1
|
Nagasawa CK, Bailey AO, Russell WK, Garcia-Blanco MA. Inefficient recruitment of DDX39B impedes pre-spliceosome assembly on FOXP3 introns. RNA (NEW YORK, N.Y.) 2024; 30:824-838. [PMID: 38575347 PMCID: PMC11182011 DOI: 10.1261/rna.079933.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Forkhead box P3 (FOXP3) is the master fate-determining transcription factor in regulatory T (Treg) cells and is essential for their development, function, and homeostasis. Mutations in FOXP3 cause immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, and aberrant expression of FOXP3 has been implicated in other diseases such as multiple sclerosis and cancer. We previously demonstrated that pre-mRNA splicing of FOXP3 RNAs is highly sensitive to levels of DExD-box polypeptide 39B (DDX39B), and here we investigate the mechanism of this sensitivity. FOXP3 introns have cytidine (C)-rich/uridine (U)-poor polypyrimidine (py) tracts that are responsible for their inefficient splicing and confer sensitivity to DDX39B. We show that there is a deficiency in the assembly of commitment complexes (CCs) on FOXP3 introns, which is consistent with the lower affinity of U2AF2 for C-rich/U-poor py tracts. Our data indicate an even stronger effect on the conversion of CCs to pre-spliceosomes. We propose that this is due to an altered conformation that U2AF2 adopts when it binds to C-rich/U-poor py tracts and that this conformation has a lower affinity for DDX39B. As a consequence, CCs assembled on FOXP3 introns are defective in recruiting DDX39B, and this leads to the inefficient assembly of pre-spliceosome complexes.
Collapse
Affiliation(s)
- Chloe K Nagasawa
- Human Pathophysiology and Translational Medicine Program, Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas 77550, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
2
|
Bakhtiar D, Vondraskova K, Pengelly RJ, Chivers M, Kralovicova J, Vorechovsky I. Exonic splicing code and coordination of divalent metals in proteins. Nucleic Acids Res 2024; 52:1090-1106. [PMID: 38055834 PMCID: PMC10853796 DOI: 10.1093/nar/gkad1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Exonic sequences contain both protein-coding and RNA splicing information but the interplay of the protein and splicing code is complex and poorly understood. Here, we have studied traditional and auxiliary splicing codes of human exons that encode residues coordinating two essential divalent metals at the opposite ends of the Irving-Williams series, a universal order of relative stabilities of metal-organic complexes. We show that exons encoding Zn2+-coordinating amino acids are supported much less by the auxiliary splicing motifs than exons coordinating Ca2+. The handicap of the former is compensated by stronger splice sites and uridine-richer polypyrimidine tracts, except for position -3 relative to 3' splice junctions. However, both Ca2+ and Zn2+ exons exhibit close-to-constitutive splicing in multiple tissues, consistent with their critical importance for metalloprotein function and a relatively small fraction of expendable, alternatively spliced exons. These results indicate that constraints imposed by metal coordination spheres on RNA splicing have been efficiently overcome by the plasticity of exon-intron architecture to ensure adequate metalloprotein expression.
Collapse
Affiliation(s)
- Dara Bakhtiar
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Katarina Vondraskova
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Reuben J Pengelly
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Martin Chivers
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre of Biosciences, 840 05 Bratislava, Slovak Republic
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
3
|
Glasser E, Maji D, Biancon G, Puthenpeedikakkal A, Cavender C, Tebaldi T, Jenkins J, Mathews D, Halene S, Kielkopf C. Pre-mRNA splicing factor U2AF2 recognizes distinct conformations of nucleotide variants at the center of the pre-mRNA splice site signal. Nucleic Acids Res 2022; 50:5299-5312. [PMID: 35524551 PMCID: PMC9128377 DOI: 10.1093/nar/gkac287] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
The essential pre-mRNA splicing factor U2AF2 (also called U2AF65) identifies polypyrimidine (Py) tract signals of nascent transcripts, despite length and sequence variations. Previous studies have shown that the U2AF2 RNA recognition motifs (RRM1 and RRM2) preferentially bind uridine-rich RNAs. Nonetheless, the specificity of the RRM1/RRM2 interface for the central Py tract nucleotide has yet to be investigated. We addressed this question by determining crystal structures of U2AF2 bound to a cytidine, guanosine, or adenosine at the central position of the Py tract, and compared U2AF2-bound uridine structures. Local movements of the RNA site accommodated the different nucleotides, whereas the polypeptide backbone remained similar among the structures. Accordingly, molecular dynamics simulations revealed flexible conformations of the central, U2AF2-bound nucleotide. The RNA binding affinities and splicing efficiencies of structure-guided mutants demonstrated that U2AF2 tolerates nucleotide substitutions at the central position of the Py tract. Moreover, enhanced UV-crosslinking and immunoprecipitation of endogenous U2AF2 in human erythroleukemia cells showed uridine-sensitive binding sites, with lower sequence conservation at the central nucleotide positions of otherwise uridine-rich, U2AF2-bound splice sites. Altogether, these results highlight the importance of RNA flexibility for protein recognition and take a step towards relating splice site motifs to pre-mRNA splicing efficiencies.
Collapse
Affiliation(s)
- Eliezra Glasser
- Department of Biochemistry and Biophysics, and the Center for
RNA Biology, University of Rochester School of Medicine and
Dentistry, Rochester,
NY 14642, USA
| | - Debanjana Maji
- Department of Biochemistry and Biophysics, and the Center for
RNA Biology, University of Rochester School of Medicine and
Dentistry, Rochester,
NY 14642, USA
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine and
Yale Cancer Center, Yale University School of Medicine,
New Haven,
CT 06520, USA
| | | | - Chapin E Cavender
- Department of Biochemistry and Biophysics, and the Center for
RNA Biology, University of Rochester School of Medicine and
Dentistry, Rochester,
NY 14642, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine and
Yale Cancer Center, Yale University School of Medicine,
New Haven,
CT 06520, USA
- Department of Cellular, Computational and Integrative Biology
(CIBIO), University of
Trento, Trento, Italy
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, and the Center for
RNA Biology, University of Rochester School of Medicine and
Dentistry, Rochester,
NY 14642, USA
| | - David H Mathews
- Department of Biochemistry and Biophysics, and the Center for
RNA Biology, University of Rochester School of Medicine and
Dentistry, Rochester,
NY 14642, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and
Yale Cancer Center, Yale University School of Medicine,
New Haven,
CT 06520, USA
- Yale Center for RNA Science and Medicine, Yale University
School of Medicine, New Haven,
CT 06520, USA
- Department of Pathology, Yale University School of
Medicine, New Haven,
CT 06520, USA
| | - Clara L Kielkopf
- Department of Biochemistry and Biophysics, and the Center for
RNA Biology, University of Rochester School of Medicine and
Dentistry, Rochester,
NY 14642, USA
- Wilmot Cancer Institute, University of Rochester School of
Medicine and Dentistry, Rochester,
NY 14642, USA
| |
Collapse
|
4
|
Li D, Fan X, Li Y, Yang J, Lin H. The paradoxical functions of long noncoding RNAs in hepatocellular carcinoma: Implications in therapeutic opportunities and precision medicine. Genes Dis 2022; 9:358-369. [PMID: 35224152 PMCID: PMC8843871 DOI: 10.1016/j.gendis.2020.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/22/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most aggressive and lethal diseases with poor prognosis, worldwide. However, the mechanisms underlying HCC have not been comprehensively elucidated. With the recent application of high-throughput sequencing techniques, a diverse catalogue of differentially expressed long non-coding RNAs (lncRNA) in cancer have been shown to participate in HCC. Rather than being "transcriptional noise," they are emerging as important regulators of many biological processes, including chromatin remodelling, transcription, alternative splicing, translational and post-translational modification. Moreover, lncRNAs have dual effects in the development and progression of HCC, including oncogenic and tumour-suppressive roles. Collectively, recently data point to lncRNAs as novel diagnostic and prognostic biomarkers with satisfactory sensitivity and specificity, as well as being therapeutic targets for HCC patients. In this review, we highlight recent progress of the molecular patterns of lncRNAs and discuss their potential clinical application in human HCC.
Collapse
Affiliation(s)
- Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
5
|
AKSOY G, LÜLEYAP Ü, EVYAPAN G, PAZARCI P, ALPTEKİN D, PAZARBAŞI A, YILMAZ MB. Sh-Sy5y hücre hattında sodyum bütiratın bazı alternatif kırpılma genleri ve BACE1 izoformları üzeindeki etkisi. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.870361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
6
|
Structure of SRSF1 RRM1 bound to RNA reveals an unexpected bimodal mode of interaction and explains its involvement in SMN1 exon7 splicing. Nat Commun 2021; 12:428. [PMID: 33462199 PMCID: PMC7813835 DOI: 10.1038/s41467-020-20481-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
The human prototypical SR protein SRSF1 is an oncoprotein that contains two RRMs and plays a pivotal role in RNA metabolism. We determined the structure of the RRM1 bound to RNA and found that the domain binds preferentially to a CN motif (N is for any nucleotide). Based on this solution structure, we engineered a protein containing a single glutamate to asparagine mutation (E87N), which gains the ability to bind to uridines and thereby activates SMN exon7 inclusion, a strategy that is used to cure spinal muscular atrophy. Finally, we revealed that the flexible inter-RRM linker of SRSF1 allows RRM1 to bind RNA on both sides of RRM2 binding site. Besides revealing an unexpected bimodal mode of interaction of SRSF1 with RNA, which will be of interest to design new therapeutic strategies, this study brings a new perspective on the mode of action of SRSF1 in cells. SRSF1 is an oncoprotein that plays important roles in RNA metabolism. We reveal the structure of the human SRSF1 RRM1 bound to RNA, and propose a bimodal mode of interaction of the protein with RNA. A single mutation in RRM1 changed SRSF1 specificity for RNA and made it active on SMN2 exon7 splicing.
Collapse
|
7
|
Maji D, Glasser E, Henderson S, Galardi J, Pulvino MJ, Jenkins JL, Kielkopf CL. Representative cancer-associated U2AF2 mutations alter RNA interactions and splicing. J Biol Chem 2020; 295:17148-17157. [PMID: 33020180 PMCID: PMC7863893 DOI: 10.1074/jbc.ra120.015339] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
High-throughput sequencing of hematologic malignancies and other cancers has revealed recurrent mis-sense mutations of genes encoding pre-mRNA splicing factors. The essential splicing factor U2AF2 recognizes a polypyrimidine-tract splice-site signal and initiates spliceosome assembly. Here, we investigate representative, acquired U2AF2 mutations, namely N196K or G301D amino acid substitutions associated with leukemia or solid tumors, respectively. We determined crystal structures of the wild-type (WT) compared with N196K- or G301D-substituted U2AF2 proteins, each bound to a prototypical AdML polypyrimidine tract, at 1.5, 1.4, or 1.7 Å resolutions. The N196K residue appears to stabilize the open conformation of U2AF2 with an inter-RNA recognition motif hydrogen bond, in agreement with an increased apparent RNA-binding affinity of the N196K-substituted protein. The G301D residue remains in a similar position as the WT residue, where unfavorable proximity to the RNA phosphodiester could explain the decreased RNA-binding affinity of the G301D-substituted protein. We found that expression of the G301D-substituted U2AF2 protein reduces splicing of a minigene transcript carrying prototypical splice sites. We further show that expression of either N196K- or G301D-substituted U2AF2 can subtly alter splicing of representative endogenous transcripts, despite the presence of endogenous, WT U2AF2 such as would be present in cancer cells. Altogether, our results demonstrate that acquired U2AF2 mutations such as N196K and G301D are capable of dysregulating gene expression for neoplastic transformation.
Collapse
Affiliation(s)
- Debanjana Maji
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Eliezra Glasser
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Steven Henderson
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Justin Galardi
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Mary J Pulvino
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jermaine L Jenkins
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Clara L Kielkopf
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
8
|
Warnasooriya C, Feeney CF, Laird KM, Ermolenko DN, Kielkopf CL. A splice site-sensing conformational switch in U2AF2 is modulated by U2AF1 and its recurrent myelodysplasia-associated mutation. Nucleic Acids Res 2020; 48:5695-5709. [PMID: 32343311 PMCID: PMC7261175 DOI: 10.1093/nar/gkaa293] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 02/02/2023] Open
Abstract
An essential heterodimer of the U2AF1 and U2AF2 pre-mRNA splicing factors nucleates spliceosome assembly at polypyrimidine (Py) signals preceding the major class of 3′ splice sites. U2AF1 frequently acquires an S34F-encoding mutation among patients with myelodysplastic syndromes (MDS). The influence of the U2AF1 subunit and its S34F mutation on the U2AF2 conformations remains unknown. Here, we employ single molecule Förster resonance energy transfer (FRET) to determine the influence of wild-type or S34F-substituted U2AF1 on the conformational dynamics of U2AF2 and its splice site RNA complexes. In the absence of RNA, the U2AF1 subunit stabilizes a high FRET value, which by structure-guided mutagenesis corresponds to a closed conformation of the tandem U2AF2 RNA recognition motifs (RRMs). When the U2AF heterodimer is bound to a strong, uridine-rich splice site, U2AF2 switches to a lower FRET value characteristic of an open, side-by-side arrangement of the RRMs. Remarkably, the U2AF heterodimer binds weak, uridine-poor Py tracts as a mixture of closed and open U2AF2 conformations, which are modulated by the S34F mutation. Shifts between open and closed U2AF2 may underlie U2AF1-dependent splicing of degenerate Py tracts and contribute to a subset of S34F-dysregulated splicing events in MDS patients.
Collapse
Affiliation(s)
- Chandani Warnasooriya
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Callen F Feeney
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kholiswa M Laird
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Clara L Kielkopf
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Lee C, Chang W, Chang Y, Yang J, Chang C, Hsu K, Chen Y, Liu T, Chen Y, Lin S, Wu Y, Chang J. Alternative splicing in human cancer cells is modulated by the amiloride derivative 3,5-diamino-6-chloro-N-(N-(2,6-dichlorobenzoyl)carbamimidoyl)pyrazine-2-carboxide. Mol Oncol 2019; 13:1744-1762. [PMID: 31152681 PMCID: PMC6670021 DOI: 10.1002/1878-0261.12524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/30/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing (AS) is a process that enables the generation of multiple protein isoforms with different biological properties from a single mRNA. Cancer cells often use the maneuverability conferred by AS to produce proteins that contribute to growth and survival. In our previous studies, we identified that amiloride modulates AS in cancer cells. However, the effective concentration of amiloride required to modulate AS is too high for use in cancer treatment. In this study, we used computational algorithms to screen potential amiloride derivatives for their ability to regulate AS in cancer cells. We found that 3,5-diamino-6-chloro-N-(N-(2,6-dichlorobenzoyl)carbamimidoyl)pyrazine-2-carboxamide (BS008) can regulate AS of apoptotic gene transcripts, including HIPK3, SMAC, and BCL-X, at a lower concentration than amiloride. This splicing regulation involved various splicing factors, and it was accompanied by a change in the phosphorylation state of serine/arginine-rich proteins (SR proteins). RNA sequencing was performed to reveal that AS of many other apoptotic gene transcripts, such as AATF, ATM, AIFM1, NFKB1, and API5, was also modulated by BS008. In vivo experiments further indicated that treatment of tumor-bearing mice with BS008 resulted in a marked decrease in tumor size. BS008 also had inhibitory effects in vitro, either alone or in a synergistic combination with the cytotoxic chemotherapeutic agents sorafenib and nilotinib. BS008 enabled sorafenib dose reduction without compromising antitumor activity. These findings suggest that BS008 may possess therapeutic potential for cancer treatment.
Collapse
Affiliation(s)
- Chien‐Chin Lee
- Epigenome Research CenterChina Medical University HospitalTaichungTaiwan
| | - Wen‐Hsin Chang
- Epigenome Research CenterChina Medical University HospitalTaichungTaiwan
- Department of Primary Care MedicineTaipei Medical University HospitalTaiwan
| | - Ya‐Sian Chang
- Epigenome Research CenterChina Medical University HospitalTaichungTaiwan
- Department of Laboratory MedicineChina Medical University HospitalTaichungTaiwan
- Center for Precision MedicineChina Medical University HospitalTaichungTaiwan
| | - Jinn‐Moon Yang
- TIGP‐BioinformaticsInstitute of Information ScienceAcademia SinicaTaipeiTaiwan
- Institute of Bioinformatics and Systems BiologyNational Chiao Tung UniversityHsinchuTaiwan
- Department of Biological Science and TechnologyNational Chiao Tung UniversityHsinchuTaiwan
| | - Chih‐Shiang Chang
- Graduate Institute of Pharmaceutical ChemistryChina Medical UniversityTaichungTaiwan
| | - Kai‐Cheng Hsu
- Graduate Institute of Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaiwan
| | - Yun‐Ti Chen
- Institute of Bioinformatics and Systems BiologyNational Chiao Tung UniversityHsinchuTaiwan
| | - Ting‐Yuan Liu
- Department of Laboratory MedicineChina Medical University HospitalTaichungTaiwan
| | - Yu‐Chia Chen
- Department of Laboratory MedicineChina Medical University HospitalTaichungTaiwan
| | - Shyr‐Yi Lin
- Department of Primary Care MedicineTaipei Medical University HospitalTaiwan
- Department of General MedicineSchool of MedicineCollege of MedicineTaipei Medical UniversityTaiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaiwan
| | - Yang‐Chang Wu
- Graduate Institute of Natural ProductsKaohsiung Medical UniversityTaiwan
- Research Center for Natural Products and Drug DevelopmentKaohsiung Medical UniversityTaiwan
- Department of Medical ResearchKaohsiung Medical University HospitalTaiwan
- Chinese Medicine Research and Development CenterChina Medical University HospitalTaichungTaiwan
| | - Jan‐Gowth Chang
- Epigenome Research CenterChina Medical University HospitalTaichungTaiwan
- Department of Primary Care MedicineTaipei Medical University HospitalTaiwan
- Department of Laboratory MedicineChina Medical University HospitalTaichungTaiwan
| |
Collapse
|
10
|
DeNicola AB, Tang Y. Therapeutic approaches to treat human spliceosomal diseases. Curr Opin Biotechnol 2019; 60:72-81. [PMID: 30772756 DOI: 10.1016/j.copbio.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Mutated RNA splicing machinery drives many human diseases and is a promising therapeutic target for engineering and small molecule therapy. In the case of mutations in individual genes that cause them to be incorrectly spliced, engineered splicing factors can be introduced to correct splicing of these aberrant transcripts and reduce the effects of the disease phenotype. Mutations that occur in certain splicing factor genes themselves have been implicated in many cancers, particularly myelodysplastic syndromes. Small molecules that target splicing factors have been developed as therapies to preferentially induce apoptosis in these cancer cells. Specifically, drugs targeting the splicing factor SF3B1 have led to recent clinical trials. Here, we review the role of alternative splicing in disease, approaches to rescue incorrect splicing using engineered splicing factors, and small molecule splicing inhibitors developed to treat hematological cancers.
Collapse
Affiliation(s)
- Anthony B DeNicola
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States.
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
11
|
Chen L, Weinmeister R, Kralovicova J, Eperon LP, Vorechovsky I, Hudson AJ, Eperon IC. Stoichiometries of U2AF35, U2AF65 and U2 snRNP reveal new early spliceosome assembly pathways. Nucleic Acids Res 2017; 45:2051-2067. [PMID: 27683217 PMCID: PMC5389562 DOI: 10.1093/nar/gkw860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/16/2016] [Indexed: 12/24/2022] Open
Abstract
The selection of 3΄ splice sites (3΄ss) is an essential early step in mammalian RNA splicing reactions, but the processes involved are unknown. We have used single molecule methods to test whether the major components implicated in selection, the proteins U2AF35 and U2AF65 and the U2 snRNP, are able to recognize alternative candidate sites or are restricted to one pre-specified site. In the presence of adenosine triphosphate (ATP), all three components bind in a 1:1 stoichiometry with a 3΄ss. Pre-mRNA molecules with two alternative 3΄ss can be bound concurrently by two molecules of U2AF or two U2 snRNPs, so none of the components are restricted. However, concurrent occupancy inhibits splicing. Stoichiometric binding requires conditions consistent with coalescence of the 5΄ and 3΄ sites in a complex (I, initial), but if this cannot form the components show unrestricted and stochastic association. In the absence of ATP, when complex E forms, U2 snRNP association is unrestricted. However, if protein dephosphorylation is prevented, an I-like complex forms with stoichiometric association of U2 snRNPs and the U2 snRNA is base-paired to the pre-mRNA. Complex I differs from complex A in that the formation of complex A is associated with the loss of U2AF65 and 35.
Collapse
Affiliation(s)
- Li Chen
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Robert Weinmeister
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Lucy P Eperon
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Andrew J Hudson
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Chemistry, Leicester LE1 7RH, UK
| | - Ian C Eperon
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| |
Collapse
|
12
|
Mang Y, Li L, Ran J, Zhang S, Liu J, Li L, Chen Y, Liu J, Gao Y, Ren G. Long noncoding RNA NEAT1 promotes cell proliferation and invasion by regulating hnRNP A2 expression in hepatocellular carcinoma cells. Onco Targets Ther 2017; 10:1003-1016. [PMID: 28260918 PMCID: PMC5325106 DOI: 10.2147/ott.s116319] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Growing evidence demonstrates that long noncoding RNAs (lncRNAs) are involved in the progression of various cancers, including hepatocellular carcinoma (HCC). The role of nuclear-enriched abundant transcript 1 (NEAT1), an essential lncRNA for the formation of nuclear body paraspeckles, has not been fully explored in HCC. We aimed to determine the expression, roles and functional mechanisms of NEAT1 in the proliferation and invasion of HCC. Based on real-time polymerase chain reaction data, we suggest that NEAT1 is upregulated in HCC tissues compared with noncancerous liver tissues. The knockdown of NEAT1 altered global gene expression patterns and reduced HCC cell proliferation, invasion and migration. RNA immunoprecipitation and RNA pull-down assays confirmed that U2AF65 binds to NEAT1. Furthermore, the study indicated that NEAT1 regulated hnRNP A2 expression and that this regulation may be associated with the NEAT1–U2AF65 protein complex. Thus, the NEAT1-hnRNP A2 regulation mechanism promotes HCC pathogenesis and may provide a potential target for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Yuanyi Mang
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Li Li
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Jianghua Ran
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Shengning Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Jing Liu
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Laibang Li
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Yiming Chen
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Jian Liu
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Yang Gao
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Gang Ren
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
13
|
Chen Y, Yang F, Zubovic L, Pavelitz T, Yang W, Godin K, Walker M, Zheng S, Macchi P, Varani G. Targeted inhibition of oncogenic miR-21 maturation with designed RNA-binding proteins. Nat Chem Biol 2016; 12:717-23. [PMID: 27428511 PMCID: PMC4990487 DOI: 10.1038/nchembio.2128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 05/02/2016] [Indexed: 02/07/2023]
Abstract
The RNA Recognition Motif (RRM) is the largest family of eukaryotic RNA-binding proteins. Engineered RRMs with new specificity would provide valuable tools and an exacting test of our understanding of specificity. We have achieved the first successful re-design of the specificity of an RRM using rational methods and demonstrated re-targeting of activity in cells. We engineered the conserved RRM of human Rbfox proteins to specifically bind to the terminal loop of miR-21 precursor with high affinity and inhibit its processing by Drosha and Dicer. We further engineered Giardia Dicer by replacing its PAZ domain with the designed RRM. The reprogrammed enzyme degrades pre-miR-21 specifically in vitro and suppresses mature miR-21 levels in cells, which results in increased expression of PDCD4 and significantly decreased viability for cancer cells. The results demonstrate the feasibility of engineering the sequence-specificity of RRMs and of using this ubiquitous platform for diverse biological applications.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Fan Yang
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Lorena Zubovic
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Tom Pavelitz
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Wen Yang
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Katherine Godin
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Matthew Walker
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Suxin Zheng
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Paolo Macchi
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
An extended U2AF(65)-RNA-binding domain recognizes the 3' splice site signal. Nat Commun 2016; 7:10950. [PMID: 26952537 PMCID: PMC4786784 DOI: 10.1038/ncomms10950] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 02/03/2016] [Indexed: 12/12/2022] Open
Abstract
How the essential pre-mRNA splicing factor U2AF65 recognizes the polypyrimidine (Py) signals of the major class of 3′ splice sites in human gene transcripts remains incompletely understood. We determined four structures of an extended U2AF65–RNA-binding domain bound to Py-tract oligonucleotides at resolutions between 2.0 and 1.5 Å. These structures together with RNA binding and splicing assays reveal unforeseen roles for U2AF65 inter-domain residues in recognizing a contiguous, nine-nucleotide Py tract. The U2AF65 linker residues between the dual RNA recognition motifs (RRMs) recognize the central nucleotide, whereas the N- and C-terminal RRM extensions recognize the 3′ terminus and third nucleotide. Single-molecule FRET experiments suggest that conformational selection and induced fit of the U2AF65 RRMs are complementary mechanisms for Py-tract association. Altogether, these results advance the mechanistic understanding of molecular recognition for a major class of splice site signals. The pre-mRNA splicing factor U2AF65 recognizes 3′ splice sites in human gene transcripts, but the details are not fully understood. Here, the authors report U2AF65 structures and single molecule FRET that reveal mechanistic insights into splice site recognition.
Collapse
|