1
|
O'Quinn HC, Vailionis JL, Tanwee TNN, Holandez-Lopez KS, Bing RG, Poole FL, Zhang Y, Kelly RM, Adams MWW. Engineering the hyperthermophilic archaeon Pyrococcus furiosus for 1-propanol production. Appl Environ Microbiol 2025; 91:e0047125. [PMID: 40192334 DOI: 10.1128/aem.00471-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 05/22/2025] Open
Abstract
Society relies heavily on chemicals traditionally produced through the refinement of fossil fuels. The conversion of renewable biomass to value-added chemicals by microbes, particularly hyperthermophiles (Topt ≥80°C), offers a renewable alternative to this traditional approach. Herein, we describe the engineering of the hyperthermophilic archaeon Pyrococcus furiosus, which grows optimally (Topt) at 100°C, for the conversion of sugar to 1-propanol. This was accomplished by constructing a hybrid metabolic pathway consisting of two native and seven heterologously produced enzymes to convert acetyl-CoA from carbohydrate metabolism to 1-propanol. A total of eleven foreign genes from two other organisms were utilized, one from the thermophilic bacterium Thermoanaerobacter sp. strain X514 and 10 from the thermoacidophilic archaeon Metallosphaera sedula, both of which grow optimally near 70°C. The recombinant P. furiosus strain produced 1-propanol at similar concentrations (up to ~1 mM) when incubated at 75°C to activate the gene products of Thermoanaerobacter sp. strain X514 and M. sedula and by initially incubating at 95°C for P. furiosus growth and then subsequently returning to 75°C to promote 1-propanol formation. Note that 1-propanol was not produced if the culture was grown only at 95°C. This work has the potential for future optimization through harnessing the genome-scale metabolic model of P. furiosus that was used herein to identify engineering targets to increase 1-propanol titer.IMPORTANCEAs petroleum reserves become increasingly strained, the development of renewable alternatives to traditional chemical synthesis becomes more important. In this work, a high-temperature biological system for sugar to 1-propanol conversion was demonstrated by metabolic engineering of the hyperthermophilic archaeon Pyrococcus furiosus (Topt 100°C). The engineered strain produced 1-propanol by temperature shifting from 75°C to 95°C and then back to 75°C to accommodate the temperature ranges for native and foreign proteins associated with 1-propanol biosynthesis. Genome-scale metabolic modeling informed the carbon and reductant flux in the system, identified potential factors limiting 1-propanol production, and revealed potential optimization targets.
Collapse
Affiliation(s)
- Hailey C O'Quinn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Jason L Vailionis
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Tania N N Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | | | - Ryan G Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Szaleniec M, Heider J. Obligately Tungsten-Dependent Enzymes─Catalytic Mechanisms, Models and Applications. Biochemistry 2025; 64:2154-2172. [PMID: 40323690 PMCID: PMC12096430 DOI: 10.1021/acs.biochem.5c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Tungsten-dependent enzymes incorporate a tungsten ion into their active site in the form of a complex with two pyranometallopterin (MPT) molecules, also known as tungsten cofactor (W-co). W-co-containing enzymes are found in several bacteria and archaea, predominantly in enzymes involved in anaerobic metabolism. While some enzymes occur with either molybdenum or tungsten in their active sites, we concentrate here on enzymes obligately depending on W-co, which are not functional as isoenzymes with Mo-co. These are represented by several subtypes of aldehyde oxidoreductases (AORs), class II benzoyl-CoA reductase (BCRs) and acetylene hydratase (AHs). They catalyze either low-potential redox reactions or the unusual hydration reaction of acetylene. In this review, we analyze the catalytic and structural properties of these enzymes and focus on various mechanistic hypotheses proposed to describe their catalytic action, including hypothetical mechanistic patterns common to all of these enzymes. The biochemical characterization of the enzymes is supported by studies with functional inorganic models that help in the elucidation of their spectroscopic and catalytic features. Finally, we discuss a range of ongoing biotechnological applications utilizing obligately tungsten-dependent enzymes in producing value-added chemicals, indicating the expected advantages of incorporating these enzymes into biotechnological processes despite their intrinsic oxygen-sensitivity and the requirement of special recombinant expression platforms.
Collapse
Affiliation(s)
- Maciej Szaleniec
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy
of Sciences, 30-239Krakow, Poland
| | - Johann Heider
- Faculty
of Biology, Philipps-Universität
Marburg, 35037Marburg, Germany
- Center
for Synthetic Microbiology, Philipps-Universität
Marburg, 35037Marburg, Germany
| |
Collapse
|
3
|
Böer T, Engelhardt L, Lüschen A, Eysell L, Yoshida H, Schneider D, Angenent LT, Basen M, Daniel R, Poehlein A. Isolation and characterization of novel acetogenic Moorella strains for employment as potential thermophilic biocatalysts. FEMS Microbiol Ecol 2024; 100:fiae109. [PMID: 39118367 PMCID: PMC11328732 DOI: 10.1093/femsec/fiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024] Open
Abstract
Thermophilic acetogenic bacteria have attracted attention as promising candidates for biotechnological applications such as syngas fermentation, microbial electrosynthesis, and methanol conversion. Here, we aimed to isolate and characterize novel thermophilic acetogens from diverse environments. Enrichment of heterotrophic and autotrophic acetogens was monitored by 16S rRNA gene-based bacterial community analysis. Seven novel Moorella strains were isolated and characterized by genomic and physiological analyses. Two Moorella humiferrea isolates showed considerable differences during autotrophic growth. The M. humiferrea LNE isolate (DSM 117358) fermented carbon monoxide (CO) to acetate, while the M. humiferrea OCP isolate (DSM 117359) transformed CO to hydrogen and carbon dioxide (H2 + CO2), employing the water-gas shift reaction. Another carboxydotrophic hydrogenogenic Moorella strain was isolated from the covering soil of an active charcoal burning pile and proposed as the type strain (ACPsT) of the novel species Moorella carbonis (DSM 116161T and CCOS 2103T). The remaining four novel strains were affiliated with Moorella thermoacetica and showed, together with the type strain DSM 2955T, the production of small amounts of ethanol from H2 + CO2 in addition to acetate. The physiological analyses of the novel Moorella strains revealed isolate-specific differences that considerably increase the knowledge base on thermophilic acetogens for future applications.
Collapse
Affiliation(s)
- Tim Böer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Lisa Engelhardt
- Microbiology, Institute of Biological Sciences, University Rostock, 18059 Rostock, Germany
| | - Alina Lüschen
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Lena Eysell
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Hiroki Yoshida
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Largus T Angenent
- Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University Rostock, 18059 Rostock, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Cowan DA, Albers SV, Antranikian G, Atomi H, Averhoff B, Basen M, Driessen AJM, Jebbar M, Kelman Z, Kerou M, Littlechild J, Müller V, Schönheit P, Siebers B, Vorgias K. Extremophiles in a changing world. Extremophiles 2024; 28:26. [PMID: 38683238 PMCID: PMC11058618 DOI: 10.1007/s00792-024-01341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Extremophiles and their products have been a major focus of research interest for over 40 years. Through this period, studies of these organisms have contributed hugely to many aspects of the fundamental and applied sciences, and to wider and more philosophical issues such as the origins of life and astrobiology. Our understanding of the cellular adaptations to extreme conditions (such as acid, temperature, pressure and more), of the mechanisms underpinning the stability of macromolecules, and of the subtleties, complexities and limits of fundamental biochemical processes has been informed by research on extremophiles. Extremophiles have also contributed numerous products and processes to the many fields of biotechnology, from diagnostics to bioremediation. Yet, after 40 years of dedicated research, there remains much to be discovered in this field. Fortunately, extremophiles remain an active and vibrant area of research. In the third decade of the twenty-first century, with decreasing global resources and a steadily increasing human population, the world's attention has turned with increasing urgency to issues of sustainability. These global concerns were encapsulated and formalized by the United Nations with the adoption of the 2030 Agenda for Sustainable Development and the presentation of the seventeen Sustainable Development Goals (SDGs) in 2015. In the run-up to 2030, we consider the contributions that extremophiles have made, and will in the future make, to the SDGs.
Collapse
Affiliation(s)
- D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.
| | - S V Albers
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - G Antranikian
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073, Hamburg, Germany
| | - H Atomi
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - B Averhoff
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - M Basen
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - A J M Driessen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - M Jebbar
- Univ. Brest, CNRS, Ifremer, Laboratoire de Biologie Et d'Écologie Des Écosystèmes Marins Profonds (BEEP), IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Z Kelman
- Institute for Bioscience and Biotechnology Research and the National Institute of Standards and Technology, Rockville, MD, USA
| | - M Kerou
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - J Littlechild
- Henry Wellcome Building for Biocatalysis, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - V Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - P Schönheit
- Institute of General Microbiology, Christian Albrechts University, Kiel, Germany
| | - B Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, 45117, Essen, Germany
| | - K Vorgias
- Biology Department and RI-Bio3, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Nissen LS, Moon J, Hitschler L, Basen M. A Versatile Aldehyde: Ferredoxin Oxidoreductase from the Organic Acid Reducing Thermoanaerobacter sp. Strain X514. Int J Mol Sci 2024; 25:1077. [PMID: 38256150 PMCID: PMC10816221 DOI: 10.3390/ijms25021077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Aldehyde:ferredoxin oxidoreductases (AORs) have been isolated and biochemically-characterized from a handful of anaerobic or facultative aerobic archaea and bacteria. They catalyze the ferredoxin (Fd)-dependent oxidation of aldehydes to acids. Recently, the involvement of AOR in the reduction of organic acids to alcohols with electrons derived from sugar or synthesis gas was demonstrated, with alcohol dehydrogenases (ADHs) carrying out the reduction of the aldehyde to the alcohol (AOR-ADH pathway). Here, we describe the biochemical characterization of an AOR of the thermophilic fermentative bacterium Thermoanaerobacter sp. strain X514 (AORX514). The putative aor gene (Teth514_1380) including a 6x-His-tag was introduced into the genome of the genetically-accessible, related species Thermoanaerobacter kivui. The protein was purified to apparent homogeneity, and indeed revealed AOR activity, as measured by acetaldehyde-dependent ferredoxin reduction. AORX514 was active over a wide temperature (10 to 95 °C) and pH (5.5 to 11.5) range, utilized a wide variety of aldehydes (short and branched-chained, aliphatic, aromatic) and resembles archaeal sensu stricto AORs, as the protein is active in a homodimeric form. The successful, recombinant production of AORX514 in a related, well-characterized and likewise strict anaerobe paves the road towards structure-function analyses of this enzyme and possibly similar oxygen-sensitive or W/Mo-dependent proteins in the future.
Collapse
Affiliation(s)
- Laura Sofie Nissen
- Microbiology, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany;
| | - Jimyung Moon
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt/Main, Germany; (J.M.)
| | - Lisa Hitschler
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt/Main, Germany; (J.M.)
| | - Mirko Basen
- Microbiology, Institute of Biological Sciences, University of Rostock, D-18059 Rostock, Germany;
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt/Main, Germany; (J.M.)
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
6
|
Elisiário MP, Van Hecke W, De Wever H, Noorman H, Straathof AJJ. Acetic acid, growth rate, and mass transfer govern shifts in CO metabolism of Clostridium autoethanogenum. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12670-6. [PMID: 37410136 PMCID: PMC10390632 DOI: 10.1007/s00253-023-12670-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Syngas fermentation is a leading microbial process for the conversion of carbon monoxide, carbon dioxide, and hydrogen to valuable biochemicals. Clostridium autoethanogenum stands as a model organism for this process, showcasing its ability to convert syngas into ethanol industrially with simultaneous fixation of carbon and reduction of greenhouse gas emissions. A deep understanding on the metabolism of this microorganism and the influence of operational conditions on fermentation performance is key to advance the technology and enhancement of production yields. In this work, we studied the individual impact of acetic acid concentration, growth rate, and mass transfer rate on metabolic shifts, product titres, and rates in CO fermentation by C. autoethanogenum. Through continuous fermentations performed at a low mass transfer rate, we measured the production of formate in addition to acetate and ethanol. We hypothesise that low mass transfer results in low CO concentrations, leading to reduced activity of the Wood-Ljungdahl pathway and a bottleneck in formate conversion, thereby resulting in the accumulation of formate. The supplementation of the medium with exogenous acetate revealed that undissociated acetic acid concentration increases and governs ethanol yield and production rates, assumedly to counteract the inhibition by undissociated acetic acid. Since acetic acid concentration is determined by growth rate (via dilution rate), mass transfer rate, and working pH, these variables jointly determine ethanol production rates. These findings have significant implications for process optimisation as targeting an optimal undissociated acetic acid concentration can shift metabolism towards ethanol production. KEY POINTS: • Very low CO mass transfer rate leads to leaking of intermediate metabolite formate. • Undissociated acetic acid concentration governs ethanol yield on CO and productivity. • Impact of growth rate, mass transfer rate, and pH were considered jointly.
Collapse
Affiliation(s)
- Marina P Elisiário
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629HZ, Delft, The Netherlands
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Wouter Van Hecke
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Heleen De Wever
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Henk Noorman
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629HZ, Delft, The Netherlands
- Royal DSM, Alexander Fleminglaan 1, 2613 AX, Delft, The Netherlands
| | - Adrie J J Straathof
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629HZ, Delft, The Netherlands.
| |
Collapse
|
7
|
Vailionis JL, Zhao W, Zhang K, Rodionov DA, Lipscomb GL, Tanwee TNN, O'Quinn HC, Bing RG, Kelly RM, Adams MWW, Zhang Y. Optimizing Strategies for Bio-Based Ethanol Production Using Genome-Scale Metabolic Modeling of the Hyperthermophilic Archaeon, Pyrococcus furiosus. Appl Environ Microbiol 2023; 89:e0056323. [PMID: 37289085 PMCID: PMC10304669 DOI: 10.1128/aem.00563-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/13/2023] [Indexed: 06/09/2023] Open
Abstract
A genome-scale metabolic model, encompassing a total of 623 genes, 727 reactions, and 865 metabolites, was developed for Pyrococcus furiosus, an archaeon that grows optimally at 100°C by carbohydrate and peptide fermentation. The model uses subsystem-based genome annotation, along with extensive manual curation of 237 gene-reaction associations including those involved in central carbon metabolism, amino acid metabolism, and energy metabolism. The redox and energy balance of P. furiosus was investigated through random sampling of flux distributions in the model during growth on disaccharides. The core energy balance of the model was shown to depend on high acetate production and the coupling of a sodium-dependent ATP synthase and membrane-bound hydrogenase, which generates a sodium gradient in a ferredoxin-dependent manner, aligning with existing understanding of P. furiosus metabolism. The model was utilized to inform genetic engineering designs that favor the production of ethanol over acetate by implementing an NADPH and CO-dependent energy economy. The P. furiosus model is a powerful tool for understanding the relationship between generation of end products and redox/energy balance at a systems-level that will aid in the design of optimal engineering strategies for production of bio-based chemicals and fuels. IMPORTANCE The bio-based production of organic chemicals provides a sustainable alternative to fossil-based production in the face of today's climate challenges. In this work, we present a genome-scale metabolic reconstruction of Pyrococcus furiosus, a well-established platform organism that has been engineered to produce a variety of chemicals and fuels. The metabolic model was used to design optimal engineering strategies to produce ethanol. The redox and energy balance of P. furiosus was examined in detail, which provided useful insights that will guide future engineering designs.
Collapse
Affiliation(s)
- Jason L. Vailionis
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Weishu Zhao
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Ke Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Dmitry A. Rodionov
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Gina L. Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Hailey C. O'Quinn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
8
|
Lipscomb GL, Crowley AT, Nguyen DMN, Keller MW, O’Quinn HC, Tanwee TNN, Vailionis JL, Zhang K, Zhang Y, Kelly RM, Adams MWW. Manipulating Fermentation Pathways in the Hyperthermophilic Archaeon Pyrococcus furiosus for Ethanol Production up to 95°C Driven by Carbon Monoxide Oxidation. Appl Environ Microbiol 2023; 89:e0001223. [PMID: 37162365 PMCID: PMC10304873 DOI: 10.1128/aem.00012-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/09/2023] [Indexed: 05/11/2023] Open
Abstract
Genetic engineering of hyperthermophilic organisms for the production of fuels and other useful chemicals is an emerging biotechnological opportunity. In particular, for volatile organic compounds such as ethanol, fermentation at high temperatures could allow for straightforward separation by direct distillation. Currently, the upper growth temperature limit for native ethanol producers is 72°C in the bacterium Thermoanaerobacter ethanolicus JW200, and the highest temperature for heterologously-engineered bioethanol production was recently demonstrated at 85°C in the archaeon Pyrococcus furiosus. Here, we describe an engineered strain of P. furiosus that synthesizes ethanol at 95°C, utilizing a homologously-expressed native alcohol dehydrogenase, termed AdhF. Ethanol biosynthesis was compared at 75°C and 95°C with various engineered strains. At lower temperatures, the acetaldehyde substrate for AdhF is most likely produced from acetate by aldehyde ferredoxin oxidoreductase (AOR). At higher temperatures, the effect of AOR on ethanol production is negligible, suggesting that acetaldehyde is produced by pyruvate ferredoxin oxidoreductase (POR) via oxidative decarboxylation of pyruvate, a reaction known to occur only at higher temperatures. Heterologous expression of a carbon monoxide dehydrogenase complex in the AdhF overexpression strain enabled it to use CO as a source of energy, leading to increased ethanol production. A genome reconstruction model for P. furiosus was developed to guide metabolic engineering strategies and understand outcomes. This work opens the door to the potential for 'bioreactive distillation' since fermentation can be performed well above the normal boiling point of ethanol. IMPORTANCE Previously, the highest temperature for biological ethanol production was 85°C. Here, we have engineered ethanol production at 95°C by the hyperthermophilic archaeon Pyrococcus furiosus. Using mutant strains, we showed that ethanol production occurs by different pathways at 75°C and 95°C. In addition, by heterologous expression of a carbon monoxide dehydrogenase complex, ethanol production by this organism was driven by the oxidation of carbon monoxide. A genome reconstruction model for P. furiosus was developed to guide metabolic engineering strategies and understand outcomes.
Collapse
Affiliation(s)
- Gina L. Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Alexander T. Crowley
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Diep M. N. Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Matthew W. Keller
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Hailey C. O’Quinn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Jason L. Vailionis
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Ke Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
9
|
Winiarska A, Ramírez-Amador F, Hege D, Gemmecker Y, Prinz S, Hochberg G, Heider J, Szaleniec M, Schuller JM. A bacterial tungsten-containing aldehyde oxidoreductase forms an enzymatic decorated protein nanowire. SCIENCE ADVANCES 2023; 9:eadg6689. [PMID: 37267359 PMCID: PMC10413684 DOI: 10.1126/sciadv.adg6689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Aldehyde oxidoreductases (AORs) are tungsten enzymes catalyzing the oxidation of many different aldehydes to the corresponding carboxylic acids. In contrast to other known AORs, the enzyme from the denitrifying betaproteobacterium Aromatoleum aromaticum (AORAa) consists of three different subunits (AorABC) and uses nicotinamide adenine dinucleotide (NAD) as an electron acceptor. Here, we reveal that the enzyme forms filaments of repeating AorAB protomers that are capped by a single NAD-binding AorC subunit, based on solving its structure via cryo-electron microscopy. The polyferredoxin-like subunit AorA oligomerizes to an electron-conducting nanowire that is decorated with enzymatically active and W-cofactor (W-co) containing AorB subunits. Our structure further reveals the binding mode of the native substrate benzoate in the AorB active site. This, together with quantum mechanics:molecular mechanics (QM:MM)-based modeling for the coordination of the W-co, enables formulation of a hypothetical catalytic mechanism that paves the way to further engineering for applications in synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Agnieszka Winiarska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Fidel Ramírez-Amador
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg, Germany
| | - Dominik Hege
- Faculty of Biology, Philipps-University of Marburg, Marburg, Germany
| | - Yvonne Gemmecker
- Faculty of Biology, Philipps-University of Marburg, Marburg, Germany
| | - Simone Prinz
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Georg Hochberg
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Johann Heider
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg, Germany
- Faculty of Biology, Philipps-University of Marburg, Marburg, Germany
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Jan Michael Schuller
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
10
|
Sha C, Wang Q, Wang H, Duan Y, Xu C, Wu L, Ma K, Shao W, Jiang Y. Characterization of Thermotoga neapolitana Alcohol Dehydrogenases in the Ethanol Fermentation Pathway. BIOLOGY 2022; 11:biology11091318. [PMID: 36138797 PMCID: PMC9495900 DOI: 10.3390/biology11091318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Hyperthermophilic Thermotoga spp. are candidates for cellulosic ethanol fermentation. A bifunctional iron-acetaldehyde/alcohol dehydrogenase (Fe-AAdh) has been revealed to catalyze the acetyl-CoA (Ac-CoA) reduction to form ethanol via an acetaldehyde intermediate in Thermotoga neapolitana (T. neapolitana). In this organism, there are three additional alcohol dehydrogenases, Zn-Adh, Fe-Adh1, and Fe-Adh2, encoded by genes CTN_0257, CTN_1655, and CTN_1756, respectively. This paper reports the properties and functions of these enzymes in the fermentation pathway from Ac-CoA to ethanol. It was determined that Zn-Adh only exhibited activity when oxidizing ethanol to acetaldehyde, and no detectable activity for the reaction from acetaldehyde to ethanol. Fe-Adh1 had specific activities of approximately 0.7 and 0.4 U/mg for the forward and reverse reactions between acetaldehyde and ethanol at a pHopt of 8.5 and Topt of 95 °C. Catalyzing the reduction of acetaldehyde to produce ethanol, Fe-Adh2 exhibited the highest activity of approximately 3 U/mg at a pHopt of 7.0 and Topt of 85 °C, which were close to the optimal growth conditions. These results indicate that Fe-Adh2 and Zn-Adh are the main enzymes that catalyze ethanol formation and consumption in the hyperthermophilic bacterium, respectively.
Collapse
Affiliation(s)
- Chong Sha
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China
| | - Qiang Wang
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China
- School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Suzhou 234000, China
| | - Hongcheng Wang
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212013, China
| | - Yilan Duan
- School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Suzhou 234000, China
| | - Chongmao Xu
- Huzhou Research Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China
| | - Lian Wu
- Huzhou Research Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China
| | - Kesen Ma
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Weilan Shao
- Shine E BioTech (Nanjing) Company, Nanjing 210023, China
- Correspondence: (W.S.); (Y.J.)
| | - Yu Jiang
- Huzhou Research Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China
- Correspondence: (W.S.); (Y.J.)
| |
Collapse
|
11
|
Sharma J, Kumar V, Prasad R, Gaur NA. Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges. Biotechnol Adv 2022; 56:107925. [DOI: 10.1016/j.biotechadv.2022.107925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 01/01/2023]
|
12
|
Tungsten enzymes play a role in detoxifying food and antimicrobial aldehydes in the human gut microbiome. Proc Natl Acad Sci U S A 2021; 118:2109008118. [PMID: 34686601 DOI: 10.1073/pnas.2109008118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
Tungsten (W) is a metal that is generally thought to be seldom used in biology. We show here that a W-containing oxidoreductase (WOR) family is diverse and widespread in the microbial world. Surprisingly, WORs, along with the tungstate-specific transporter Tup, are abundant in the human gut microbiome, which contains 24 phylogenetically distinct WOR types. Two model gut microbes containing six types of WOR and Tup were shown to assimilate W. Two of the WORs were natively purified and found to contain W. The enzymes catalyzed the conversion of toxic aldehydes to the corresponding acid, with one WOR carrying out an electron bifurcation reaction coupling aldehyde oxidation to the simultaneous reduction of NAD+ and of the redox protein ferredoxin. Such aldehydes are present in cooked foods and are produced as antimicrobials by gut microbiome metabolism. This aldehyde detoxification strategy is dependent on the availability of W to the microbe. The functions of other WORs in the gut microbiome that do not oxidize aldehydes remain unknown. W is generally beyond detection (<6 parts per billion) in common foods and at picomolar concentrations in drinking water, suggesting that W availability could limit some gut microbial functions and might be an overlooked micronutrient.
Collapse
|
13
|
Hitschler L, Nissen LS, Kuntz M, Basen M. Alcohol dehydrogenases AdhE and AdhB with broad substrate ranges are important enzymes for organic acid reduction in Thermoanaerobacter sp. strain X514. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:187. [PMID: 34563250 PMCID: PMC8466923 DOI: 10.1186/s13068-021-02038-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The industrial production of various alcohols from organic carbon compounds may be performed at high rates and with a low risk of contamination using thermophilic microorganisms as whole-cell catalysts. Thermoanaerobacter species that thrive around 50-75 °C not only perform fermentation of sugars to alcohols, but some also utilize different organic acids as electron acceptors, reducing them to their corresponding alcohols. RESULTS We purified AdhE as the major NADH- and AdhB as the major NADPH-dependent alcohol dehydrogenase (ADH) from the cell extract of the organic acid-reducing Thermoanaerobacter sp. strain X514. Both enzymes were present in high amounts during growth on glucose with and without isobutyrate, had broad substrate spectra including different aldehydes, with high affinities (< 1 mM) for acetaldehyde and for NADH (AdhE) or NADPH (AdhB). Both enzymes were highly thermostable at the physiological temperature of alcohol production. In addition to AdhE and AdhB, we identified two abundant AdhA-type ADHs based on their genes, which were recombinantly produced and biochemically characterized. The other five ADHs encoded in the genome were only expressed at low levels. CONCLUSIONS According to their biochemical and kinetic properties, AdhE and AdhB are most important for ethanol formation from sugar and reduction of organic acids to alcohols, while the role of the two AdhA-type enzymes is less clear. AdhE is the only abundant aldehyde dehydrogenase for the acetyl-CoA reduction to aldehydes, however, acid reduction may also proceed directly by aldehyde:ferredoxin oxidoreductase. The role of the latter in bio-alcohol formation from sugar and in organic acid reduction needs to be elucidated in future studies.
Collapse
Affiliation(s)
- Lisa Hitschler
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue Str. 9, 60438, Frankfurt/Main, Germany
- Department of Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Laura Sofie Nissen
- Microbiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein Str. 3, 18059, Rostock, Germany
| | - Michelle Kuntz
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue Str. 9, 60438, Frankfurt/Main, Germany
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 24, 72076, Tübingen, Germany
| | - Mirko Basen
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue Str. 9, 60438, Frankfurt/Main, Germany.
- Microbiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein Str. 3, 18059, Rostock, Germany.
| |
Collapse
|
14
|
Moon J, Müller V. Physiology and genetics of ethanologenesis in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol 2021; 23:6953-6964. [PMID: 34448343 DOI: 10.1111/1462-2920.15739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/22/2021] [Indexed: 11/28/2022]
Abstract
The acetogenic model bacterium Acetobacterium woodii is well-known to produce acetate by homoacetogenesis from sugars, but under certain conditions minor amounts of ethanol are produced in addition. Here, we have aimed to identify physiological conditions that increase electron and carbon flow towards ethanol production. Ethanol was only produced from fructose but not from H2 + CO2 , formate, pyruvate, lactate or alanine. In the absence of Na+ , the Wood-Ljungdahl pathway (WLP) of acetate formation is not functional. Therefore, the ethanol yield increased to 0.42 mol/mol (ethanol/fructose) with an ethanol/acetate ratio of 0.28 mol/mol. The presence of bicarbonate/CO2 stimulated electron and carbon flow through the WLP and led to less ethanol produced. Of the 11 potential alcohol dehydrogenase genes, the most upregulated during ethanologenesis was adh4. A deletion of adh4 led to an increase in ethanol production by 100% to a yield of 0.79 mol/mol (ethanol/fructose); this correlated with an increase in transcript abundance of adh6. In sum, our studies revealed low Na+ and bicarbonate/CO2 as factors that trigger ethanol formation and that a deletion of adh4 drastically increased ethanol formation in A. woodii.
Collapse
Affiliation(s)
- Jimyung Moon
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| |
Collapse
|
15
|
Counts JA, Willard DJ, Kelly RM. Life in hot acid: a genome-based reassessment of the archaeal order Sulfolobales. Environ Microbiol 2021; 23:3568-3584. [PMID: 32776389 PMCID: PMC10560490 DOI: 10.1111/1462-2920.15189] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 01/07/2023]
Abstract
The order Sulfolobales was one of the first named Archaeal lineages, with globally distributed members from terrestrial thermal acid springs (pH < 4; T > 65°C). The Sulfolobales represent broad metabolic capabilities, ranging from lithotrophy, based on inorganic iron and sulfur biotransformations, to autotrophy, to chemoheterotrophy in less acidophilic species. Components of the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation cycle, as well as sulfur oxidation, are nearly universally conserved, although dissimilatory sulfur reduction and disproportionation (Acidianus, Stygiolobus and Sulfurisphaera) and iron oxidation (Acidianus, Metallosphaera, Sulfurisphaera, Sulfuracidifex and Sulfodiicoccus) are limited to fewer lineages. Lithotrophic marker genes appear more often in highly acidophilic lineages. Despite the presence of facultative anaerobes and one confirmed obligate anaerobe, oxidase complexes (fox, sox, dox and a new putative cytochrome bd) are prevalent in many species (even facultative/obligate anaerobes), suggesting a key role for oxygen among the Sulfolobales. The presence of fox genes tracks with a putative antioxidant OsmC family peroxiredoxin, an indicator of oxidative stress derived from mixing reactive metals and oxygen. Extreme acidophily appears to track inversely with heterotrophy but directly with lithotrophy. Recent phylogenetic re-organization efforts are supported by the comparative genomics here, although several changes are proposed, including the expansion of the genus Saccharolobus.
Collapse
Affiliation(s)
- James A. Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
16
|
Propionate Production from Carbon Monoxide by Synthetic Cocultures of Acetobacterium wieringae and Propionigenic Bacteria. Appl Environ Microbiol 2021; 87:e0283920. [PMID: 33990298 PMCID: PMC8231444 DOI: 10.1128/aem.02839-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gas fermentation is a promising way to convert CO-rich gases to chemicals. We studied the use of synthetic cocultures composed of carboxydotrophic and propionigenic bacteria to convert CO to propionate. So far, isolated carboxydotrophs cannot directly ferment CO to propionate, and therefore, this cocultivation approach was investigated. Four distinct synthetic cocultures were constructed, consisting of Acetobacterium wieringae (DSM 1911T) and Pelobacter propionicus (DSM 2379T), Ac. wieringae (DSM 1911T) and Anaerotignum neopropionicum (DSM 3847T), Ac. wieringae strain JM and P. propionicus (DSM 2379T), and Ac. wieringae strain JM and An. neopropionicum (DSM 3847T). Propionate was produced by all the cocultures, with the highest titer (∼24 mM) being measured in the coculture composed of Ac. wieringae strain JM and An. neopropionicum, which also produced isovalerate (∼4 mM), butyrate (∼1 mM), and isobutyrate (0.3 mM). This coculture was further studied using proteogenomics. As expected, enzymes involved in the Wood-Ljungdahl pathway in Ac. wieringae strain JM, which are responsible for the conversion of CO to ethanol and acetate, were detected; the proteome of An. neopropionicum confirmed the conversion of ethanol to propionate via the acrylate pathway. In addition, proteins related to amino acid metabolism and stress response were highly abundant during cocultivation, which raises the hypothesis that amino acids are exchanged by the two microorganisms, accompanied by isovalerate and isobutyrate production. This highlights the importance of explicitly looking at fortuitous microbial interactions during cocultivation to fully understand coculture behavior. IMPORTANCE Syngas fermentation has great potential for the sustainable production of chemicals from wastes (via prior gasification) and flue gases containing CO/CO2. Research efforts need to be directed toward expanding the product portfolio of gas fermentation, which is currently limited to mainly acetate and ethanol. This study provides the basis for a microbial process to produce propionate from CO using synthetic cocultures composed of acetogenic and propionigenic bacteria and elucidates the metabolic pathways involved. Furthermore, based on proteomics results, we hypothesize that the two bacterial species engage in an interaction that results in amino acid exchange, which subsequently promotes isovalerate and isobutyrate production. These findings provide a new understanding of gas fermentation and a coculturing strategy for expanding the product spectrum of microbial conversion of CO/CO2.
Collapse
|
17
|
Wang Q, Sha C, Wang H, Ma K, Wiegle J, Abomohra AEF, Shao W. A novel bifunctional aldehyde/alcohol dehydrogenase catalyzing reduction of acetyl-CoA to ethanol at temperatures up to 95 °C. Sci Rep 2021; 11:1050. [PMID: 33441766 PMCID: PMC7806712 DOI: 10.1038/s41598-020-80159-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/16/2020] [Indexed: 11/09/2022] Open
Abstract
Hyperthermophilic Thermotoga spp. are excellent candidates for the biosynthesis of cellulosic ethanol producing strains because they can grow optimally at 80 °C with ability to degrade and utilize cellulosic biomass. In T. neapolitana (Tne), a putative iron-containing alcohol dehydrogenase was, for the first time, revealed to be a bifunctional aldehyde/alcohol dehydrogenase (Fe-AAdh) that catalyzed both reactions from acetyl-coenzyme A (ac-CoA) to acetaldehyde (ac-ald), and from ac-ald to ethanol, while the putative aldehyde dehydrogenase (Aldh) exhibited only CoA-independent activity that oxidizes ac-ald to acetic acid. The biochemical properties of Fe-AAdh were characterized, and bioinformatics were analyzed. Fe-AAdh exhibited the highest activities for the reductions of ac-CoA and acetaldehyde at 80-85 °C, pH 7.54, and had a 1-h half-life at about 92 °C. The Fe-AAdh gene is highly conserved in Thermotoga spp., Pyrococcus furiosus and Thermococcus kodakarensis, indicating the existence of a fermentation pathway from ac-CoA to ethanol via acetaldehyde as the intermediate in hyperthermophiles.
Collapse
Affiliation(s)
- Qiang Wang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Chong Sha
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hongcheng Wang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kesen Ma
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Juergen Wiegle
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Abd El-Fatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China. .,Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Weilan Shao
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
18
|
Zu TNK, Liu S, Gerlach ES, Mojadedi W, Sund CJ. Co-feeding glucose with either gluconate or galacturonate during clostridial fermentations provides metabolic fine-tuning capabilities. Sci Rep 2021; 11:29. [PMID: 33420096 PMCID: PMC7794554 DOI: 10.1038/s41598-020-76761-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridium acetobutylicum ATCC 824 effectively utilizes a wide range of substrates to produce commodity chemicals. When grown on substrates of different oxidation states, the organism exhibits different recycling needs of reduced intracellular electron carrying co-factors. Ratios of substrates with different oxidation states were used to modulate the need to balance electron carriers and demonstrate fine-tuned control of metabolic output. Three different oxidized substrates were first fed singularly, then in different ratios to three different strains of Clostridium sp. Growth was most robust when fed glucose in exclusive fermentations. However, the use of the other two more oxidized substrates was strain-dependent in exclusive feeds. In glucose-galacturonate mixed fermentation, the main products (acetate and butyrate) were dependant on the ratios of the substrates. Exclusive fermentation on galacturonate was nearly homoacetic. Co-utilization of galacturonate and glucose was observed from the onset of fermentation in growth conditions using both substrates combined, with the proportion of galacturonate present dictating the amount of acetate produced. For all three strains, increasing galacturonate content (%) in a mixture of galacturonate and glucose from 0 to 50, and 100, resulted in a corresponding increase in the amount of acetate produced. For example, C. acetobutylicum increased from ~ 10 mM to ~ 17 mM, and then ~ 23 mM. No co-utilization was observed when galacturonate was replaced with gluconate in the two substrate co-feed.
Collapse
Affiliation(s)
- Theresah N K Zu
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA.
| | - Sanchao Liu
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA
| | - Elliot S Gerlach
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA
| | - Wais Mojadedi
- Oak Ridge Associated Universities, Belcamp, MD, 21017, USA
| | - Christian J Sund
- Combat Capabilities Development Command Army Research Laboratory, SEDD, Adelphi, MD, 20783, USA
| |
Collapse
|
19
|
Katsyv A, Müller V. Overcoming Energetic Barriers in Acetogenic C1 Conversion. Front Bioeng Biotechnol 2020; 8:621166. [PMID: 33425882 PMCID: PMC7793690 DOI: 10.3389/fbioe.2020.621166] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Currently one of the biggest challenges for society is to combat global warming. A solution to this global threat is the implementation of a CO2-based bioeconomy and a H2-based bioenergy economy. Anaerobic lithotrophic bacteria such as the acetogenic bacteria are key players in the global carbon and H2 cycle and thus prime candidates as driving forces in a H2- and CO2-bioeconomy. Naturally, they convert two molecules of CO2via the Wood-Ljungdahl pathway (WLP) to one molecule of acetyl-CoA which can be converted to different C2-products (acetate or ethanol) or elongated to C4 (butyrate) or C5-products (caproate). Since there is no net ATP generation from acetate formation, an electron-transport phosphorylation (ETP) module is hooked up to the WLP. ETP provides the cell with additional ATP, but the ATP gain is very low, only a fraction of an ATP per mol of acetate. Since acetogens live at the thermodynamic edge of life, metabolic engineering to obtain high-value products is currently limited by the low energy status of the cells that allows for the production of only a few compounds with rather low specificity. To set the stage for acetogens as production platforms for a wide range of bioproducts from CO2, the energetic barriers have to be overcome. This review summarizes the pathway, the energetics of the pathway and describes ways to overcome energetic barriers in acetogenic C1 conversion.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Pfeifer K, Ergal İ, Koller M, Basen M, Schuster B, Rittmann SKMR. Archaea Biotechnology. Biotechnol Adv 2020; 47:107668. [PMID: 33271237 DOI: 10.1016/j.biotechadv.2020.107668] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Archaea are a domain of prokaryotic organisms with intriguing physiological characteristics and ecological importance. In Microbial Biotechnology, archaea are historically overshadowed by bacteria and eukaryotes in terms of public awareness, industrial application, and scientific studies, although their biochemical and physiological properties show a vast potential for a wide range of biotechnological applications. Today, the majority of microbial cell factories utilized for the production of value-added and high value compounds on an industrial scale are bacterial, fungal or algae based. Nevertheless, archaea are becoming ever more relevant for biotechnology as their cultivation and genetic systems improve. Some of the main advantages of archaeal cell factories are the ability to cultivate many of these often extremophilic organisms under non-sterile conditions, and to utilize inexpensive feedstocks often toxic to other microorganisms, thus drastically reducing cultivation costs. Currently, the only commercially available products of archaeal cell factories are bacterioruberin, squalene, bacteriorhodopsin and diether-/tetraether-lipids, all of which are produced utilizing halophiles. Other archaeal products, such as carotenoids and biohydrogen, as well as polyhydroxyalkanoates and methane are in early to advanced development stages, respectively. The aim of this review is to provide an overview of the current state of Archaea Biotechnology by describing the actual state of research and development as well as the industrial utilization of archaeal cell factories, their role and their potential in the future of sustainable bioprocessing, and to illustrate their physiological and biotechnological potential.
Collapse
Affiliation(s)
- Kevin Pfeifer
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria; Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - İpek Ergal
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| | - Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, Austria
| | - Mirko Basen
- Microbial Physiology Group, Division of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Bernhard Schuster
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria.
| |
Collapse
|
21
|
Shahab RL, Brethauer S, Davey MP, Smith AG, Vignolini S, Luterbacher JS, Studer MH. A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. Science 2020; 369:369/6507/eabb1214. [DOI: 10.1126/science.abb1214] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
Microbial consortia are a promising alternative to monocultures of genetically modified microorganisms for complex biotransformations. We developed a versatile consortium-based strategy for the direct conversion of lignocellulose to short-chain fatty acids, which included the funneling of the lignocellulosic carbohydrates to lactate as a central intermediate in engineered food chains. A spatial niche enabled in situ cellulolytic enzyme production by an aerobic fungus next to facultative anaerobic lactic acid bacteria and the product-forming anaerobes. Clostridium tyrobutyricum, Veillonella criceti, or Megasphaera elsdenii were integrated into the lactate platform to produce 196 kilograms of butyric acid per metric ton of beechwood. The lactate platform demonstrates the benefits of mixed cultures, such as their modularity and their ability to convert complex substrates into valuable biochemicals.
Collapse
Affiliation(s)
- Robert L. Shahab
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Laboratory of Biofuels and Biochemicals, School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences (BFH), CH-3052 Zollikofen, Switzerland
| | - Simone Brethauer
- Laboratory of Biofuels and Biochemicals, School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences (BFH), CH-3052 Zollikofen, Switzerland
| | - Matthew P. Davey
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Jeremy S. Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Michael H. Studer
- Laboratory of Biofuels and Biochemicals, School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences (BFH), CH-3052 Zollikofen, Switzerland
| |
Collapse
|
22
|
Rubinstein GM, Lipscomb GL, Williams-Rhaesa AM, Schut GJ, Kelly RM, Adams MWW. Engineering the cellulolytic extreme thermophile Caldicellulosiruptor bescii to reduce carboxylic acids to alcohols using plant biomass as the energy source. J Ind Microbiol Biotechnol 2020; 47:585-597. [PMID: 32783103 DOI: 10.1007/s10295-020-02299-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/27/2020] [Indexed: 01/13/2023]
Abstract
Caldicellulosiruptor bescii is the most thermophilic cellulolytic organism yet identified (Topt 78 °C). It grows on untreated plant biomass and has an established genetic system thereby making it a promising microbial platform for lignocellulose conversion to bio-products. Here, we investigated the ability of engineered C. bescii to generate alcohols from carboxylic acids. Expression of aldehyde ferredoxin oxidoreductase (aor from Pyrococcus furiosus) and alcohol dehydrogenase (adhA from Thermoanaerobacter sp. X514) enabled C. bescii to generate ethanol from crystalline cellulose and from biomass by reducing the acetate produced by fermentation. Deletion of lactate dehydrogenase in a strain expressing the AOR-Adh pathway increased ethanol production. Engineered strains also converted exogenously supplied organic acids (isobutyrate and n-caproate) to the corresponding alcohol (isobutanol and hexanol) using both crystalline cellulose and switchgrass as sources of reductant for alcohol production. This is the first instance of an acid to alcohol conversion pathway in a cellulolytic microbe.
Collapse
Affiliation(s)
- Gabriel M Rubinstein
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | | | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
23
|
Abstract
Tungsten is the heaviest element used in biological systems. It occurs in the active sites of several bacterial or archaeal enzymes and is ligated to an organic cofactor (metallopterin or metal binding pterin; MPT) which is referred to as tungsten cofactor (Wco). Wco-containing enzymes are found in the dimethyl sulfoxide reductase (DMSOR) and the aldehyde:ferredoxin oxidoreductase (AOR) families of MPT-containing enzymes. Some depend on Wco, such as aldehyde oxidoreductases (AORs), class II benzoyl-CoA reductases (BCRs) and acetylene hydratases (AHs), whereas others may incorporate either Wco or molybdenum cofactor (Moco), such as formate dehydrogenases, formylmethanofuran dehydrogenases or nitrate reductases. The obligately tungsten-dependent enzymes catalyze rather unusual reactions such as ones with extremely low-potential electron transfers (AOR, BCR) or an unusual hydration reaction (AH). In recent years, insights into the structure and function of many tungstoenzymes have been obtained. Though specific and unspecific ABC transporter uptake systems have been described for tungstate and molybdate, only little is known about further discriminative steps in Moco and Wco biosynthesis. In bacteria producing Moco- and Wco-containing enzymes simultaneously, paralogous isoforms of the metal insertase MoeA may be specifically involved in the molybdenum- and tungsten-insertion into MPT, and in targeting Moco or Wco to their respective apo-enzymes. Wco-containing enzymes are of emerging biotechnological interest for a number of applications such as the biocatalytic reduction of CO2, carboxylic acids and aromatic compounds, or the conversion of acetylene to acetaldehyde.
Collapse
|
24
|
Modification of the glycolytic pathway in Pyrococcus furiosus and the implications for metabolic engineering. Extremophiles 2020; 24:511-518. [PMID: 32415359 DOI: 10.1007/s00792-020-01172-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
The key difference in the modified Embden-Meyerhof glycolytic pathway in hyperthermophilic Archaea, such as Pyrococcus furiosus, occurs at the conversion from glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) where the typical intermediate 1,3-bisphosphoglycerate (1,3-BPG) is not present. The absence of the ATP-yielding step catalyzed by phosphoglycerate kinase (PGK) alters energy yield, redox energetics, and kinetics of carbohydrate metabolism. Either of the two enzymes, ferredoxin-dependent glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) or NADP+-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), responsible for this "bypass" reaction, could be deleted individually without impacting viability, albeit with differences in native fermentation product profiles. Furthermore, P. furiosus was viable in the gluconeogenic direction (growth on pyruvate or peptides plus elemental sulfur) in a ΔgapnΔgapor strain. Ethanol was utilized as a proxy for potential heterologous products (e.g., isopropanol, butanol, fatty acids) that require reducing equivalents (e.g., NAD(P)H, reduced ferredoxin) generated from glycolysis. Insertion of a single gene encoding the thermostable NADPH-dependent primary alcohol dehydrogenase (adhA) (Tte_0696) from Caldanaerobacter subterraneus, resulted in a strain producing ethanol via the previously established aldehyde oxidoreductase (AOR) pathway. This strain demonstrated a high ratio of ethanol over acetate (> 8:1) at 80 °C and enabled ethanol production up to 85 °C, the highest temperature for bio-ethanol production reported to date.
Collapse
|
25
|
Arantes AL, Moreira JPC, Diender M, Parshina SN, Stams AJM, Alves MM, Alves JI, Sousa DZ. Enrichment of Anaerobic Syngas-Converting Communities and Isolation of a Novel Carboxydotrophic Acetobacterium wieringae Strain JM. Front Microbiol 2020; 11:58. [PMID: 32082285 PMCID: PMC7006291 DOI: 10.3389/fmicb.2020.00058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/13/2020] [Indexed: 11/13/2022] Open
Abstract
Syngas is a substrate for the anaerobic bioproduction of fuels and valuable chemicals. In this study, anaerobic sludge was used for microbial enrichments with synthetic syngas and acetate as main substrates. The objectives of this study were to identify microbial networks (in enrichment cultures) for the conversion of syngas to added-value products, and to isolate robust, non-fastidious carboxydotrophs. Enrichment cultures produced methane and propionate, this last one an unusual product from syngas fermentation. A bacterium closely related to Acetobacterium wieringae was identified as most prevalent (87% relative abundance) in the enrichments. Methanospirillum sp. and propionate-producing bacteria clustering within the genera Anaerotignum and Pelobacter were also found. Further on, strain JM, was isolated and was found to be 99% identical (16S rRNA gene) to A. wieringae DSM 1911T. Digital DNA-DNA hybridization (dDDH) value between the genomes of strain JM and A. wieringae was 77.1%, indicating that strain JM is a new strain of A. wieringae. Strain JM can grow on carbon monoxide (100% CO, total pressure 170 kPa) without yeast extract or formate, producing mainly acetate. Remarkably, conversion of CO by strain JM showed shorter lag phase than in cultures of A. wieringae DSM 1911T, and about four times higher amount of CO was consumed in 7 days. Genome analysis suggests that strain JM uses the Wood-Ljungdahl pathway for the conversion of one carbon compounds (CO, formate, CO2/H2). Genes encoding bifurcational enzyme complexes with similarity to the bifurcational formate dehydrogenase (Fdh) of Clostridium autoethanogenum are present, and possibly relate to the higher tolerance to CO of strain JM compared to other Acetobacterium species. A. wieringae DSM 1911T grew on CO in medium containing 1 mM formate.
Collapse
Affiliation(s)
- Ana L Arantes
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - João P C Moreira
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Martijn Diender
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Sofiya N Parshina
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Laboratory of Microbiology of Anthropogenic Habitats of Winogradsky Institute of Microbiology, Federal State Institution (Fundamentals of Biotechnology) of the Russian Academy of Sciences, Moscow, Russia
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - M Madalena Alves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Joana I Alves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
26
|
Fukuyama Y, Inoue M, Omae K, Yoshida T, Sako Y. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:99-148. [PMID: 32386607 DOI: 10.1016/bs.aambs.2019.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon monoxide (CO) is a gas that is toxic to various organisms including humans and even microbes; however, it has low redox potential, which can fuel certain microbes, namely, CO oxidizers. Hydrogenogenic CO oxidizers utilize an energy conservation system via a CO dehydrogenase/energy-converting hydrogenase complex to produce hydrogen gas, a zero emission fuel, by CO oxidation coupled with proton reduction. Biochemical and molecular biological studies using a few model organisms have revealed their enzymatic reactions and transcriptional response mechanisms using CO. Biotechnological studies for CO-dependent hydrogen production have also been carried out with these model organisms. In this chapter, we review recent advances in the studies of these microbes, which reveal their unique and versatile metabolic profiles and provides future perspectives on ecological roles and biotechnological applications. Over the past decade, the number of isolates has doubled (37 isolates in 5 phyla, 20 genera, and 32 species). Some of the recently isolated ones show broad specificity to electron acceptors. Moreover, accumulating genomic information predicts their unique physiologies and reveals their phylogenomic relationships with novel potential hydrogenogenic CO oxidizers. Combined with genomic database surveys, a molecular ecological study has unveiled the wide distribution and low abundance of these microbes. Finally, recent biotechnological applications of hydrogenogenic CO oxidizers have been achieved via diverse approaches (e.g., metabolic engineering and co-cultivation), and the identification of thermophilic facultative anaerobic CO oxidizers will promote industrial applications as oxygen-tolerant biocatalysts for efficient hydrogen production by genomic engineering.
Collapse
Affiliation(s)
- Yuto Fukuyama
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masao Inoue
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kimiho Omae
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
27
|
Nissen LS, Basen M. The emerging role of aldehyde:ferredoxin oxidoreductases in microbially-catalyzed alcohol production. J Biotechnol 2019; 306:105-117. [DOI: 10.1016/j.jbiotec.2019.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
|
28
|
Extreme thermophiles as emerging metabolic engineering platforms. Curr Opin Biotechnol 2019; 59:55-64. [DOI: 10.1016/j.copbio.2019.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
|
29
|
Cheng C, Li W, Lin M, Yang ST. Metabolic engineering of Clostridium carboxidivorans for enhanced ethanol and butanol production from syngas and glucose. BIORESOURCE TECHNOLOGY 2019; 284:415-423. [PMID: 30965197 DOI: 10.1016/j.biortech.2019.03.145] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Clostridium carboxidivorans can convert CO2, CO and H2 to ethanol and n-butanol; however, its industrial application is limited by the lack of tools for metabolic pathway engineering. In this study, C. carboxidivorans was successfully engineered to overexpress aor, adhE2, and fnr together with adhE2 or aor. In glucose fermentation, all engineered strains showed higher alcohol yields compared to the wild-type. Strains overexpressing aor showed CO2 re-assimilation during heterotrophic growth. In syngas fermentation, compared to the wild-type, the strain overexpressing adhE2 produced ∼50% more ethanol and the strain overexpressing adhE2 and fnr produced ∼18% more butanol and ∼22% more ethanol. Interestingly, both strains showed obvious acid re-assimilation, with <0.15 g/L total acid remaining at the end of fermentation. Overexpressing fnr with adhE2 enhanced butanol production compared to only adhE2. This is the first report of overexpressing homologous and heterologous genes in C. carboxidivorans for enhancing alcohols production from syngas and glucose.
Collapse
Affiliation(s)
- Chi Cheng
- Department of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave, Columbus, OH 43210, USA
| | - Weiming Li
- William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave, Columbus, OH 43210, USA; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng Lin
- William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave, Columbus, OH 43210, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical & Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Wetland Sediments Host Diverse Microbial Taxa Capable of Cycling Alcohols. Appl Environ Microbiol 2019; 85:AEM.00189-19. [PMID: 30979841 PMCID: PMC6544822 DOI: 10.1128/aem.00189-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/07/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding patterns of organic matter degradation in wetlands is essential for identifying the substrates and mechanisms supporting greenhouse gas production and emissions from wetlands, the main natural source of methane in the atmosphere. Alcohols are common fermentation products but are poorly studied as key intermediates in organic matter degradation in wetlands. By investigating genes, pathways, and microorganisms potentially accounting for the high concentrations of ethanol and isopropanol measured in Prairie Pothole wetland sediments, this work advanced our understanding of alcohol fermentations in wetlands linked to extremely high greenhouse gas emissions. Moreover, the novel alcohol dehydrogenases and microbial taxa potentially involved in alcohol metabolism may serve biotechnological efforts in bioengineering commercially valuable alcohol production and in the discovery of novel isopropanol producers or isopropanol fermentation pathways. Alcohols are commonly derived from the degradation of organic matter and yet are rarely measured in environmental samples. Wetlands in the Prairie Pothole Region (PPR) support extremely high methane emissions and the highest sulfate reduction rates reported to date, likely contributing to a significant proportion of organic matter mineralization in this system. While ethanol and isopropanol concentrations up to 4 to 5 mM in PPR wetland pore fluids have been implicated in sustaining these high rates of microbial activity, the mechanisms that support alcohol cycling in this ecosystem are poorly understood. We leveraged metagenomic and transcriptomic tools to identify genes, pathways, and microorganisms potentially accounting for alcohol cycling in PPR wetlands. Phylogenetic analyses revealed diverse alcohol dehydrogenases and putative substrates. Alcohol dehydrogenase and aldehyde dehydrogenase genes were included in 62 metagenome-assembled genomes (MAGs) affiliated with 16 phyla. The most frequently encoded pathway (in 30 MAGs) potentially accounting for alcohol production was a Pyrococcus furiosus-like fermentation which can involve pyruvate:ferredoxin oxidoreductase (PFOR). Transcripts for 93 of 137 PFOR genes in these MAGs were detected, as well as for 158 of 243 alcohol dehydrogenase genes retrieved from these same MAGs. Mixed acid fermentation and heterofermentative lactate fermentation were also frequently encoded. Finally, we identified 19 novel putative isopropanol dehydrogenases in 15 MAGs affiliated with Proteobacteria, Acidobacteria, Chloroflexi, Planctomycetes, Ignavibacteriae, Thaumarchaeota, and the candidate divisions KSB1 and Rokubacteria. We conclude that diverse microorganisms may use uncommon and potentially novel pathways to produce ethanol and isopropanol in PPR wetland sediments. IMPORTANCE Understanding patterns of organic matter degradation in wetlands is essential for identifying the substrates and mechanisms supporting greenhouse gas production and emissions from wetlands, the main natural source of methane in the atmosphere. Alcohols are common fermentation products but are poorly studied as key intermediates in organic matter degradation in wetlands. By investigating genes, pathways, and microorganisms potentially accounting for the high concentrations of ethanol and isopropanol measured in Prairie Pothole wetland sediments, this work advanced our understanding of alcohol fermentations in wetlands linked to extremely high greenhouse gas emissions. Moreover, the novel alcohol dehydrogenases and microbial taxa potentially involved in alcohol metabolism may serve biotechnological efforts in bioengineering commercially valuable alcohol production and in the discovery of novel isopropanol producers or isopropanol fermentation pathways.
Collapse
|
31
|
A simple biosynthetic pathway for 2,3-butanediol production in Thermococcus onnurineus NA1. Appl Microbiol Biotechnol 2019; 103:3477-3485. [DOI: 10.1007/s00253-019-09724-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/05/2019] [Accepted: 02/24/2019] [Indexed: 11/25/2022]
|
32
|
Arndt F, Schmitt G, Winiarska A, Saft M, Seubert A, Kahnt J, Heider J. Characterization of an Aldehyde Oxidoreductase From the Mesophilic Bacterium Aromatoleum aromaticum EbN1, a Member of a New Subfamily of Tungsten-Containing Enzymes. Front Microbiol 2019; 10:71. [PMID: 30766522 PMCID: PMC6365974 DOI: 10.3389/fmicb.2019.00071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
The biochemical properties of a new tungsten-containing aldehyde oxidoreductase from the mesophilic betaproteobacterium Aromatoleum aromaticum EbN1 (AORAa) are presented in this study. The enzyme was purified from phenylalanine-grown cells of an overexpressing mutant lacking the gene for an aldehyde dehydrogenase normally involved in anaerobic phenylalanine degradation. AORAa catalyzes the oxidation of a broad variety of aldehydes to the respective acids with either viologen dyes or NAD+ as electron acceptors. In contrast to previously known AORs, AORAa is a heterohexameric protein consisting of three different subunits, a large subunit containing the W-cofactor and an Fe-S cluster, a small subunit containing four Fe-S clusters, and a medium subunit containing an FAD cofactor. The presence of the expected cofactors have been confirmed by elemental analysis and spectrophotometric methods. AORAa has a pH optimum of 8.0, a temperature optimum of 40°C and is completely inactive at 50°C. Compared to archaeal AORs, AORAa is remarkably resistant against exposure to air, exhibiting a half-life time of 1 h as purified enzyme and being completely unaffected in cell extracts. Kinetic parameters of AORAa have been obtained for the oxidation of one aliphatic and two aromatic aldehydes, resulting in about twofold higher kcat values with benzyl viologen than with NAD+ as electron acceptor. Finally, we obtained evidence that AORAa is also catalyzing the reverse reaction, reduction of benzoate to benzaldehyde, albeit at very low rates and under conditions strongly favoring acid reduction, e.g., low pH and using Ti(III) citrate as electron donor of very low redox potential. AORAa appears to be a prototype of a new subfamily of bacterial AOR-like tungsten-enzymes, which differ from the previously known archaeal AORs mostly by their multi-subunit composition, their low sensitivity against oxygen, and the ability to use NAD+ as electron acceptor.
Collapse
Affiliation(s)
- Fabian Arndt
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Georg Schmitt
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Agnieszka Winiarska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland
| | - Martin Saft
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Seubert
- Faculty of Chemistry, Philipps-Universität Marburg, Marburg, Germany
| | - Jörg Kahnt
- Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
| | - Johann Heider
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
33
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
34
|
Zeldes BM, Straub CT, Otten JK, Adams MW, Kelly RM. A synthetic enzymatic pathway for extremely thermophilic acetone production based on the unexpectedly thermostable acetoacetate decarboxylase from Clostridium acetobutylicum. Biotechnol Bioeng 2018; 115:2951-2961. [PMID: 30199090 PMCID: PMC6231964 DOI: 10.1002/bit.26829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/25/2018] [Accepted: 09/05/2018] [Indexed: 01/02/2023]
Abstract
One potential advantage of an extremely thermophilic metabolic engineering host (T opt ≥ 70°C) is facilitated recovery of volatile chemicals from the vapor phase of an active fermenting culture. This process would reduce purification costs and concomitantly alleviate toxicity to the cells by continuously removing solvent fermentation products such as acetone or ethanol, a process we are calling "bio-reactive distillation." Although extremely thermophilic heterologous metabolic pathways can be inspired by existing mesophilic versions, they require thermostable homologs of the constituent enzymes if they are to be utilized in extremely thermophilic bacteria or archaea. Production of acetone from acetyl-CoA and acetate in the mesophilic bacterium Clostridium acetobutylicum utilizes three enzymes: thiolase, acetoacetyl-CoA: acetate CoA transferase (CtfAB), and acetoacetate decarboxylase (Adc). Previously reported biocatalytic pathways for acetone production were demonstrated only as high as 55°C. Here, we demonstrate a synthetic enzymatic pathway for acetone production that functions up to at least 70°C in vitro, made possible by the unusual thermostability of Adc from the mesophile C. acetobutylicum, and heteromultimeric acetoacetyl-CoA:acetate CoA-transferase (CtfAB) complexes from Thermosipho melanesiensis and Caldanaerobacter subterraneus, composed of a highly thermostable α-subunit and a thermally labile β-subunit. The three enzymes produce acetone in vitro at temperatures of at least 70°C, paving the way for bio-reactive distillation of acetone using a metabolically engineered extreme thermophile as a production host.
Collapse
Affiliation(s)
- Benjamin M. Zeldes
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Christopher T. Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Jonathan K. Otten
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Michael W.W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
35
|
Cryptic CH 4 cycling in the sulfate-methane transition of marine sediments apparently mediated by ANME-1 archaea. ISME JOURNAL 2018; 13:250-262. [PMID: 30194429 DOI: 10.1038/s41396-018-0273-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022]
Abstract
Methane in the seabed is mostly oxidized to CO2 with sulfate as the oxidant before it reaches the overlying water column. This microbial oxidation takes place within the sulfate-methane transition (SMT), a sediment horizon where the downward diffusive flux of sulfate encounters an upward flux of methane. Across multiple sites in the Baltic Sea, we identified a systematic discrepancy between the opposing fluxes, such that more sulfate was consumed than expected from the 1:1 stoichiometry of methane oxidation with sulfate. The flux discrepancy was consistent with an oxidation of buried organic matter within the SMT, as corroborated by stable carbon isotope budgets. Detailed radiotracer experiments showed that up to 60% of the organic matter oxidation within the SMT first produced methane, which was concurrently oxidized to CO2 by sulfate reduction. This previously unrecognized "cryptic" methane cycling in the SMT is not discernible from geochemical profiles due to overall net methane consumption. Sedimentary gene pools suggested that nearly all potential methanogens within and beneath the SMT belonged to ANME-1 archaea, which are typically associated with anaerobic methane oxidation. Analysis of a metagenome-assembled genome suggests that predominant ANME-1 do indeed have the enzymatic potential to catalyze both methane production and consumption.
Collapse
|
36
|
Hitschler L, Kuntz M, Langschied F, Basen M. Thermoanaerobacter species differ in their potential to reduce organic acids to their corresponding alcohols. Appl Microbiol Biotechnol 2018; 102:8465-8476. [DOI: 10.1007/s00253-018-9210-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 11/28/2022]
|
37
|
Freed E, Fenster J, Smolinski SL, Walker J, Henard CA, Gill R, Eckert CA. Building a genome engineering toolbox in nonmodel prokaryotic microbes. Biotechnol Bioeng 2018; 115:2120-2138. [PMID: 29750332 DOI: 10.1002/bit.26727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/02/2018] [Accepted: 03/10/2018] [Indexed: 12/26/2022]
Abstract
The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g., sunlight, CO2 , and nonfood biomass) into biofuels and bioproducts at sufficient titers and costs. For model microbes, such as Escherichia coli, advances in DNA reading and writing technologies are driving the adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks, such as photosynthesis, autotrophic growth, and cellulose degradation, have very few, if any, genetic tools for metabolic engineering. Therefore, it is important to develop "design rules" for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and the available genetic tools to expand our ability to genetically engineer nonmodel systems.
Collapse
Affiliation(s)
- Emily Freed
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| | - Jacob Fenster
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO.,Chemical and Biological Engineering, University of Colorado, Boulder, CO
| | | | - Julie Walker
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| | - Calvin A Henard
- National Renewable Energy Laboratory, National Bioenergy Center, Golden, CO
| | - Ryan Gill
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO.,Chemical and Biological Engineering, University of Colorado, Boulder, CO
| | - Carrie A Eckert
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| |
Collapse
|
38
|
Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME JOURNAL 2018; 12:1021-1031. [PMID: 29445130 DOI: 10.1038/s41396-018-0060-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/12/2017] [Accepted: 01/10/2018] [Indexed: 12/21/2022]
Abstract
Thorarchaeota are a new archaeal phylum within the Asgard superphylum, whose ancestors have been proposed to play possible ecological roles in cellular evolution. However, little is known about the lifestyles of these uncultured archaea. To provide a better resolution of the ecological roles and metabolic capacity of Thorarchaeota, we obtained Thorarchaeota genomes reconstructed from metagenomes of different depth layers in mangrove and mudflat sediments. These genomes from deep anoxic layers suggest the presence of Thorarchaeota with the potential to degrade organic matter, fix inorganic carbon, reduce sulfur/sulfate and produce acetate. In particular, Thorarchaeota may be involved in ethanol production, nitrogen fixation, nitrite reduction, and arsenic detoxification. Interestingly, these Thorarchaeotal genomes are inferred to contain the tetrahydromethanopterin and tetrahydrofolate Wood-Ljungdahl (WL) pathways for CO2 reduction, and the latter WL pathway appears to have originated from bacteria. These archaea are predicted to be able to use various inorganic and organic carbon sources, possessing genes inferred to encode ribulose bisphosphate carboxylase-like proteins (normally without RuBisCO activity) and a near-complete Calvin-Benson-Bassham cycle. The existence of eukaryotic selenocysteine insertion sequences and many genes for proteins previously considered eukaryote-specific in Thorarchaeota genomes provide new insights into their evolutionary roles in the origin of eukaryotic cellular complexity. Resolving the metabolic capacities of these enigmatic archaea and their origins will enhance our understanding of the origins of eukaryotes and their roles in ecosystems.
Collapse
|
39
|
Bomberg M, Mäkinen J, Salo M, Arnold M. Microbial Community Structure and Functions in Ethanol-Fed Sulfate Removal Bioreactors for Treatment of Mine Water. Microorganisms 2017; 5:microorganisms5030061. [PMID: 28930182 PMCID: PMC5620652 DOI: 10.3390/microorganisms5030061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 01/16/2023] Open
Abstract
Sulfate-rich mine water must be treated before it is released into natural water bodies. We tested ethanol as substrate in bioreactors designed for biological sulfate removal from mine water containing up to 9 g L−1 sulfate, using granular sludge from an industrial waste water treatment plant as inoculum. The pH, redox potential, and sulfate and sulfide concentrations were measured twice a week over a maximum of 171 days. The microbial communities in the bioreactors were characterized by qPCR and high throughput amplicon sequencing. The pH in the bioreactors fluctuated between 5.0 and 7.7 with the highest amount of up to 50% sulfate removed measured around pH 6. Dissimilatory sulfate reducing bacteria (SRB) constituted only between 1% and 15% of the bacterial communities. Predicted bacterial metagenomes indicated a high prevalence of assimilatory sulfate reduction proceeding to formation of l-cystein and acetate, assimilatory and dissimilatory nitrate reduction, denitrification, and oxidation of ethanol to acetaldehyde with further conversion to ethanolamine, but not to acetate. Despite efforts to maintain optimal conditions for biological sulfate reduction in the bioreactors, only a small part of the microorganisms were SRB. The microbial communities were highly diverse, containing bacteria, archaea, and fungi, all of which affected the overall microbial processes in the bioreactors. While it is important to monitor specific physicochemical parameters in bioreactors, molecular assessment of the microbial communities may serve as a tool to identify biological factors affecting bioreactor functions and to optimize physicochemical attributes for ideal bioreactor performance.
Collapse
Affiliation(s)
- Malin Bomberg
- VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 Espoo, Finland.
| | - Jarno Mäkinen
- VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 Espoo, Finland.
| | - Marja Salo
- VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 Espoo, Finland.
| | - Mona Arnold
- VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 Espoo, Finland.
| |
Collapse
|
40
|
Genome Stability in Engineered Strains of the Extremely Thermophilic Lignocellulose-Degrading Bacterium Caldicellulosiruptor bescii. Appl Environ Microbiol 2017; 83:AEM.00444-17. [PMID: 28476773 DOI: 10.1128/aem.00444-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022] Open
Abstract
Caldicellulosiruptor bescii is the most thermophilic cellulose degrader known and is of great interest because of its ability to degrade nonpretreated plant biomass. For biotechnological applications, an efficient genetic system is required to engineer it to convert plant biomass into desired products. To date, two different genetically tractable lineages of C. bescii strains have been generated. The first (JWCB005) is based on a random deletion within the pyrimidine biosynthesis genes pyrFA, and the second (MACB1018) is based on the targeted deletion of pyrE, making use of a kanamycin resistance marker. Importantly, an active insertion element, ISCbe4, was discovered in C. bescii when it disrupted the gene for lactate dehydrogenase (ldh) in strain JWCB018, constructed in the JWCB005 background. Additional instances of ISCbe4 movement in other strains of this lineage are presented herein. These observations raise concerns about the genetic stability of such strains and their use as metabolic engineering platforms. In order to investigate genome stability in engineered strains of C. bescii from the two lineages, genome sequencing and Southern blot analyses were performed. The evidence presented shows a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 elements within the genome of JWCB005, leading to massive genome rearrangements in its daughter strain, JWCB018. Such dramatic effects were not evident in the newer MACB1018 lineage, indicating that JWCB005 and its daughter strains are not suitable for metabolic engineering purposes in C. bescii Furthermore, a facile approach for assessing genomic stability in C. bescii has been established.IMPORTANCECaldicellulosiruptor bescii is a cellulolytic extremely thermophilic bacterium of great interest for metabolic engineering efforts geared toward lignocellulosic biofuel and bio-based chemical production. Genetic technology in C. bescii has led to the development of two uracil auxotrophic genetic background strains for metabolic engineering. We show that strains derived from the genetic background containing a random deletion in uracil biosynthesis genes (pyrFA) have a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 insertion elements in their genomes compared to the wild type. At least one daughter strain of this lineage also contains large-scale genome rearrangements that are flanked by these ISCbe4 elements. In contrast, strains developed from the second background strain developed using a targeted deletion strategy of the uracil biosynthetic gene pyrE have a stable genome structure, making them preferable for future metabolic engineering studies.
Collapse
|
41
|
Straub CT, Zeldes BM, Schut GJ, Adams MWW, Kelly RM. Extremely thermophilic energy metabolisms: biotechnological prospects. Curr Opin Biotechnol 2017; 45:104-112. [DOI: 10.1016/j.copbio.2017.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
|
42
|
Kengen SWM. 'Pyrococcus furiosus, 30 years on'. Microb Biotechnol 2017; 10:1441-1444. [PMID: 28217936 PMCID: PMC5658583 DOI: 10.1111/1751-7915.12695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
Pyrococcus furiosus has come of age. In 1986 the first publication on a remarkable microorganism, Pyrococcus furiosus, appeared. Now, 30 years later it is still “the fast and the furious“.
![]()
Collapse
Affiliation(s)
- Servé W M Kengen
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
43
|
Keller MW, Lipscomb GL, Nguyen DM, Crowley AT, Schut GJ, Scott I, Kelly RM, Adams MWW. Ethanol production by the hyperthermophilic archaeon Pyrococcus furiosus by expression of bacterial bifunctional alcohol dehydrogenases. Microb Biotechnol 2017; 10:1535-1545. [PMID: 28194879 PMCID: PMC5658578 DOI: 10.1111/1751-7915.12486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/03/2016] [Accepted: 11/14/2016] [Indexed: 01/25/2023] Open
Abstract
Ethanol is an important target for the renewable production of liquid transportation fuels. It can be produced biologically from pyruvate, via pyruvate decarboxylase, or from acetyl‐CoA, by alcohol dehydrogenase E (AdhE). Thermophilic bacteria utilize AdhE, which is a bifunctional enzyme that contains both acetaldehyde dehydrogenase and alcohol dehydrogenase activities. Many of these organisms also contain a separate alcohol dehydrogenase (AdhA) that generates ethanol from acetaldehyde, although the role of AdhA in ethanol production is typically not clear. As acetyl‐CoA is a key central metabolite that can be generated from a wide range of substrates, AdhE can serve as a single gene fuel module to produce ethanol through primary metabolic pathways. The focus here is on the hyperthermophilic archaeon Pyrococcus furiosus, which grows by fermenting sugar to acetate, CO2 and H2. Previously, by the heterologous expression of adhA from a thermophilic bacterium, P. furiosus was shown to produce ethanol by a novel mechanism from acetate, mediated by AdhA and the native enzyme aldehyde oxidoreductase (AOR). In this study, the AOR gene was deleted from P. furiosus to evaluate ethanol production directly from acetyl‐CoA by heterologous expression of the adhE gene from eight thermophilic bacteria. Only AdhEs from two Thermoanaerobacter strains showed significant activity in cell‐free extracts of recombinant P. furiosus and supported ethanol production in vivo. In the AOR deletion background, the highest amount of ethanol (estimated 61% theoretical yield) was produced when adhE and adhA from Thermoanaerobacter were co‐expressed.
Collapse
Affiliation(s)
- Matthew W Keller
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Diep M Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Alexander T Crowley
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Israel Scott
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
44
|
Liew F, Henstra AM, Kӧpke M, Winzer K, Simpson SD, Minton NP. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng 2017; 40:104-114. [PMID: 28111249 PMCID: PMC5367853 DOI: 10.1016/j.ymben.2017.01.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/01/2016] [Accepted: 01/19/2017] [Indexed: 01/27/2023]
Abstract
Gas fermentation using acetogenic bacteria such as Clostridium autoethanogenum offers an attractive route for production of fuel ethanol from industrial waste gases. Acetate reduction to acetaldehyde and further to ethanol via an aldehyde: ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase has been postulated alongside the classic pathway of ethanol formation via a bi-functional aldehyde/alcohol dehydrogenase (AdhE). Here we demonstrate that AOR is critical to ethanol formation in acetogens and inactivation of AdhE led to consistently enhanced autotrophic ethanol production (up to 180%). Using ClosTron and allelic exchange mutagenesis, which was demonstrated for the first time in an acetogen, we generated single mutants as well as double mutants for both aor and adhE isoforms to confirm the role of each gene. The aor1+2 double knockout strain lost the ability to convert exogenous acetate, propionate and butyrate into the corresponding alcohols, further highlighting the role of these enzymes in catalyzing the thermodynamically unfavourable reduction of carboxylic acids into alcohols. 180% improvement in C. autoethanogenum ethanol production via metabolic engineering. Confirmed role of AOR in autotrophic ethanol production of acetogens. Generated both aor and adhE mutants of C. autoethanogenum.. Demonstrated allelic exchange mutagenesis for stable deletions in acetogens. Inactivation of adhE and aor2, but not aor1, improves autotrophic ethanol production.
Collapse
Affiliation(s)
- Fungmin Liew
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK; LanzaTech Inc., 8045 Lamon Avenue, Suite 400, Skokie, IL, USA
| | - Anne M Henstra
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Michael Kӧpke
- LanzaTech Inc., 8045 Lamon Avenue, Suite 400, Skokie, IL, USA
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Sean D Simpson
- LanzaTech Inc., 8045 Lamon Avenue, Suite 400, Skokie, IL, USA
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
45
|
Both adhE and a Separate NADPH-Dependent Alcohol Dehydrogenase Gene, adhA, Are Necessary for High Ethanol Production in Thermoanaerobacterium saccharolyticum. J Bacteriol 2017; 199:JB.00542-16. [PMID: 27849176 DOI: 10.1128/jb.00542-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/10/2016] [Indexed: 01/01/2023] Open
Abstract
Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at about 90% of the theoretical maximum yield (2 ethanol molecules per glucose equivalent) and a titer of 70 g/liter. Its ethanol-producing ability has drawn attention to its metabolic pathways, which could potentially be transferred to other organisms of interest. Here, we report that the iron-containing AdhA is important for ethanol production in the high-ethanol strain of T. saccharolyticum (LL1049). A single-gene deletion of adhA in LL1049 reduced ethanol production by ∼50%, whereas multiple gene deletions of all annotated alcohol dehydrogenase genes except adhA and adhE did not affect ethanol production. Deletion of adhA in wild-type T.saccharolyticum reduced NADPH-linked alcohol dehydrogenase (ADH) activity (acetaldehyde-reducing direction) by 93%.IMPORTANCE In this study, we set out to identify the alcohol dehydrogenases necessary for high ethanol production in T. saccharolyticum Based on previous work, we had assumed that adhE was the primary alcohol dehydrogenase gene. Here, we show that both adhA and adhE are needed for high ethanol yield in the engineered strain LL1049. This is the first report showing adhA is important for ethanol production in a native adhA host, which has important implications for achieving higher ethanol yields in other microorganisms.
Collapse
|
46
|
Zhou J, Shao X, Olson DG, Murphy SJL, Tian L, Lynd LR. Determining the roles of the three alcohol dehydrogenases (AdhA, AdhB and AdhE) in Thermoanaerobacter ethanolicus during ethanol formation. J Ind Microbiol Biotechnol 2017; 44:745-757. [PMID: 28078513 DOI: 10.1007/s10295-016-1896-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Thermoanaerobacter ethanolicus is a promising candidate for biofuel production due to the broad range of substrates it can utilize and its high ethanol yield compared to other thermophilic bacteria, such as Clostridium thermocellum. Three alcohol dehydrogenases, AdhA, AdhB and AdhE, play key roles in ethanol formation. To study their physiological roles during ethanol formation, we deleted them separately and in combination. Previously, it has been thought that both AdhB and AdhE were bifunctional alcohol dehydrogenases. Here we show that AdhE has primarily acetyl-CoA reduction activity (ALDH) and almost no acetaldehyde reduction (ADH) activity, whereas AdhB has no ALDH activity and but high ADH activity. We found that AdhA and AdhB have similar patterns of activity. Interestingly, although deletion of both adhA and adhB reduced ethanol production, a single deletion of either one actually increased ethanol yields by 60-70%.
Collapse
Affiliation(s)
- Jilai Zhou
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Bioenergy Science Center, Oak Ridge, TN, USA
| | - Xiongjun Shao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Bioenergy Science Center, Oak Ridge, TN, USA
| | - Daniel G Olson
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Bioenergy Science Center, Oak Ridge, TN, USA
| | - Sean Jean-Loup Murphy
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Bioenergy Science Center, Oak Ridge, TN, USA
| | - Liang Tian
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Bioenergy Science Center, Oak Ridge, TN, USA
| | - Lee R Lynd
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA. .,Bioenergy Science Center, Oak Ridge, TN, USA.
| |
Collapse
|
47
|
Lyu Z, Whitman WB. Evolution of the archaeal and mammalian information processing systems: towards an archaeal model for human disease. Cell Mol Life Sci 2017; 74:183-212. [PMID: 27261368 PMCID: PMC11107668 DOI: 10.1007/s00018-016-2286-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/05/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Abstract
Current evolutionary models suggest that Eukaryotes originated from within Archaea instead of being a sister lineage. To test this model of ancient evolution, we review recent studies and compare the three major information processing subsystems of replication, transcription and translation in the Archaea and Eukaryotes. Our hypothesis is that if the Eukaryotes arose within the archaeal radiation, their information processing systems will appear to be one of kind and not wholly original. Within the Eukaryotes, the mammalian or human systems are emphasized because of their importance in understanding health. Biochemical as well as genetic studies provide strong evidence for the functional similarity of archaeal homologs to the mammalian information processing system and their dissimilarity to the bacterial systems. In many independent instances, a simple archaeal system is functionally equivalent to more elaborate eukaryotic homologs, suggesting that evolution of complexity is likely an central feature of the eukaryotic information processing system. Because fewer components are often involved, biochemical characterizations of the archaeal systems are often easier to interpret. Similarly, the archaeal cell provides a genetically and metabolically simpler background, enabling convenient studies on the complex information processing system. Therefore, Archaea could serve as a parsimonious and tractable host for studying human diseases that arise in the information processing systems.
Collapse
Affiliation(s)
- Zhe Lyu
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
48
|
Atkinson JT, Campbell I, Bennett GN, Silberg JJ. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways. Biochemistry 2016; 55:7047-7064. [DOI: 10.1021/acs.biochem.6b00831] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua T. Atkinson
- Systems,
Synthetic, and Physical Biology Graduate Program, Rice University, MS-180, 6100 Main Street, Houston, Texas 77005, United States
| | - Ian Campbell
- Biochemistry
and Cell Biology Graduate Program, Rice University, MS-140, 6100
Main Street, Houston, Texas 77005, United States
| | - George N. Bennett
- Department
of Biosciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, MS-362,
6100 Main Street, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department
of Biosciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
49
|
Loder AJ, Zeldes BM, Conway JM, Counts JA, Straub CT, Khatibi PA, Lee LL, Vitko NP, Keller MW, Rhaesa AM, Rubinstein GM, Scott IM, Lipscomb GL, Adams MW, Kelly RM. Extreme Thermophiles as Metabolic Engineering Platforms: Strategies and Current Perspective. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Andrew J. Loder
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Benjamin M. Zeldes
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Jonathan M. Conway
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - James A. Counts
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Christopher T. Straub
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Piyum A. Khatibi
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Laura L. Lee
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Nicholas P. Vitko
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Matthew W. Keller
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Amanda M. Rhaesa
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gabe M. Rubinstein
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Israel M. Scott
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gina L. Lipscomb
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Michael W.W. Adams
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Robert M. Kelly
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| |
Collapse
|
50
|
Abstract
Thermophilic microorganisms as well as acetogenic bacteria are both considered ancient. Interestingly, only a few species of bacteria, all belonging to the family Thermoanaerobacteraceae, are described to conserve energy from acetate formation with hydrogen as electron donor and carbon dioxide as electron acceptor. This review reflects the metabolic differences between Moorella spp., Thermoanaerobacter kivui and Thermacetogenium phaeum, with focus on the biochemistry of autotrophic growth and energy conservation. The potential of these thermophilic acetogens for biotechnological applications is discussed briefly.
Collapse
Affiliation(s)
- Mirko Basen
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt Am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt Am Main, Germany.
| |
Collapse
|