1
|
Fang G, Liu D, Wang Y, Yao Q. Advances in fluorescent natural products for imaging localization and biological applications. Eur J Med Chem 2025; 294:117759. [PMID: 40398149 DOI: 10.1016/j.ejmech.2025.117759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Natural products play a crucial role in biological activities, yet the quest for novel natural products faces increasing challenges due to the complexities of structural exploration and efficacy evaluation. Besides, traditional methods for evaluating natural products primarily focus on non-fluorescent efficacy studies at animal level or multicellular accumulation level, lacking of intuitive fluorescence presentation at the single cell or organelle level. This limitation disrupts our understanding of the effectiveness of natural products and constrains their biological activities. The most striking example is that fluorescent natural products offer a unique but often overlooked dual function: they not only exhibit biological activities but also may provide real-time fluorescent signals for tracking within biological systems. This review highlights the exciting advances in imaging localization of fluorescent natural products combined with advanced imaging techniques, summarizes the structural characteristics and application criteria of fluorescent natural products, and explores their feasibility in visual localization and biological activities. This synthesis underscores the need for a systematic exploration of fluorescent natural products, towards a transformative impact on drug development and disease understanding.
Collapse
Affiliation(s)
- Guiqian Fang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, National Key Laboratory of Advanced Drug Delivery System, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Daili Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, National Key Laboratory of Advanced Drug Delivery System, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yuanzhuo Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, National Key Laboratory of Advanced Drug Delivery System, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Qingqiang Yao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, National Key Laboratory of Advanced Drug Delivery System, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| |
Collapse
|
2
|
Okamura R, Kikuchi K, Taniguchi A, Nagai K, Seki R, Ohte S, Ohshiro T, Ando M, Tanaka T, Fukuda T. The new seriniquinone glycoside by biological transformation using the deep sea-derived bacterium Bacillus licheniformis KDM612. J Antibiot (Tokyo) 2024; 77:515-521. [PMID: 38773230 PMCID: PMC11284089 DOI: 10.1038/s41429-024-00729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Seriniquinone was isolated as a melanoma-selective anti-cancer agent from a culture broth of the marine-derived bacterium Serinicoccus marinus CNJ927 in 2014. It targets the unique small protein, dermcidin, which affects the drug resistance of cancer cells. Due to its significant activity against cancer cells, particularly melanoma, and its unique target, seriniquinone has been developed as a new pharmacophore. However, it has the disadvantage of poor solubility in drug discovery research, which needs to be resolved. A new seriniquinone glycoside (1) was synthesized by the biological transformation of seriniquinone using the deep sea-derived bacterium Bacillus licheniformis KDM612. Compound 1 exhibited selective anti-cancer activity against melanoma, similar to seriniquinone, and was 50-fold more soluble in DMSO than seriniquinone.
Collapse
Affiliation(s)
- Ryota Okamura
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Katsuki Kikuchi
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Akito Taniguchi
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Kenichiro Nagai
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Reiko Seki
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Satoshi Ohte
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Taichi Ohshiro
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Masashi Ando
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Teruyoshi Tanaka
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Takashi Fukuda
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nara, Japan.
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan.
| |
Collapse
|
3
|
Miguel RDA, Hirata AS, Salata GC, Apolinário AC, Barroso VM, Ishida K, La Clair JJ, Fenical W, Martins TS, Costa-Lotufo LV, Lopes LB. Topical delivery of seriniquinone for treatment of skin cancer and fungal infections is enabled by a liquid crystalline lamellar phase. Eur J Pharm Sci 2024; 192:106635. [PMID: 37952683 DOI: 10.1016/j.ejps.2023.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Seriniquinone (SQ) was initially described by our group as an antimelanoma drug candidate and now also as an antifungal drug candidate. Despite its promising in vitro effects, SQ translation has been hindered by poor water-solubility. In this paper, we described the challenging nanoformulation process of SQ, which culminated in the selection of a phosphatidylcholine-based lamellar phase (PLP1). Liposomes and nanostructured lipid carriers were also evaluated but failed to encapsulate the compound. SQ-loaded PLP1 (PLP1-SQ) was characterized for the presence of sedimented or non-dissolved SQ, rheological and thermal behavior, and irritation potential with hen's egg test on the chorioallantoic membrane (HET-CAM). PLP1 influence on transepidermal water loss (TEWL) and skin penetration of SQ was assessed in a porcine ear skin model, while biological activity was evaluated against melanoma cell lines (SK-MEL-28 and SK-MEL-147) and C. albicans SC5314. Despite the presence of few particles of non-dissolved SQ (observed under the microscope 2 days after formulation obtainment), PLP1 tripled SQ retention in viable skin layers compared to SQ solution at 12 h. This effect did not seem to relate to formulation-induced changes on the barrier function, as no increases in TEWL were observed. No sign of vascular toxicity in the HET-CAM model was observed after cutaneous treatment with PLP1. SQ activity was maintained on melanoma cells after 48 h-treatment (IC50 values of 0.59-0.98 µM) whereas the minimum inhibitory concentration (MIC) against C. albicans after 24 h-treatment was 32-fold higher. These results suggest that a safe formulation for SQ topical administration was developed, enabling further in vivo studies.
Collapse
Affiliation(s)
- Rodrigo Dos A Miguel
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Amanda S Hirata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Giovanna C Salata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexsandra C Apolinário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Vinicius M Barroso
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Kelly Ishida
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA, United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA, United States
| | - Tereza S Martins
- Department of Chemistry, Federal University of Sao Paulo, Diadema, SP, Brazil
| | - Leticia V Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Department of Human Biology, University of Cape Town, Cape Town, South Africa.
| | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Steele AD, Kiefer AF, Shen B. The many facets of sulfur incorporation in natural product biosynthesis. Curr Opin Chem Biol 2023; 76:102366. [PMID: 37451204 PMCID: PMC10527158 DOI: 10.1016/j.cbpa.2023.102366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Sulfur-containing natural products (S-containing NPs) exhibit diverse chemical structures and biosynthetic machineries. Unraveling the intricate chemistry of S-incorporation requires innovative and multidisciplinary approaches. In this review, we surveyed the landscape of S-containing NP biosynthetic machineries, classified the S-incorporation chemistry into four distinct classes, and highlighted each of the four classes with representative examples from recent studies. All highlighted chemistry has been correlated to the genes encoding the biosynthetic machineries of the S-containing NPs, which open new opportunities to discover S-containing NPs through genome mining. These examples should inspire the community to explore uncharted territories in NP research, promoting further advancements in both novel S-containing NP discovery and S-incorporation chemistry.
Collapse
Affiliation(s)
- Andrew D Steele
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States
| | - Alexander F Kiefer
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States; Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States; Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, United States; Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458, United States.
| |
Collapse
|
5
|
Haji N, Faizi M, Koutentis PA, Carty MP, Aldabbagh F. Heterocyclic Iminoquinones and Quinones from the National Cancer Institute (NCI, USA) COMPARE Analysis. Molecules 2023; 28:5202. [PMID: 37446864 DOI: 10.3390/molecules28135202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
This review uses the National Cancer Institute (NCI) COMPARE program to establish an extensive list of heterocyclic iminoquinones and quinones with similarities in differential growth inhibition patterns across the 60-cell line panel of the NCI Developmental Therapeutics Program (DTP). Many natural products and synthetic analogues are revealed as potential NAD(P)H:quinone oxidoreductase 1 (NQO1) substrates, through correlations to dipyridoimidazo[5,4-f]benzimidazoleiminoquinone (DPIQ), and as potential thioredoxin reductase (TrxR) inhibitors, through correlations to benzo[1,2,4]triazin-7-ones and pleurotin. The strong correlation to NQO1 infers the enzyme has a major influence on the amount of the active compound with benzo[e]perimidines, phenoxazinones, benz[f]pyrido[1,2-a]indole-6,11-quinones, seriniquinones, kalasinamide, indolequinones, and furano[2,3-b]naphthoquinones, hypothesised as prodrugs. Compounds with very strong correlations to known TrxR inhibitors had inverse correlations to the expression of both reductase enzymes, NQO1 and TrxR, including naphtho[2,3-b][1,4]oxazepane-6,11-diones, benzo[a]carbazole-1,4-diones, pyranonaphthoquinones (including kalafungin, nanaomycin A, and analogues of griseusin A), and discorhabdin C. Quinoline-5,8-dione scaffolds based on streptonigrin and lavendamycin can correlate to either reductase. Inhibitors of TrxR are not necessarily (imino)quinones, e.g., parthenolides, while oxidising moieties are essential for correlations to NQO1, as with the mitosenes. Herein, an overview of synthetic methods and biological activity of each family of heterocyclic imino(quinone) is provided.
Collapse
Affiliation(s)
- Naemah Haji
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | - Masoma Faizi
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| | | | - Michael P Carty
- School of Biological and Chemical Sciences, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, London KT1 2EE, UK
| |
Collapse
|
6
|
Zhang H, Tian Y, Yuan X, Xie F, Yu S, Cai J, Sun B, Shan C, Zhang W. Site-directed late-stage diversification of macrocyclic nannocystins facilitating anticancer SAR and mode of action studies. RSC Med Chem 2023; 14:299-312. [PMID: 36846368 PMCID: PMC9945860 DOI: 10.1039/d2md00393g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Nannocystins are a family of 21-membered cyclodepsipeptides with excellent anticancer activity. However, their macrocyclic architecture poses a significant challenge to structure modification. Herein, this issue is addressed by leveraging the strategy of post-macrocyclization diversification. In particular, a novel serine-incorporating nannocystin was designed so that its appending hydroxyl group could diversify into a wide variety of side chain analogues. Such effort facilitated not only structure-activity correlation at the subdomain of interest, but also the development of a macrocyclic coumarin-labeled fluorescence probe. Uptake experiments indicated good cell permeability of the probe, and endoplasmic reticulum was identified as its subcellular localization site.
Collapse
Affiliation(s)
- Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Yunfeng Tian
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Xiaoya Yuan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Fei Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Siqi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Jiayou Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| |
Collapse
|
7
|
Nagao H, Ninomiya M, Sugiyama H, Itabashi A, Uno K, Tanaka K, Koketsu M. Comparative analysis of p-terphenylquinone and seriniquinone derivatives as reactive oxygen species-modulating agents. Bioorg Med Chem Lett 2022; 76:128992. [PMID: 36126897 DOI: 10.1016/j.bmcl.2022.128992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
Quinones are widespread in plants, animals, insects, and microorganisms. Several anticancer agents contain quinone structures as critical parts to show remarkable potential and distinctive modes of actions. The purpose of this study was to investigate the structure-activity relationships of microbial quinones and their derivatives as anticancer agents. A series of p-terphenylquinone and seriniquinone derivatives were therefore prepared. Treatment of the synthesized quinones possessed antiproliferative activity on human leukemia HL-60 cells in a dose-dependent fashion. In addition, seriniquinone derivatives elevated cellular reactive oxygen species (ROS) levels, thereby triggering the ensuing apoptotic events. Our findings emphasize the excellent potential of seriniquinone derivatives as redox cycling-induced ROS-modulating anticancer agents.
Collapse
Affiliation(s)
- Haruna Nagao
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hodaka Sugiyama
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Atsuya Itabashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kaho Uno
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kaori Tanaka
- Division of Anaerobe Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; Division of Cooperative Research Facility, Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
8
|
Bahrami Y, Bouk S, Kakaei E, Taheri M. Natural Products from Actinobacteria as a Potential Source of New Therapies Against Colorectal Cancer: A Review. Front Pharmacol 2022; 13:929161. [PMID: 35899111 PMCID: PMC9310018 DOI: 10.3389/fphar.2022.929161] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common, and deadly disease. Despite the improved knowledge on CRC heterogeneity and advances in the medical sciences, there is still an urgent need to cope with the challenges and side effects of common treatments for the disease. Natural products (NPs) have always been of interest for the development of new medicines. Actinobacteria are known to be prolific producers of a wide range of bioactive NPs, and scientific evidence highlights their important protective role against CRC. This review is a holistic picture on actinobacter-derived cytotoxic compounds against CRC that provides a good perspective for drug development and design in near future. This review also describes the chemical structure of 232 NPs presenting anti-CRC activity with the being majority of quinones, lactones, alkaloids, peptides, and glycosides. The study reveals that most of these NPs are derived from marine actinobacteria followed by terrestrial and endophytic actinobacteria, respectively. They are predominantly produced by Streptomyces, Micromonospors, Saliniospors and Actinomadura, respectively, in which Streptomyces, as the predominant contributor generating over 76% of compounds exclusively. Besides it provides a valuable snapshot of the chemical structure-activity relationship of compounds, highlighting the presence or absence of some specific atoms and chemical units in the structure of compounds can greatly influence their biological activities. To the best of our knowledge, this is the first comprehensive review on natural actinobacterial compounds affecting different types of CRC. Our study reveals that the high diversity of actinobacterial strains and their NPs derivatives, described here provides a new perspective and direction for the production of new anti-CRC drugs and paves the way to innovation for drugs discovery in the future. The knowledge obtain from this review can help us to understand the pivotal application of actinobacteria in future drugs development.
Collapse
Affiliation(s)
- Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Biotechnology, School of Medicine, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- *Correspondence: Yadollah Bahrami, ; Mohammad Taheri,
| | - Sasan Bouk
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Kakaei
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Yadollah Bahrami, ; Mohammad Taheri,
| |
Collapse
|
9
|
Hirata AS, La Clair JJ, Jimenez PC, Costa-Lotufo LV, Fenical W. Preclinical Development of Seriniquinones as Selective Dermcidin Modulators for the Treatment of Melanoma. Mar Drugs 2022; 20:md20050301. [PMID: 35621952 PMCID: PMC9143531 DOI: 10.3390/md20050301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
The bioactive natural product seriniquinone was discovered as a potential melanoma drug, which was produced by the as-yet-undescribed marine bacterium of the rare genus Serinicoccus. As part of a long-term research program aimed at the discovery of new agents for the treatment of cancer, seriniquinone revealed remarkable in vitro activity against a diversity of cancer cell lines in the US National Cancer Institute 60-cell line screening. Target deconvolution studies defined the seriniquinones as a new class of melanoma-selective agents that act in part by targeting dermcidin (DCD). The targeted DCD peptide has been recently examined and defined as a “pro-survival peptide” in cancer cells. While DCD was first isolated from human skin and thought to be only an antimicrobial peptide, currently DCD has been also identified as a peptide associated with the survival of cancer cells, through what is believed to be a disulfide-based conjugation with proteins that would normally induce apoptosis. However, the significantly enhanced potency of seriniquinone was of particular interest against the melanoma cell lines assessed in the NCI 60-cell line panel. This observed selectivity provided a driving force that resulted in a multidimensional program for the discovery of a usable drug with a new anticancer target and, therefore, a novel mode of action. Here, we provided an overview of the discovery and development efforts to date.
Collapse
Affiliation(s)
- Amanda S. Hirata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil;
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0358, USA
- Correspondence: (J.J.L.C.); (L.V.C.-L.); (W.F.)
| | - Paula C. Jimenez
- Institute of Marine Science, Federal University of São Paulo, Santos 11070-100, Brazil;
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil;
- Correspondence: (J.J.L.C.); (L.V.C.-L.); (W.F.)
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093-0204, USA
- Correspondence: (J.J.L.C.); (L.V.C.-L.); (W.F.)
| |
Collapse
|
10
|
Hirata AS, Rezende-Teixeira P, Machado-Neto JA, Jimenez PC, Clair JJL, Fenical W, Costa-Lotufo LV. Seriniquinones as Therapeutic Leads for Treatment of BRAF and NRAS Mutant Melanomas. Molecules 2021; 26:7362. [PMID: 34885944 PMCID: PMC8658889 DOI: 10.3390/molecules26237362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Isolated from the marine bacteria Serinicoccus sp., seriniquinone (SQ1) has been characterized by its selective activity in melanoma cell lines marked by its modulation of human dermcidin and induction of autophagy and apoptosis. While an active lead, the lack of solubility of SQ1 in both organic and aqueous media has complicated its preclinical evaluation. In response, our team turned its effort to explore analogues with the goal of returning synthetically accessible materials with comparable selectivity and activity. The analogue SQ2 showed improved solubility and reached a 30-40-fold greater selectivity for melanoma cells. Here, we report a detailed comparison of the activity of SQ1 and SQ2 in SK-MEL-28 and SK-MEL-147 cell lines, carrying the top melanoma-associated mutations, BRAFV600E and NRASQ61R, respectively. These studies provide a definitive report on the activity, viability, clonogenicity, dermcidin expression, autophagy, and apoptosis induction following exposure to SQ1 or SQ2. Overall, these studies showed that SQ1 and SQ2 demonstrated comparable activity and modulation of dermcidin expression. These studies are further supported through the evaluation of a panel of basal expression of key-genes related to autophagy and apoptosis, providing further insight into the role of these mutations. To explore this rather as a survival or death mechanism, autophagy inhibition sensibilized BRAF mutants to SQ1 and SQ2, whereas the opposite happened to NRAS mutants. These data suggest that the seriniquinones remain active, independently of the melanoma mutation, and suggest the future combination of their application with inhibitors of autophagy to treat BRAF-mutated tumors.
Collapse
Affiliation(s)
- Amanda S. Hirata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (A.S.H.); (P.R.-T.); (J.A.M.-N.)
| | - Paula Rezende-Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (A.S.H.); (P.R.-T.); (J.A.M.-N.)
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (A.S.H.); (P.R.-T.); (J.A.M.-N.)
| | - Paula C. Jimenez
- Institute of Marine Science, Federal University of São Paulo, Santos 11070-100, SP, Brazil;
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093-0358, USA;
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA 92093-0204, USA;
| | - Leticia V. Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, SP, Brazil; (A.S.H.); (P.R.-T.); (J.A.M.-N.)
| |
Collapse
|
11
|
New dihydronaphthothiophene derivatives by the biological transformation of seriniquinone using marine-derived actinomycete Streptomyces albogriseolus OM27-12. J Antibiot (Tokyo) 2021; 75:9-15. [PMID: 34840331 DOI: 10.1038/s41429-021-00484-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022]
Abstract
Seriniquinone was originally isolated as a melanoma-selective anti-cancer agent from a culture broth of marine bacteria. Pharmacological studies on its selectivity and unique target are ongoing. A new dihydronaphthothiophene (1) was synthesized by the biological transformation of seriniquinone using marine-derived actinomycete Streptomyces albogriseolus OM27-12, and its derivatives (2-4) were chemically synthesized. Compounds 1-4 exhibited selective cytotoxic activity against melanoma and improved solubility.
Collapse
|
12
|
Wagh SB, Maslivetc VA, La Clair JJ, Kornienko A. Lessons in Organic Fluorescent Probe Discovery. Chembiochem 2021; 22:3109-3139. [PMID: 34062039 PMCID: PMC8595615 DOI: 10.1002/cbic.202100171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/22/2021] [Indexed: 02/03/2023]
Abstract
Fluorescent probes have gained profound use in biotechnology, drug discovery, medical diagnostics, molecular and cell biology. The development of methods for the translation of fluorophores into fluorescent probes continues to be a robust field for medicinal chemists and chemical biologists, alike. Access to new experimental designs has enabled molecular diversification and led to the identification of new approaches to probe discovery. This review provides a synopsis of the recent lessons in modern fluorescent probe discovery.
Collapse
Affiliation(s)
- Sachin B Wagh
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - Vladimir A Maslivetc
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - James J La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, CA, 92163-1062, USA
| | - Alexander Kornienko
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| |
Collapse
|
13
|
Hai Y, Wei MY, Wang CY, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987-2020). MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:488-518. [PMID: 37073258 PMCID: PMC10077240 DOI: 10.1007/s42995-021-00101-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Natural products derived from marine microorganisms have received great attention as a potential resource of new compound entities for drug discovery. The unique marine environment brings us a large group of sulfur-containing natural products with abundant biological functionality including antitumor, antibiotic, anti-inflammatory and antiviral activities. We reviewed all the 484 sulfur-containing natural products (non-sulfated) isolated from marine microorganisms, of which 59.9% are thioethers, 29.8% are thiazole/thiazoline-containing compounds and 10.3% are sulfoxides, sulfones, thioesters and many others. A selection of 133 compounds was further discussed on their structure-activity relationships, mechanisms of action, biosynthesis, and druggability. This is the first systematic review on sulfur-containing natural products from marine microorganisms conducted from January 1987, when the first one was reported, to December 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00101-2.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
14
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
15
|
Molecular Insights into the Multifunctional Role of Natural Compounds: Autophagy Modulation and Cancer Prevention. Biomedicines 2020; 8:biomedicines8110517. [PMID: 33228222 PMCID: PMC7699596 DOI: 10.3390/biomedicines8110517] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a vacuolar, lysosomal degradation pathway for injured and damaged protein molecules and organelles in eukaryotic cells, which is controlled by nutrients and stress responses. Dysregulation of cellular autophagy may lead to various diseases such as neurodegenerative disease, obesity, cardiovascular disease, diabetes, and malignancies. Recently, natural compounds have come to attention for being able to modulate the autophagy pathway in cancer prevention, although the prospective role of autophagy in cancer treatment is very complex and not yet clearly elucidated. Numerous synthetic chemicals have been identified that modulate autophagy and are favorable candidates for cancer treatment, but they have adverse side effects. Therefore, different phytochemicals, which include natural compounds and their derivatives, have attracted significant attention for use as autophagy modulators in cancer treatment with minimal side effects. In the current review, we discuss the promising role of natural compounds in modulating the autophagy pathway to control and prevent cancer, and provide possible therapeutic options.
Collapse
|
16
|
Apolinário AC, Hirata AS, Anjos Miguel RD, Costa-Lotufo LV, Pessoa A, La Clair JJ, Fenical W, Lopes LB. Exploring the benefits of nanotechnology for cancer drugs in different stages of the drug development pipeline. Nanomedicine (Lond) 2020; 15:2539-2542. [PMID: 32945726 DOI: 10.2217/nnm-2020-0290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Amanda Soares Hirata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Dos Anjos Miguel
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adalberto Pessoa
- Department of Biochemical & Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - James J La Clair
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - William Fenical
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Luciana Biagini Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Zhang Q, Ye J, Yu L, Lin D, Tang K. Serinicoccus hydrothermalis sp. nov., isolated from shallow-sea hydrothermal systems off Kueishantao Island. Int J Syst Evol Microbiol 2020; 70:3139-3144. [PMID: 32375934 DOI: 10.1099/ijsem.0.004145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, non-flagellated, non-gliding, coccoid bacterial strain, designated JLT9T, was isolated from the shallow-sea hydrothermal system off Kueishantao Island, Taiwan, ROC. Strain JLT9T was aerobic, chemoheterotrophic and grew optimally at 35 °C, at pH 6.0 and in the presence of 2.5 % (w/v) NaCl. Strain JLT9T exhibited highest 16S rRNA gene sequence similarity to Serinicoccus marinus DSM 15273T (98.83 %). Phylogenetic trees based on 16S rRNA gene sequences revealed that strain JLT9T belonged to the genus Serinicoccus, clustering with Serinicoccus marinus JC1078T, Serinicoccus profundi MCCC 1A05965T, Serinicoccus sediminis GP-T3-3T and Serinicoccus chungangensis CAU9536T. The digital DNA-DNA genome hybridization values between strain JLT9T and the closest related strain S. marinus DSM 15273T was 34.30 %. The DNA G+C content was 72.43 mol%. The dominant fatty acids were identified as iso-C15 : 0 (41.4 %) and iso-C16 : 0 (24.7 %). The polar lipids of strain JLT9T comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, three unidentified glycolipid and an unidentified phospholipid. The predominant isoprenoid quinone was MK-8 (H4). The cell wall contained ornithine and serine, and no diaminopimelic acid. On the basis of phylogenetic data and several distinct phenotypic characteristics, strain JLT9T represents a novel species of the genus Serinicoccus, for which the name Serinicoccus hydrothermalis sp. nov. is proposed. The type strain is JLT9T (=CGMCC 1.15779T=JCM 31502T).
Collapse
Affiliation(s)
- Qingfeng Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Jianing Ye
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Limei Yu
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Dan Lin
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, PR China
| |
Collapse
|
18
|
Fukuda T, Nagai K, Kanamoto A, Tomoda H. 2-Epi-anthracimycin, a new cytotoxic agent from the marine-derived actinomycete Streptomyces sp. OPMA00631. J Antibiot (Tokyo) 2020; 73:548-553. [PMID: 32404990 DOI: 10.1038/s41429-020-0309-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/23/2020] [Indexed: 11/09/2022]
Abstract
A new cytotoxic agent designated as 2-epi-anthracimycin (1) was isolated along with anthracimycin and anthracimycin B (2-demethylanthracimycin) from the culture broth of the marine-derived actinomycete Streptomyces sp. OPMA00631. The structure of 1 was elucidated based on spectroscopic analyses (1D and 2D NMR data and ROESY correlations). Compound 1 exhibited cytotoxicity against Jurkat cells with an IC50 value of 50.5 μM in 20 h. The effect of 1 on the cell cycle distribution of Jurkat cells was investigated. Compound 1 (7.80 μM) increased G1 phase cells from 51.1 to 62.0% and conversely, decreased G2 and M phase cells from 30.7 to 19.3 % in 20 h. At a higher concentration, 1 (250 μM) markedly increased subG1 phase cells (1.9% at 0 h to 16.5% at 20 h), while the proportion of G1 phase cells was maintained (62.3%). These results suggest that 1 exhibits cytotoxicity against Jurkat cells by arresting the cell cycle at the G1 phase.
Collapse
Affiliation(s)
- Takashi Fukuda
- Department of Fisheries, Faculty of Agriculture and Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan. .,Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Kenichiro Nagai
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Akihiko Kanamoto
- OP BIO FACTORY Co., Ltd., 5 Uruma Sandpit, Okinawa, 904-2234, Japan
| | - Hiroshi Tomoda
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
19
|
Matulja D, Wittine K, Malatesti N, Laclef S, Turks M, Markovic MK, Ambrožić G, Marković D. Marine Natural Products with High Anticancer Activities. Curr Med Chem 2020; 27:1243-1307. [PMID: 31931690 DOI: 10.2174/0929867327666200113154115] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
This review covers recent literature from 2012-2019 concerning 170 marine natural products and their semisynthetic analogues with strong anticancer biological activities. Reports that shed light on cellular and molecular mechanisms and biological functions of these compounds, thus advancing the understanding in cancer biology are also included. Biosynthetic studies and total syntheses, which have provided access to derivatives and have contributed to the proper structure or stereochemistry elucidation or revision are mentioned. The natural compounds isolated from marine organisms are divided into nine groups, namely: alkaloids, sterols and steroids, glycosides, terpenes and terpenoids, macrolides, polypeptides, quinones, phenols and polyphenols, and miscellaneous products. An emphasis is placed on several drugs originating from marine natural products that have already been marketed or are currently in clinical trials.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Karlo Wittine
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Sylvain Laclef
- Laboratoire de Glycochimie, des Antimicrobiens et des Agro-ressources (LG2A), CNRS FRE 3517, 33 rue Saint-Leu, 80039 Amiens, France
| | - Maris Turks
- Faculty of Material Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1007, Latvia
| | - Maria Kolympadi Markovic
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Gabriela Ambrožić
- Department of Physics, and Center for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
20
|
Moreira da Silva R, Carrão DB, Habenschus MD, Jimenez PC, Lopes NP, Fenical W, Costa-Lotufo LV, de Oliveira ARM. Prediction of seriniquinone-drug interactions by in vitro inhibition of human cytochrome P450 enzymes. Toxicol In Vitro 2020; 65:104820. [PMID: 32142840 DOI: 10.1016/j.tiv.2020.104820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
Seriniquinone is a secondary metabolite isolated from a rare marine bacterium of the genus Serinicoccus. This natural quinone is highlighted for its selective cytotoxic activity toward melanoma cancer cells, in which rapid metastatic properties are still a challenge for clinical treatment of malignant melanoma. The progress of seriniquinone as a promising bioactive molecule for drug development requires the assessment of its clinical interaction potential with other drugs. This study aimed to investigate the in vitro inhibitory effects of seriniquinone on the main human CYP450 isoforms involved in drug metabolism. The results showed strong inhibition of CYP1A2, CYP2E1 and CYP3A, with IC50 values up to 1.4 μM, and moderate inhibition of CYP2C19, with IC50 value >15 μM. Detailed experiments performed with human liver microsomes showed that the inhibition of CYP450 isoforms can be explained by competitive and non-competitive inhibition mechanisms. In addition, seriniquinone demonstrated to be an irreversible and time-dependent inhibitor of CYP1A2 and CYP3A. The low inhibition constants values obtained experimentally suggest that concomitant intake of seriniquinone with drug metabolized by these isoforms should be carefully monitored for adverse effects or therapeutic failure.
Collapse
Affiliation(s)
- Rodrigo Moreira da Silva
- Núcleo de Pesquisas de Produtos Naturais e Sintéticos, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903 Ribeirão Preto, SP, Brazil.
| | - Daniel Blascke Carrão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Maísa Daniela Habenschus
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil
| | - Paula Christine Jimenez
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, 11070-100 Santos, SP, Brazil
| | - Norberto Peporine Lopes
- Núcleo de Pesquisas de Produtos Naturais e Sintéticos, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903 Ribeirão Preto, SP, Brazil
| | - William Fenical
- CMBB, Scripps Institution of Oceanography, UC San Diego, 9500 Gilman Drive No. 0204, 92093-0204 La Jolla, CA, USA
| | - Letícia Vera Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Unesp, Institute of Chemistry, P.O. Box 355, 14800-900 Araraquara, SP, Brazil
| |
Collapse
|
21
|
Liang X, Luo D, Luesch H. Advances in exploring the therapeutic potential of marine natural products. Pharmacol Res 2019; 147:104373. [PMID: 31351913 PMCID: PMC6839689 DOI: 10.1016/j.phrs.2019.104373] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022]
Abstract
Marine natural products represent novel and diverse chemotypes that serve as templates for the discovery and development of therapeutic agents with distinct mechanisms of action. These genetically encoded compounds produced by an evolutionary optimized biosynthetic machinery are usually quite complex and can be difficult to recreate in the laboratory. The isolation from the source organism results in limited amount of material; however, the development of advanced NMR technologies and dereplication strategies has enabled the structure elucidation on small scale. In order to rigorously explore the therapeutic potential of marine natural products and advance them further, the biological characterization has to keep pace with the chemical characterization. The limited marine natural product supply has been a serious challenge for thorough investigation of the biological targets. Several marine drugs have reached the markets or are in clinical trials, where those challenges have been overcome, including through the development of scalable syntheses. However, the identification of mechanisms of action of marine natural products early in the discovery process is potentially game changing, since effectively linking marine natural products to potential therapeutic applications in turn triggers motivation to tackle challenging syntheses and solve the supply problem. An increasing number of sensitive technologies and methods have been developed in recent years, some of which have been successfully applied to marine natural products, increasing the value of these compounds with respect to their biomedical utility. In this review, we discuss advances in overcoming the bottlenecks in marine natural product research, emphasizing on the development and advances of diverse target identification technologies applicable for marine natural product research.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| | - Danmeng Luo
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States.
| |
Collapse
|
22
|
Kim MC, Cullum R, Machado H, Smith AJ, Yang I, Rodvold JJ, Fenical W. Photopiperazines A-D, Photosensitive Interconverting Diketopiperazines with Significant and Selective Activity against U87 Glioblastoma Cells, from a Rare, Marine-Derived Actinomycete of the Family Streptomycetaceae. JOURNAL OF NATURAL PRODUCTS 2019; 82:2262-2267. [PMID: 31368305 DOI: 10.1021/acs.jnatprod.9b00429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photopiperazines A-D (1-4), unsaturated diketopiperazine derivatives, were isolated from the culture broth of a rare, marine-derived actinomycete bacterium, strain AJS-327. This strain shows very poor 16S rRNA sequence similarity to other members of the actinomycete family Streptomycetaceae, indicating it is likely a new lineage within this group. The structures of the photopiperazines were defined by analysis of HR-ESI-TOF-MS spectra in conjunction with the interpretation of 1D and 2D NMR data. The photopiperazines are sensitive to light, causing interconversion among the four olefin geometrical isomers, which made purification of each isomer challenging. The photopiperazines are highly cytotoxic metabolites that show selective toxicity toward U87 glioblastoma and SKOV3 ovarian cancer cell lines.
Collapse
Affiliation(s)
- Min Cheol Kim
- Center for Marine Biotechnology and Biomedicine , Scripps Institution of Oceanography, University of California, San Diego , La Jolla , California 92093-0204 , United States
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine , Scripps Institution of Oceanography, University of California, San Diego , La Jolla , California 92093-0204 , United States
| | - Henrique Machado
- Center for Marine Biotechnology and Biomedicine , Scripps Institution of Oceanography, University of California, San Diego , La Jolla , California 92093-0204 , United States
| | - Alexander J Smith
- Center for Marine Biotechnology and Biomedicine , Scripps Institution of Oceanography, University of California, San Diego , La Jolla , California 92093-0204 , United States
| | - Inho Yang
- Center for Marine Biotechnology and Biomedicine , Scripps Institution of Oceanography, University of California, San Diego , La Jolla , California 92093-0204 , United States
| | - Jeffrey J Rodvold
- Moores Comprehensive Cancer Center , University of California, San Diego , La Jolla , California 92093 , United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine , Scripps Institution of Oceanography, University of California, San Diego , La Jolla , California 92093-0204 , United States
- Moores Comprehensive Cancer Center , University of California, San Diego , La Jolla , California 92093 , United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093-0204 , United States
| |
Collapse
|
23
|
Nigam M, Suleria HAR, Farzaei MH, Mishra AP. Marine anticancer drugs and their relevant targets: a treasure from the ocean. Daru 2019; 27:491-515. [PMID: 31165439 PMCID: PMC6593002 DOI: 10.1007/s40199-019-00273-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Marine organisms comprising animals and plants are wealthiest sources of bioactive compounds possessing various pharmacological properties specifically: free radical scavenging, antitumor, antimicrobial, analgesic, neuroprotective and immunomodulatory. Marine drugs provide an alternative source to meet the demand of effective, safe and low-cost drugs that are rising with the continuously growing world population. Cancer is one of the leading reasons of mortality in western nations in contrast to communicable diseases of developing nations. In spite of outstanding developments in cancer therapy in past three decades, there is still an insistent necessity for innovative drugs in the area of cancer biology, especially in the unexplored area of marine anticancer compounds. However, recent technological innovations in structure revelation, synthetic creation of new compounds and biological assays have made possible the isolation and clinical assessment of innumerable unique anticancer compounds from marine environment. This review provides an insight into the anticancer research so far conducted in the area of the marine natural products/synthetic derivatives, their possible molecular targets and the current challenges in the drug development. Graphical abstract.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174 India
| | - Hafiz Ansar Rasul Suleria
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216 Australia
- UQ Diamantina Institute, Translational Research Institute, Faculty of Medicine, The University of Queensland, 37 Kent Street Woolloongabba, Brisbane, QLD 4102 Australia
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506 USA
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174 India
| |
Collapse
|
24
|
Subramani R, Sipkema D. Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products. Mar Drugs 2019; 17:E249. [PMID: 31035452 PMCID: PMC6562664 DOI: 10.3390/md17050249] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.
Collapse
Affiliation(s)
- Ramesh Subramani
- School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji.
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
25
|
Hammons JC, Trzoss L, Jimenez PC, Hirata AS, Costa-Lotufo LV, La Clair JJ, Fenical W. Advance of Seriniquinone Analogues as Melanoma Agents. ACS Med Chem Lett 2019; 10:186-190. [PMID: 30783501 DOI: 10.1021/acsmedchemlett.8b00391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
Seriniquinone, a marine natural product, displayed potent cytotoxicity and selectivity against melanoma cancer cells. This selectivity, combined with a novel mode of action (MOA), prompted studies to translate a pharmacologically relevant lead. Herein, we report on structure-activity relationships (SARs), and provide a strategy to prepare analogues that retain activity and offer an improved water solubility and isomeric purity. From intermediates made on a gram-scale, derivatives were prepared and evaluated for their antiproliferation activity and melanoma selectivity. Overall these studies provide methods to install side chain motifs that demonstrate a common, and yet unique, biological profile.
Collapse
Affiliation(s)
- Justin C. Hammons
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0204, United States
| | - Lynnie Trzoss
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0204, United States
| | - Paula C. Jimenez
- Instituto do Mar, Universidade Federal de São Paulo, Santos, São Paulo 11070-100, Brazil
| | - Amanda S. Hirata
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo 05508-900, Brazil
| | - Leticia V. Costa-Lotufo
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo 05508-900, Brazil
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0204, United States
| |
Collapse
|
26
|
Fukuda T, Furukawa T, Kobayashi K, Nagai K, Uchida R, Tomoda H. Helvamide, a new inhibitor of sterol O-acyltransferase produced by the fungus Aspergillus nidulans BF-0142. J Antibiot (Tokyo) 2018; 72:8-14. [DOI: 10.1038/s41429-018-0101-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/08/2018] [Accepted: 09/01/2018] [Indexed: 11/09/2022]
|
27
|
Abstract
A new chlorinated metabolite designated chlokamycin (1), was isolated along with ikarugamycin (2) from the culture broth of the marine-derived Streptomyces sp. MA2–12. The structure of 1 was elucidated based on spectroscopic analyses (1D and 2D NMR data and ROESY correlations). Chlokamycin moderately inhibited the growth of Jurkat cells and HCT116 cells with IC50 values of 24.7 and 33.5 μM, respectively.
Collapse
|
28
|
Wright MH, Sieber SA. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat Prod Rep 2017; 33:681-708. [PMID: 27098809 PMCID: PMC5063044 DOI: 10.1039/c6np00001k] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on chemical probes to identify the protein binding partners of natural products in living systems.
Covering: 2010 up to 2016 Deconvoluting the mode of action of natural products and drugs remains one of the biggest challenges in chemistry and biology today. Chemical proteomics is a growing area of chemical biology that seeks to design small molecule probes to understand protein function. In the context of natural products, chemical proteomics can be used to identify the protein binding partners or targets of small molecules in live cells. Here, we highlight recent examples of chemical probes based on natural products and their application for target identification. The review focuses on probes that can be covalently linked to their target proteins (either via intrinsic chemical reactivity or via the introduction of photocrosslinkers), and can be applied “in situ” – in living systems rather than cell lysates. We also focus here on strategies that employ a click reaction, the copper-catalysed azide–alkyne cycloaddition reaction (CuAAC), to allow minimal functionalisation of natural product scaffolds with an alkyne or azide tag. We also discuss ‘competitive mode’ approaches that screen for natural products that compete with a well-characterised chemical probe for binding to a particular set of protein targets. Fuelled by advances in mass spectrometry instrumentation and bioinformatics, many modern strategies are now embracing quantitative proteomics to help define the true interacting partners of probes, and we highlight the opportunities this rapidly evolving technology provides in chemical proteomics. Finally, some of the limitations and challenges of chemical proteomics approaches are discussed.
Collapse
Affiliation(s)
- M H Wright
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - S A Sieber
- Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
29
|
Guamán-Ortiz LM, Orellana MIR, Ratovitski EA. Natural Compounds As Modulators of Non-apoptotic Cell Death in Cancer Cells. Curr Genomics 2017; 18:132-155. [PMID: 28367073 PMCID: PMC5345338 DOI: 10.2174/1389202917666160803150639] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023] Open
Abstract
Cell death is an innate capability of cells to be removed from microenvironment, if and when they are damaged by multiple stresses. Cell death is often regulated by multiple molecular pathways and mechanism, including apoptosis, autophagy, and necroptosis. The molecular network underlying these processes is often intertwined and one pathway can dynamically shift to another one acquiring certain protein components, in particular upon treatment with various drugs. The strategy to treat human cancer ultimately relies on the ability of anticancer therapeutics to induce tumor-specific cell death, while leaving normal adjacent cells undamaged. However, tumor cells often develop the resistance to the drug-induced cell death, thus representing a great challenge for the anticancer approaches. Numerous compounds originated from the natural sources and biopharmaceutical industries are applied today in clinics showing advantageous results. However, some exhibit serious toxic side effects. Thus, novel effective therapeutic approaches in treating cancers are continued to be developed. Natural compounds with anticancer activity have gained a great interest among researchers and clinicians alike since they have shown more favorable safety and efficacy then the synthetic marketed drugs. Numerous studies in vitro and in vivo have found that several natural compounds display promising anticancer potentials. This review underlines certain information regarding the role of natural compounds from plants, microorganisms and sea life forms, which are able to induce non-apoptotic cell death in tumor cells, namely autophagy and necroptosis.
Collapse
Affiliation(s)
- Luis Miguel Guamán-Ortiz
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Isabel Ramirez Orellana
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward A Ratovitski
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Gu L, Wang P, Zhong Q, Deng Y, Xie J, Liu F, Xiao F, Zheng S, Chen Y, Wang G, He L. Copper salt-catalyzed formation of a novel series of triazole-spirodienone conjugates with potent anticancer activity. RSC Adv 2017; 7:9412-9416. [PMID: 30740218 PMCID: PMC6364840 DOI: 10.1039/c6ra24764d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Copper salt-catalyzed oxidative amination resulted in the formation of a novel series of triazole- spirodienone conjugates, 4-triazolyl-1-oxa-4-azaspiro[4,5]deca-6,9-dien-3,8-diones and 4-triazolyl-1-oxa-4-azaspiro[4,5]deca-6,9-dien-8-ones. A single crystal of compound 1p among them was grown and analyzed by X-ray crystallography. These compounds were evaluated for their antiproliferative activities against MDA-MB-231, HeLa, A549 and MCF-7 cell lines. Most of them showed moderate to high anticancer potency in the four cancer cell lines. The discovery of the triazole-spirodienone conjugates as cytotoxic agents against cancer cells may open up a new field in which these novel small molecules could be further explored as promising anticancer agents.
Collapse
Affiliation(s)
- Linghui Gu
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Peng Wang
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qiu Zhong
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Yuxing Deng
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiangping Xie
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Fei Liu
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Fan Xiao
- Jiangxi Provincial People's Hospital, Nanchang, 330006, China
| | - Shilong Zheng
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Yue Chen
- Department of Nuclear Medicine Affiliated Hospital, Luzhou Medical College, No. 25 Taiping Street, Luzhou, 646000, P. R. China
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Ling He
- Key Laboratory of Drug-Targeting and Drug-Delivery Systems of the Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
31
|
Aly AA, Bräse S. Oxidation–reduction and heterocyclization of the reactions of alkanedithiols with π-deficient compounds. J Sulphur Chem 2017. [DOI: 10.1080/17415993.2017.1278762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ashraf A. Aly
- Department of Chemistry, Faculty of Science, Minia University, El Minia, Egypt
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
32
|
Duval R, Duplais C. Fluorescent natural products as probes and tracers in biology. Nat Prod Rep 2017; 34:161-193. [DOI: 10.1039/c6np00111d] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescence is a remarkable property of many natural products in addition to their medicinal and biological value. Herein, we provide a review of these peculiar secondary metabolites to stimulate prospecting of them as original fluorescent tracers, endowed with unique photophysical properties and with applications in most fields of biology.
Collapse
Affiliation(s)
- Romain Duval
- IRD
- UMR 216 IRD MERIT (Mère et Enfant face aux Infections Tropicales)
- Université Paris-Descartes
- 75006 Paris
- France
| | - Christophe Duplais
- CNRS
- UMR 8172 EcoFoG (Ecologie des Forêts de Guyane)
- AgroParisTech
- Cirad
- INRA
| |
Collapse
|
33
|
Fukuda T, Takahashi M, Nagai K, Harunari E, Imada C, Tomoda H. Isomethoxyneihumicin, a new cytotoxic agent produced by marine Nocardiopsis alba KM6-1. J Antibiot (Tokyo) 2016; 70:590-594. [PMID: 27999443 DOI: 10.1038/ja.2016.152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/11/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022]
Abstract
A new cytotoxic agent designated isomethoxyneihumicin (1 and 2), a mixture of lactam-lactim tautomers, was isolated along with methoxyneihumicin (3) from the culture broth of the marine Nocardiopsis alba KM6-1. The structures of 1 and 2 were elucidated in spectroscopic analyses (1D and 2D NMR data, and ROESY correlations). Isomethoxyneihumicin (15.0 μM) and 3 (15.0 μM) arrested the cell cycle of Jurkat cells at the G2/M phase (66 and 67%) in 12 h. Isomethoxyneihumicin and 3 exhibited cytotoxicity against Jurkat cells with IC50 values of 6.98 and 30.5 μM in 20 h, respectively. These results strongly suggest that isomethoxyneihumicin and 3 exhibit cytotoxicity against Jurkat cells by inhibiting the cell cycle at the G2/M phase.
Collapse
Affiliation(s)
- Takashi Fukuda
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Misaki Takahashi
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Kenichiro Nagai
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Enjuro Harunari
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Chiaki Imada
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hiroshi Tomoda
- Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
34
|
Han Y, Lin D, Yu L, Chen X, Sun J, Tang K. Complete genome sequence of Serinicoccus sp. JLT9, an actinomycete isolated from the shallow-sea hydrothermal system. Mar Genomics 2016; 32:19-21. [PMID: 27932275 DOI: 10.1016/j.margen.2016.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 11/28/2022]
Abstract
Serinicoccus sp. JLT9 was a novel rare actinomycete, isolated from the shallow-sea hydrothermal system. Here, we present the complete genome sequence of Serinicoccus sp. JLT9, which consists of 3,610,932bp with a GC content of 72.43%. The genome data provides insight into microbial adaption to the shallow-sea hydrothermal system and facilitates the discovery of natural compounds in the future.
Collapse
Affiliation(s)
- Yu Han
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, People's Republic of China
| | - Dan Lin
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, People's Republic of China
| | - Liwei Yu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, People's Republic of China
| | - Xiaofeng Chen
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, People's Republic of China
| | - Jia Sun
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, People's Republic of China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, People's Republic of China.
| |
Collapse
|
35
|
Schorn MA, Alanjary MM, Aguinaldo K, Korobeynikov A, Podell S, Patin N, Lincecum T, Jensen PR, Ziemert N, Moore BS. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters. MICROBIOLOGY-SGM 2016; 162:2075-2086. [PMID: 27902408 DOI: 10.1099/mic.0.000386] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites.
Collapse
Affiliation(s)
- Michelle A Schorn
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, USA
| | - Mohammad M Alanjary
- German Centre for Infection Research (DZIF), Interfaculty Institute for Microbiology and Infection Medicine Tuebingen (IMIT), University of Tuebingen, Tuebingen, Germany
| | | | - Anton Korobeynikov
- Center for Algorithmic Biotechnology, St. Petersburg State University, St. Petersburg, Russia.,Department of Statistical Modeling, St. Petersburg State University, St. Petersburg, Russia
| | - Sheila Podell
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, USA
| | - Nastassia Patin
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, USA
| | | | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, USA.,Center for Microbiome Innovation, University of California, San Diego, USA
| | - Nadine Ziemert
- German Centre for Infection Research (DZIF), Interfaculty Institute for Microbiology and Infection Medicine Tuebingen (IMIT), University of Tuebingen, Tuebingen, Germany
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, USA.,Center for Microbiome Innovation, University of California, San Diego, USA
| |
Collapse
|
36
|
Beuzer P, Axelrod J, Trzoss L, Fenical W, Dasari R, Evidente A, Kornienko A, Cang H, La Clair JJ. Single dish gradient screening of small molecule localization. Org Biomol Chem 2016; 14:8241-5. [PMID: 27530345 PMCID: PMC5284121 DOI: 10.1039/c6ob01418f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding trafficking in cells and tissues is one of the most critical steps in exploring the mechanisms and modes of action (MOAs) of a small molecule. Typically, deciphering the role of concentration presents one of the most difficult challenges associated with this task. Herein, we present a practical solution to this problem by developing concentration gradients within single dishes of cells. We demonstrate the method by evaluating fluorescently-labelled probes developed from two classes of natural products that have been identified as potential anti-cancer leads by STORM super-resolution microscopy.
Collapse
Affiliation(s)
- Paolo Beuzer
- The Salk Institute for Biological Sciences, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Furukawa T, Fukuda T, Nagai K, Uchida R, Tomoda H. Helvafuranone Produced by the Fungus Aspergillus nidulans BF0142 Isolated from Hot Spring-derived Soil. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The fungus, Aspergillus nidulans BF0142, was isolated from hot spring-derived soil collected at Hell Valley in Noboribetsu, Hokkaido, Japan. A new furanone compound designated helvafuranone (1) was isolated along with microperfuranone (2), 9-hydroxymicroperfuranone (3), diorcinol (4), emestrin (5), and sterigmatocystin (6) from a culture broth of A. nidulans BF0142. The structure of 1 was elucidated as 5-hydroxy-4-(4-hydroxybenzyl)-3-(4-hydroxybenzyl)furanone based on various NMR experiments and chemical modifications.
Collapse
Affiliation(s)
- Takun Furukawa
- Graduate School of Pharmaceutical Sciences Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Fukuda
- Graduate School of Pharmaceutical Sciences Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenichiro Nagai
- Graduate School of Pharmaceutical Sciences Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ryuji Uchida
- Graduate School of Pharmaceutical Sciences Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroshi Tomoda
- Graduate School of Pharmaceutical Sciences Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
38
|
Ortega-Martínez I, Gardeazabal J, Erramuzpe A, Sanchez-Diez A, Cortés J, García-Vázquez MD, Pérez-Yarza G, Izu R, Luís Díaz-Ramón J, de la Fuente IM, Asumendi A, Boyano MD. Vitronectin and dermcidin serum levels predict the metastatic progression of AJCC I-II early-stage melanoma. Int J Cancer 2016; 139:1598-607. [PMID: 27216146 PMCID: PMC5089559 DOI: 10.1002/ijc.30202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/11/2016] [Indexed: 01/03/2023]
Abstract
Like many cancers, an early diagnosis of melanoma is fundamental to ensure a good prognosis, although an important proportion of stage I-II patients may still develop metastasis during follow-up. The aim of this work was to discover serum biomarkers in patients diagnosed with primary melanoma that identify those at a high risk of developing metastasis during the follow-up period. Proteomic and mass spectrophotometry analysis was performed on serum obtained from patients who developed metastasis during the first years after surgery for primary tumors and compared with that from patients who remained disease-free for more than 10 years after surgery. Five proteins were selected for validation as prognostic factors in 348 melanoma patients and 100 controls by ELISA: serum amyloid A and clusterin; immune system proteins; the cell adhesion molecules plakoglobin and vitronectin and the antimicrobial protein dermcidin. Compared to healthy controls, melanoma patients have high serum levels of these proteins at the moment of melanoma diagnosis, although the specific values were not related to the histopathological stage of the tumors. However, an analysis based on classification together with multivariate statistics showed that tumor stage, vitronectin and dermcidin levels were associated with the metastatic progression of patients with early-stage melanoma. Although melanoma patients have increased serum dermcidin levels, the REPTree classifier showed that levels of dermcidin <2.98 μg/ml predict metastasis in AJCC stage II patients. These data suggest that vitronectin and dermcidin are potent biomarkers of prognosis, which may help to improve the personalized medical care of melanoma patients and their survival.
Collapse
Affiliation(s)
- Idoia Ortega-Martínez
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Jesús Gardeazabal
- Department of Dermatology, Ophthalmology and Otorhinolaryngology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| | - Asier Erramuzpe
- BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| | - Ana Sanchez-Diez
- Department of Dermatology, Ophthalmology and Otorhinolaryngology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| | - Jesús Cortés
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain.,Ikerbasque: The Basque Foundation for Science, Bilbao, Spain
| | - María D García-Vázquez
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| | - Rosa Izu
- Department of Dermatology, Ophthalmology and Otorhinolaryngology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| | - Jose Luís Díaz-Ramón
- Department of Dermatology, Ophthalmology and Otorhinolaryngology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| | - Ildefonso M de la Fuente
- Institute of Parasitology and Biomedicine Lopez-Neyra, Parque Tecnológico Ciencias De La Salud, Avenida Del Conocimiento S/N, Armilla, Granada, Spain
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| | - María D Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| |
Collapse
|
39
|
Abstract
This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
40
|
Santos EA, Quintela AL, Ferreira EG, Sousa TS, Pinto FDCL, Hajdu E, Carvalho MS, Salani S, Rocha DD, Wilke DV, Torres MDCM, Jimenez PC, Silveira ER, La Clair JJ, Pessoa ODL, Costa-Lotufo LV. Cytotoxic Plakortides from the Brazilian Marine Sponge Plakortis angulospiculatus. JOURNAL OF NATURAL PRODUCTS 2015; 78:996-1004. [PMID: 25879576 DOI: 10.1021/np5008944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Three new plakortides, 7,8-dihydroplakortide E (1), 2, and 10, along with known natural products 3, 4, spongosoritin A (5), 6-8, and plakortide P (9), were isolated from Brazilian specimens of Plakortis angulospiculatus. Compounds 2, 3, 5, and 7-9 displayed cytotoxic activities with IC50 values ranging from 0.2 to 10 μM. Compounds that contained a dihydrofuran ring were generally less active and displayed time dependence in their activity. The activities of compounds 2 and 7-9, carboxylic acids bearing a common six-membered endoperoxide, were higher overall than for compounds 3 and 5. The modes underlying the cytotoxic actions of plakortides 2, 3, 5, 7, and 9 were further investigated using HCT-116 cells. While dihydrofurans 3 and 5 induce a G0/G1 arrest, six-membered peroxides 2, 7, and 9 delivered a G2/M arrest and an accumulation of mitotic figures, indicating a distinctly different antimitotic response. Confocal analysis indicated that microtubules were not altered after treatment with 2, 7, or 9, therein suggesting that the mitotic arrest may be unrelated to cytoskeletal targets. Overall, we find that two related classes of natural products obtained from the same extract offer cytostatic activity, yet they do so through discrete pathways.
Collapse
Affiliation(s)
- Evelyne A Santos
- †Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, 60.430-270, Brazil
| | - Amanda L Quintela
- ‡Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, 60.021-970, Brazil
| | - Elthon G Ferreira
- §Instituto de Ciências do Mar, LABOMAR, Universidade Federal do Ceará, Fortaleza, 60.165-081, Brazil
| | - Thiciana S Sousa
- ‡Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, 60.021-970, Brazil
| | | | - Eduardo Hajdu
- ⊥Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 20.940-040, Brazil
| | | | - Sula Salani
- ⊥Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 20.940-040, Brazil
| | - Danilo D Rocha
- †Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, 60.430-270, Brazil
| | - Diego V Wilke
- †Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, 60.430-270, Brazil
| | - Maria da Conceição M Torres
- ‡Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, 60.021-970, Brazil
| | - Paula C Jimenez
- §Instituto de Ciências do Mar, LABOMAR, Universidade Federal do Ceará, Fortaleza, 60.165-081, Brazil
| | - Edilberto R Silveira
- ‡Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, 60.021-970, Brazil
| | - James J La Clair
- ∥Xenobe Research Institute, P.O. Box 3052, San Diego, California 92163-1052, United States
| | - Otília Deusdênia L Pessoa
- ‡Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, 60.021-970, Brazil
| | - Letícia V Costa-Lotufo
- †Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, 60.430-270, Brazil
- §Instituto de Ciências do Mar, LABOMAR, Universidade Federal do Ceará, Fortaleza, 60.165-081, Brazil
| |
Collapse
|
41
|
Moore BS, Gerwick WH. Special issue in honor of William Fenical, a pioneer in marine natural products discovery and drug development. JOURNAL OF NATURAL PRODUCTS 2015; 78:347-348. [PMID: 25814030 DOI: 10.1021/acs.jnatprod.5b00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
42
|
Han J, Sohn EJ, Kim B, Kim S, Won G, Yoon S, Lee J, Kim MJ, Lee H, Chung K, Kim SH. Upregulation of death receptor 5 and activation of caspase 8/3 play a critical role in ergosterol peroxide induced apoptosis in DU 145 prostate cancer cells. Cancer Cell Int 2014; 14:117. [PMID: 25506265 PMCID: PMC4265345 DOI: 10.1186/s12935-014-0117-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/27/2014] [Indexed: 01/13/2023] Open
Abstract
Background Though ergosterol peroxide (EP) derived from Neungyi mushrooms (Sarcodon aspratus) was known to have cytotoxic, apoptotic, anti-inflammatory and antimycobacterial effects, the underlying molecular mechanism of EP still remains unclear. Thus, in the present study, the apoptotic mechanism of EP was elucidated in DU 145 prostate cancer cells. Methods Cell viability of prostate cancer cells was measured by MTT assay. To see whether EP induces the apoptosis, FACS, western blot and TUNEL assay were performed. To determine the role of Death receptor (DR) 5 molecules in EP-induced apoptosis in DU 145 prostate cancer cells, the silencing of DR 5 was performed by using siRNAs. Results EP showed significant cytotoxicity against DU 145, PC 3, M2182 prostate cancer cells. Also, EP effectively increased the sub G1 population and terminal deoxynucleotidyl transferase DUTP nick end labeling (TUNEL) positive cells in DU 145 prostate cancer cells. Furthermore, western blotting revealed that EP cleaved poly (ADP-ribose) polymerase (PARP) and caspase 8/3, attenuated the expression of fluorescence loss in photobleaching (FLIP), Bcl-XL and Bcl-2 as well as activated Bax, Fas-associated death domain (FADD) and DR 5 in a concentration dependent manner in DU 145 prostate cancer cells. Conversely, caspase 8 inhibitor Z-IETD-FMK blocked the apoptotic ability of EP to cleave PARP and an increase of sub G1 population in DU 145 prostate cancer cells. Likewise, the silencing of DR 5 suppressed the cleavages of PARP induced by EP in DU 145 prostate cancer cells. Conclusion Overall, our findings suggest that ergosterol peroxide induces apoptosis via activation of death receptor 5 and caspase 8/3 in DU 145 prostate cancer cells as a cancer chemopreventive agent or dietary factor.
Collapse
Affiliation(s)
- Jonghyun Han
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 130-701 Republic of Korea
| | - Eun Jung Sohn
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 130-701 Republic of Korea
| | - Bonglee Kim
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 130-701 Republic of Korea
| | - Sunhee Kim
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 130-701 Republic of Korea
| | - Gunho Won
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 130-701 Republic of Korea
| | - Sangwook Yoon
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 130-701 Republic of Korea
| | - Jihyun Lee
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 130-701 Republic of Korea
| | - Moon Joon Kim
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 130-701 Republic of Korea
| | - Hojin Lee
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 130-701 Republic of Korea
| | - Kyujin Chung
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 130-701 Republic of Korea
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Hoegidong, Dongdaemungu, Seoul, 130-701 Republic of Korea
| |
Collapse
|