1
|
Hill L, Guyot S, Bertheau L, Davey H. Calorie Restriction Decreases Competitive Fitness in Saccharomyces cerevisiae Following Heat Stress. Microorganisms 2024; 12:1838. [PMID: 39338512 PMCID: PMC11433872 DOI: 10.3390/microorganisms12091838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Experiments exposing Saccharomyces cerevisiae to glucose limitation (calorie restriction) are widely used to determine impacts on cell health as a model for aging. Using growth on plates and in liquid culture, we demonstrated that calorie restriction reduces fitness in subsequent nutrient-limited environments. Yeast grown in a calorie-restricted environment took longer to emerge from the lag phase, had an extended doubling time and had a lower percentage of culturability. Cells grown under moderate calorie restriction were able to withstand a gradual heat stress in a similar manner to cells grown without calorie restriction but fared less well with a sudden heat shock. Yeast grown under extreme calorie restriction were less fit when exposed to gradual heating or heat shock. Using RNAseq analysis, we provide novel insight into the mechanisms underlying this response, showing that in the absence of calorie restriction, genes whose products are involved in energy metabolism (glycolysis/gluconeogenesis and the citrate cycle) are predominantly overexpressed when yeasts were exposed to gradual heating, whereas this was not the case when they were exposed to shock. We show that both the culture history and the current environment must be considered when assaying physiological responses, and this has wider implications when developing strategies for the propagation, preservation or destruction of microbial cells.
Collapse
Affiliation(s)
- Lucy Hill
- Department of Life Sciences, Aberystwyth University, Penglais, Aberystwyth SY23 3DA, UK
| | - Stéphane Guyot
- Université Bourgogne Franche-Comté, L’Institut Agro, Université de Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France; (S.G.)
| | - Lucie Bertheau
- Université Bourgogne Franche-Comté, L’Institut Agro, Université de Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France; (S.G.)
| | - Hazel Davey
- Department of Life Sciences, Aberystwyth University, Penglais, Aberystwyth SY23 3DA, UK
| |
Collapse
|
2
|
McLean S, Lee M, Liu W, Hameed R, Gujjala VA, Zhou X, Kaeberlein M, Kaya A. Molecular mechanisms of genotype-dependent lifespan variation mediated by caloric restriction: insight from wild yeast isolates. FRONTIERS IN AGING 2024; 5:1408160. [PMID: 39055969 PMCID: PMC11269085 DOI: 10.3389/fragi.2024.1408160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024]
Abstract
Caloric restriction (CR) is known to extend lifespan across different species and holds great promise for preventing human age-onset pathologies. However, two major challenges exist. First, despite extensive research, the mechanisms of lifespan extension in response to CR remain elusive. Second, genetic differences causing variations in response to CR and genetic factors contributing to variability of CR response on lifespan are largely unknown. Here, we took advantage of natural genetic variation across 46 diploid wild yeast isolates of Saccharomyces species and the lifespan variation under CR conditions to uncover the molecular factors associated with CR response types. We identified genes and metabolic pathways differentially regulated in CR-responsive versus non-responsive strains. Our analysis revealed that altered mitochondrial function and activation of GCN4-mediated environmental stress response are inevitably linked to lifespan variation in response to CR and a unique mitochondrial metabolite might be utilized as a predictive marker for CR response rate. In sum, our data suggests that the effects of CR on longevity may not be universal, even among the closely related species or strains of a single species. Since mitochondrial-mediated signaling pathways are evolutionarily conserved, the dissection of related genetic pathways will be relevant to understanding the mechanism by which CR elicits its longevity effect.
Collapse
Affiliation(s)
- Samantha McLean
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Mitchell Lee
- Department of Pathology, University of Washington, Seattle, WA, United States
- Ora Biomedical, Seattle, WA, United States
| | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Rohil Hameed
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Vikas Anil Gujjala
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, United States
- Optispan, Seattle, WA, United States
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
3
|
McLean S, Lee M, Liu W, Hameed R, Gujjala VA, Zhou X, Kaeberlein M, Kaya A. Molecular Mechanisms of Genotype-Dependent Lifespan Variation Mediated by Caloric Restriction: Insight from Wild Yeast Isolates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585422. [PMID: 38559208 PMCID: PMC10979966 DOI: 10.1101/2024.03.17.585422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Caloric restriction (CR) is known to extend lifespan across different species and holds great promise for preventing human age-onset pathologies. However, two major challenges exist. First, despite extensive research, the mechanisms of lifespan extension in response to CR remain elusive. Second, genetic differences causing variations in response to CR and genetic factors contributing to variability of CR response on lifespan are largely unknown. Here, we took advantage of natural genetic variation across 46 diploid wild yeast isolates of Saccharomyces species and the lifespan variation under CR conditions to uncover the molecular factors associated with CR response types. We identified genes and metabolic pathways differentially regulated in CR-responsive versus non-responsive strains. Our analysis revealed that altered mitochondrial function and activation of GCN4-mediated environmental stress response are inevitably linked to lifespan variation in response to CR and a unique mitochondrial metabolite might be utilized as a predictive marker for CR response rate. In sum, our data suggests that the effects of CR on longevity may not be universal, even among the closely related species or strains of a single species. Since mitochondrial-mediated signaling pathways are evolutionarily conserved, the dissection of related genetic pathways will be relevant to understanding the mechanism by which CR elicits its longevity effect.
Collapse
Affiliation(s)
- Samantha McLean
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Mitchell Lee
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
- Ora Biomedical, Seattle, WA, 98168, USA
| | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Rohil Hameed
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Vikas Anil Gujjala
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of Zoology, Beijing, China
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
- Optispan, Seattle, WA, 98168, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| |
Collapse
|
4
|
Xiao Q, Wang Y, Fan J, Yi Z, Hong H, Xie X, Huang QA, Fu J, Ouyang J, Zhao X, Wang Z, Zhu Z. A computer vision and residual neural network (ResNet) combined method for automated and accurate yeast replicative aging analysis of high-throughput microfluidic single-cell images. Biosens Bioelectron 2024; 244:115807. [PMID: 37948914 DOI: 10.1016/j.bios.2023.115807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
With the rapid development of microfluidic platforms in high-throughput single-cell culturing, laborious operation to manipulate massive budding yeast cells (Saccharomyces cerevisiae) in replicative aging studies has been greatly simplified and automated. As a result, large datasets of microscopy images bring challenges to fast and accurately determine yeast replicative lifespan (RLS), which is the most important parameter to study cell aging. Based on our microfluidic diploid yeast long-term culturing (DYLC) chip that features 1100 traps to immobilize single cells and record their proliferation and aging via time-lapse imaging, herein, a dedicated algorithm combined with computer vision and residual neural network (ResNet) was presented to efficiently process tremendous micrographs in a high-throughput and automated manner. The image-processing algorithm includes following pivotal steps: (i) segmenting multi-trap micrographs into time-lapse single-trap sub-images, (ii) labeling 8 yeast budding features and training the 18-layer ResNet, (iii) converting the ResNet predictions in analog values into digital signals, (iv) recognizing cell dynamic events, and (v) determining yeast RLS and budding time interval (BTI) ultimately. The ResNet algorithm achieved high F1 scores (over 92%) demonstrating the effectiveness and accuracy in the recognition of yeast budding events, such as bud appearance, daughter dissection and cell death. Therefore, the results conduct that similar deep learning algorithms could be tailored to analyze high-throughput microscopy images and extract multiple cell behaviors in microfluidic single-cell analysis.
Collapse
Affiliation(s)
- Qin Xiao
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Yingying Wang
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Juncheng Fan
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Zhenxiang Yi
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Hua Hong
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Xiao Xie
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Qing-An Huang
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Jiaming Fu
- Nanjing Forestry University, College of Chemical Engineering, Longpan Road 159, Nanjing, 210037, China
| | - Jia Ouyang
- Nanjing Forestry University, College of Chemical Engineering, Longpan Road 159, Nanjing, 210037, China
| | - Xiangwei Zhao
- Southeast University, School of Biological Science and Medical Engineering, State Key Laboratory of Digital Medical Engineering, Sipailou 2, Nanjing, 210096, China
| | - Zixin Wang
- Sun Yat-Sen University, School of Electronics and Information Technology, Waihuan Dong Road 132, Guangzhou, 510006, China.
| | - Zhen Zhu
- Southeast University, School of Integrated Circuits, School of Electronic Science and Engineering, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China.
| |
Collapse
|
5
|
Silva VKA, Oliveira NK, Fries BC. Measuring Replicative Lifespan in Cryptococcus neoformans. Methods Mol Biol 2024; 2775:375-384. [PMID: 38758331 DOI: 10.1007/978-1-0716-3722-7_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Advances in understanding cellular aging research have been possible due to the analysis of the replicative lifespan of yeast cells. Studying longevity in the pathogenic yeast Cryptococcus neoformans is essential because old yeast cells with age-related phenotypes accumulate during infection and are associated with increased virulence and antifungal tolerance. Microdissection and microfluidic devices are valuable tools for continuously tracking cells at the single-cell level. In this chapter, we describe the features of these two platforms and outline technical limitations and information to study aging mechanisms while assessing the lifespan of yeast cells.
Collapse
Affiliation(s)
- Vanessa K A Silva
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - Natalia K Oliveira
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Bettina C Fries
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, USA.
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
- Veterans Administration Medical Center, Northport, NY, USA.
| |
Collapse
|
6
|
Horkai D, Hadj-Moussa H, Whale AJ, Houseley J. Dietary change without caloric restriction maintains a youthful profile in ageing yeast. PLoS Biol 2023; 21:e3002245. [PMID: 37643155 PMCID: PMC10464975 DOI: 10.1371/journal.pbio.3002245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
Caloric restriction increases lifespan and improves ageing health, but it is unknown whether these outcomes can be separated or achieved through less severe interventions. Here, we show that an unrestricted galactose diet in early life minimises change during replicative ageing in budding yeast, irrespective of diet later in life. Average mother cell division rate is comparable between glucose and galactose diets, and lifespan is shorter on galactose, but markers of senescence and the progressive dysregulation of gene expression observed on glucose are minimal on galactose, showing that these are not intrinsic aspects of replicative ageing but rather associated processes. Respiration on galactose is critical for minimising hallmarks of ageing, and forced respiration during ageing on glucose by overexpression of the mitochondrial biogenesis factor Hap4 also has the same effect though only in a fraction of cells. This fraction maintains Hap4 activity to advanced age with low senescence and a youthful gene expression profile, whereas other cells in the same population lose Hap4 activity, undergo dramatic dysregulation of gene expression and accumulate fragments of chromosome XII (ChrXIIr), which are tightly associated with senescence. Our findings support the existence of two separable ageing trajectories in yeast. We propose that a complete shift to the healthy ageing mode can be achieved in wild-type cells through dietary change in early life without caloric restriction.
Collapse
Affiliation(s)
- Dorottya Horkai
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
7
|
Eigenfeld M, Wittmann L, Kerpes R, Schwaminger S, Becker T. Quantification methods of determining brewer's and pharmaceutical yeast cell viability: accuracy and impact of nanoparticles. Anal Bioanal Chem 2023; 415:3201-3213. [PMID: 37083758 PMCID: PMC10287788 DOI: 10.1007/s00216-023-04676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
For industrial processes, a fast, precise, and reliable method of determining the physiological state of yeast cells, especially viability, is essential. However, an increasing number of processes use magnetic nanoparticles (MNPs) for yeast cell manipulation, but their impact on yeast cell viability and the assay itself is unclear. This study tested the viability of Saccharomyces pastorianus ssp. carlsbergensis and Pichia pastoris by comparing traditional colourimetric, high-throughput, and growth assays with membrane fluidity. Results showed that methylene blue staining is only reliable for S. pastorianus cells with good viability, being erroneous in low viability (R2 = 0.945; [Formula: see text] = 5.78%). In comparison, the fluorescence microscopy-based assay of S. pastorianus demonstrated a coefficient of determination of R2 = 0.991 at [Formula: see text] ([Formula: see text] = 2.50%) and flow cytometric viability determination using carboxyfluorescein diacetate (CFDA), enabling high-throughput analysis of representative cell numbers; R2 = 0.972 ([Formula: see text]; [Formula: see text] = 3.89%). Membrane fluidity resulted in a non-linear relationship with the viability of the yeast cells ([Formula: see text]). We also determined similar results using P. pastoris yeast. In addition, we demonstrated that MNPs affected methylene blue staining by overestimating viability. The random forest model has been shown to be a precise method for classifying nanoparticles and yeast cells and viability differentiation in flow cytometry by using CFDA. Moreover, CFDA and membrane fluidity revealed precise results for both yeasts, also in the presence of nanoparticles, enabling fast and reliable determination of viability in many experiments using MNPs for yeast cell manipulation or separation.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Leonie Wittmann
- Chair of Bioseparation Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstr. 15, 85748 Garching, Germany
| | - Roland Kerpes
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Sebastian Schwaminger
- Chair of Bioseparation Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstr. 15, 85748 Garching, Germany
- Division of Medicinal Chemistry, Medical University of Graz, Otto-Loewi Research Center, Neue Stiftingtalstr. 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Thomas Becker
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| |
Collapse
|
8
|
Richter F, Bindschedler S, Calonne-Salmon M, Declerck S, Junier P, Stanley CE. Fungi-on-a-Chip: microfluidic platforms for single-cell studies on fungi. FEMS Microbiol Rev 2022; 46:6674677. [PMID: 36001464 PMCID: PMC9779915 DOI: 10.1093/femsre/fuac039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
This review highlights new advances in the emerging field of 'Fungi-on-a-Chip' microfluidics for single-cell studies on fungi and discusses several future frontiers, where we envisage microfluidic technology development to be instrumental in aiding our understanding of fungal biology. Fungi, with their enormous diversity, bear essential roles both in nature and our everyday lives. They inhabit a range of ecosystems, such as soil, where they are involved in organic matter degradation and bioremediation processes. More recently, fungi have been recognized as key components of the microbiome in other eukaryotes, such as humans, where they play a fundamental role not only in human pathogenesis, but also likely as commensals. In the food sector, fungi are used either directly or as fermenting agents and are often key players in the biotechnological industry, where they are responsible for the production of both bulk chemicals and antibiotics. Although the macroscopic fruiting bodies are immediately recognizable by most observers, the structure, function, and interactions of fungi with other microbes at the microscopic scale still remain largely hidden. Herein, we shed light on new advances in the emerging field of Fungi-on-a-Chip microfluidic technologies for single-cell studies on fungi. We discuss the development and application of microfluidic tools in the fields of medicine and biotechnology, as well as in-depth biological studies having significance for ecology and general natural processes. Finally, a future perspective is provided, highlighting new frontiers in which microfluidic technology can benefit this field.
Collapse
Affiliation(s)
- Felix Richter
- Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Saskia Bindschedler
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Claire E Stanley
- Corresponding author: Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, United Kingdom. E-mail:
| |
Collapse
|
9
|
Aspert T, Hentsch D, Charvin G. DetecDiv, a generalist deep-learning platform for automated cell division tracking and survival analysis. eLife 2022; 11:79519. [PMID: 35976090 PMCID: PMC9444243 DOI: 10.7554/elife.79519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Automating the extraction of meaningful temporal information from sequences of microscopy images represents a major challenge to characterize dynamical biological processes. So far, strong limitations in the ability to quantitatively analyze single-cell trajectories have prevented large-scale investigations to assess the dynamics of entry into replicative senescence in yeast. Here, we have developed DetecDiv, a microfluidic-based image acquisition platform combined with deep learning-based software for high-throughput single-cell division tracking. We show that DetecDiv can automatically reconstruct cellular replicative lifespans with high accuracy and performs similarly with various imaging platforms and geometries of microfluidic traps. In addition, this methodology provides comprehensive temporal cellular metrics using time-series classification and image semantic segmentation. Last, we show that this method can be further applied to automatically quantify the dynamics of cellular adaptation and real-time cell survival upon exposure to environmental stress. Hence, this methodology provides an all-in-one toolbox for high-throughput phenotyping for cell cycle, stress response, and replicative lifespan assays.
Collapse
Affiliation(s)
- Théo Aspert
- Department of Developmental Biology and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Didier Hentsch
- Department of Developmental Biology and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| | - Gilles Charvin
- Department of Developmental Biology and Stem Cells, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
| |
Collapse
|
10
|
McIntyre RL, Liu YJ, Hu M, Morris BJ, Willcox BJ, Donlon TA, Houtkooper RH, Janssens GE. Pharmaceutical and nutraceutical activation of FOXO3 for healthy longevity. Ageing Res Rev 2022; 78:101621. [PMID: 35421606 DOI: 10.1016/j.arr.2022.101621] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Yasmine J Liu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Man Hu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Brian J Morris
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia; Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Bradley J Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Timothy A Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Hotz M, Thayer NH, Hendrickson DG, Schinski EL, Xu J, Gottschling DE. rDNA array length is a major determinant of replicative lifespan in budding yeast. Proc Natl Acad Sci U S A 2022; 119:e2119593119. [PMID: 35394872 PMCID: PMC9169770 DOI: 10.1073/pnas.2119593119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/01/2022] [Indexed: 12/29/2022] Open
Abstract
The complex processes and interactions that regulate aging and determine lifespan are not fully defined for any organism. Here, taking advantage of recent technological advances in studying aging in budding yeast, we discovered a previously unappreciated relationship between the number of copies of the ribosomal RNA gene present in its chromosomal array and replicative lifespan (RLS). Specifically, the chromosomal ribosomal DNA (rDNA) copy number (rDNA CN) positively correlated with RLS and this interaction explained over 70% of variability in RLS among a series of wild-type strains. In strains with low rDNA CN, SIR2 expression was attenuated and extrachromosomal rDNA circle (ERC) accumulation was increased, leading to shorter lifespan. Suppressing ERC formation by deletion of FOB1 eliminated the relationship between rDNA CN and RLS. These data suggest that previously identified rDNA CN regulatory mechanisms limit lifespan. Importantly, the RLSs of reported lifespan-enhancing mutations were significantly impacted by rDNA CN, suggesting that changes in rDNA CN might explain the magnitude of some of those reported effects. We propose that because rDNA CN is modulated by environmental, genetic, and stochastic factors, considering rDNA CN is a prerequisite for accurate interpretation of lifespan data.
Collapse
Affiliation(s)
- Manuel Hotz
- Calico Life Sciences LLC, South San Francisco, CA 94080
| | | | | | | | - Jun Xu
- Calico Life Sciences LLC, South San Francisco, CA 94080
| | | |
Collapse
|
12
|
Santiago E, Moreno DF, Acar M. Modeling aging and its impact on cellular function and organismal behavior. Exp Gerontol 2021; 155:111577. [PMID: 34582969 PMCID: PMC8560568 DOI: 10.1016/j.exger.2021.111577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023]
Abstract
Aging is a complex phenomenon of functional decay in a biological organism. Although the effects of aging are readily recognizable in a wide range of organisms, the cause(s) of aging are ill defined and poorly understood. Experimental methods on model organisms have driven significant insight into aging as a process, but have not provided a complete model of aging. Computational biology offers a unique opportunity to resolve this gap in our knowledge by generating extensive and testable models that can help us understand the fundamental nature of aging, identify the presence and characteristics of unaccounted aging factor(s), demonstrate the mechanics of particular factor(s) in driving aging, and understand the secondary effects of aging on biological function. In this review, we will address each of the above roles for computational biology in aging research. Concurrently, we will explore the different applications of computational biology to aging in single-celled versus multicellular organisms. Given the long history of computational biogerontological research on lower eukaryotes, we emphasize the key future goals of gradually integrating prior models into a holistic map of aging and translating successful models to higher-complexity organisms.
Collapse
Affiliation(s)
- Emerson Santiago
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA
| | - David F Moreno
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA.
| |
Collapse
|
13
|
Antiaging Properties of the Ethanol Fractions of Clove (Syzygium aromaticum L.) Bud and Leaf at the Cellular Levels: Study in Yeast Schizosaccharomyces pombe. Sci Pharm 2021. [DOI: 10.3390/scipharm89040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The exposure of reactive oxygen species is one of the aging triggers at cellular level. The antioxidants have been used as strategic efforts in overcoming the accumulation of ROS. Previous research using crude extracts of clove bud and leaves showed its potential as an antioxidant agent. However, no data were available regarding the antioxidant and antiaging activities of subsequent fractions of clove extracts. Therefore, this study aimed to analyze the antioxidant and antiaging activities of the n-hexane and ethanol fractions from clove bud and leaves. Antioxidant and antiaging activities were tested at the cellular level using the yeast model Schizosaccharomyces pombe. The highest flavonoid content was shown by clove leaf n-hexane fraction (25.6 mgQE·g−1). However, ethanol fraction of clove bud (FEB) showed the highest antioxidant activity based on TBA and antiglycation assays. FEB (8 μg·mL−1) and leaf ethanol fraction (FEL) (10 μg·mL−1) were able to induce yeast tolerance against oxidative stress. In addition, FEB could induce mitochondrial activity and delay the G1 phase of the cell cycle. FEB was found to be rich in gallic acid and (15Z)-9,12,13-trihydroxy-15-octadecenoic. Based on the data, FEB shows the potential antiaging activity, which is promising for further development as biopharmaceutical product formulations.
Collapse
|
14
|
Bedekovic T, Brand AC. Microfabrication and its use in investigating fungal biology. Mol Microbiol 2021; 117:569-577. [PMID: 34592794 DOI: 10.1111/mmi.14816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Advances in microfabrication technology, and its increasing accessibility, allow us to explore fungal biology as never before. By coupling molecular genetics with fluorescence live-cell imaging in custom-designed chambers, we can now probe single yeast cell responses to changing conditions over a lifetime, characterise population heterogeneity and investigate its underlying causes. By growing filamentous fungi in complex physical environments, we can identify cross-species commonalities, reveal species-specific growth responses and examine physiological differences relevant to diverse fungal lifestyles. As affordability and expertise broadens, microfluidic platforms will become a standard technique for examining the role of fungi in cross-kingdom interactions, ranging from rhizosphere to microbiome to interconnected human organ systems. This review brings together the perspectives already gained from studying fungal biology in microfabricated systems and outlines their potential in understanding the role of fungi in the environment, health and disease.
Collapse
Affiliation(s)
- Tina Bedekovic
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
15
|
Potassium and Sodium Salt Stress Characterization in the Yeasts Saccharomyces cerevisiae, Kluyveromyces marxianus, and Rhodotorula toruloides. Appl Environ Microbiol 2021; 87:e0310020. [PMID: 33893111 DOI: 10.1128/aem.03100-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biotechnology requires efficient microbial cell factories. The budding yeast Saccharomyces cerevisiae is a vital cell factory, but more diverse cell factories are essential for the sustainable use of natural resources. Here, we benchmarked nonconventional yeasts Kluyveromyces marxianus and Rhodotorula toruloides against S. cerevisiae strains CEN.PK and W303 for their responses to potassium and sodium salt stress. We found an inverse relationship between the maximum growth rate and the median cell volume that was responsive to salt stress. The supplementation of K+ to CEN.PK cultures reduced Na+ toxicity and increased the specific growth rate 4-fold. The higher K+ and Na+ concentrations impaired ethanol and acetate metabolism in CEN.PK and acetate metabolism in W303. In R. toruloides cultures, these salt supplementations induced a trade-off between glucose utilization and cellular aggregate formation. Their combined use increased the beta-carotene yield by 60% compared with that of the reference. Neural network-based image analysis of exponential-phase cultures showed that the vacuole-to-cell volume ratio increased with increased cell volume for W303 and K. marxianus but not for CEN.PK and R. toruloides in response to salt stress. Our results provide insights into common salt stress responses in yeasts and will help design efficient bioprocesses. IMPORTANCE Characterization of microbial cell factories under industrially relevant conditions is crucial for designing efficient bioprocesses. Salt stress, typical in industrial bioprocesses, impinges upon cell volume and affects productivity. This study presents an open-source neural network-based analysis method to evaluate volumetric changes using yeast optical microscopy images. It allows quantification of cell and vacuole volumes relevant to cellular physiology. On applying salt stress in yeasts, we found that the combined use of K+ and Na+ improves the cellular fitness of Saccharomyces cerevisiae strain CEN.PK and increases the beta-carotene productivity in Rhodotorula toruloides, a commercially important antioxidant and a valuable additive in foods.
Collapse
|
16
|
Zhu Z, Wang Y, Peng R, Chen P, Geng Y, He B, Ouyang S, Zheng K, Fan Y, Pan D, Jin N, Rudolf F, Hierlemann A. A microfluidic single-cell array for in situ laminar-flow-based comparative culturing of budding yeast cells. Talanta 2021; 231:122401. [PMID: 33965050 DOI: 10.1016/j.talanta.2021.122401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/09/2023]
Abstract
To facilitate in situ comparative culturing of budding yeast cells in a precisely controlled microenvironment, we developed a microfluidic single-cell array (MiSCA) with 96 traps (16 rows × 6 columns) for single-cell immobilization. Through optimization of the distances between neighboring traps and the applied flow rates by using a hydraulic equivalent circuit of the fluidic network, yeast cells were delivered to each column of the array by laminar focused flows and reliably captured at the traps by hydrodynamic forces with about 90% efficiency of cell immobilization. Immobilized cells in different columns within the same device can then be cultured in parallel while being exposed to different media and compounds delivered by laminar flows. For biological validation of the comparative cell-culturing device, we used budding yeast that can express yellow fluorescent protein upon the addition of β-estradiol in cell-culturing medium. Experimental results show successful induction of fluorescence in cells immobilized in desired columns that have been dosed with β-estradiol. The MiSCA system allows for performing sets of experiments and control experiments in parallel in the same device, or for executing comparative experiments under well-defined laminar-perfusion conditions with different media, as well as in situ monitoring of dynamic cellular responses upon different analytical compounds or reagents for single-cell analysis.
Collapse
Affiliation(s)
- Zhen Zhu
- Southeast University, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China; ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, Basel, 4058, Switzerland.
| | - Yingying Wang
- Southeast University, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Ruobo Peng
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Pan Chen
- Southeast University, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Yangye Geng
- Southeast University, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Bailiang He
- Southeast University, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Shuiping Ouyang
- Nanjing Forestry University, College of Chemical Engineering, Longpan Road 159, Nanjing, 210037, China
| | - Ke Zheng
- Nanjing Forestry University, College of Chemical Engineering, Longpan Road 159, Nanjing, 210037, China
| | - Yimin Fan
- Nanjing Forestry University, College of Chemical Engineering, Longpan Road 159, Nanjing, 210037, China
| | - Dejing Pan
- Soochow University, CAM-SU Genomic Resource Center, Ren-ai Road 199, Suzhou, 215213, China
| | - Nan Jin
- Southeast University, ZhongDa Hospital, Dingjiaqiao 87, Nanjing, 210009, China
| | - Fabian Rudolf
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Andreas Hierlemann
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
17
|
Xu X, Zhu Z, Wang Y, Geng Y, Xu F, Marchisio MA, Wang Z, Pan D. Investigation of daughter cell dissection coincidence of single budding yeast cells immobilized in microfluidic traps. Anal Bioanal Chem 2021; 413:2181-2193. [PMID: 33517467 DOI: 10.1007/s00216-021-03186-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/28/2022]
Abstract
Microfluidic methodologies allow for automatic and high-throughput replicative lifespan (RLS) determination of single budding yeast cells. However, the resulted RLS is highly impacted by the robustness of experimental conditions, especially the microfluidic yeast-trapping structures, which are designed for cell retention, growth, budding, and daughter cell dissection. In this work, four microfluidic yeast-trapping structures, which were commonly used to immobilize mother cells and remove daughter cells for entire lifespan of budding yeast, were systematically investigated by means of finite element modeling (FEM). The results from this analysis led us to propose an optimized design, the yeast rotation (YRot) trap, which is a "leaky bowl"-shaped structure composed of two mirrored microcolumns facing each other. The YRot trap enables stable retention of mother cells in its "bowl" and hydrodynamic rotation of buds into its "leaky orifice" such that matured progenies can be dissected in a coincident direction. We validated the functions of the YRot trap in terms of cell rotation and daughter dissection by both FEM simulations and experiments. With the integration of denser YRot traps in microchannels, the microfluidic platform with stable single-yeast immobilization, long-term cell culturing, and coincident daughter dissection could potentially improve the robustness of experimental conditions for precise RLS determination in yeast aging studies.
Collapse
Affiliation(s)
- Xingyu Xu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China
| | - Zhen Zhu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China.
| | - Yingying Wang
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China
| | - Yangye Geng
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China
| | - Feng Xu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China.
| | - Mario A Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Zixin Wang
- School of Electronics and Information Technology, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, Guangdong, China
| | - Dejing Pan
- CAM-SU Genomic Resource Center, Soochow University, Ren-ai Road 199, Suzhou, 215213, Jiangsu, China
| |
Collapse
|
18
|
Durán DC, Hernández CA, Suesca E, Acevedo R, Acosta IM, Forero DA, Rozo FE, Pedraza JM. Slipstreaming Mother Machine: A Microfluidic Device for Single-Cell Dynamic Imaging of Yeast. MICROMACHINES 2020; 12:mi12010004. [PMID: 33374994 PMCID: PMC7822021 DOI: 10.3390/mi12010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
The yeast Saccharomyces cerevisiae is one of the most basic model organisms for studies of aging and other phenomena such as division strategies. These organisms have been typically studied with the use of microfluidic devices to keep cells trapped while under a flow of fresh media. However, all of the existing devices trap cells mechanically, subjecting them to pressures that may affect cell physiology. There is evidence mechanical pressure affects growth rate and the movement of intracellular components, so it is quite possible that it affects other physiological aspects such as aging. To allow studies with the lowest influence of mechanical pressure, we designed and fabricated a device that takes advantage of the slipstreaming effect. In slipstreaming, moving fluids that encounter a barrier flow around it forming a pressure gradient behind it. We trap mother cells in this region and force daughter cells to be in the negative pressure gradient region so that they are taken away by the flow. Additionally, this device can be fabricated using low resolution lithography techniques, which makes it less expensive than devices that require photolithography masks with resolution under 5 µm. With this device, it is possible to measure some of the most interesting aspects of yeast dynamics such as growth rates and Replicative Life Span. This device should allow future studies to eliminate pressure bias as well as extending the range of labs that can do these types of measurements.
Collapse
Affiliation(s)
- David C. Durán
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Correspondence: (D.C.D.); (J.M.P.); Tel.: +57-1-3394949 (ext. 5179 (COL)) (J.M.P.)
| | - César A. Hernández
- Centro de Microelectrónica, Departamento de Ingeniería Eléctrica y Electrónica, Universidad de los Andes CMUA, Bogotá 111711, Colombia;
| | - Elizabeth Suesca
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
| | - Rubén Acevedo
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
| | - Ivón M. Acosta
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Proyecto Curricular Licenciatura en Física, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Diana A. Forero
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Proyecto Curricular Licenciatura en Física, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Francisco E. Rozo
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Proyecto Curricular Licenciatura en Física, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Juan M. Pedraza
- Laboratorio de Biofísica, Departamento de Física, Universidad de los Andes, Bogotá 111711, Colombia; (E.S.); (R.A.); (I.M.A.); (D.A.F.); (F.E.R.)
- Correspondence: (D.C.D.); (J.M.P.); Tel.: +57-1-3394949 (ext. 5179 (COL)) (J.M.P.)
| |
Collapse
|
19
|
Zou K, Rouskin S, Dervishi K, McCormick MA, Sasikumar A, Deng C, Chen Z, Kaeberlein M, Brem RB, Polymenis M, Kennedy BK, Weissman JS, Zheng J, Ouyang Q, Li H. Life span extension by glucose restriction is abrogated by methionine supplementation: Cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. SCIENCE ADVANCES 2020; 6:eaba1306. [PMID: 32821821 PMCID: PMC7406366 DOI: 10.1126/sciadv.aba1306] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/22/2020] [Indexed: 05/03/2023]
Abstract
Caloric restriction (CR) is known to extend life span across species; however, the molecular mechanisms are not well understood. We investigate the mechanism by which glucose restriction (GR) extends yeast replicative life span, by combining ribosome profiling and RNA-seq with microfluidic-based single-cell analysis. We discovered a cross-talk between glucose sensing and the regulation of intracellular methionine: GR down-regulated the transcription and translation of methionine biosynthetic enzymes and transporters, leading to a decreased intracellular methionine concentration; external supplementation of methionine cancels the life span extension by GR. Furthermore, genetic perturbations that decrease methionine synthesis/uptake extend life span. These observations suggest that intracellular methionine mediates the life span effects of various nutrient and genetic perturbations, and that the glucose-methionine cross-talk is a general mechanism for coordinating the nutrient status and the translation/growth of a cell. Our work also implicates proteasome as a downstream effector of the life span extension by GR.
Collapse
Affiliation(s)
- Ke Zou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences at Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Silvia Rouskin
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | | | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM 87131, USA
| | | | - Changhui Deng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zhibing Chen
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Rachel B. Brem
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Brian K. Kennedy
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Jiashun Zheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qi Ouyang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences at Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
20
|
Chen KL, Ven TN, Crane MM, Chen DE, Feng YC, Suzuki N, Russell AE, de Moraes D, Kaeberlein M. An inexpensive microscopy system for microfluidic studies in budding yeast. TRANSLATIONAL MEDICINE OF AGING 2019; 3:52-56. [PMID: 31511839 PMCID: PMC6738973 DOI: 10.1016/j.tma.2019.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recently, microfluidic technologies have been developed to allow higher throughput collection of yeast replicative lifespan data. Adoption of these devices has been limited, in part, due to the high cost of the motorized microscopy instrumentation from mainline manufacturers. Inspired by recent development of open source microscopy hardware and software, we developed minimal-cost hardware attachments to provide long-term focus stabilization for lower-cost microscopes and open source software to manage concurrent time-lapse image acquisition from multiple microscopes. We hope that these tools will help spur the wider adoption of microfluidic technologies for the study of aging in yeast.
Collapse
Affiliation(s)
- Kenneth L. Chen
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, School of Medicine, University of Washington, Seattle, WA, USA
| | - Toby N. Ven
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew M. Crane
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Dexter E. Chen
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Yen-Chi Feng
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Nozomi Suzuki
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Adam E. Russell
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Diogo de Moraes
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, WA, USA
- Corresponding author. Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA. (M. Kaeberlein)
| |
Collapse
|
21
|
Yeast Ataxin-2 Forms an Intracellular Condensate Required for the Inhibition of TORC1 Signaling during Respiratory Growth. Cell 2019; 177:697-710.e17. [PMID: 30982600 DOI: 10.1016/j.cell.2019.02.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 10/04/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Yeast ataxin-2, also known as Pbp1 (polyA binding protein-binding protein 1), is an intrinsically disordered protein implicated in stress granule formation, RNA biology, and neurodegenerative disease. To understand the endogenous function of this protein, we identify Pbp1 as a dedicated regulator of TORC1 signaling and autophagy under conditions that require mitochondrial respiration. Pbp1 binds to TORC1 specifically during respiratory growth, but utilizes an additional methionine-rich, low complexity (LC) region to inhibit TORC1. This LC region causes phase separation, forms reversible fibrils, and enables self-association into assemblies required for TORC1 inhibition. Mutants that weaken phase separation in vitro exhibit reduced capacity to inhibit TORC1 and induce autophagy. Loss of Pbp1 leads to mitochondrial dysfunction and reduced fitness during nutritional stress. Thus, Pbp1 forms a condensate in response to respiratory status to regulate TORC1 signaling.
Collapse
|
22
|
Maslanka R, Zadrag-Tecza R. Less is more or more is less: Implications of glucose metabolism in the regulation of the reproductive potential and total lifespan of the Saccharomyces cerevisiae yeast. J Cell Physiol 2019; 234:17622-17638. [PMID: 30805924 DOI: 10.1002/jcp.28386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/10/2023]
Abstract
Carbohydrates are dietary nutrients that have an influence on cells physiology, cell reproductive capacity and, consequently, the lifespan of organisms. They are used in cellular processes after conversion to glucose, which is the primary source of energy and carbon skeleton for biosynthetic processes. Studies of the influence of glucose on cellular parameters and lifespan of organisms are primarily concerned with the effect of low glucose concentration defined as calorie restriction conditions. However, the effect of high glucose concentration on cell physiology is also very important. Thus, a comparative analysis of the effects of low and high glucose concentration conditions on cell efficiency was proposed with regard to reproductive capacity and total lifespan of the cell. Glucose concentration determines the type of metabolism and biosynthetic capabilities, which in turn, through the regulation on the cell size, may affect the reproductive capacity of cells. This study was conducted on yeast cells of wild-type and mutant strains Δgpa2 and Δgpr1 with glucose signalling pathway impairment. Such an experimental model enabled testing both the role of glucose concentration in the regulation of metabolic changes and the extent to which these changes depend on the extracellular or intracellular glucose concentrations. It has been shown here that calorie/glucose excess connected with changes in cell metabolic fluxes increases biosynthetic capabilities of yeast cells. This leads to an increase in cell dry weight accompanied by the increase in cell size and a simultaneous decrease in the reproductive potential and the overall length of cell life.
Collapse
Affiliation(s)
- Roman Maslanka
- Department of Biochemistry and Cell Biology, Faculty of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Department of Biochemistry and Cell Biology, Faculty of Biotechnology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
23
|
Functional genomics of dietary restriction and longevity in yeast. Mech Ageing Dev 2019; 179:36-43. [PMID: 30790575 DOI: 10.1016/j.mad.2019.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 11/22/2022]
Abstract
Dietary restriction-limitation of calories or other specific nutrients in the diet-is the sole non-genetic intervention known to extend the lifespan of a wide range of model organisms from yeast to mammals. Cell biology studies on the responses to dietary restriction have provided important clues about the mechanisms of longevity; however, a comprehensive genome-wide description of lifespan by dietary restriction has been mostly absent. Large-scale genetic analysis in the budding yeast Saccharomyces cerevisiae offers a great opportunity to uncover the conserved systems-level mechanisms that give way to longevity in response to diet. Here, we review recent advances in high-throughput phenotyping of the replicative and chronological life spans of yeast cells, which have contributed to our understanding of longevity by dietary restriction and the cellular crosstalks of nutrient-sensing regulation.
Collapse
|
24
|
Folch J, Busquets O, Ettcheto M, Sánchez-López E, Pallàs M, Beas-Zarate C, Marin M, Casadesus G, Olloquequi J, Auladell C, Camins A. Experimental Models for Aging and their Potential for Novel Drug Discovery. Curr Neuropharmacol 2018; 16:1466-1483. [PMID: 28685671 PMCID: PMC6295931 DOI: 10.2174/1570159x15666170707155345] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/22/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background: An interesting area of scientific research is the development of potential antiaging drugs. In order to pursue this goal, it is necessary to gather the specific knowledge about the adequate preclinical models that are available to evaluate the beneficial effects of new potential drugs. This review is focused on invertebrate and vertebrate preclinical models used to evaluate the efficacy of antiaging compounds, with the objective to extend life span and health span. Methods: Research and online content related to aging, antiaging drugs, experimental aging models is reviewed. Moreover, in this review, the main experimental preclinical models of organisms that have contributed to the research in the pharmacol-ogy of lifespan extension and the understanding of the aging process are discussed. Results: Dietary restriction (DR) constitutes a common experimental process to extend life span in all organisms. Besides, classical antiaging drugs such as resveratrol, rapamycin and metformin denominated as DR mimetics are also discussed. Likewise, the main therapeutic targets of these drugs include sirtuins, IGF-1, and mTOR, all of them being modulated by DR. Conclusion: Advances in molecular biology have uncovered the potential molecular pathways involved in the aging process. Due to their characteristics, invertebrate models are mainly used for drug screening. The National Institute on Aging (NIA) developed the Interventions Testing Program (ITP). At the pre-clinical level, the ITP uses Heterogeneous mouse model (HET) which is probably the most suitable rodent model to study potential drugs against aging prevention. The accelerated-senescence mouse P8 is also a mammalian rodent model for aging research. However, when evaluating the effect of drugs on a preclinical level, the evaluation must be done in non-human primates since it is the mammalian specie closest to humans. Research is needed to investigate the impact of new potential drugs for the increase of human quality of
Collapse
Affiliation(s)
- Jaume Folch
- Unitat de Bioquimica i Biotecnologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Oriol Busquets
- Unitat de Bioquimica i Biotecnologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Departament Deaprtament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Unitat de Bioquimica i Biotecnologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Departament Deaprtament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Unitat de Farmacia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Mercè Pallàs
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Departament Deaprtament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Departamento de Biologia Celulary Molecular, C.U.C.B.A., Universidad de Guadalajara and Division de Neurociencias, Sierra Mojada 800, Col. Independencia, Guadalajara, Jalisco 44340, Mexico
| | - Miguel Marin
- Centro de Biotecnologia. Universidad Nacional de Loja, Av. Pío Jaramillo Alvarado y Reinaldo Espinosa, La Argelia. Loja, Ecuador
| | - Gemma Casadesus
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Jordi Olloquequi
- Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autonoma de Chile, Talca, Chile
| | - Carme Auladell
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Departamento de Biologia Celulary Molecular, C.U.C.B.A., Universidad de Guadalajara and Division de Neurociencias, Sierra Mojada 800, Col. Independencia, Guadalajara, Jalisco 44340, Mexico.,Departament de Biologia Cellular, Fisiologia i Inmunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Camins
- Departament Deaprtament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Centro de Biotecnologia. Universidad Nacional de Loja, Av. Pío Jaramillo Alvarado y Reinaldo Espinosa, La Argelia. Loja, Ecuador
| |
Collapse
|
25
|
Smith JT, White JW, Dungrawala H, Hua H, Schneider BL. Yeast lifespan variation correlates with cell growth and SIR2 expression. PLoS One 2018; 13:e0200275. [PMID: 29979754 PMCID: PMC6034835 DOI: 10.1371/journal.pone.0200275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/22/2018] [Indexed: 11/19/2022] Open
Abstract
Isogenic wild type yeast cells raised in controlled environments display a significant range of lifespan variation. Recent microfluidic studies suggest that differential growth or gene expression patterns may explain some of the heterogeneity of aging assays. Herein, we sought to complement this work by similarly examining a large set of replicative lifespan data from traditional plate assays. In so doing, we reproduced the finding that short-lived cells tend to arrest at senescence with a budded morphology. Further, we found that wild type cells born unusually small did not have an extended lifespan. However, large birth size and/or high inter-generational growth rates significantly correlated with a reduced lifespan. Finally, we found that SIR2 expression levels correlated with lifespan and intergenerational growth. SIR2 expression was significantly reduced in large cells and increased in small wild type cells. A moderate increase in SIR2 expression correlated with reduced growth, decreased proliferation and increased lifespan in plate aging assays. We conclude that cellular growth rates and SIR2 expression levels may contribute to lifespan variation in individual cells.
Collapse
Affiliation(s)
- Jessica T. Smith
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Jill W. White
- Center for the Integration of STEM Education & Research, Texas Tech University, Lubbock, TX, United States of America
| | - Huzefa Dungrawala
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Hui Hua
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| | - Brandt L. Schneider
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States of America
| |
Collapse
|
26
|
|
27
|
Tyler JK, Johnson JE. The role of autophagy in the regulation of yeast life span. Ann N Y Acad Sci 2018; 1418:31-43. [PMID: 29363766 DOI: 10.1111/nyas.13549] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/13/2017] [Accepted: 10/18/2017] [Indexed: 01/07/2023]
Abstract
The goal of the aging field is to develop novel therapeutic interventions that extend human health span and reduce the burden of age-related disease. While organismal aging is a complex, multifactorial process, a popular theory is that cellular aging is a significant contributor to the progressive decline inherent to all multicellular organisms. To explore the molecular determinants that drive cellular aging, as well as how to retard them, researchers have utilized the highly genetically tractable budding yeast Saccharomyces cerevisiae. Indeed, every intervention known to extend both cellular and organismal health span was identified in yeast, underlining the power of this approach. Importantly, a growing body of work has implicated the process of autophagy as playing a critical role in the delay of aging. This review summarizes recent reports that have identified a role for autophagy, or autophagy factors in the extension of yeast life span. These studies demonstrate (1) that yeast remains an invaluable tool for the identification and characterization of conserved mechanisms that promote cellular longevity and are likely to be relevant to humans, and (2) that the process of autophagy has been implicated in nearly all known longevity-promoting manipulations and thus represents an ideal target for interventions aimed at improving human health span.
Collapse
Affiliation(s)
- Jessica K Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Jay E Johnson
- Department of Biology, Orentreich Foundation for the Advancement of Science, Cold Spring, New York
| |
Collapse
|
28
|
Streubel MK, Bischof J, Weiss R, Duschl J, Liedl W, Wimmer H, Breitenbach M, Weber M, Geltinger F, Richter K, Rinnerthaler M. Behead and live long or the tale of cathepsin L. Yeast 2017; 35:237-249. [PMID: 29044689 PMCID: PMC5808862 DOI: 10.1002/yea.3286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/12/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
In recent decades Saccharomyces cerevisiae has proven to be one of the most valuable model organisms of aging research. Pathways such as autophagy or the effect of substances like resveratrol and spermidine that prolong the replicative as well as chronological lifespan of cells were described for the first time in S. cerevisiae. In this study we describe the establishment of an aging reporter that allows a reliable and relative quick screening of substances and genes that have an impact on the replicative lifespan. A cDNA library of the flatworm Dugesia tigrina that can be immortalized by beheading was screened using this aging reporter. Of all the flatworm genes, only one could be identified that significantly increased the replicative lifespan of S.cerevisiae. This gene is the cysteine protease cathepsin L that was sequenced for the first time in this study. We were able to show that this protease has the capability to degrade such proteins as the yeast Sup35 protein or the human α‐synuclein protein in yeast cells that are both capable of forming cytosolic toxic aggregates. The degradation of these proteins by cathepsin L prevents the formation of these unfolded protein aggregates and this seems to be responsible for the increase in replicative lifespan.
Collapse
Affiliation(s)
- Maria Karolin Streubel
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Johannes Bischof
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Jutta Duschl
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Wolfgang Liedl
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Herbert Wimmer
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Michael Breitenbach
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Manuela Weber
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Florian Geltinger
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Klaus Richter
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| |
Collapse
|
29
|
Spivey EC, Jones SK, Rybarski JR, Saifuddin FA, Finkelstein IJ. An aging-independent replicative lifespan in a symmetrically dividing eukaryote. eLife 2017; 6:e20340. [PMID: 28139976 PMCID: PMC5332158 DOI: 10.7554/elife.20340] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/27/2017] [Indexed: 12/28/2022] Open
Abstract
The replicative lifespan (RLS) of a cell-defined as the number of cell divisions before death-has informed our understanding of the mechanisms of cellular aging. However, little is known about aging and longevity in symmetrically dividing eukaryotic cells because most prior studies have used budding yeast for RLS studies. Here, we describe a multiplexed fission yeast lifespan micro-dissector (multFYLM) and an associated image processing pipeline for performing high-throughput and automated single-cell micro-dissection. Using the multFYLM, we observe continuous replication of hundreds of individual fission yeast cells for over seventy-five generations. Surprisingly, cells die without the classic hallmarks of cellular aging, such as progressive changes in size, doubling time, or sibling health. Genetic perturbations and drugs can extend the RLS via an aging-independent mechanism. Using a quantitative model to analyze these results, we conclude that fission yeast does not age and that cellular aging and replicative lifespan can be uncoupled in a eukaryotic cell.
Collapse
Affiliation(s)
- Eric C Spivey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States
| | - Stephen K Jones
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States
| | - James R Rybarski
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Fatema A Saifuddin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States
| |
Collapse
|
30
|
Chen KL, Crane MM, Kaeberlein M. Microfluidic technologies for yeast replicative lifespan studies. Mech Ageing Dev 2017; 161:262-269. [PMID: 27015709 PMCID: PMC5035173 DOI: 10.1016/j.mad.2016.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 01/02/2023]
Abstract
The budding yeast Saccharomyces cerevisiae has been used as a model organism for the study of aging for over 50 years. In this time, the canonical aging experiment-replicative lifespan analysis by manual microdissection-has remained essentially unchanged. Recently, microfluidic technologies have been developed that may be able to substitute for this time- and labor-intensive procedure. These technologies also allow cell physiology to be observed throughout the entire lifetime. Here, we review these devices, novel observations they have made possible, and some of the current system limitations.
Collapse
Affiliation(s)
- Kenneth L Chen
- Department of Pathology, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA; Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Matthew M Crane
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
31
|
Janssens GE, Veenhoff LM. The Natural Variation in Lifespans of Single Yeast Cells Is Related to Variation in Cell Size, Ribosomal Protein, and Division Time. PLoS One 2016; 11:e0167394. [PMID: 27907085 PMCID: PMC5132237 DOI: 10.1371/journal.pone.0167394] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
There is a large variability in lifespans of individuals even if they are genetically identical and raised under the same environmental conditions. Our recent system wide study of replicative aging in baker’s yeast predicts that protein biogenesis is a driver of aging. Here, we address how the natural variation in replicative lifespan within wild-type populations of yeast cells correlates to three biogenesis-related parameters, namely cell size, ribosomal protein Rpl13A-GFP levels, and division times. Imaging wild type yeast cells in microfluidic devices we observe that in all cells and at all ages, the division times as well as the increase in cell size that single yeast undergo while aging negatively correlate to their lifespan. In the longer-lived cells Rpl13A-GFP levels also negatively correlate to lifespan. Interestingly however, at young ages in the population, ribosome concentration was lowest in the cells that increased the most in size and had shorter lifespans. The correlations between these molecular and cellular properties related to biogenesis and lifespan explain a small portion of the variation in lifespans of individual cells, consistent with the highly individual and multifactorial nature of aging.
Collapse
Affiliation(s)
- Georges E. Janssens
- European Research Institute for the Biology of Ageing, University of Groningen University Medical Centre Groningen, Groningen, The Netherlands
| | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen University Medical Centre Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
32
|
Jo MC, Qin L. Microfluidic Platforms for Yeast-Based Aging Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:5787-5801. [PMID: 27717149 PMCID: PMC5554731 DOI: 10.1002/smll.201602006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/30/2016] [Indexed: 06/06/2023]
Abstract
The budding yeast Saccharomyces cerevisiae has been a powerful model for the study of aging and has enabled significant contributions to our understanding of basic mechanisms of aging in eukaryotic cells. However, the laborious low-throughput nature of conventional methods of performing aging assays limits the pace of discoveries in this field. Some of the technical challenges of conventional aging assay methods can be overcome by use of microfluidic systems coupled to time-lapse microscopy. One of the major advantages is the ability of a microfluidic system to perform long-term cell culture under well-defined environmental conditions while tracking individual yeast. Here, recent advancements in microfluidic platforms for various yeast-based studies including replicative lifespan assay, long-term culture and imaging, gene expression, and cell signaling are discussed. In addition, emerging problems and limitations of current microfluidic approaches are examined and perspectives on the future development of this dynamic field are presented.
Collapse
Affiliation(s)
- Myeong Chan Jo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| |
Collapse
|
33
|
Molina-Serrano D, Schiza V, Demosthenous C, Stavrou E, Oppelt J, Kyriakou D, Liu W, Zisser G, Bergler H, Dang W, Kirmizis A. Loss of Nat4 and its associated histone H4 N-terminal acetylation mediates calorie restriction-induced longevity. EMBO Rep 2016; 17:1829-1843. [PMID: 27799288 PMCID: PMC5167350 DOI: 10.15252/embr.201642540] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/21/2016] [Accepted: 09/30/2016] [Indexed: 01/07/2023] Open
Abstract
Changes in histone modifications are an attractive model through which environmental signals, such as diet, could be integrated in the cell for regulating its lifespan. However, evidence linking dietary interventions with specific alterations in histone modifications that subsequently affect lifespan remains elusive. We show here that deletion of histone N‐alpha‐terminal acetyltransferase Nat4 and loss of its associated H4 N‐terminal acetylation (N‐acH4) extend yeast replicative lifespan. Notably, nat4Δ‐induced longevity is epistatic to the effects of calorie restriction (CR). Consistent with this, (i) Nat4 expression is downregulated and the levels of N‐acH4 within chromatin are reduced upon CR, (ii) constitutive expression of Nat4 and maintenance of N‐acH4 levels reduces the extension of lifespan mediated by CR, and (iii) transcriptome analysis indicates that nat4Δ largely mimics the effects of CR, especially in the induction of stress‐response genes. We further show that nicotinamidase Pnc1, which is typically upregulated under CR, is required for nat4Δ‐mediated longevity. Collectively, these findings establish histone N‐acH4 as a regulator of cellular lifespan that links CR to increased stress resistance and longevity.
Collapse
Affiliation(s)
| | - Vassia Schiza
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | - Emmanouil Stavrou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Jan Oppelt
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Dimitris Kyriakou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Wei Liu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Gertrude Zisser
- Institut für Molekulare Biowissenschaften, Karl-Franzens-Universität, Graz, Austria
| | - Helmut Bergler
- Institut für Molekulare Biowissenschaften, Karl-Franzens-Universität, Graz, Austria
| | - Weiwei Dang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
34
|
Abstract
Recently, efforts have been made to characterize the hallmarks that accompany and
contribute to the phenomenon of aging, as most relevant for humans 1. Remarkably, studying the finite lifespan
of the single cell eukaryote budding yeast (recently reviewed in 2 and 3) has been paramount for our understanding of aging. Here, we
compile observations from literature over the past decades of research on
replicatively aging yeast to highlight how the hallmarks of aging in humans are
present in yeast. We find strong evidence for the majority of these, and
summarize how yeast aging is especially characterized by the hallmarks of
genomic instability, epigenetic alterations, loss of proteostasis, deregulated
nutrient sensing, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Georges E Janssens
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
35
|
Janssens GE, Meinema AC, González J, Wolters JC, Schmidt A, Guryev V, Bischoff R, Wit EC, Veenhoff LM, Heinemann M. Protein biogenesis machinery is a driver of replicative aging in yeast. eLife 2015; 4:e08527. [PMID: 26422514 PMCID: PMC4718733 DOI: 10.7554/elife.08527] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/29/2015] [Indexed: 12/22/2022] Open
Abstract
An integrated account of the molecular changes occurring during the process of cellular aging is crucial towards understanding the underlying mechanisms. Here, using novel culturing and computational methods as well as latest analytical techniques, we mapped the proteome and transcriptome during the replicative lifespan of budding yeast. With age, we found primarily proteins involved in protein biogenesis to increase relative to their transcript levels. Exploiting the dynamic nature of our data, we reconstructed high-level directional networks, where we found the same protein biogenesis-related genes to have the strongest ability to predict the behavior of other genes in the system. We identified metabolic shifts and the loss of stoichiometry in protein complexes as being consequences of aging. We propose a model whereby the uncoupling of protein levels of biogenesis-related genes from their transcript levels is causal for the changes occurring in aging yeast. Our model explains why targeting protein synthesis, or repairing the downstream consequences, can serve as interventions in aging.
Collapse
Affiliation(s)
- Georges E Janssens
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne C Meinema
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Javier González
- Probability and Statistics, Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands
| | - Justina C Wolters
- Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rainer Bischoff
- Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Ernst C Wit
- Probability and Statistics, Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Jo MC, Liu W, Gu L, Dang W, Qin L. High-throughput analysis of yeast replicative aging using a microfluidic system. Proc Natl Acad Sci U S A 2015; 112:9364-9. [PMID: 26170317 PMCID: PMC4522780 DOI: 10.1073/pnas.1510328112] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction.
Collapse
Affiliation(s)
- Myeong Chan Jo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065
| | - Wei Liu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Liang Gu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030
| | - Weiwei Dang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065;
| |
Collapse
|
37
|
Dittrich P, Ibáñez AJ. Analysis of metabolites in single cells-what is the best micro-platform? Electrophoresis 2015; 36:2196-2206. [PMID: 25929796 DOI: 10.1002/elps.201500045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/04/2015] [Accepted: 04/04/2015] [Indexed: 11/11/2022]
Abstract
This review covers new innovations and developments in the field of single-cell level analysis of metabolites, involving the role of microfluidic and microarray platforms to manipulate and handle the cells prior their detection. Microfluidic and microarray platforms have shown great promise. The latest developments demonstrate their potential to identify a particular cell or even an ensemble of cells (sharing a common property or phenotype) that co-exist in a much larger cell population. The reason for this is the capability of these platforms to perform several complex analytical processes, such as: cleanup, sorting, derivatization, separation, and detection, with great robustness, speed, and reduced sample/reagent consumption. Here, we present several examples that illustrate the rapid strides that have been made for the routine analysis of metabolites by coupling different microfluidics and microarrays devices to a wide range of analytical detectors (e.g. fluorescent microscopy, electrochemical, and mass spectrometry). Herein, we also present selected examples detailing the use of microfluidics and microarrays in the visualization of the natural occurring cell-to-cell heterogeneity in isogenic populations, in particular during the response to external cues. The possibility to accurate monitor the cell-to-cell heterogeneity based on different levels of key metabolites is of clinical relevance, since cell-to-cell heterogeneity can influence, for example, the outcome of a drug treatment.
Collapse
Affiliation(s)
- Petra Dittrich
- ETH Zurich - Chemie und Angewandte Biowissenschaften, Wolfgang-Pauli-Str. 10, Zurich, 8093, Switzerland
| | - Alfredo J Ibáñez
- ETH Zurich - Department of Chemistry and Applied Biosciences, Vladimir-Prelog-weg 3, Zurich, 8093, Switzerland
| |
Collapse
|
38
|
Mei SC, Brenner C. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous. PLoS Biol 2015; 13:e1002048. [PMID: 25633578 PMCID: PMC4310591 DOI: 10.1371/journal.pbio.1002048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/09/2014] [Indexed: 12/12/2022] Open
Abstract
Calorie-restriction extends lifespan in many multicellular organisms; here substances secreted by calorie-restricted yeast are found to induce longer life in other yeast cells, suggesting that cellular communication is a component of this phenomenon even in a single-celled organism. In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell. Though calorie restriction extends lifespan and healthspan in multiple model organisms, the intrinsic mechanisms remain unclear. In budding yeast Saccharomyces cerevisiae, manipulation of nicotinamide adenine dinucleotide (NAD+)—a central metabolic cofactor—can restrict or extend replicative lifespan, suggesting that NAD+-dependent targets might be mediators of extended longevity. However, although treating cells with the NAD+ precursor nicotinamide riboside extends lifespan, intracellular NAD+ metabolites levels are not altered by glucose restriction. This suggests the potential involvement of extracellular factors in replicative lifespan extension. Here we show that though yeast cells display a longevity benefit upon glucose restriction, these cells surprisingly lose the longevity benefit if moved from their local environment to fresh glucose-restricted media. They are, however, able to regain the longevity benefit, despite the change in environment, if the new environment is supplemented with conditioned medium from glucose restricted cells. Our results suggest that calorie restriction-induced longevity is not cell autonomous and, instead, appears to be transmitted from cell to cell in S. cerevisiae via a dialyzable extracellular factor.
Collapse
Affiliation(s)
- Szu-Chieh Mei
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
39
|
CTT1 overexpression increases life span of calorie-restricted Saccharomyces cerevisiae deficient in Sod1. Biogerontology 2015; 16:343-51. [DOI: 10.1007/s10522-015-9550-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
|
40
|
Metabolic effects of resveratrol: addressing the controversies. Cell Mol Life Sci 2014; 72:1473-88. [PMID: 25548801 DOI: 10.1007/s00018-014-1808-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
Resveratrol, a polyphenol found in a number of plant-based foods such as red wine, has received a great deal of attention for its diverse array of healthful effects. Beneficial effects of resveratrol are diverse; they include improvement of mitochondrial function, protection against obesity and obesity-related diseases such as type-2 diabetes, suppression of inflammation and cancer cell growth and protection against cardiovascular dysfunction, just to name a few. Investigations into the metabolic effects of resveratrol are furthest along and now include a number of clinical trials, which have yielded mixed results. There are a number of controversies surrounding resveratrol that have not been resolved. Here, we will review these controversies with particular emphasis on its mechanism of metabolic action and how lessons from resveratrol may help develop therapies that harness the effects of resveratrol but without the undesirable properties of resveratrol.
Collapse
|