1
|
Kuravsky M, Kelly C, Redfield C, Shammas SL. The transition state for coupled folding and binding of a disordered DNA binding domain resembles the unbound state. Nucleic Acids Res 2024; 52:11822-11837. [PMID: 39315703 PMCID: PMC11514473 DOI: 10.1093/nar/gkae794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
The basic zippers (bZIPs) are one of two large eukaryotic families of transcription factors whose DNA binding domains are disordered in isolation but fold into stable α-helices upon target DNA binding. Here, we systematically disrupt pre-existing helical propensity within the DNA binding region of the homodimeric bZIP domain of cAMP-response element binding protein (CREB) using Ala-Gly scanning and examine the impact on target binding kinetics. We find that the secondary structure of the transition state strongly resembles that of the unbound state. The residue closest to the dimerization domain is largely folded within both unbound and transition states; dimerization apparently propagates additional helical propensity into the basic region. The results are consistent with electrostatically-enhanced DNA binding, followed by rapid folding from the folded zipper outwards. Fly-casting theory suggests that protein disorder can accelerate binding. Interestingly however, we did not observe higher association rate constants for mutants with lower levels of residual structure in the unbound state.
Collapse
Affiliation(s)
- Mikhail Kuravsky
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Conor Kelly
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Sarah L Shammas
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
2
|
Breen ME, Joy ST, Baruti OJ, Beyersdorf MS, Henley MJ, De Salle SN, Ycas PD, Croskey A, Cierpicki T, Pomerantz WCK, Mapp AK. Garcinolic Acid Distinguishes Between GACKIX Domains and Modulates Interaction Networks. Chembiochem 2023; 24:e202300439. [PMID: 37525583 PMCID: PMC10870240 DOI: 10.1002/cbic.202300439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Natural products are often uniquely suited to modulate protein-protein interactions (PPIs) due to their architectural and functional group complexity relative to synthetic molecules. Here we demonstrate that the natural product garcinolic acid allosterically blocks the CBP/p300 KIX PPI network and displays excellent selectivity over related GACKIX motifs. It does so via a strong interaction (KD 1 μM) with a non-canonical binding site containing a structurally dynamic loop in CBP/p300 KIX. Garcinolic acid engages full-length CBP in the context of the proteome and in doing so effectively inhibits KIX-dependent transcription in a leukemia model. As the most potent small-molecule KIX inhibitor yet reported, garcinolic acid represents an important step forward in the therapeutic targeting of CBP/p300.
Collapse
Affiliation(s)
- Meghan E Breen
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Stephen T Joy
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Omari J Baruti
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Matthew S Beyersdorf
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Madeleine J Henley
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Samantha N De Salle
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Peter D Ycas
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN-55455, USA
| | - Ayza Croskey
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN-55455, USA
| | - Anna K Mapp
- Department of Chemistry and Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| |
Collapse
|
3
|
Herrera-Nieto P, Pérez A, De Fabritiis G. Binding-and-Folding Recognition of an Intrinsically Disordered Protein Using Online Learning Molecular Dynamics. J Chem Theory Comput 2023; 19:3817-3824. [PMID: 37341654 PMCID: PMC10863933 DOI: 10.1021/acs.jctc.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Indexed: 06/22/2023]
Abstract
Intrinsically disordered proteins participate in many biological processes by folding upon binding to other proteins. However, coupled folding and binding processes are not well understood from an atomistic point of view. One of the main questions is whether folding occurs prior to or after binding. Here we use a novel, unbiased, high-throughput adaptive sampling approach to reconstruct the binding and folding between the disordered transactivation domain of c-Myb and the KIX domain of the CREB-binding protein. The reconstructed long-term dynamical process highlights the binding of a short stretch of amino acids on c-Myb as a folded α-helix. Leucine residues, especially Leu298-Leu302, establish initial native contacts that prime the binding and folding of the rest of the peptide, with a mixture of conformational selection on the N-terminal region with an induced fit of the C-terminal.
Collapse
Affiliation(s)
- Pablo Herrera-Nieto
- Computational
Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park
(PRBB), C Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Adrià Pérez
- Computational
Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park
(PRBB), C Dr. Aiguader 88, 08003, Barcelona, Spain
- Acellera
Labs, C Dr Trueta 183, 08005, Barcelona, Spain
| | - Gianni De Fabritiis
- Computational
Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park
(PRBB), C Dr. Aiguader 88, 08003, Barcelona, Spain
- Acellera
Ltd, Devonshire House
582, Stanmore Middlesex, HA7 1JS, United Kingdom
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
4
|
Madhurima K, Nandi B, Munshi S, Naganathan AN, Sekhar A. Functional regulation of an intrinsically disordered protein via a conformationally excited state. SCIENCE ADVANCES 2023; 9:eadh4591. [PMID: 37379390 PMCID: PMC10306299 DOI: 10.1126/sciadv.adh4591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
A longstanding goal in the field of intrinsically disordered proteins (IDPs) is to characterize their structural heterogeneity and pinpoint the role of this heterogeneity in IDP function. Here, we use multinuclear chemical exchange saturation (CEST) nuclear magnetic resonance to determine the structure of a thermally accessible globally folded excited state in equilibrium with the intrinsically disordered native ensemble of a bacterial transcriptional regulator CytR. We further provide evidence from double resonance CEST experiments that the excited state, which structurally resembles the DNA-bound form of cytidine repressor (CytR), recognizes DNA by means of a "folding-before-binding" conformational selection pathway. The disorder-to-order regulatory switch in DNA recognition by natively disordered CytR therefore operates through a dynamical variant of the lock-and-key mechanism where the structurally complementary conformation is transiently accessed via thermal fluctuations.
Collapse
Affiliation(s)
- Kulkarni Madhurima
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru 560 012, India
| | - Bodhisatwa Nandi
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru 560 012, India
| | - Sneha Munshi
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru 560 012, India
| |
Collapse
|
5
|
Evolutionary fine-tuning of residual helix structure in disordered proteins manifests in complex structure and lifetime. Commun Biol 2023; 6:63. [PMID: 36653471 PMCID: PMC9849366 DOI: 10.1038/s42003-023-04445-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Transcription depends on complex networks, where folded hub proteins interact with intrinsically disordered transcription factors undergoing coupled folding and binding. For this, local residual structure, a prototypical feature of intrinsic disorder, is key. Here, we dissect the unexplored functional potential of residual structure by comparing structure, kinetics, and thermodynamics within the model system constituted of the DREB2A transcription factor interacting with the αα-hub RCD1-RST. To maintain biological relevance, we developed an orthogonal evolutionary approach for the design of variants with varying amounts of structure. Biophysical analysis revealed a correlation between the amount of residual helical structure and binding affinity, manifested in altered complex lifetime due to changed dissociation rate constants. It also showed a correlation between helical structure in free and bound DREB2A variants. Overall, this study demonstrated how evolution can balance and fine-tune residual structure to regulate complexes in coupled folding and binding, potentially affecting transcription factor competition.
Collapse
|
6
|
Wen B, Zhang W, Zhang Y, Lei H, Cao Y, Li W, Wang W. Self-Effected Allosteric Coupling and Cooperativity in Hypoxic Response Regulation with Disordered Proteins. J Phys Chem Lett 2022; 13:9201-9209. [PMID: 36170455 DOI: 10.1021/acs.jpclett.2c02065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hypersensitive regulation of cellular hypoxic response relies on cooperative displacement of one disordered protein (HIF-1α) by another disordered protein (CITED2) from the target in a negative feedback loop. Considering the weak intramolecule coupling in disordered proteins, the molecular mechanism of high cooperativity in the molecular displacement event remains elusive. Herein, we show that disordered proteins utilize a "self-effected allostery" mechanism to achieve high binding cooperativity. Different from the conventional allostery mechanisms shown by many structured or disordered proteins, this mechanism utilizes one part of the disordered protein as the effector to trigger the allosteric coupling and enhance the binding of the remaining part of the same disordered protein, contributing to high cooperativity of the displacement event. The conserved charge motif of CITED2 is the key determinant of the molecular displacement event by serving as the effector of allosteric coupling. Such self-effected allostery provides an efficient strategy to achieve high cooperativity in the molecular events involving disordered proteins.
Collapse
Affiliation(s)
- Bin Wen
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Weiwei Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yangyang Zhang
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hai Lei
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
7
|
Chu WT, Yan Z, Chu X, Zheng X, Liu Z, Xu L, Zhang K, Wang J. Physics of biomolecular recognition and conformational dynamics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:126601. [PMID: 34753115 DOI: 10.1088/1361-6633/ac3800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Biomolecular recognition usually leads to the formation of binding complexes, often accompanied by large-scale conformational changes. This process is fundamental to biological functions at the molecular and cellular levels. Uncovering the physical mechanisms of biomolecular recognition and quantifying the key biomolecular interactions are vital to understand these functions. The recently developed energy landscape theory has been successful in quantifying recognition processes and revealing the underlying mechanisms. Recent studies have shown that in addition to affinity, specificity is also crucial for biomolecular recognition. The proposed physical concept of intrinsic specificity based on the underlying energy landscape theory provides a practical way to quantify the specificity. Optimization of affinity and specificity can be adopted as a principle to guide the evolution and design of molecular recognition. This approach can also be used in practice for drug discovery using multidimensional screening to identify lead compounds. The energy landscape topography of molecular recognition is important for revealing the underlying flexible binding or binding-folding mechanisms. In this review, we first introduce the energy landscape theory for molecular recognition and then address four critical issues related to biomolecular recognition and conformational dynamics: (1) specificity quantification of molecular recognition; (2) evolution and design in molecular recognition; (3) flexible molecular recognition; (4) chromosome structural dynamics. The results described here and the discussions of the insights gained from the energy landscape topography can provide valuable guidance for further computational and experimental investigations of biomolecular recognition and conformational dynamics.
Collapse
Affiliation(s)
- Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zhiqiang Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xiakun Chu
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States of America
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Li Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jin Wang
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States of America
| |
Collapse
|
8
|
Flanking Disorder of the Folded αα-Hub Domain from Radical Induced Cell Death1 Affects Transcription Factor Binding by Ensemble Redistribution. J Mol Biol 2021; 433:167320. [PMID: 34687712 DOI: 10.1016/j.jmb.2021.167320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
Protein intrinsic disorder is essential for organization of transcription regulatory interactomes. In these interactomes, the majority of transcription factors as well as their interaction partners have co-existing order and disorder. Yet, little attention has been paid to their interplay. Here, we investigate how order is affected by flanking disorder in the folded αα-hub domain RST from Radical-Induced Cell Death1 (RCD1), central in a large interactome of transcription factors. We show that the intrinsically disordered C-terminal tail of RCD1-RST shifts its conformational ensemble towards a pseudo-bound state through weak interactions with the ligand-binding pocket. An unfolded excited state is also accessible on the ms timescale independent of surrounding disordered regions, but its population is lowered by 50% in their presence. Flanking disorder additionally lowers transcription factor binding-affinity without affecting the dissociation rate constant, in accordance with similar bound-states assessed by NMR. The extensive dynamics of the RCD1-RST domain, modulated by flanking disorder, is suggestive of its adaptation to many different transcription factor ligands. The study illustrates how disordered flanking regions can tune fold and function through ensemble redistribution and is of relevance to modular proteins in general, many of which play key roles in regulation of genes.
Collapse
|
9
|
Jensen KS. Measuring and Analyzing Binding Kinetics of Coupled Folding and Binding Reactions Under Pseudo-First-Order Conditions. Methods Mol Biol 2021; 2141:629-650. [PMID: 32696381 DOI: 10.1007/978-1-0716-0524-0_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Many intrinsically disordered proteins (IDPs) adopt a well-defined structure upon binding to their interaction partners. Kinetic characterization is a requirement for the investigation of the dynamics and mechanisms of these folding-upon-binding reactions. Here a protocol is described for the investigation of binding kinetics of bimolecular binding and folding reactions of IDPs to their ligand partner under pseudo-first-order conditions using stopped-flow mixing and fluorescence detection.
Collapse
Affiliation(s)
- Kristine Steen Jensen
- Department for Biophysical Chemistry, Center for Molecular Protein Science, LTH, Lund University, Lund, Sweden.
| |
Collapse
|
10
|
Henley MJ, Linhares BM, Morgan BS, Cierpicki T, Fierke CA, Mapp AK. Unexpected specificity within dynamic transcriptional protein-protein complexes. Proc Natl Acad Sci U S A 2020; 117:27346-27353. [PMID: 33077600 PMCID: PMC7959569 DOI: 10.1073/pnas.2013244117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A key functional event in eukaryotic gene activation is the formation of dynamic protein-protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator•coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator-not often considered as contributing to binding-play a key role in mediating conformational redistribution. The ETV/PEA3•Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity.
Collapse
Affiliation(s)
- Madeleine J Henley
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Brian M Linhares
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Brittany S Morgan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Tomasz Cierpicki
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Carol A Fierke
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109;
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
11
|
Medina E, Villalobos P, Hamilton GL, Komives EA, Sanabria H, Ramírez-Sarmiento CA, Babul J. Intrinsically Disordered Regions of the DNA-Binding Domain of Human FoxP1 Facilitate Domain Swapping. J Mol Biol 2020; 432:5411-5429. [PMID: 32735805 PMCID: PMC7663421 DOI: 10.1016/j.jmb.2020.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023]
Abstract
Forkhead box P (FoxP) proteins are unique transcription factors that spatiotemporally regulate gene expression by tethering two chromosome loci together via functional domain-swapped dimers formed through their DNA-binding domains. Further, the differential kinetics on this dimerization mechanism underlie an intricate gene regulation network at physiological conditions. Nonetheless, poor understanding of the structural dynamics and steps of the association process impedes to link the functional domain swapping to human-associated diseases. Here, we have characterized the DNA-binding domain of human FoxP1 by integrating single-molecule Förster resonance energy transfer and hydrogen-deuterium exchange mass spectrometry data with molecular dynamics simulations. Our results confirm the formation of a previously postulated domain-swapped (DS) FoxP1 dimer in solution and reveal the presence of highly populated, heterogeneous, and locally disordered dimeric intermediates along the dimer dissociation pathway. The unique features of FoxP1 provide a glimpse of how intrinsically disordered regions can facilitate domain swapping oligomerization and other tightly regulated association mechanisms relevant in biological processes.
Collapse
Affiliation(s)
- Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - Pablo Villalobos
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile
| | - George L Hamilton
- Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Elizabeth A Komives
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Hugo Sanabria
- Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Integrative Biology (iBio), Santiago, Chile.
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
| |
Collapse
|
12
|
Revisiting allostery in CREB-binding protein (CBP) using residue-based interaction energy. J Comput Aided Mol Des 2020; 34:965-974. [PMID: 32430574 DOI: 10.1007/s10822-020-00316-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
CREB-binding protein (CBP) is a multi-subunit scaffold protein complex in transcription regulation process, binding and interacting with ligands such as mixed-lineage leukemia (MLL) and c-Myb allosterically. Here in this study, we have revisited the concept of allostery in CBP via residue-based interaction energy calculation based on molecular dynamics (MD) simulations. To this end, we conducted MD simulations of KIX:MLL:c-Myb ternary complex, its binary components and kinase-inducible domain (KID) interacting domain (KIX) backbone. Interaction energy profiles and cross correlation analysis were performed and the results indicated that KIX:MLL and KIX:c-Myb:MLL complexes demonstrate significant similarities according to both analysis methods. Two regions in the KIX backbone were apparent from the interaction energy and cross correlation maps that hold a key to allostery phenomena observed in CBP. While one of these regions are related to the ligand binding residues, the other comprises of L12-G2 loop and α3 helix regions that have been found to have a significant role in allosteric signal propagation. All in all, residue-based interaction energy calculation method is demonstrated to be a valuable calculation technique for the detection of allosteric signal propagation and ligand interaction regions.
Collapse
|
13
|
Chu WT, Shammas SL, Wang J. Charge Interactions Modulate the Encounter Complex Ensemble of Two Differently Charged Disordered Protein Partners of KIX. J Chem Theory Comput 2020; 16:3856-3868. [PMID: 32325001 DOI: 10.1021/acs.jctc.9b01264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Disordered proteins play important roles in cell signaling and are frequently involved in protein-protein interactions. They also have a larger proportion of charged and polar residues than their folded counterparts. Here, we developed a structure-based model and applied molecular dynamics simulations to examine the presence and importance of electrostatic interactions in the binding processes of two differently charged intrinsically disordered ligands of the KIX domain of CBP. We observed non-native opposite-charged contacts in the encounter complexes for both ligands with KIX, and this may be a general feature of coupled folding and binding reactions. The ensemble of successful encounter complexes is a diverse set of structures, and in the case of the highly charged ligand, this ensemble was found to be malleable with respect to ionic strength. There are only minor differences between encounter complex ensembles for successful and unsuccessful collisions with no key interactions that appear to make the process far more productive. The energy landscape at this early stage in the process does not appear highly funneled. Strikingly we observed many native interactions that appear to reduce chances of an encounter complex being productive. Instead it appears that collectively non-native electrostatic interactions in the encounter complex increase the likelihood of productivity by holding the proteins together long enough for folding to take place. This mechanism is more effective for the more highly charged ligand.
Collapse
Affiliation(s)
- Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R.China
| | - Sarah L Shammas
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jin Wang
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| |
Collapse
|
14
|
Toto A, Malagrinò F, Visconti L, Troilo F, Pagano L, Brunori M, Jemth P, Gianni S. Templated folding of intrinsically disordered proteins. J Biol Chem 2020; 295:6586-6593. [PMID: 32253236 DOI: 10.1074/jbc.rev120.012413] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Much of our current knowledge of biological chemistry is founded in the structure-function relationship, whereby sequence determines structure that determines function. Thus, the discovery that a large fraction of the proteome is intrinsically disordered, while being functional, has revolutionized our understanding of proteins and raised new and interesting questions. Many intrinsically disordered proteins (IDPs) have been determined to undergo a disorder-to-order transition when recognizing their physiological partners, suggesting that their mechanisms of folding are intrinsically different from those observed in globular proteins. However, IDPs also follow some of the classic paradigms established for globular proteins, pointing to important similarities in their behavior. In this review, we compare and contrast the folding mechanisms of globular proteins with the emerging features of binding-induced folding of intrinsically disordered proteins. Specifically, whereas disorder-to-order transitions of intrinsically disordered proteins appear to follow rules of globular protein folding, such as the cooperative nature of the reaction, their folding pathways are remarkably more malleable, due to the heterogeneous nature of their folding nuclei, as probed by analysis of linear free-energy relationship plots. These insights have led to a new model for the disorder-to-order transition in IDPs termed "templated folding," whereby the binding partner dictates distinct structural transitions en route to product, while ensuring a cooperative folding.
Collapse
Affiliation(s)
- Angelo Toto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Troilo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Livia Pagano
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Maurizio Brunori
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| |
Collapse
|
15
|
Wang Y, Brooks Iii CL. Electrostatic Forces Control the Negative Allosteric Regulation in a Disordered Protein Switch. J Phys Chem Lett 2020; 11:864-868. [PMID: 31940206 DOI: 10.1021/acs.jpclett.9b03618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The transcriptional adaptor zinc-binding 1 (TAZ1) domain of the transcriptional coactivator CBP/P300 and two disordered peptides, HIF-1α and CITED2, form a delicate protein switch that regulates cellular hypoxic response. In hypoxia, HIF-1α binds TAZ1 to control the transcription of adaptive genes critical for the recovery from hypoxic stress. CITED2 acts as the negative feedback regulator to rapidly displace HIF-1α and efficiently attenuate the hypoxic response. Though CITED2 and HIF-1α have the same dissociation constant (Kd = 10 nM) in their binary complexes with TAZ1, CITED2 is much more competitive than HIF-1α upon binding the same target TAZ1 in ternary ( Berlow et al. Nature 2017 , 543 , 447 - 451 ). Here we demonstrate that a simple coarse-grained model can recapitulate this negative allosteric effect and provide detailed physical insights into the displacement mechanism. We find that long-range electrostatic forces are essential for the efficient displacement of HIF-1α by CITED2. The strong electrostatic interactions between CITED2 and TAZ1, along with the unique binding mode, make CITED2 much more competitive than HIF-1α in binding TAZ1.
Collapse
|
16
|
Yang J, Zeng Y, Liu Y, Gao M, Liu S, Su Z, Huang Y. Electrostatic interactions in molecular recognition of intrinsically disordered proteins. J Biomol Struct Dyn 2019; 38:4883-4894. [DOI: 10.1080/07391102.2019.1692073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jing Yang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yifan Zeng
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yunfei Liu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Sen Liu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| |
Collapse
|
17
|
Sen S, Udgaonkar JB. Binding-induced folding under unfolding conditions: Switching between induced fit and conformational selection mechanisms. J Biol Chem 2019; 294:16942-16952. [PMID: 31582563 PMCID: PMC6851327 DOI: 10.1074/jbc.ra119.009742] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
The chemistry of protein-ligand binding is the basis of virtually every biological process. Ligand binding can be essential for a protein to function in the cell by stabilizing or altering the conformation of a protein, particularly for partially or completely unstructured proteins. However, the mechanisms by which ligand binding impacts disordered proteins or influences the role of disorder in protein folding is not clear. To gain insight into this question, the mechanism of folding induced by the binding of a Pro-rich peptide ligand to the SH3 domain of phosphatidylinositol 3-kinase unfolded in the presence of urea has been studied using kinetic methods. Under strongly denaturing conditions, folding was found to follow a conformational selection (CS) mechanism. However, under mildly denaturing conditions, a ligand concentration-dependent switch in the mechanism was observed. The folding mechanism switched from being predominantly a CS mechanism at low ligand concentrations to being predominantly an induced fit (IF) mechanism at high ligand concentrations. The switch in the mechanism manifests itself as an increase in the reaction flux along the IF pathway at high ligand concentrations. The results indicate that, in the case of intrinsically disordered proteins too, the folding mechanism is determined by the concentration of the ligand that induces structure formation.
Collapse
Affiliation(s)
- Sreemantee Sen
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India Indian Institute of Science Education and Research, Pune, Pashan, Pune 411 008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India Indian Institute of Science Education and Research, Pune, Pashan, Pune 411 008, India
| |
Collapse
|
18
|
Yang J, Gao M, Xiong J, Su Z, Huang Y. Features of molecular recognition of intrinsically disordered proteins via coupled folding and binding. Protein Sci 2019; 28:1952-1965. [PMID: 31441158 PMCID: PMC6798136 DOI: 10.1002/pro.3718] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
The sequence-structure-function paradigm of proteins has been revolutionized by the discovery of intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). In contrast to traditional ordered proteins, IDPs/IDRs are unstructured under physiological conditions. The absence of well-defined three-dimensional structures in the free state of IDPs/IDRs is fundamental to their function. Folding upon binding is an important mode of molecular recognition for IDPs/IDRs. While great efforts have been devoted to investigating the complex structures and binding kinetics and affinities, our knowledge on the binding mechanisms of IDPs/IDRs remains very limited. Here, we review recent advances on the binding mechanisms of IDPs/IDRs. The structures and kinetic parameters of IDPs/IDRs can vary greatly, and the binding mechanisms can be highly dependent on the structural properties of IDPs/IDRs. IDPs/IDRs can employ various combinations of conformational selection and induced fit in a binding process, which can be templated by the target and/or encoded by the IDP/IDR. Further studies should provide deeper insights into the molecular recognition of IDPs/IDRs and enable the rational design of IDP/IDR binding mechanisms in the future.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Meng Gao
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Junwen Xiong
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Zhengding Su
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Yongqi Huang
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| |
Collapse
|
19
|
Gao M, Yang J, Liu S, Su Z, Huang Y. Intrinsically Disordered Transactivation Domains Bind to TAZ1 Domain of CBP via Diverse Mechanisms. Biophys J 2019; 117:1301-1310. [PMID: 31521329 DOI: 10.1016/j.bpj.2019.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
CREB-binding protein is a multidomain transcriptional coactivator whose transcriptional adaptor zinc-binding 1 (TAZ1) domain mediates interactions with a number of intrinsically disordered transactivation domains (TADs), including the CREB-binding protein/p300-interacting transactivator with ED-rich tail, the hypoxia inducible factor 1α, p53, the signal transducer and activator of transcription 2, and the NF-κB p65 subunit. These five disordered TADs undergo partial disorder-to-order transitions upon binding TAZ1, forming fuzzy complexes with helical segments. Interestingly, they wrap around TAZ1 with different orientations and occupy the binding sites with various orders. To elucidate the microscopic molecular details of the binding processes of TADs with TAZ1, in this work, we carried out extensive molecular dynamics simulations using a coarse-grained topology-based model. After careful calibration of the models to reproduce the residual helical contents and binding affinities, our simulations were able to recapitulate the experimentally observed flexibility profiles. Although great differences exist in the complex structures, we found similarities between hypoxia inducible factor 1α and signal transducer and activator of transcription 2 as well as between CREB-binding protein/p300-interacting transactivator with ED-rich tail and NF-κB p65 subunit in the binding kinetics and binding thermodynamics. Although the origins of similarities and differences in the binding mechanisms remain unclear, our results provide some clues that indicate that binding of TADs to TAZ1 could be templated by the target as well as encoded by the TADs.
Collapse
Affiliation(s)
- Meng Gao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Jing Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Sen Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, China; Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|
20
|
Chong SH, Im H, Ham S. Explicit Characterization of the Free Energy Landscape of pKID-KIX Coupled Folding and Binding. ACS CENTRAL SCIENCE 2019; 5:1342-1351. [PMID: 31482116 PMCID: PMC6716127 DOI: 10.1021/acscentsci.9b00200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 06/10/2023]
Abstract
The most fundamental aspect of the free energy landscape of proteins is that it is globally funneled such that protein folding is energetically biased. Then, what are the distinctive characteristics of the landscape of intrinsically disordered proteins, apparently lacking such energetic bias, that nevertheless fold upon binding? Here, we address this fundamental issue through the explicit characterization of the free energy landscape of the paradigmatic pKID-KIX system (pKID, phosphorylated kinase-inducible domain; KIX, kinase interacting domain). This is done based on unguided, fully atomistic, explicit-water molecular dynamics simulations with an aggregated simulation time of >30 μs and on the computation of the free energy that defines the landscape. We find that, while the landscape of pKID before binding is considerably shallower than the one for a protein that autonomously folds, it becomes progressively more funneled as the binding of pKID with KIX proceeds. This explains why pKID is disordered in a free state, and the binding of pKID with KIX is a prerequisite for pKID's folding. In addition, we observe that the key event in completing the pKID-KIX coupled folding and binding is the directed self-assembly where pKID is docked upon the KIX surface to maximize the surface electrostatic complementarity, which, in turn, require pKID to adopt the correct folded structure. This key process shows up as the free energy barrier in the pKID landscape separating the intermediate nonspecific complex state and the specific complex state. The present work not only provides a detailed molecular picture of the coupled folding and binding of pKID but also expands the funneled landscape perspective to intrinsically disordered proteins.
Collapse
Affiliation(s)
| | | | - Sihyun Ham
- E-mail: . Phone: +82 2 710 9410. Fax: +82 2 2077 7321
| |
Collapse
|
21
|
Karlsson E, Andersson E, Jones NC, Hoffmann SV, Jemth P, Kjaergaard M. Coupled Binding and Helix Formation Monitored by Synchrotron-Radiation Circular Dichroism. Biophys J 2019; 117:729-742. [PMID: 31378314 PMCID: PMC6712486 DOI: 10.1016/j.bpj.2019.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/29/2019] [Accepted: 07/10/2019] [Indexed: 01/27/2023] Open
Abstract
Intrinsically disordered proteins organize interaction networks in the cell in many regulation and signaling processes. These proteins often gain structure upon binding to their target proteins in multistep reactions involving the formation of both secondary and tertiary structure. To understand the interactions of disordered proteins, we need to understand the mechanisms of these coupled folding and binding reactions. We studied helix formation in the binding of the molten globule-like nuclear coactivator binding domain and the disordered interaction domain from activator of thyroid hormone and retinoid receptors. We demonstrate that helix formation in a rapid binding reaction can be followed by stopped-flow synchrotron-radiation circular dichroism (CD) spectroscopy and describe the design of such a beamline. Fluorescence-monitored binding experiments of activator of thyroid hormone and retinoid receptors and nuclear coactivator binding domain display several kinetic phases, including one concentration-independent phase, which is consistent with an intermediate stabilized at high ionic strength. Time-resolved CD experiments show that almost all helicity is formed upon initial association of the proteins or separated from the encounter complex by only a small energy barrier. Through simulation of mechanistic models, we show that the intermediate observed at high ionic strength likely involves a structural rearrangement with minor overall changes in helicity. Our experiments provide a benchmark for simulations of coupled binding reactions and demonstrate the feasibility of using synchrotron-radiation CD for mechanistic studies of protein-protein interactions.
Collapse
Affiliation(s)
- Elin Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus, Denmark
| | | | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
22
|
Toto A, Troilo F, Visconti L, Malagrinò F, Bignon C, Longhi S, Gianni S. Binding induced folding: Lessons from the kinetics of interaction between N TAIL and XD. Arch Biochem Biophys 2019; 671:255-261. [PMID: 31326517 DOI: 10.1016/j.abb.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022]
Abstract
Intrinsically Disordered Proteins (IDPs) are a class of protein that exert their function despite lacking a well-defined three-dimensional structure, which is sometimes achieved only upon binding to their natural ligands. This feature implies the folding of IDPs to be generally coupled with a binding event, representing an interesting challenge for kinetic studies. In this review, we recapitulate some of the most important findings of IDPs binding-induced folding mechanisms obtained by analyzing their binding kinetics. Furthermore, by focusing on the interaction between the Measles virus NTAIL protein, a prototypical IDP, and its physiological partner, the X domain, we recapitulate the major theoretical and experimental approaches that were used to describe binding induced folding.
Collapse
Affiliation(s)
- Angelo Toto
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Troilo
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Christophe Bignon
- Aix-Marseille University, CNRS, Architecture et Fonction des Macromolećules Biologiques (AFMB), UMR7257, Marseille, France
| | - Sonia Longhi
- Aix-Marseille University, CNRS, Architecture et Fonction des Macromolećules Biologiques (AFMB), UMR7257, Marseille, France.
| | - Stefano Gianni
- Istituto Pasteur, Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
23
|
How Robust Is the Mechanism of Folding-Upon-Binding for an Intrinsically Disordered Protein? Biophys J 2019; 114:1889-1894. [PMID: 29694866 DOI: 10.1016/j.bpj.2018.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022] Open
Abstract
The mechanism of interaction of an intrinsically disordered protein (IDP) with its physiological partner is characterized by a disorder-to-order transition in which a recognition and a binding step take place. Even if the mechanism is quite complex, IDPs tend to bind their partner in a cooperative manner such that it is generally possible to detect experimentally only the disordered unbound state and the structured complex. The interaction between the disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) and the X domain (XD) of the viral phosphoprotein allows us to detect and quantify the two distinct steps of the overall reaction. Here, we analyze the robustness of the folding of NTAIL upon binding to XD by measuring the effect on both the folding and binding steps of NTAIL when the structure of XD is modified. Because it has been shown that wild-type XD is structurally heterogeneous, populating an on-pathway intermediate under native conditions, we investigated the binding to 11 different site-directed variants of NTAIL of one particular variant of XD (I504A XD) that populates only the native state. Data reveal that the recognition and the folding steps are both affected by the structure of XD, indicating a highly malleable pathway. The experimental results are briefly discussed in the light of previous experiments on other IDPs.
Collapse
|
24
|
Chu X, Wang J. Position-, disorder-, and salt-dependent diffusion in binding-coupled-folding of intrinsically disordered proteins. Phys Chem Chem Phys 2019; 21:5634-5645. [PMID: 30793144 PMCID: PMC6589441 DOI: 10.1039/c8cp06803h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Successful extensions of protein-folding energy landscape theory to intrinsically disordered proteins' (IDPs') binding-coupled-folding transition can enormously simplify this biomolecular process into diffusion along a limited number of reaction coordinates, and the dynamics subsequently is described by Kramers' rate theory. As the critical pre-factor, the diffusion coefficient D has direct implications on the binding kinetics. Here, we employ a structure-based model (SBM) to calculate D in the binding-folding of an IDP prototype. We identify a strong position-dependent D during binding by applying a reaction coordinate that directly measures the fluctuations in a Cartesian configuration space. Using the malleability of the SBM, we modulate the degree of conformational disorder in an isolated IDP and determine complex effects of intrinsic disorder on D varying for different binding stages. Here, D tends to increase with disorder during initial binding but shows a non-monotonic relationship with disorder in terms of a decrease-followed-by-increase in D during the late binding stage. The salt concentration, which correlates with electrostatic interactions via Debye-Hückel theory in our SBM, also modulates D in a stepwise way. The speeding up of diffusion by electrostatic interactions is observed during the formation of the encounter complex at the beginning of binding, while the last diffusive binding dynamics is hindered by non-native salt bridges. Because D describes the diffusive speed locally, which implicitly reflects the roughness of the energy landscape, we are eventually able to portray the binding energy landscape, including that from IDPs' binding, then to binding with partial folding, and finally to rigid docking, as well as that under different environmental salt concentrations. Our theoretical results provide key mechanistic insights into IDPs' binding-folding, which is internally conformation- and externally salt-controlled with respect to diffusion.
Collapse
Affiliation(s)
- Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
25
|
Rabuck-Gibbons JN, Lodge JM, Mapp AK, Ruotolo BT. Collision-Induced Unfolding Reveals Unique Fingerprints for Remote Protein Interaction Sites in the KIX Regulation Domain. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:94-102. [PMID: 30136215 PMCID: PMC6320266 DOI: 10.1007/s13361-018-2043-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
The kinase-inducible domain (KIX) of the transcriptional coactivator CBP binds multiple transcriptional regulators through two allosterically connected sites. Establishing a method for observing activator-specific KIX conformations would facilitate the discovery of drug-like molecules that capture specific conformations and further elucidate how distinct activator-KIX complexes produce differential transcriptional effects. However, the transient and low to moderate affinity interactions between activators and KIX are difficult to capture using traditional biophysical assays. Here, we describe a collision-induced unfolding-based approach that produces unique fingerprints for peptides bound to each of the two available sites within KIX, as well as a third fingerprint for ternary KIX complexes. Furthermore, we evaluate the analytical utility of unfolding fingerprints for KIX complexes using CIUSuite, and conclude by speculating as to the structural origins of the conformational families created from KIX:peptide complexes following collisional activation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jessica N Rabuck-Gibbons
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI, 48109, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Jean M Lodge
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI, 48109, USA
- Life Science Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
- University of Wisconsin, Genome Center, 425 Henry Mall, Madison, WI, 53706, USA
| | - Anna K Mapp
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI, 48109, USA
- Life Science Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
26
|
Crabtree MD, Shammas SL. Stopped-Flow Kinetic Techniques for Studying Binding Reactions of Intrinsically Disordered Proteins. Methods Enzymol 2018; 611:423-457. [PMID: 30471695 DOI: 10.1016/bs.mie.2018.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Intrinsically disordered proteins are abundant in signaling processes such as transcription. Suitable binding and unbinding rates of proteins with their partners are critical for allowing them to perform their biological roles. Understanding how these are achieved, and indeed designing strategies for intervening or modulating related biological processes, therefore requires kinetic studies. In this chapter, we describe stopped-flow-based methods for determining association and dissociation rate constants for pairs of macromolecular binding partners. We describe how to select the simplest appropriate model to describe the interaction, and highlight cases where it is possible to distinguish between induced fit and conformational selection binding mechanisms. Finally, we go on to describe methods for examining the role of electrostatic forces in binding processes, and for describing the transition state for binding processes that have folding associated with them.
Collapse
Affiliation(s)
- Michael D Crabtree
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sarah L Shammas
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
27
|
Borcherds WM, Daughdrill GW. Using NMR Chemical Shifts to Determine Residue-Specific Secondary Structure Populations for Intrinsically Disordered Proteins. Methods Enzymol 2018; 611:101-136. [PMID: 30471686 PMCID: PMC8130511 DOI: 10.1016/bs.mie.2018.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein disorder is a pervasive phenomenon in biology and a natural consequence of polymer evolution that facilitates cell signaling by organizing sites for posttranslational modifications and protein-protein interactions into arrays of short linear motifs that can be rearranged by RNA splicing. Disordered proteins are missing the long-range nonpolar interactions that form tertiary structures, but they often contain regions with residual secondary structure that are stabilized by protein binding. NMR spectroscopy is uniquely suited to detect residual secondary structure in a disordered protein and it can provide atomic resolution data on the structure and dynamics of disordered protein interaction sites. Here we describe how backbone chemical shifts are used for assigning residual secondary structure in disordered proteins and discuss some of the tools available for estimating secondary structure populations with a focus on disordered proteins containing different levels of alpha helical secondary structure which are stabilized by protein binding.
Collapse
Affiliation(s)
- Wade M Borcherds
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States.
| | - Gary W Daughdrill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
28
|
Structural basis for cooperative regulation of KIX-mediated transcription pathways by the HTLV-1 HBZ activation domain. Proc Natl Acad Sci U S A 2018; 115:10040-10045. [PMID: 30232260 DOI: 10.1073/pnas.1810397115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The human T cell leukemia virus I basic leucine zipper protein (HTLV-1 HBZ) maintains chronic viral infection and promotes leukemogenesis through poorly understood mechanisms involving interactions with the KIX domain of the transcriptional coactivator CBP and its paralog p300. The KIX domain binds regulatory proteins at the distinct MLL and c-Myb/pKID sites to form binary or ternary complexes. The intrinsically disordered N-terminal activation domain of HBZ (HBZ AD) deregulates cellular signaling pathways by competing directly with cellular and viral transcription factors for binding to the MLL site and by allosterically perturbing binding of the transactivation domain of the hematopoietic transcription factor c-Myb. Crystal structures of the ternary KIX:c-Myb:HBZ complex show that the HBZ AD recruits two KIX:c-Myb entities through tandem amphipathic motifs (L/V)(V/L)DGLL and folds into a long α-helix upon binding. Isothermal titration calorimetry reveals strong cooperativity in binding of the c-Myb activation domain to the KIX:HBZ complex and in binding of HBZ to the KIX:c-Myb complex. In addition, binding of KIX to the two HBZ (V/L)DGLL motifs is cooperative; the structures suggest that this cooperativity is achieved through propagation of the HBZ α-helix beyond the first binding motif. Our study suggests that the unique structural flexibility and the multiple interaction motifs of the intrinsically disordered HBZ AD are responsible for its potency in hijacking KIX-mediated transcription pathways. The KIX:c-Myb:HBZ complex provides an example of cooperative stabilization in a transcription factor:coactivator network and gives insights into potential mechanisms through which HBZ dysregulates hematopoietic transcriptional programs and promotes T cell proliferation.
Collapse
|
29
|
Henderson AR, Henley MJ, Foster NJ, Peiffer AL, Beyersdorf MS, Stanford KD, Sturlis SM, Linhares BM, Hill ZB, Wells JA, Cierpicki T, Brooks CL, Fierke CA, Mapp AK. Conservation of coactivator engagement mechanism enables small-molecule allosteric modulators. Proc Natl Acad Sci U S A 2018; 115:8960-8965. [PMID: 30127017 PMCID: PMC6130367 DOI: 10.1073/pnas.1806202115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcriptional coactivators are a molecular recognition marvel because a single domain within these proteins, the activator binding domain or ABD, interacts with multiple compositionally diverse transcriptional activators. Also remarkable is the structural diversity among ABDs, which range from conformationally dynamic helical motifs to those with a stable core such as a β-barrel. A significant objective is to define conserved properties of ABDs that allow them to interact with disparate activator sequences. The ABD of the coactivator Med25 (activator interaction domain or AcID) is unique in that it contains secondary structural elements that are on both ends of the spectrum: helices and loops that display significant conformational mobility and a seven-stranded β-barrel core that is structurally rigid. Using biophysical approaches, we build a mechanistic model of how AcID forms binary and ternary complexes with three distinct activators; despite its static core, Med25 forms short-lived, conformationally mobile, and structurally distinct complexes with each of the cognate partners. Further, ternary complex formation is facilitated by allosteric communication between binding surfaces on opposing faces of the β-barrel. The model emerging suggests that the conformational shifts and cooperative binding is mediated by a flexible substructure comprised of two dynamic helices and flanking loops, indicating a conserved mechanistic model of activator engagement across ABDs. Targeting a region of this substructure with a small-molecule covalent cochaperone modulates ternary complex formation. Our data support a general strategy for the identification of allosteric small-molecule modulators of ABDs, which are key targets for mechanistic studies as well as therapeutic applications.
Collapse
Affiliation(s)
- Andrew R Henderson
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Madeleine J Henley
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Nicholas J Foster
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Amanda L Peiffer
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Matthew S Beyersdorf
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Kevon D Stanford
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Steven M Sturlis
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Brian M Linhares
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Zachary B Hill
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Tomasz Cierpicki
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Charles L Brooks
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Carol A Fierke
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109;
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
30
|
Promiscuous and Selective: How Intrinsically Disordered BH3 Proteins Interact with Their Pro-survival Partner MCL-1. J Mol Biol 2018; 430:2468-2477. [DOI: 10.1016/j.jmb.2018.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
|
31
|
Poosapati A, Gregory E, Borcherds WM, Chemes LB, Daughdrill GW. Uncoupling the Folding and Binding of an Intrinsically Disordered Protein. J Mol Biol 2018; 430:2389-2402. [PMID: 29890118 DOI: 10.1016/j.jmb.2018.05.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 01/29/2023]
Abstract
The relationship between helical stability and binding affinity was examined for the intrinsically disordered transactivation domain of the myeloblastosis oncoprotein, c-Myb, and its ordered binding partner, KIX. A series of c-Myb mutants was designed to either increase or decrease helical stability without changing the binding interface with KIX. This included a complimentary series of A, G, P, and V mutants at three non-interacting sites. We were able to use the glycine mutants as a reference state and show a strong correlation between binding affinity and helical stability. The intrinsic helicity of c-Myb is 21%, and helicity values of the mutants ranged from 8% to 28%. The c-Myb helix is divided into two conformationally distinct segments. The N-terminal segment, from K291-L301, has an average helicity greater than 60% and the C-terminal segment, from S304-L315, has an average helicity less than 10%. We observed different effects on binding when these two segments were mutated. Mutants in the N-terminal segment that increased helicity had no effect on the binding affinity to KIX, while helix destabilizing glycine and proline mutants reduced binding affinity by more than 1 kcal/mol. Mutants that either increased or decreased helical stability in the C-terminal segment had almost no effect on binding. However, several of the mutants reveal the presence of multiple conformations accessible in the bound state based on changes in enthalpy and linkage analysis of binding free energies. These results may explain the high level of sequence identity (>90%), even at non-interacting sites, for c-Myb homologues.
Collapse
Affiliation(s)
- Anusha Poosapati
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| | - Emily Gregory
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| | - Wade M Borcherds
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| | - Lucia B Chemes
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, Universidad Nacional de San Martín, Buenos Aires, CP1650, Argentina.
| | - Gary W Daughdrill
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
32
|
Åberg E, Karlsson OA, Andersson E, Jemth P. Binding Kinetics of the Intrinsically Disordered p53 Family Transactivation Domains and MDM2. J Phys Chem B 2018; 122:6899-6905. [DOI: 10.1021/acs.jpcb.8b03876] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Emma Åberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - O. Andreas Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden
| |
Collapse
|
33
|
Deciphering RNA-Recognition Patterns of Intrinsically Disordered Proteins. Int J Mol Sci 2018; 19:ijms19061595. [PMID: 29843482 PMCID: PMC6032373 DOI: 10.3390/ijms19061595] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023] Open
Abstract
Intrinsically disordered regions (IDRs) and protein (IDPs) are highly flexible owing to their lack of well-defined structures. A subset of such proteins interacts with various substrates; including RNA; frequently adopting regular structures in the final complex. In this work; we have analysed a dataset of protein–RNA complexes undergoing disorder-to-order transition (DOT) upon binding. We found that DOT regions are generally small in size (less than 3 residues) for RNA binding proteins. Like structured proteins; positively charged residues are found to interact with RNA molecules; indicating the dominance of electrostatic and cation-π interactions. However, a comparison of binding frequency shows that interface hydrophobic and aromatic residues have more interactions in only DOT regions than in a protein. Further; DOT regions have significantly higher exposure to water than their structured counterparts. Interactions of DOT regions with RNA increase the sheet formation with minor changes in helix forming residues. We have computed the interaction energy for amino acids–nucleotide pairs; which showed the preference of His–G; Asn–U and Ser–U at for the interface of DOT regions. This study provides insights to understand protein–RNA interactions and the results could also be used for developing a tool for identifying DOT regions in RNA binding proteins.
Collapse
|
34
|
Cohen-Khait R, Schreiber G. Selecting for Fast Protein-Protein Association As Demonstrated on a Random TEM1 Yeast Library Binding BLIP. Biochemistry 2018; 57:4644-4650. [PMID: 29671590 DOI: 10.1021/acs.biochem.8b00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-protein interactions mediate the vast majority of cellular processes. Though protein interactions obey basic chemical principles also within the cell, the in vivo physiological environment may not allow for equilibrium to be reached. Thus, in vitro measured thermodynamic affinity may not provide a complete picture of protein interactions in the biological context. Binding kinetics composed of the association and dissociation rate constants are relevant and important in the cell. Therefore, changes in protein-protein interaction kinetics have a significant impact on the in vivo activity of the proteins. The common protocol for the selection of tighter binders from a mutant library selects for protein complexes with slower dissociation rate constants. Here we describe a method to specifically select for variants with faster association rate constants by using pre-equilibrium selection, starting from a large random library. Toward this end, we refine the selection conditions of a TEM1-β-lactamase library against its natural nanomolar affinity binder β-lactamase inhibitor protein (BLIP). The optimal selection conditions depend on the ligand concentration and on the incubation time. In addition, we show that a second sort of the library helps to separate signal from noise, resulting in a higher percent of faster binders in the selected library. Fast associating protein variants are of particular interest for drug development and other biotechnological applications.
Collapse
Affiliation(s)
- Ruth Cohen-Khait
- Department of Biomolecular Sciences , Weizmann Institute of Science , 76100 Rehovot , Israel
| | - Gideon Schreiber
- Department of Biomolecular Sciences , Weizmann Institute of Science , 76100 Rehovot , Israel
| |
Collapse
|
35
|
Berlow RB, Dyson HJ, Wright PE. Expanding the Paradigm: Intrinsically Disordered Proteins and Allosteric Regulation. J Mol Biol 2018; 430:2309-2320. [PMID: 29634920 DOI: 10.1016/j.jmb.2018.04.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 11/30/2022]
Abstract
Allosteric regulatory processes are implicated at all levels of biological function. Recent advances in our understanding of the diverse and functionally significant class of intrinsically disordered proteins have identified a multitude of ways in which disordered proteins function within the confines of the allosteric paradigm. Allostery within or mediated by intrinsically disordered proteins ensures robust and efficient signal integration through mechanisms that would be extremely unfavorable or even impossible for globular protein interaction partners. Here, we highlight recent examples that indicate the breadth of biological outcomes that can be achieved through allosteric regulation by intrinsically disordered proteins. Ongoing and future work in this rapidly evolving area of research will expand our appreciation of the central role of intrinsically disordered proteins in ensuring the fidelity and efficiency of cellular regulation.
Collapse
Affiliation(s)
- Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
36
|
Dahal L, Shammas SL, Clarke J. Phosphorylation of the IDP KID Modulates Affinity for KIX by Increasing the Lifetime of the Complex. Biophys J 2018; 113:2706-2712. [PMID: 29262363 PMCID: PMC5770967 DOI: 10.1016/j.bpj.2017.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are known to undergo a range of posttranslational modifications, but by what mechanism do such modifications affect the binding of an IDP to its partner protein? We investigate this question using one such IDP, the kinase inducible domain (KID) of the transcription factor CREB, which interacts with the KIX domain of CREB-binding protein upon phosphorylation. As with many other IDPs, KID undergoes coupled folding and binding to form α-helical structure upon interacting with KIX. This single site phosphorylation plays an important role in the control of transcriptional activation in vivo. Here we show that, contrary to expectation, phosphorylation has no effect on association rates—unphosphorylated KID binds just as rapidly as pKID, the phosphorylated form—but rather, acts by increasing the lifetime of the complex. We propose that by controlling the lifetime of the bound complex of pKID:KIX via altering the dissociation rate, phosphorylation can facilitate effective control of transcription regulation.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sarah L Shammas
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
37
|
Dahal L, Kwan TOC, Shammas SL, Clarke J. pKID Binds to KIX via an Unstructured Transition State with Nonnative Interactions. Biophys J 2018; 113:2713-2722. [PMID: 29262364 PMCID: PMC5770965 DOI: 10.1016/j.bpj.2017.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 02/02/2023] Open
Abstract
Understanding the detailed mechanism of interaction of intrinsically disordered proteins with their partners is crucial to comprehend their functions in signaling and transcription. Through its interaction with KIX, the disordered pKID region of CREB protein is central in the transcription of cAMP responsive genes, including those involved in long-term memory. Numerous simulation studies have investigated these interactions. Combined with experimental results, these can provide valuable and comprehensive understanding of the mechanisms involved. Here, we probe the transition state of this interaction experimentally through analyzing the kinetic effect of mutating both interface and solvent exposed residues in pKID. We show that very few specific interactions between pKID and KIX are required in the initial binding process. Only a small number of weak interactions are formed at the transition state, including nonnative interactions, and most of the folding occurs after the initial binding event. These properties are consistent with computational results and also the majority of experimental studies of intrinsically disordered protein coupled folding and binding in other protein systems, suggesting that these may be common features.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tristan O C Kwan
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sarah L Shammas
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
38
|
Huang Y, Gao M, Yang F, Zhang L, Su Z. Deciphering the promiscuous interactions between intrinsically disordered transactivation domains and the KIX domain. Proteins 2017; 85:2088-2095. [PMID: 28786199 DOI: 10.1002/prot.25364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/14/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
The kinase-inducible domain interacting (KIX) domain of the transcriptional coactivator CBP protein carries 2 isolated binding sites (designated as the c-Myb site and the MLL site) and is capable of binding numerous intrinsically disordered transactivation domains (TADs), including c-Myb and pKID via the c-Myb site, and MLL, E2A and c-Jun via the MLL site. In this study we compared the kinetics for binding of various disordered TADs to the KIX domain via computational biophysical analyses. We found that the binding rates are heavily affected by long-range electrostatic interactions. The basal rate constants for forming the encounter complexes are similar for different KIX binding peptides, favorable electrostatic interactions between the MLL site and the peptides result in greater association rates when peptides bind to the MLL site. FOXO3a and p53 TAD each contains 2 copies of KIX binding motif and each motif interacts with both the MLL site and the c-Myb site. Our kinetics studies suggest that binding of FOXO3a or p53 TAD to the KIX domain is via a sequential mechanism, where one KIX binding motif binds to the MLL site first and then the other KIX binding motif binds to the c-Myb site. Considering the promiscuous interactions between FOXO3a and KIX, and p53 TAD and KIX, electrostatic steering simplifies the binding mechanism. This study highlights the importance of long-range electrostatic interactions in molecular recognition process involving multi-motif intrinsically disordered proteins and promiscuous interactions.
Collapse
Affiliation(s)
- Yongqi Huang
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Meng Gao
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Fei Yang
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Lei Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| |
Collapse
|
39
|
Lindström I, Dogan J. Native Hydrophobic Binding Interactions at the Transition State for Association between the TAZ1 Domain of CBP and the Disordered TAD-STAT2 Are Not a Requirement. Biochemistry 2017; 56:4145-4153. [PMID: 28707474 DOI: 10.1021/acs.biochem.7b00428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A significant fraction of the eukaryotic proteome consists of proteins that are either partially or completely disordered under native-like conditions. Intrinsically disordered proteins (IDPs) are common in protein-protein interactions and are involved in numerous cellular processes. Although many proteins have been identified as disordered, much less is known about the binding mechanisms of the coupled binding and folding reactions involving IDPs. Here we have analyzed the rate-limiting transition state for binding between the TAZ1 domain of CREB binding protein and the intrinsically disordered transactivation domain of STAT2 (TAD-STAT2) by site-directed mutagenesis and kinetic experiments (Φ-value analysis) and found that the native protein-protein binding interface is not formed at the transition state for binding. Instead, native hydrophobic binding interactions form late, after the rate-limiting barrier has been crossed. The association rate constant in the absence of electrostatic enhancement was determined to be rather high. This is consistent with the Φ-value analysis, which showed that there are few or no obligatory native contacts. Also, linear free energy relationships clearly demonstrate that native interactions are cooperatively formed, a scenario that has usually been observed for proteins that fold according to the so-called nucleation-condensation mechanism. Thus, native hydrophobic binding interactions at the rate-limiting transition state for association between TAD-STAT2 and TAZ1 are not a requirement, which is generally in agreement with previous findings on other IDP systems and might be a common mechanism for IDPs.
Collapse
Affiliation(s)
- Ida Lindström
- Department of Biochemistry and Biophysics, Stockholm University , 10691 Stockholm, Sweden
| | - Jakob Dogan
- Department of Biochemistry and Biophysics, Stockholm University , 10691 Stockholm, Sweden
| |
Collapse
|
40
|
The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem Soc Trans 2017; 44:1185-1200. [PMID: 27911701 PMCID: PMC5095923 DOI: 10.1042/bst20160172] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/23/2022]
Abstract
In the 1960s, Christian Anfinsen postulated that the unique three-dimensional structure of a protein is determined by its amino acid sequence. This work laid the foundation for the sequence–structure–function paradigm, which states that the sequence of a protein determines its structure, and structure determines function. However, a class of polypeptide segments called intrinsically disordered regions does not conform to this postulate. In this review, I will first describe established and emerging ideas about how disordered regions contribute to protein function. I will then discuss molecular principles by which regulatory mechanisms, such as alternative splicing and asymmetric localization of transcripts that encode disordered regions, can increase the functional versatility of proteins. Finally, I will discuss how disordered regions contribute to human disease and the emergence of cellular complexity during organismal evolution.
Collapse
|
41
|
Eukaryotic transcription factors: paradigms of protein intrinsic disorder. Biochem J 2017; 474:2509-2532. [DOI: 10.1042/bcj20160631] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022]
Abstract
Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains targeting specific cis-acting elements in genes, and by the significant lack of fixed tertiary structure in their extensive intrinsically disordered regions. Recent research in protein intrinsic disorder (ID) has changed our understanding of transcriptional activation domains from ‘negative noodles’ to ID regions with function-related, short sequence motifs and molecular recognition features with structural propensities. This review focuses on molecular aspects of TFs, which represent paradigms of ID-related features. Through specific examples, we review how the ID-associated flexibility of TFs enables them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions. It is furthermore emphasized how classic biochemical concepts like allostery, conformational selection, induced fit, and feedback regulation are undergoing a revival with the appreciation of ID. The review also describes the most recent advances based on computational simulations of ID-based interaction mechanisms and structural analysis of ID in the context of full-length TFs and suggests future directions for research in TF ID.
Collapse
|
42
|
Bonetti D, Troilo F, Toto A, Brunori M, Longhi S, Gianni S. Analyzing the Folding and Binding Steps of an Intrinsically Disordered Protein by Protein Engineering. Biochemistry 2017; 56:3780-3786. [DOI: 10.1021/acs.biochem.7b00350] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniela Bonetti
- Istituto
Pasteur Italia-Fondazione Cenci Bolognetti, Istituto di Biologia e
Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
| | - Francesca Troilo
- Istituto
Pasteur Italia-Fondazione Cenci Bolognetti, Istituto di Biologia e
Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
- Aix-Marseille Univ, CNRS, Architecture et Fonction des
Macromolécules Biologiques (AFMB), UMR 7257, 13288 Marseille, France
| | - Angelo Toto
- Aix-Marseille Univ, CNRS, Architecture et Fonction des
Macromolécules Biologiques (AFMB), UMR 7257, 13288 Marseille, France
| | - Maurizio Brunori
- Istituto
Pasteur Italia-Fondazione Cenci Bolognetti, Istituto di Biologia e
Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
| | - Sonia Longhi
- Aix-Marseille Univ, CNRS, Architecture et Fonction des
Macromolécules Biologiques (AFMB), UMR 7257, 13288 Marseille, France
| | - Stefano Gianni
- Istituto
Pasteur Italia-Fondazione Cenci Bolognetti, Istituto di Biologia e
Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche
“A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
| |
Collapse
|
43
|
Crabtree MD, Borcherds W, Poosapati A, Shammas SL, Daughdrill GW, Clarke J. Conserved Helix-Flanking Prolines Modulate Intrinsically Disordered Protein:Target Affinity by Altering the Lifetime of the Bound Complex. Biochemistry 2017; 56:2379-2384. [PMID: 28425697 PMCID: PMC5467178 DOI: 10.1021/acs.biochem.7b00179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Appropriate
integration of cellular signals requires a delicate
balance of ligand–target binding affinities. Increasing the
level of residual structure in intrinsically disordered proteins (IDPs),
which are overrepresented in these cellular processes, has been shown
previously to enhance binding affinities and alter cellular function.
Conserved proline residues are commonly found flanking regions of
IDPs that become helical upon interacting with a partner protein.
Here, we mutate these helix-flanking prolines in p53 and MLL and find
opposite effects on binding affinity upon an increase in free IDP
helicity. In both cases, changes in affinity were due to alterations
in dissociation, not association, rate constants, which is inconsistent
with conformational selection mechanisms. We conclude that, contrary
to previous suggestions, helix-flanking prolines do not regulate affinity
by modulating the rate of complex formation. Instead, they influence
binding affinities by controlling the lifetime of the bound complex.
Collapse
Affiliation(s)
- Michael D Crabtree
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, U.K
| | - Wade Borcherds
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida , Tampa, Florida 33620, United States.,Florida Center for Drug Discovery and Innovation, University of South Florida , Tampa, Florida 33612, United States
| | - Anusha Poosapati
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida , Tampa, Florida 33620, United States.,Florida Center for Drug Discovery and Innovation, University of South Florida , Tampa, Florida 33612, United States
| | - Sarah L Shammas
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, U.K
| | - Gary W Daughdrill
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida , Tampa, Florida 33620, United States.,Florida Center for Drug Discovery and Innovation, University of South Florida , Tampa, Florida 33612, United States
| | - Jane Clarke
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, U.K
| |
Collapse
|
44
|
Chu WT, Clarke J, Shammas SL, Wang J. Role of non-native electrostatic interactions in the coupled folding and binding of PUMA with Mcl-1. PLoS Comput Biol 2017; 13:e1005468. [PMID: 28369057 PMCID: PMC5400261 DOI: 10.1371/journal.pcbi.1005468] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/21/2017] [Accepted: 03/20/2017] [Indexed: 11/23/2022] Open
Abstract
PUMA, which belongs to the BH3-only protein family, is an intrinsically disordered protein (IDP). It binds to its cellular partner Mcl-1 through its BH3 motif, which folds upon binding into an α helix. We have applied a structure-based coarse-grained model, with an explicit Debye-Hückel charge model, to probe the importance of electrostatic interactions both in the early and the later stages of this model coupled folding and binding process. This model was carefully calibrated with the experimental data on helical content and affinity, and shown to be consistent with previously published experimental data on binding rate changes with respect to ionic strength. We find that intramolecular electrostatic interactions influence the unbound states of PUMA only marginally. Our results further suggest that intermolecular electrostatic interactions, and in particular non-native electrostatic interactions, are involved in formation of the initial encounter complex. We are able to reveal the binding mechanism in more detail than is possible using experimental data alone however, and in particular we uncover the role of non-native electrostatic interactions. We highlight the potential importance of such electrostatic interactions for describing the binding reactions of IDPs. Such approaches could be used to provide predictions for the results of mutational studies.
Collapse
Affiliation(s)
- Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
| | - Sarah L. Shammas
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| |
Collapse
|
45
|
Pricer R, Gestwicki JE, Mapp AK. From Fuzzy to Function: The New Frontier of Protein-Protein Interactions. Acc Chem Res 2017; 50:584-589. [PMID: 28945413 DOI: 10.1021/acs.accounts.6b00565] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Conformationally heterogenous or "fuzzy" proteins have often been described as lacking specificity in binding and in function. The activation domains, for example, of transcriptional activators were labeled as negative noodles, with little structure or specificity. However, emerging data illustrates that the opposite is true: conformational heterogeneity enables context-specific function to emerge in response to changing cellular conditions and, furthermore, allows a single structural motif to be used in multiple settings. A further benefit is that conformational heterogeneity can be harnessed for the discovery of allosteric drug-like modulators, targeting critical pathways in protein homeostasis and transcription.
Collapse
Affiliation(s)
- Rachel Pricer
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
| | - Jason E Gestwicki
- Institute
for Neurodegenerative Diseases, Department of Pharmaceutical Chemistry, University of California—San Francisco, San Francisco, California 94143-0518, United States
| | - Anna K Mapp
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
- Program
in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109-2216, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
46
|
Shammas SL. Mechanistic roles of protein disorder within transcription. Curr Opin Struct Biol 2017; 42:155-161. [PMID: 28262589 DOI: 10.1016/j.sbi.2017.02.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 12/28/2022]
Abstract
Understanding the interactions of proteins involved in transcriptional regulation is critical to describing biological systems because they control the expression profile of the cell. Yet sadly they belong to a less well biophysically characterized subset of proteins; they frequently contain long disordered regions that are highly dynamic. A key question therefore is, why? What functional roles does protein disorder play in transcriptional regulation? Experimental data exemplifying these roles are starting to emerge, with common themes being enabling complexity within networks and quick responses. Most recently a role for disorder in mediating phase transitions of membrane-less organelles has been proposed.
Collapse
Affiliation(s)
- Sarah L Shammas
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
47
|
Abstract
Many human proteins contain intrinsically disordered regions, and disorder in these proteins can be fundamental to their function-for example, facilitating transient but specific binding, promoting allostery, or allowing efficient posttranslational modification. SasG, a multidomain protein implicated in host colonization and biofilm formation in Staphylococcus aureus, provides another example of how disorder can play an important role. Approximately one-half of the domains in the extracellular repetitive region of SasG are intrinsically unfolded in isolation, but these E domains fold in the context of their neighboring folded G5 domains. We have previously shown that the intrinsic disorder of the E domains mediates long-range cooperativity between nonneighboring G5 domains, allowing SasG to form a long, rod-like, mechanically strong structure. Here, we show that the disorder of the E domains coupled with the remarkable stability of the interdomain interface result in cooperative folding kinetics across long distances. Formation of a small structural nucleus at one end of the molecule results in rapid structure formation over a distance of 10 nm, which is likely to be important for the maintenance of the structural integrity of SasG. Moreover, if this normal folding nucleus is disrupted by mutation, the interdomain interface is sufficiently stable to drive the folding of adjacent E and G5 domains along a parallel folding pathway, thus maintaining cooperative folding.
Collapse
|
48
|
Mollica L, Bessa LM, Hanoulle X, Jensen MR, Blackledge M, Schneider R. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment. Front Mol Biosci 2016; 3:52. [PMID: 27668217 PMCID: PMC5016563 DOI: 10.3389/fmolb.2016.00052] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the “fly-casting” hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context.
Collapse
Affiliation(s)
- Luca Mollica
- CompuNet, Drug Discovery and Development, Istituto Italiano di Tecnologia Genova, Italy
| | - Luiza M Bessa
- NMR & Molecular Interactions, Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille, France
| | - Xavier Hanoulle
- NMR & Molecular Interactions, Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille, France
| | | | - Martin Blackledge
- Institut de Biologie Structurale, CEA, CNRS, Université Grenoble Alpes Grenoble, France
| | - Robert Schneider
- NMR & Molecular Interactions, Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle Lille, France
| |
Collapse
|
49
|
Peptide- and proton-driven allosteric clamps catalyze anthrax toxin translocation across membranes. Proc Natl Acad Sci U S A 2016; 113:9611-6. [PMID: 27506790 DOI: 10.1073/pnas.1600624113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anthrax toxin is an intracellularly acting toxin in which sufficient information is available regarding the structure of its transmembrane channel, allowing for detailed investigation of models of translocation. Anthrax toxin, comprising three proteins-protective antigen (PA), lethal factor (LF), and edema factor-translocates large proteins across membranes. Here we show that the PA translocase channel has a transport function in which its catalytic active sites operate allosterically. We find that the phenylalanine clamp (ϕ-clamp), the known conductance bottleneck in the PA translocase, gates as either a more closed state or a more dilated state. Thermodynamically, the two channel states have >300-fold different binding affinities for an LF-derived peptide. The change in clamp thermodynamics requires distant α-clamp and ϕ-clamp sites. Clamp allostery and translocation are more optimal for LF peptides with uniform stereochemistry, where the least allosteric and least efficiently translocated peptide had a mixed stereochemistry. Overall, the kinetic results are in less agreement with an extended-chain Brownian ratchet model but, instead, are more consistent with an allosteric helix-compression model that is dependent also on substrate peptide coil-to-helix/helix-to-coil cooperativity.
Collapse
|
50
|
Ithuralde RE, Roitberg AE, Turjanski AG. Structured and Unstructured Binding of an Intrinsically Disordered Protein as Revealed by Atomistic Simulations. J Am Chem Soc 2016; 138:8742-51. [PMID: 27348048 DOI: 10.1021/jacs.6b02016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intrinsically disordered proteins (IDPs) are a set of proteins that lack a definite secondary structure in solution. IDPs can acquire tertiary structure when bound to their partners; therefore, the recognition process must also involve protein folding. The nature of the transition state (TS), structured or unstructured, determines the binding mechanism. The characterization of the TS has become a major challenge for experimental techniques and molecular simulations approaches since diffusion, recognition, and binding is coupled to folding. In this work we present atomistic molecular dynamics (MD) simulations that sample the free energy surface of the coupled folding and binding of the transcription factor c-myb to the cotranscription factor CREB binding protein (CBP). This process has been recently studied and became a model to study IDPs. Despite the plethora of available information, we still do not know how c-myb binds to CBP. We performed a set of atomistic biased MD simulations running a total of 15.6 μs. Our results show that c-myb folds very fast upon binding to CBP with no unique pathway for binding. The process can proceed through both structured or unstructured TS's with similar probabilities. This finding reconciles previous seemingly different experimental results. We also performed Go-type coarse-grained MD of several structured and unstructured models that indicate that coupled folding and binding follows a native contact mechanism. To the best of our knowledge, this is the first atomistic MD simulation that samples the free energy surface of the coupled folding and binding processes of IDPs.
Collapse
Affiliation(s)
- Raúl Esteban Ithuralde
- Departamento de Química Biológica/Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, IQUIBICEN/INQUIMAE-UBA/CONICET, Universidad de Buenos Aires, Ciudad Universitaria , Intendente Güiraldes 2160, Pabellón II, Buenos Aires C1428EGA, Argentina
| | - Adrián Enrique Roitberg
- Department of Chemistry, University of Florida , PO Box 117200, Gainesville, Florida 32611-7200, United States
| | - Adrián Gustavo Turjanski
- Departamento de Química Biológica/Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, IQUIBICEN/INQUIMAE-UBA/CONICET, Universidad de Buenos Aires, Ciudad Universitaria , Intendente Güiraldes 2160, Pabellón II, Buenos Aires C1428EGA, Argentina
| |
Collapse
|