replication and transcription, and cellular differentiation, require programmed replication fork arrest (PFA). However, a general mechanism of PFA has remained elusive. We previously showed that the Tof1-Csm3 fork protection complex is essential for PFA by antagonizing the Rrm3 helicase that displaces nonhistone protein barriers that impede fork progression. Here we show that mutations of Dbf4-dependent kinase (DDK) of Saccharomyces cerevisiae, but not other DNA replication factors, greatly reduced PFA at replication fork barriers in the spacer regions of the ribosomal DNA array. A key target of DDK is the mini chromosome maintenance (Mcm) 2-7 complex, which is known to require phosphorylation by DDK to form an active CMG [Cdc45 (cell division cycle gene 45), Mcm2-7, GINS (Go, Ichi, Ni, and San)] helicase. In vivo experiments showed that mutational inactivation of DDK caused release of Tof1 from the chromatin fractions. In vitro binding experiments confirmed that CMG and/or Mcm2-7 had to be phosphorylated for binding to phospho-Tof1-Csm3 but not to its dephosphorylated form. Suppressor mutations that bypass the requirement for Mcm2-7 phosphorylation by DDK restored PFA in the absence of the kinase. Retention of Tof1 in the chromatin fraction and PFA in vivo was promoted by the suppressor mcm5-bob1, which bypassed DDK requirement, indicating that under this condition a kinase other than DDK catalyzed the phosphorylation of Tof1. We propose that phosphorylation regulates the recruitment and retention of Tof1-Csm3 by the replisome and that this complex antagonizes the Rrm3 helicase, thereby promoting PFA, by preserving the integrity of the Fob1-Ter complex.
Collapse
|
36
|
Li Y, Armstrong RL, Duronio RJ, MacAlpine DM. Methylation of histone H4 lysine 20 by PR-Set7 ensures the integrity of late replicating sequence domains in Drosophila. Nucleic Acids Res 2016; 44:7204-18. [PMID: 27131378 PMCID: PMC5009726 DOI: 10.1093/nar/gkw333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/15/2016] [Indexed: 12/16/2022] Open
Abstract
The methylation state of lysine 20 on histone H4 (H4K20) has been linked to chromatin compaction, transcription, DNA repair and DNA replication. Monomethylation of H4K20 (H4K20me1) is mediated by the cell cycle-regulated histone methyltransferase PR-Set7. PR-Set7 depletion in mammalian cells results in defective S phase progression and the accumulation of DNA damage, which has been partially attributed to defects in origin selection and activation. However, these studies were limited to only a handful of mammalian origins, and it remains unclear how PR-Set7 and H4K20 methylation impact the replication program on a genomic scale. We employed genetic, cytological, and genomic approaches to better understand the role of PR-Set7 and H4K20 methylation in regulating DNA replication and genome stability in Drosophila cells. We find that deregulation of H4K20 methylation had no impact on origin activation throughout the genome. Instead, depletion of PR-Set7 and loss of H4K20me1 results in the accumulation of DNA damage and an ATR-dependent cell cycle arrest. Coincident with the ATR-dependent cell cycle arrest, we find increased DNA damage that is specifically limited to late replicating regions of the Drosophila genome, suggesting that PR-Set7-mediated monomethylation of H4K20 is critical for maintaining the genomic integrity of late replicating domains.
Collapse
Affiliation(s)
- Yulong Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA Departments of Biology and Genetics, Lineberger Comprehensive Cancer Center, and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
37
|
Abstract
The cellular replicating machine, or "replisome," is composed of numerous different proteins. The core replication proteins in all cell types include a helicase, primase, DNA polymerases, sliding clamp, clamp loader, and single-strand binding (SSB) protein. The core eukaryotic replisome proteins evolved independently from those of bacteria and thus have distinct architectures and mechanisms of action. The core replisome proteins of the eukaryote include: an 11-subunit CMG helicase, DNA polymerase alpha-primase, leading strand DNA polymerase epsilon, lagging strand DNA polymerase delta, PCNA clamp, RFC clamp loader, and the RPA SSB protein. There are numerous other proteins that travel with eukaryotic replication forks, some of which are known to be involved in checkpoint regulation or nucleosome handling, but most have unknown functions and no bacterial analogue. Recent studies have revealed many structural and functional insights into replisome action. Also, the first structure of a replisome from any cell type has been elucidated for a eukaryote, consisting of 20 distinct proteins, with quite unexpected results. This review summarizes the current state of knowledge of the eukaryotic core replisome proteins, their structure, individual functions, and how they are organized at the replication fork as a machine.
Collapse
Affiliation(s)
- D Zhang
- The Rockefeller University, New York, NY, United States
| | - M O'Donnell
- The Rockefeller University, New York, NY, United States; Howard Hughes Medical Institute, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
38
|
Abstract
Hexameric helicases control both the initiation and the elongation phase of DNA replication. The toroidal structure of these enzymes provides an inherent challenge in the opening and loading onto DNA at origins, as well as the conformational changes required to exclude one strand from the central channel and activate DNA unwinding. Recently, high-resolution structures have not only revealed the architecture of various hexameric helicases but also detailed the interactions of DNA within the central channel, as well as conformational changes that occur during loading. This structural information coupled with advanced biochemical reconstitutions and biophysical methods have transformed our understanding of the dynamics of both the helicase structure and the DNA interactions required for efficient unwinding at the replisome.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, 76798, USA
| |
Collapse
|
39
|
Sheu YJ, Kinney JB, Stillman B. Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression. Genome Res 2016; 26:315-30. [PMID: 26733669 PMCID: PMC4772014 DOI: 10.1101/gr.195248.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022]
Abstract
Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins in a temporally specific manner during S phase. The replicative helicase Mcm2-7 functions in both initiation and fork progression and thus is an important target of regulation. Mcm4, a helicase subunit, possesses an unstructured regulatory domain that mediates control from multiple kinase signaling pathways, including the Dbf4-dependent Cdc7 kinase (DDK). Following replication stress in S phase, Dbf4 and Sld3, an initiation factor and essential target of Cyclin-Dependent Kinase (CDK), are targets of the checkpoint kinase Rad53 for inhibition of initiation from origins that have yet to be activated, so-called late origins. Here, whole-genome DNA replication profile analysis is used to access under various conditions the effect of mutations that alter the Mcm4 regulatory domain and the Rad53 targets, Sld3 and Dbf4. Late origin firing occurs under genotoxic stress when the controls on Mcm4, Sld3, and Dbf4 are simultaneously eliminated. The regulatory domain of Mcm4 plays an important role in the timing of late origin firing, both in an unperturbed S phase and in dNTP limitation. Furthermore, checkpoint control of Sld3 impacts fork progression under replication stress. This effect is parallel to the role of the Mcm4 regulatory domain in monitoring fork progression. Hypomorph mutations in sld3 are suppressed by a mcm4 regulatory domain mutation. Thus, in response to cellular conditions, the functions executed by Sld3, Dbf4, and the regulatory domain of Mcm4 intersect to control origin firing and replication fork progression, thereby ensuring genome stability.
Collapse
Affiliation(s)
- Yi-Jun Sheu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Justin B Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
40
|
Bruck I, Perez-Arnaiz P, Colbert MK, Kaplan DL. Insights into the Initiation of Eukaryotic DNA Replication. Nucleus 2015; 6:449-54. [PMID: 26710261 DOI: 10.1080/19491034.2015.1115938] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2-7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2-7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2-7 complex. Sld3 recruits Cdc45 to Mcm2-7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2-7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2-7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.
Collapse
Affiliation(s)
- Irina Bruck
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Patricia Perez-Arnaiz
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Max K Colbert
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| | - Daniel L Kaplan
- a Department of Biomedical Science; Florida State University College of Medicine ; Tallahassee , FL USA
| |
Collapse
|
41
|
Quan Y, Xia Y, Liu L, Cui J, Li Z, Cao Q, Chen XS, Campbell JL, Lou H. Cell-Cycle-Regulated Interaction between Mcm10 and Double Hexameric Mcm2-7 Is Required for Helicase Splitting and Activation during S Phase. Cell Rep 2015; 13:2576-2586. [PMID: 26686640 DOI: 10.1016/j.celrep.2015.11.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/22/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022] Open
Abstract
Mcm2-7 helicase is loaded onto double-stranded origin DNA as an inactive double hexamer (DH) in G1 phase. The mechanisms of Mcm2-7 remodeling that trigger helicase activation in S phase remain unknown. Here, we develop an approach to detect and purify the endogenous DHs directly. Through cellular fractionation, we provide in vivo evidence that DHs are assembled on chromatin in G1 phase and separated during S phase. Interestingly, Mcm10, a robust MCM interactor, co-purifies exclusively with the DHs in the context of chromatin. Deletion of the main interaction domain, Mcm10 C terminus, causes growth and S phase defects, which can be suppressed through Mcm10-MCM fusions. By monitoring the dynamics of MCM DHs, we show a significant delay in DH dissolution during S phase in the Mcm10-MCM interaction-deficient mutants. Therefore, we propose an essential role for Mcm10 in Mcm2-7 remodeling through formation of a cell-cycle-regulated supercomplex with DHs.
Collapse
Affiliation(s)
- Yun Quan
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Yisui Xia
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Lu Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Jiamin Cui
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China
| | - Xiaojiang S Chen
- Molecular and Computational Biology, USC Norris Cancer Center, and Chemistry Department, University of Southern California, Los Angeles, CA 90089, USA
| | - Judith L Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 2 Yuan-Ming-Yuan West Road, Beijing 100193, China.
| |
Collapse
|
42
|
Wang F, Stewart J, Price CM. Human CST abundance determines recovery from diverse forms of DNA damage and replication stress. Cell Cycle 2015; 13:3488-98. [PMID: 25483097 DOI: 10.4161/15384101.2014.964100] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammalian CST (CTC1-STN1-TEN1) is a telomere-associated complex that functions in telomere duplex replication and fill-in synthesis of the telomeric C-strand following telomerase action. CST also facilitates genome-wide replication recovery after HU-induced fork stalling by increasing origin firing. CTC1 and STN1 were originally isolated as a DNA polymerase α stimulatory factor. Here we explore how CST abundance affects recovery from drugs that cause different types of DNA damage and replication stress. We show that recovery from HU and aphidicolin induced replication stress is increased by CST over-expression. Elevated CST increases dNTP incorporation and origin firing after HU release and decreases the incidence of anaphase bridges and micronuclei after aphidicolin removal. While the frequency of origin firing after HU release is proportional to CST abundance, the number of cells entering S-phase to initiate replication is unchanged by CST overexpression or STN1 depletion. Instead the CST-related changes in origin firing take place in cells that were already in S-phase at the time of HU addition, indicating that CST modulates firing of late or dormant origins. CST abundance also influences cell viability after treatment with HU, aphidicolin, MMS and camptothecin. Viability is increased by elevated CST and decreased by STN1 depletion, indicating that endogenous CST levels are limiting. However, CST abundance does not affect viability after MMC treatment. Thus, CST facilitates recovery from many, but not all, forms of exogenous DNA damage. Overall our results suggest that CST is needed in stoichiometric amounts to facilitate re-initiation of DNA replication at repaired forks and/or dormant origins.
Collapse
Affiliation(s)
- Feng Wang
- a Department of Cancer Biology ; University of Cincinnati ; Cincinnati , OH USA
| | | | | |
Collapse
|
43
|
Conserved mechanism for coordinating replication fork helicase assembly with phosphorylation of the helicase. Proc Natl Acad Sci U S A 2015; 112:11223-8. [PMID: 26305950 DOI: 10.1073/pnas.1509608112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dbf4-dependent kinase (DDK) phosphorylates minichromosome maintenance 2 (Mcm2) during S phase in yeast, and Sld3 recruits cell division cycle 45 (Cdc45) to minichromosome maintenance 2-7 (Mcm2-7). We show here DDK-phosphoryled Mcm2 preferentially interacts with Cdc45 in vivo, and that Sld3 stimulates DDK phosphorylation of Mcm2 by 11-fold. We identified a mutation of the replication initiation factor Sld3, Sld3-m16, that is specifically defective in stimulating DDK phosphorylation of Mcm2. Wild-type expression levels of sld3-m16 result in severe growth and DNA replication defects. Cells expressing sld3-m16 exhibit no detectable Mcm2 phosphorylation in vivo, reduced replication protein A-ChIP signal at an origin, and diminished Go, Ichi, Ni, and San association with Mcm2-7. Treslin, the human homolog of Sld3, stimulates human DDK phosphorylation of human Mcm2 by 15-fold. DDK phosphorylation of human Mcm2 decreases the affinity of Mcm5 for Mcm2, suggesting a potential mechanism for helicase ring opening. These data suggest a conserved mechanism for replication initiation: Sld3/Treslin coordinates Cdc45 recruitment to Mcm2-7 with DDK phosphorylation of Mcm2 during S phase.
Collapse
|
44
|
Chen YH, Jones MJK, Yin Y, Crist SB, Colnaghi L, Sims RJ, Rothenberg E, Jallepalli PV, Huang TT. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress. Mol Cell 2015; 58:323-38. [PMID: 25843623 DOI: 10.1016/j.molcel.2015.02.031] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/13/2015] [Accepted: 02/25/2015] [Indexed: 12/24/2022]
Abstract
Excess dormant origins bound by the minichromosome maintenance (MCM) replicative helicase complex play a critical role in preventing replication stress, chromosome instability, and tumorigenesis. In response to DNA damage, replicating cells must coordinate DNA repair and dormant origin firing to ensure complete and timely replication of the genome; how cells regulate this process remains elusive. Herein, we identify a member of the Fanconi anemia (FA) DNA repair pathway, FANCI, as a key effector of dormant origin firing in response to replication stress. Cells lacking FANCI have reduced number of origins, increased inter-origin distances, and slowed proliferation rates. Intriguingly, ATR-mediated FANCI phosphorylation inhibits dormant origin firing while promoting replication fork restart/DNA repair. Using super-resolution microscopy, we show that FANCI co-localizes with MCM-bound chromatin in response to replication stress. These data reveal a unique role for FANCI as a modulator of dormant origin firing and link timely genome replication to DNA repair.
Collapse
Affiliation(s)
- Yu-Hung Chen
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Mathew J K Jones
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA; Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yandong Yin
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Sarah B Crist
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Luca Colnaghi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Robert J Sims
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Eli Rothenberg
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Prasad V Jallepalli
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
45
|
The Mcm2-7 replicative helicase: a promising chemotherapeutic target. BIOMED RESEARCH INTERNATIONAL 2014; 2014:549719. [PMID: 25243149 PMCID: PMC4163376 DOI: 10.1155/2014/549719] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 02/05/2023]
Abstract
Numerous eukaryotic replication factors have served as chemotherapeutic targets. One replication factor that has largely escaped drug development is the Mcm2-7 replicative helicase. This heterohexameric complex forms the licensing system that assembles the replication machinery at origins during initiation, as well as the catalytic core of the CMG (Cdc45-Mcm2-7-GINS) helicase that unwinds DNA during elongation. Emerging evidence suggests that Mcm2-7 is also part of the replication checkpoint, a quality control system that monitors and responds to DNA damage. As the only replication factor required for both licensing and DNA unwinding, Mcm2-7 is a major cellular regulatory target with likely cancer relevance. Mutations in at least one of the six MCM genes are particularly prevalent in squamous cell carcinomas of the lung, head and neck, and prostrate, and MCM mutations have been shown to cause cancer in mouse models. Moreover various cellular regulatory proteins, including the Rb tumor suppressor family members, bind Mcm2-7 and inhibit its activity. As a preliminary step toward drug development, several small molecule inhibitors that target Mcm2-7 have been recently discovered. Both its structural complexity and essential role at the interface between DNA replication and its regulation make Mcm2-7 a potential chemotherapeutic target.
Collapse
|
46
|
Georgescu RE, Langston L, Yao NY, Yurieva O, Zhang D, Finkelstein J, Agarwal T, O'Donnell ME. Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat Struct Mol Biol 2014; 21:664-70. [PMID: 24997598 PMCID: PMC4482249 DOI: 10.1038/nsmb.2851] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022]
Abstract
Eukaryotes use distinct polymerases for leading- and lagging-strand replication, but how they target their respective strands is uncertain. We reconstituted Saccharomyces cerevisiae replication forks and found that CMG helicase selects polymerase (Pol) ɛ to the exclusion of Pol δ on the leading strand. Even if Pol δ assembles on the leading strand, Pol ɛ rapidly replaces it. Pol δ-PCNA is distributive with CMG, in contrast to its high stability on primed ssDNA. Hence CMG will not stabilize Pol δ, instead leaving the leading strand accessible for Pol ɛ and stabilizing Pol ɛ. Comparison of Pol ɛ and Pol δ on a lagging-strand model DNA reveals the opposite. Pol δ dominates over excess Pol ɛ on PCNA-primed ssDNA. Thus, PCNA strongly favors Pol δ over Pol ɛ on the lagging strand, but CMG over-rides and flips this balance in favor of Pol ɛ on the leading strand.
Collapse
Affiliation(s)
- Roxana E Georgescu
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Lance Langston
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Nina Y Yao
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Olga Yurieva
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Dan Zhang
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Jeff Finkelstein
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Tani Agarwal
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| | - Mike E O'Donnell
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, USA
| |
Collapse
|