1
|
Qamar MZ, Asiam FK, Kang HC, Shahid R, Kaliamurthy AK, Chen C, Lim J, Rahman MM, Lee JJ. Water Oxidation Molecular Assemblies in Dye-Sensitized Photoelectrochemical Cell: An Overview. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411853. [PMID: 39989177 DOI: 10.1002/smll.202411853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/02/2025] [Indexed: 02/25/2025]
Abstract
Dye-sensitized photoelectrochemical cells (DSPECs) are efficient and sustainable approaches for hydrogen production via water splitting, driven by solar energy. Recent advancements have focused on enhancing the performance and stability of photoanodes, which are critical for efficient water oxidation. Herein discussed are the latest innovations including the development of metal-free organic sensitizers, improved chromophore-catalyst assemblies, and core-shell structures. These advances lead to reduced electron-hole recombination, increased light absorption, and enhanced electron transfer efficiency. Pyridine-anchored sensitizers have shown superior stability compared to traditional carboxylate and phosphate anchors in water, while covalently linked chromophores and molecular catalysts provide long-term operational stability. Together, these improvements bring DSPEC technology closer to practical applications in green hydrogen production, addressing key challenges of energy efficiency, scalability, and system durability. These approaches could be explored further toward realizing cost-effective hydrogen production.
Collapse
Affiliation(s)
- Muhammad Zain Qamar
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Francis Kwaku Asiam
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyeong Cheol Kang
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Raghisa Shahid
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ashok Kumar Kaliamurthy
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Cheng Chen
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jonghun Lim
- Department of Environment and Energy Engineering, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Md Mahbubur Rahman
- Department of Energy Material Science and Engineering, Konkuk University, Chungju, 27478, Republic of Korea
| | - Jae-Joon Lee
- Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| |
Collapse
|
2
|
Chen YJ, Zhang JZ, Wu ZX, Qiao YX, Zheng L, Wondu Dagnaw F, Tong QX, Jian JX. Molecular Engineering of Perylene Diimide Polymers with a Robust Built-in Electric Field for Enhanced Solar-Driven Water Splitting. Angew Chem Int Ed Engl 2024; 63:e202318224. [PMID: 38095880 DOI: 10.1002/anie.202318224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 12/29/2023]
Abstract
The built-in electric field of the polymer semiconductors could be regulated by the dipole moment of its building blocks, thereby promoting the separation of photogenerated carriers and achieving efficient solar-driven water splitting. Herein, three perylene diimide (PDI) polymers, namely oPDI, mPDI and pPDI, are synthesized with different phenylenediamine linkers. Notably, the energy level structure, light-harvesting efficiency, and photogenerated carrier separation and migration of polymers are regulated by the orientation of PDI unit. Among them, oPDI enables a large dipole moment and robust built-in electric field, resulting in enhanced solar-driven water splitting performance. Under simulated sunlight irradiation, oPDI exhibits the highest photocurrent of 115.1 μA cm-2 for photoelectrochemical oxygen evolution, which is 11.5 times that of mPDI, 26.8 times that of pPDI and 104.6 times that of its counterparts PDI monomer at the same conditions. This work provides a strategy for designing polymers by regulating the orientation of structural units to construct efficient solar energy conversion systems.
Collapse
Affiliation(s)
- Yi-Jing Chen
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, 515063, Guangdong, P. R. China
| | - Jun-Zheng Zhang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, 515063, Guangdong, P. R. China
| | - Zhi-Xing Wu
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, 60174, Norrköping, Sweden
| | - Ying-Xin Qiao
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, 515063, Guangdong, P. R. China
| | - Lei Zheng
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, 515063, Guangdong, P. R. China
| | - Fentahun Wondu Dagnaw
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, 515063, Guangdong, P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, 515063, Guangdong, P. R. China
| | - Jing-Xin Jian
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, 515063, Guangdong, P. R. China
| |
Collapse
|
3
|
Gobbato T, Volpato GA, Sartorel A, Bonchio M. A breath of sunshine: oxygenic photosynthesis by functional molecular architectures. Chem Sci 2023; 14:12402-12429. [PMID: 38020375 PMCID: PMC10646967 DOI: 10.1039/d3sc03780k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
The conversion of light into chemical energy is the game-changer enabling technology for the energetic transition to renewable and clean solar fuels. The photochemistry of interest includes the overall reductive/oxidative splitting of water into hydrogen and oxygen and alternatives based on the reductive conversion of carbon dioxide or nitrogen, as primary sources of energy-rich products. Devices capable of performing such transformations are based on the integration of three sequential core functions: light absorption, photo-induced charge separation, and the photo-activated breaking/making of molecular bonds via specific catalytic routes. The key to success does not rely simply on the individual components' performance, but on their optimized integration in terms of type, number, geometry, spacing, and linkers dictating the photosynthetic architecture. Natural photosynthesis has evolved along this concept, by integrating each functional component in one specialized "body" (from the Greek word "soma") to enable the conversion of light quanta with high efficiency. Therefore, the natural "quantasome" represents the key paradigm to inspire man-made constructs for artificial photosynthesis. The case study presented in this perspective article deals with the design of artificial photosynthetic systems for water oxidation and oxygen production, engineered as molecular architectures then rendered on electrodic surfaces. Water oxidation to oxygen is indeed the pervasive oxidative reaction used by photosynthetic organisms, as the source of reducing equivalents (electrons and protons) to be delivered for the processing of high-energy products. Considering the vast and abundant supply of water (including seawater) as a renewable source on our planet, this is also a very appealing option for photosynthetic energy devices. We will showcase the progress in the last 15 years (2009-2023) in the strategies for integrating functional building blocks as molecular photosensitizers, multi-redox water oxidation catalysts and semiconductor materials, highlighting how additional components such as redox mediators, hydrophilic/hydrophobic pendants, and protective layers can impact on the overall photosynthetic performance. Emerging directions consider the modular tuning of the multi-component device, in order to target a diversity of photocatalytic oxidations, expanding the scope of the primary electron and proton sources while enhancing the added-value of the oxidation product beyond oxygen: the selective photooxidation of organics combines the green chemistry vision with renewable energy schemes and is expected to explode in coming years.
Collapse
Affiliation(s)
- Thomas Gobbato
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Giulia Alice Volpato
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Andrea Sartorel
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova via Marzolo 1 35131 Padova Italy
- ITM-CNR Section of Padova, INSTM Unit of Padova via Marzolo 1 35131 Padova Italy
| |
Collapse
|
4
|
Chazapis N, Stavrou M, Papaparaskeva G, Bunge A, Turcu R, Krasia-Christoforou T, Couris S. Iridium-Based Nanohybrids: Synthesis, Characterization, Optical Limiting, and Nonlinear Optical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2131. [PMID: 37513142 PMCID: PMC10385205 DOI: 10.3390/nano13142131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The present work reports on the synthesis and characterization of iridium (Ir)-based nanohybrids with variable chemical compositions. More specifically, highly stable polyvinylpyrrolidone (PVP) nanohybrids of the PVP-IrO2 and PVP-Ir/IrO2 types, as well as non-coated Ir/IrO2 nanoparticles, are synthesized using different synthetic protocols and characterized in terms of their chemical composition and morphology via X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM), respectively. Furthermore, their nonlinear optical (NLO) response and optical limiting (OL) efficiency are studied by means of the Z-scan technique, employing 4 ns laser pulses at 532 and 1064 nm. The results demonstrate that the PVP-Ir/IrO2 and Ir/IrO2 systems exhibit exceptional OL performance, while PVP-IrO2 presents very strong saturable absorption (SA) behavior, indicating that the present Ir-based nanohybrids could be strong competitors to other nanostructured materials for photonic and optoelectronic applications. In addition, the findings denote that the variation in the content of IrO2 nanoparticles by using different synthetic pathways significantly affects the NLO response of the studied Ir-based nanohybrids, suggesting that the choice of the appropriate synthetic method could lead to tailor-made NLO properties for specific applications in photonics and optoelectronics.
Collapse
Affiliation(s)
- Nikolaos Chazapis
- Department of Physics, University of Patras, 26504 Patras, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), 26504 Patras, Greece
| | - Michalis Stavrou
- Department of Physics, University of Patras, 26504 Patras, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), 26504 Patras, Greece
| | - Georgia Papaparaskeva
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue, Aglantzia, Nicosia 2109, Cyprus
| | - Alexander Bunge
- National Institute R&D of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Rodica Turcu
- National Institute R&D of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Theodora Krasia-Christoforou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue, Aglantzia, Nicosia 2109, Cyprus
| | - Stelios Couris
- Department of Physics, University of Patras, 26504 Patras, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), 26504 Patras, Greece
| |
Collapse
|
5
|
Xu Y, Mi W. Chiral-induced spin selectivity in biomolecules, hybrid organic-inorganic perovskites and inorganic materials: a comprehensive review on recent progress. MATERIALS HORIZONS 2023; 10:1924-1955. [PMID: 36989068 DOI: 10.1039/d3mh00024a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The two spin states of electrons are degenerate in nonmagnetic materials. The chiral-induced spin selectivity (CISS) effect provides a new strategy for manipulating electron's spin and a deeper understanding of spin selective processes in organisms. Here, we summarize the important discoveries and recent experiments performed during the development of the CISS effect, analyze the spin polarized transport in various types of materials and discuss the mechanisms, theoretical calculations, experimental techniques and biological significance of the CISS effect. The first part of this review concisely presents a general overview of the discoveries and importance of the CISS effect, laws and underlying mechanisms of which are discussed in the next section, where several classical experimental methods for detecting the CISS effect are also introduced. Based on the organic and inorganic properties of materials, the CISS effect of organic biomolecules, hybrid organic-inorganic perovskites and inorganic materials are reviewed in the third, fourth and fifth sections, especially the chiral transfer mechanism of hybrid materials and the relationship between the CISS effect and life science. In addition, conclusions and prospective future of the CISS effect are outlined at the end, where the development and applications of the CISS effect in spintronics are directly described, which is helpful for designing promising chiral spintronic devices and understanding the natural status of chirality from a new perspective.
Collapse
Affiliation(s)
- Yingdan Xu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
6
|
Valentini F, Sabuzi F, Forchetta M, Conte V, Galloni P. KuQuinones: a ten years tale of the new pentacyclic quinoid compound. RSC Adv 2023; 13:9065-9077. [PMID: 36950082 PMCID: PMC10025941 DOI: 10.1039/d3ra00539a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
Quinones are widespread in nature, as they participate, mainly as redox mediators, in several biochemical processes. Up to now, various synthetic quinones have been recommended in the literature as leading molecules in energy, biomedical and catalytic fields. In this brief review, we retraced our research activity in the last ten years, mainly dedicated to the study of a new class of peculiar pentacyclic conjugated quinoid compounds, synthesized in our group. In particular, their application as sensitive materials in photoelectrochemical devices and in biosensors, as photocatalysts in selective oxidation reactions, and their anticancer activity is here reviewed.
Collapse
Affiliation(s)
- Francesca Valentini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Federica Sabuzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Mattia Forchetta
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Valeria Conte
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| | - Pierluca Galloni
- Department of Chemical Science and Technologies, University of Rome Tor Vergata via della ricerca scientifica snc 00133 Rome Italy
| |
Collapse
|
7
|
Zhu Y, Liu G, Zhao R, Gao H, Li X, Sun L, Li F. Photoelectrochemical water oxidation improved by pyridine N-oxide as a mimic of tyrosine-Z in photosystem II. Chem Sci 2022; 13:4955-4961. [PMID: 35655895 PMCID: PMC9067620 DOI: 10.1039/d2sc00443g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Artificial photosynthesis provides a way to store solar energy in chemical bonds with water oxidation as a major challenge for creating highly efficient and robust photoanodes that mimic photosystem II. We report here an easily available pyridine N-oxide (PNO) derivative as an efficient electron transfer relay between an organic light absorber and molecular water oxidation catalyst on a nanoparticle TiO2 photoanode. Spectroscopic and kinetic studies revealed that the PNO/PNO+˙ couple closely mimics the redox behavior of the tyrosine/tyrosyl radical pair in PSII in improving light-driven charge separation via multi-step electron transfer. The integrated photoanode exhibited a 1 sun current density of 3 mA cm-2 in the presence of Na2SO3 and a highly stable photocurrent density of >0.5 mA cm-2 at 0.4 V vs. NHE over a period of 1 h for water oxidation at pH 7. The performance shown here is superior to those of previously reported organic dye-based photoanodes in terms of photocurrent and stability.
Collapse
Affiliation(s)
- Yong Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Guoquan Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Ran Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Hua Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Xiaona Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology Dalian 116024 China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Stockholm 10044 Sweden
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University Hangzhou 310024 China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
8
|
Catalytic Properties of Free-Base Porphyrin Modified Graphite Electrodes for Electrochemical Water Splitting in Alkaline Medium. Processes (Basel) 2022. [DOI: 10.3390/pr10030611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hydrogen generation via electrochemical water splitting is considered an eco-friendly pathway for obtaining this desired alternative energy source, and it has triggered an intensive search for low cost and efficient catalysts. Within this context, four free-base porphyrins were studied as heterogeneous catalysts for the oxygen and hydrogen evolution reactions (OER and HER) in alkaline aqueous solutions. TEM and STEM analyses of samples obtained by drop-casting the porphyrins from different organic solvents on TEM grids revealed a rich variety of aggregates due to the self-assembling property of the porphyrin molecules. Modified electrodes were manufactured by applying the four tetrapyrrolic macrocycles from various solvents on the surface of graphite supports, in one or more layers. Experiments performed in 0.1 M and 1 M KOH electrolyte solutions allowed the identification of the most electrocatalytically active electrodes for the OER and HER, respectively. In the first case, the electrode was manufactured by applying three layers of 5-(4-pyridyl)-10,15,20-tris(4-phenoxyphenyl)porphyrin on the graphite substrate from N,N-dimethylformamide solution was identified as overall catalytically superior. In the second case, the electrode obtained by applying one layer of 5,10,15,20-tetrakis(4-allyloxyphenyl)-porphyrin from benzonitrile solution displayed an HER overpotential value of 500 mV at i = −10 mA/cm2 and a Tafel slope of 190 mV/dec.
Collapse
|
9
|
Ferrocenyl‐2‐pyridylimine derived d
10
‐configuration complexes as prospective co‐sensitizers in dye sensitized solar cells (DSSCs). Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Ge Y, Lyu Z, Marcos-Hernández M, Villagrán D. Free-base porphyrin polymer for bifunctional electrochemical water splitting. Chem Sci 2022; 13:8597-8604. [PMID: 35974754 PMCID: PMC9337729 DOI: 10.1039/d2sc01250b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022] Open
Abstract
Water splitting is considered a promising approach for renewable and sustainable energy conversion. The development of water splitting electrocatalysts that have low-cost, long-lifetime, and high-performance is an important area of research for the sustainable generation of hydrogen and oxygen gas. Here, we report a metal-free porphyrin-based two-dimensional crystalline covalent organic polymer obtained from the condensation of terephthaloyl chloride and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin which is stabilized by an extensive hydrogen bonding network. This material exhibits bifunctional electrocatalytic performance towards water splitting with onset overpotentials, η, of 36 mV and 110 mV for HER (in 0.5 M H2SO4) and OER (in 1.0 M KOH), respectively. The as-synthesized material is also able to perform water splitting in neutral phosphate buffer saline solution, with 294 mV for HER and 520 mV for OER, respectively. Characterized by electrochemical impedance spectroscopy (EIS) and chronoamperometry, the as-synthesized material also shows enhanced conductivity and stability compared to its molecular counterpart. Inserting a non-redox active zinc metal center in the porphyrin unit leads to a decrease in electrochemical activity towards both HER and OER, suggesting the four-nitrogen porphyrin core is the active site. The high performance of this metal-free material towards water splitting provides a sustainable alternative to the use of scarce and expensive metal electrocatalysts in energy conversion for industrial applications. Water splitting is considered a promising approach for renewable and sustainable energy conversion.![]()
Collapse
Affiliation(s)
- Yulu Ge
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zhenhua Lyu
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mariana Marcos-Hernández
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Dino Villagrán
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
11
|
Muddassir M, Alarifi A, Abduh NA, Afzal M. New isomeric pyridyl imine zinc(II) complexes as potential co-sensitizers for state of the Art N719 dye in DSSC. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Nguyen QT, Rousset E, Nguyen VTH, Colliere V, Lecante P, Klysubun W, Philippot K, Esvan J, Respaud M, Lemercier G, Tran PD, Amiens C. Covalent Grafting of Ruthenium Complexes on Iron Oxide Nanoparticles: Hybrid Materials for Photocatalytic Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53829-53840. [PMID: 34726907 DOI: 10.1021/acsami.1c15051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present environmental crisis prompts the search for renewable energy sources such as solar-driven production of hydrogen from water. Herein, we report an efficient hybrid photocatalyst for water oxidation, consisting of a ruthenium polypyridyl complex covalently grafted on core/shell Fe@FeOx nanoparticles via a phosphonic acid group. The photoelectrochemical measurements were performed under 1 sun illumination in 1 M KOH. The photocurrent density of this hybrid photoanode reached 20 μA/cm2 (applied potential of +1.0 V vs reversible hydrogen electrode), corresponding to a turnover frequency of 0.02 s-1. This performance represents a 9-fold enhancement of that achieved with a mixture of Fe@FeOx nanoparticles and a linker-free ruthenium polypyridyl photosensitizer. This increase in performance could be attributed to a more efficient electron transfer between the ruthenium photosensitizer and the Fe@FeOx catalyst as a consequence of the covalent link between these two species through the phosphonate pendant group.
Collapse
Affiliation(s)
- Quyen T Nguyen
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 100000 Hanoi, Vietnam
| | - Elodie Rousset
- University of Reims Champagne-Ardenne, ICMR, UMR CNRS, 7312 Moulin de la House, BP 1039, F-51687 Reims Cedex 2, France
| | - Van T H Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 100000 Hanoi, Vietnam
| | - Vincent Colliere
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Pierre Lecante
- CEMES-CNRS, Université de Toulouse, 29 rue J. Marvig, F-31055 Toulouse, France
| | - Wantana Klysubun
- Synchrotron Light Research Institute, 111 University Avenue, Muang, 30000 Nakhon Ratchasima, Thailand
| | - Karine Philippot
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Jérôme Esvan
- CIRIMAT, Université de Toulouse, CNRS-INPT-UPS, 4 Allée Emile Monso, BP 44362, 31030 Toulouse, France
| | - Marc Respaud
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
- LPCNO, INSA, 135 Avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | - Gilles Lemercier
- University of Reims Champagne-Ardenne, ICMR, UMR CNRS, 7312 Moulin de la House, BP 1039, F-51687 Reims Cedex 2, France
| | - Phong D Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 100000 Hanoi, Vietnam
| | - Catherine Amiens
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
13
|
Wang D, Xu Z, Sheridan MV, Concepcion JJ, Li F, Lian T, Meyer TJ. Photodriven water oxidation initiated by a surface bound chromophore-donor-catalyst assembly. Chem Sci 2021; 12:14441-14450. [PMID: 34880995 PMCID: PMC8580115 DOI: 10.1039/d1sc03896f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/10/2021] [Indexed: 12/03/2022] Open
Abstract
In photosynthesis, solar energy is used to produce solar fuels in the form of new chemical bonds. A critical step to mimic photosystem II (PS II), a key protein in nature's photosynthesis, for artificial photosynthesis is designing devices for efficient light-driven water oxidation. Here, we describe a single molecular assembly electrode that duplicates the key components of PSII. It consists of a polypyridyl light absorber, chemically linked to an intermediate electron donor, with a molecular-based water oxidation catalyst on a SnO2/TiO2 core/shell electrode. The synthetic device mimics PSII in achieving sustained, light-driven water oxidation catalysis. It highlights the value of the tyrosine–histidine pair in PSII in achieving efficient water oxidation catalysis in artificial photosynthetic devices. We describe a single molecular assembly electrode that mimics PSII. Flash photolysis revealed the electron transfer steps between chromophore light absorption and the creation and storage of redox equivalents in the catalyst for water oxidation.![]()
Collapse
Affiliation(s)
- Degao Wang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences Ningbo Zhejiang 315201 China .,Qianwan Institute of CNiTECH Zhongchuangyi Road, Hangzhou Bay District Ningbo Zhejiang 315336 China.,Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Zihao Xu
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Matthew V Sheridan
- Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | | | - Fei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Tianquan Lian
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
14
|
Nhon L, Shan B, Taggart AD, Wolfe RMW, Li TT, Klug CM, Nayak A, Bullock RM, Cahoon JF, Meyer TJ, Schanze KS, Reynolds JR. Influence of Surface and Structural Variations in Donor-Acceptor-Donor Sensitizers on Photoelectrocatalytic Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47499-47510. [PMID: 34590823 DOI: 10.1021/acsami.1c11879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conjugated organic chromophores composed of linked donor (D) and acceptor (A) moieties have attracted considerable attention for photoelectrochemical applications. In this work, we compare the optoelectronic properties and photoelectrochemical performance of two D-A-D structural isomers with thiophene-X-carboxylic acid (X denotes 3 and 2 positions) derivatives and 2,1,3-benzothiadiazole as the D and A moieties, respectively. 5,5'-(Benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(thiophene-3-carboxylic acid), BTD1, and 5,5'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(thiophene-2-carboxylic acid), BTD2, were employed in the study to understand how structural isomers affect surface attachments within chromophore-catalyst assemblies and their influence on charge-transfer dynamics. Crystal structures revealed that varying the position of the -COOH anchoring group causes the molecules to either contort out of a plane (BTD1) or adopt a near-perfect planar conformation (BTD2). BTD1 and BTD2 were co-loaded with either a water oxidation catalyst, [Ru(2,6-bis(1-methylbenzimidazol-2-yl)pyridine)-(4,4'-((HO)2OPCH2)2-2,2'-bipyridine)(OH2)]2, RuCt2+, or proton reduction catalyst [Ni(P2PhN2C6H4CH2PO3H2)2]2+, NiCt2+, on oxide electrodes to facilitate photodriven water splitting reactions. Emission quenching measurements indicate that both BTD1 and BTD2 inject electrons into n-type SnO2|TiO2 electrodes and holes into p-type NiO semiconductors from their respective excited states at high efficiencies >60%. Photocurrent densities of chromophore-catalyst assemblies obtained using linear sweep voltammetry (LSV) show that BTD2-sensitized photoanodes generate significantly more photocurrent than BTD1-sensitized electrodes; however, both exhibit similar performances at the photocathode. Photoelectrocatyltic measurements demonstrate that both BTD1 and BTD2 performed similarly, generating Faradaic efficiencies of 39 and 38% at the anode or 61 and 79% at the cathode. Transient absorption measurements suggest that the differences between the LSV and photoelectrocatalytic measurements result from the differences in quantum yields of the photogenerated redox equivalents, which is also a reflection of the varying metal oxide surface conformation. Our findings suggest that BTD2 should be investigated further in photocathodic studies since it has the structural advantage of being incorporated into diverse types of chromophore-catalyst assemblies.
Collapse
Affiliation(s)
- Linda Nhon
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Bing Shan
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Aaron D Taggart
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rylan M W Wolfe
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ting-Ting Li
- Research Center of Applied Solid State Chemistry, Ningbo University, Ningbo 315211, China
| | - Christina M Klug
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-12, Richland, Washington 99352, United States
| | - Animesh Nayak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-12, Richland, Washington 99352, United States
| | - James F Cahoon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - John R Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Cho I, Mozer AJ. Effect of Molecular Structure on Interfacial Electron Transfer Kinetics in the Framework of Classical Marcus Theory. Isr J Chem 2021. [DOI: 10.1002/ijch.202100084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Inseong Cho
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute Innovation Campus Squires Way North Wollongong NSW 2500
| | - Attila J. Mozer
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute Innovation Campus Squires Way North Wollongong NSW 2500
| |
Collapse
|
16
|
Gong R, Mitoraj D, Leiter R, Mundszinger M, Mengele AK, Krivtsov I, Biskupek J, Kaiser U, Beranek R, Rau S. Anatase-Wrapped Rutile Nanorods as an Effective Electron Collector in Hybrid Photoanodes for Visible Light-Driven Oxygen Evolution. Front Chem 2021; 9:709903. [PMID: 34485243 PMCID: PMC8416449 DOI: 10.3389/fchem.2021.709903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Arrays of single crystal TiO2 rutile nanorods (RNRs) appear highly promising as electron-collecting substrates in hybrid photoanodes as the RNRs offer direct charge carriers transport pathways, contrary to the conventional electrodes prepared from TiO2 powders that suffer from the numerous charge traps at the grain boundaries. However, the specific surface area of the nanorods is highly limited by their smooth morphology, which might be detrimental in view of utilizing the RNR as a substrate for immobilizing other functional materials. In this study, we developed a novel anatase-wrapped RNR (ARNR) material fabricated by a facile seed layer-free hydrothermal method. The ARNR comprises polycrystalline anatase nanoparticles formed on the surface of RNR, resulting in a large surface area that provides more deposition sites compared to the bare nanorods. Herein, we functionalize ARNR and RNR electrodes with polymeric carbon nitride (CNx) coupled with a CoO(OH)x cocatalyst for dioxygen evolution. The anatase wrapping of the rutile nanorod scaffold is found to be crucial for effective deposition of CNx and for improved photoanode operation in visible light-driven (λ > 420 nm) oxygen evolution, yielding a significant enhancement of photocurrent (by the factor of ∼3.7 at 1.23 V vs. RHE) and faradaic efficiency of oxygen evolution (by the factor of ∼2) as compared to photoanodes without anatase interlayer. This study thus highlights the importance of careful interfacial engineering in constructing photoelectrocatalytic systems for solar energy conversion and paves the way for the use of ARNR-based electron collectors in further hybrid and composite photochemical architectures for solar fuel production.
Collapse
Affiliation(s)
- Ruihao Gong
- Institute for Inorganic Chemistry I, Ulm University, Ulm, Germany
| | | | - Robert Leiter
- Electron Microscopy Group of Materials Science, Ulm University, Ulm, Germany
| | - Manuel Mundszinger
- Electron Microscopy Group of Materials Science, Ulm University, Ulm, Germany
| | | | - Igor Krivtsov
- Institute of Electrochemistry, Ulm University, Ulm, Germany
| | - Johannes Biskupek
- Electron Microscopy Group of Materials Science, Ulm University, Ulm, Germany
| | - Ute Kaiser
- Electron Microscopy Group of Materials Science, Ulm University, Ulm, Germany
| | - Radim Beranek
- Institute of Electrochemistry, Ulm University, Ulm, Germany
| | - Sven Rau
- Institute for Inorganic Chemistry I, Ulm University, Ulm, Germany
| |
Collapse
|
17
|
Pati PB, Abdellah M, Diring S, Hammarström L, Odobel F. Molecular Triad Containing a TEMPO Catalyst Grafted on Mesoporous Indium Tin Oxide as a Photoelectrocatalytic Anode for Visible Light-Driven Alcohol Oxidation. CHEMSUSCHEM 2021; 14:2902-2913. [PMID: 33973386 DOI: 10.1002/cssc.202100843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Photoelectrochemical cells based on semiconductors are among the most studied methods of artificial photosynthesis. This study concerns the immobilization, on a mesoporous conducting indium tin oxide electrode (nano-ITO), of a molecular triad (NDADI-P-Ru-TEMPO) composed of a ruthenium tris-bipyridine complex (Ru) as photosensitizer, connected at one end to 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO) as alcohol oxidation catalyst and at the other end to the electron acceptor naphthalenedicarboxyanhydride dicarboximide (NDADI). Light irradiation of NDADI-P-Ru-TEMPO grafted to nano-ITO in a pH 10 carbonate buffer effects selective oxidation of para-methoxybenzyl alcohol (MeO-BA) to para-methoxybenzaldehyde with a TON of approximately 150 after 1 h of photolysis at a bias of 0.4 V vs. SCE. The faradaic efficiency is found to be of 80±5 %. The photophysical study indicates that photoinduced electron transfer from the Ru complex to NDADI is a slow process and must compete with direct electron injection into ITO to have a better performing system. This work sheds light on some of the important ways to design more efficient molecular systems for the preparation of photoelectrocatalytic cells based on catalyst-dye-acceptor arrays immobilized on conducting electrodes.
Collapse
Affiliation(s)
- Palas Baran Pati
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000, Nantes, France
| | - Mohamed Abdellah
- Department of Chemistry, Ångström Laboratories, Uppsala University, Box 523, SE75120, Uppsala, Sweden
- Department of Chemistry, Qena Faculty of Science, South Valley University, 83523, Qena, Egypt
| | - Stéphane Diring
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000, Nantes, France
| | - Leif Hammarström
- Department of Chemistry, Ångström Laboratories, Uppsala University, Box 523, SE75120, Uppsala, Sweden
| | - Fabrice Odobel
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000, Nantes, France
| |
Collapse
|
18
|
Sherman BD, McMillan NK, Willinger D, Leem G. Sustainable hydrogen production from water using tandem dye-sensitized photoelectrochemical cells. NANO CONVERGENCE 2021; 8:7. [PMID: 33650039 PMCID: PMC7921270 DOI: 10.1186/s40580-021-00257-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/16/2021] [Indexed: 05/06/2023]
Abstract
If generated from water using renewable energy, hydrogen could serve as a carbon-zero, environmentally benign fuel to meet the needs of modern society. Photoelectrochemical cells integrate the absorption and conversion of solar energy and chemical catalysis for the generation of high value products. Tandem photoelectrochemical devices have demonstrated impressive solar-to-hydrogen conversion efficiencies but have not become economically relevant due to high production cost. Dye-sensitized solar cells, those based on a monolayer of molecular dye adsorbed to a high surface area, optically transparent semiconductor electrode, offer a possible route to realizing tandem photochemical systems for H2 production by water photolysis with lower overall material and processing costs. This review addresses the design and materials important to the development of tandem dye-sensitized photoelectrochemical cells for solar H2 production and highlights current published reports detailing systems capable of spontaneous H2 formation from water using only dye-sensitized interfaces for light capture.
Collapse
Affiliation(s)
- Benjamin D Sherman
- Department of Chemistry and Biochemistry, Texas Christian University, Campus Box 298860, Fort Worth, TX, 76129, USA.
| | - Nelli Klinova McMillan
- Department of Chemistry and Biochemistry, Texas Christian University, Campus Box 298860, Fort Worth, TX, 76129, USA
| | - Debora Willinger
- Department of Chemistry and Biochemistry, Texas Christian University, Campus Box 298860, Fort Worth, TX, 76129, USA
| | - Gyu Leem
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
- The Michael M. Szwarc Polymer Research Institute, 1 Forestry Drive, Syracuse, NY, 13210, USA
| |
Collapse
|
19
|
Luo T, Huang J, Liu J. Application of Novel Calix[4]arene Metal-free Sensitizers in Dye-sensitized Photoelectrochemical Cells for Water Splitting. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0302-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Keijer T, Bouwens T, Hessels J, Reek JNH. Supramolecular strategies in artificial photosynthesis. Chem Sci 2020; 12:50-70. [PMID: 34168739 PMCID: PMC8179670 DOI: 10.1039/d0sc03715j] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Artificial photosynthesis is a major scientific endeavor aimed at converting solar power into a chemical fuel as a viable approach to sustainable energy production and storage. Photosynthesis requires three fundamental actions performed in order; light harvesting, charge-separation and redox catalysis. These actions span different timescales and require the integration of functional architectures developed in different fields of study. The development of artificial photosynthetic devices is therefore inherently complex and requires an interdisciplinary approach. Supramolecular chemistry has evolved to a mature scientific field in which programmed molecular components form larger functional structures by self-assembly processes. Supramolecular chemistry could provide important tools in preparing, integrating and optimizing artificial photosynthetic devices as it allows precise control over molecular components within such a device. This is illustrated in this perspective by discussing state-of-the-art devices and the current limiting factors - such as recombination and low stability of reactive intermediates - and providing exemplary supramolecular approaches to alleviate some of those problems. Inspiring supramolecular solutions such as those discussed herein will incite expansion of the supramolecular toolbox, which eventually may be needed for the development of applied artificial photosynthesis.
Collapse
Affiliation(s)
- Tom Keijer
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Tessel Bouwens
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joeri Hessels
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N H Reek
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
21
|
Abdellah IM, El-Shafei A. Efficiency enhancement of ruthenium-based DSSCs employing A-π-D-π-A organic Co-sensitizers. RSC Adv 2020; 10:27940-27953. [PMID: 35685026 PMCID: PMC9127656 DOI: 10.1039/d0ra03916k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/08/2020] [Indexed: 11/29/2022] Open
Abstract
A new bipyridyl Ru(ii) sensitizer incorporating triphenylamine and the 3,4-ethylenedioxythiophene (EDOT) ancillary ligand IMA5 was synthesized for dye-sensitized solar cells (DSSCs). The performance of these DSSCs has been enhanced via di-anchoring metal-free organic sensitizers, denoted IMA1-4, with structural motif A-π-D-π-A and incorporating phenyl-dibenzothiophene-phenyl (Ph-DBT-Ph) as the main building block but with different anchoring groups (A). These new organic sensitizers were well-characterized and used as efficient co-sensitizers. Their photophysical, electrochemical and photovoltaic properties were studied. Furthermore, molecular modeling studies using DFT calculations were used to investigate their suitability as effective sensitizers/co-sensitizers. The molecular orbital isodensity showed distinguishable delocalization of the intramolecular charge in the DBT moiety. The photovoltaic characterization showed that IMA3 had the best DSSC performance (η = 2.41%). In addition, IMA1-4 was co-sensitized in conjunction with the newly synthesized IMA5 complex to enhance light harvesting across expanded spectral regions and thus improve efficiency. The solar cells co-sensitized with IMA2, IMA3 and IMA4 exhibited improved efficiency (η) of 6.25, 6.19 and 5.83%, respectively, which outperformed the device employing IMA5 alone (η = 5.54%) owing to the improvement in the loading of IMA2, IMA3 and IMA4 in the presence of IMA5 on the surface of the TiO2 nanoparticles, and charge recombination was suppressed.
Collapse
Affiliation(s)
- Islam M Abdellah
- Department of Chemistry, Faculty of Science, Aswan University Aswan 81528 Egypt
| | - Ahmed El-Shafei
- Polymer and Color Chemistry Program, North Carolina State University Raleigh 27606 USA
| |
Collapse
|
22
|
Ahmed AM, Rabia M, Shaban M. The structure and photoelectrochemical activity of Cr-doped PbS thin films grown by chemical bath deposition. RSC Adv 2020; 10:14458-14470. [PMID: 35498477 PMCID: PMC9051943 DOI: 10.1039/c9ra11042a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/21/2020] [Indexed: 12/19/2022] Open
Abstract
Nanocrystalline undoped and Cr-doped PbS thin films were prepared on glass substrates by a simple chemical bath deposition method. The X-ray diffraction analyses of the films showed their polycrystalline nature with cubic structure and preferential growth along the (111) orientation. Cr incorporation decreases the average PbS crystallite size from 59.97 to 37.59 nm, whereas the strain and dislocation density showed an increasing trend. The atomic ratio of doping for Cr is about 0.63, 1.75, and 4.70% according to energy-dispersive X-ray (EDX) spectroscopy. Morphological analysis showed that the average sizes of nanoclusters decreased from 73 to 41 nm as the Cr concentration increased. The optical band gap values are increased with increasing Cr doping. The photoelectrochemical (PEC) behaviors and the stability of the Cr doped PbS photoelectrodes were studied in 0.3 M Na2SO3 electrolyte solution. Also, the incident photon-to-current efficiency and applied bias photon-to-current efficiency are calculated and showed optimized values of 13.5% and 1.44% at 0.68 V and 390 nm. Moreover, the optimized electrode shows high chemical stability and a long lifetime. Finally, the effect of temperature on the PEC behaviors is evaluated and the different thermodynamic parameters are calculated. Nanocrystalline undoped and Cr-doped PbS thin films were prepared on glass substrates by a simple chemical bath deposition method as photoelectrodes for solar water splitting.![]()
Collapse
Affiliation(s)
- Ashour M Ahmed
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University Salah Salem Street Beni-Suef 62514 Egypt
| | - Mohamed Rabia
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University Salah Salem Street Beni-Suef 62514 Egypt .,Polymer Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University Salah Salem Street Beni-Suef 62514 Egypt
| |
Collapse
|
23
|
Decavoli C, Boldrini CL, Manfredi N, Abbotto A. Molecular Organic Sensitizers for Photoelectrochemical Water Splitting. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cristina Decavoli
- Department of Materials Science and INSTM Unit University of Milano‐Bicocca Via R. Cozzi 55 20125 Milano Italy
| | - Chiara Liliana Boldrini
- Department of Materials Science and INSTM Unit University of Milano‐Bicocca Via R. Cozzi 55 20125 Milano Italy
| | - Norberto Manfredi
- Department of Materials Science and INSTM Unit University of Milano‐Bicocca Via R. Cozzi 55 20125 Milano Italy
| | - Alessandro Abbotto
- Department of Materials Science and INSTM Unit University of Milano‐Bicocca Via R. Cozzi 55 20125 Milano Italy
| |
Collapse
|
24
|
Ortiz-Rodríguez JC, Santana JA, Méndez-Hernández DD. Linear correlation models for the redox potential of organic molecules in aqueous solutions. J Mol Model 2020; 26:70. [PMID: 32146589 DOI: 10.1007/s00894-020-4331-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 02/23/2020] [Indexed: 01/11/2023]
Abstract
In this study, we use the molecular orbital energy approximation (MOEA) and the energy difference approximation (EDA) to build linear correlation models for the redox potentials of 53 organic compounds in aqueous solutions. The molecules evaluated include nitroxides, phenols, and amines. Both the MOEA and EDA methods yield similar correlation models, however, the MOEA method is less computationally expensive. Correlation coefficients (R2) below 0.3 and mean absolute errors above 0.25 V were found for correlation models built without solvent effects. When explicit water molecules and a continuum solvent model are added to the calculations, correlation coefficients close to 0.8 are reached, and mean absolute errors below 0.18 V are obtained. The incorporation of solvent effects is necessary for good correlation models, particularly for redox processes of charged molecules in aqueous solutions. A comparison of the correlation models from different methodologies is provided. Graphical abstract.
Collapse
Affiliation(s)
| | - Juan A Santana
- Department of Chemistry, University of Puerto Rico at Cayey, Cayey, PR, 00736, USA
| | | |
Collapse
|
25
|
Badgurjar D, Shan B, Nayak A, Wu L, Chitta R, Meyer TJ. Electron-Withdrawing Boron Dipyrromethene Dyes As Visible Light Absorber/Sensitizers on Semiconductor Oxide Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7768-7776. [PMID: 31961645 DOI: 10.1021/acsami.9b20167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The synthesis, characterization, and electrochemical and photophysical properties of the phosphonate-derivatized carbazole (CBZ) and boron dipyrromethene (BODIPY) chromophores in the dyes, BODIPY(CBZ)2PO3H2 (8) and BODIPY(Tol)2PO3H2 (7), are described. The oxide-bound dyes have been explored as light absorbers in dye-sensitized photoelectrosynthesis cell (DSPEC) applications. The BODIPY-CBZ phosphonate ester (6) features a broad, intense UV-visible absorption spectrum with absorptions at 297 and 650 nm that arise from mixed transitions at the CBZ and BODIPY units. Electrochemical measurements on BODIPY(CBZ)2Br (4) in 0.1 M [nBu4N][PF6] in dichloromethane, vs normal hydrogen electrode (NHE), reveal reversible oxidations at 1.19 and 1.41 V and a reversible reduction at -0.59 V. On indium tin oxide (ITO) and TiO2, a reversible one-electron oxidation appears for 7 at 0.86 and 0.90 V vs NHE in dichloromethane, respectively, which demonstrates the redox stability on metal oxide surfaces. The results of nanosecond transient absorption measurements on SnO2/TiO2 electrodes provide direct evidence for excited-state electron injection into the conduction band of TiO2 following 590 nm excitation. A longer lifetime for 8+ compared to 7+ is consistent with extensive intramolecular charge separation between the CBZ and BODIPY units on the surface. Photoelectrochemical studies on 8 on a SnO2/TiO2 photoanode resulted in sustained photocurrents with current maxima of ∼200 μA/cm2 with hydroquinone added as a reductant under 1 sun (AM1.5 100 mW·cm-2) illumination at pH 4.5 in 0.1 M acetate buffer and 0.4 M LiClO4. On mixed SnO2/TiO2 electrode surfaces, with the added catalyst [Ru(Mebimpy)((4,4'-(OH)2PO-CH2)2bpy)(OH2)]2+ and chromophores 7 and 8, addition of 0.1 M benzyl alcohol resulted in sustained photocurrents of 12 and 35 μA/cm2, consistent with oxidation to benzaldehyde.
Collapse
Affiliation(s)
- Deepak Badgurjar
- Department of Chemistry, School of Chemical Sciences & Pharmacy , Central University of Rajasthan , Kishangarh, Dist. Ajmer , Rajasthan 305817 , India
| | - Bing Shan
- Department of Chemistry , University of North Carolina at Chapel Hill , CB3290 , Chapel Hill , North Carolina 27599 , United States
| | - Animesh Nayak
- Department of Chemistry , University of North Carolina at Chapel Hill , CB3290 , Chapel Hill , North Carolina 27599 , United States
| | - Lei Wu
- Department of Chemistry , University of North Carolina at Chapel Hill , CB3290 , Chapel Hill , North Carolina 27599 , United States
| | - Raghu Chitta
- Department of Chemistry, School of Chemical Sciences & Pharmacy , Central University of Rajasthan , Kishangarh, Dist. Ajmer , Rajasthan 305817 , India
| | - Thomas J Meyer
- Department of Chemistry , University of North Carolina at Chapel Hill , CB3290 , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
26
|
Grzegorzek N, Zieleniewska A, Schür A, Maichle-Mössmer C, Killian MS, Guldi DM, Chernick ET. Electronically Tuned Asymmetric meso-Substituted Porphyrins for p-Type Solar Cells. Chempluschem 2020; 84:766-771. [PMID: 31944029 DOI: 10.1002/cplu.201900215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/18/2019] [Indexed: 11/11/2022]
Abstract
A series of electronically tuned asymmetric porphyrins have been synthesized for use in p-type solar cells. The porphyrin derivatives were strategically designed with electron-withdrawing capability and an electronic dipole gradient to aid in electron-harvesting capacity from a nickel oxide cathode. Specifically, the porphyrins were substituted at the meso position with different arrangements of the electron-withdrawing pentafluorobenzene moiety, electron-donating/coordinating 4-pyridyl ligand, and an electron withdrawing/synthetically modifiable 4-cyanophenyl unit. Two distinct free-base porphyrins were synthesized, one of which was further metallated with nickel(II). The porphyrins were fully characterized and their electronic properties explored experimentally by electrochemistry, and both steady state and time-resolved spectroscopy. Finally, the porphyrins were incorporated into a p-type solar cell device utilizing NiO as the cathode, and demonstrating a preliminary maximum performance of η(%)=0.082 and IPCEMAX (%)=26.0 without co-sensitization.
Collapse
Affiliation(s)
- Norbert Grzegorzek
- Institute of Organic Chemistry, University of Tübingen, Auf Der Morgenstelle 18, A-Bau, Tübingen, 72076, Germany
| | - Anna Zieleniewska
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Annika Schür
- Department for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martenstrasse 7, 91058, Erlangen, Germany
| | - Cäcilia Maichle-Mössmer
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, A-Bau, Tübingen, 72076, Germany
| | - Manuela S Killian
- Department for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martenstrasse 7, 91058, Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Erin T Chernick
- Institute of Organic Chemistry, University of Tübingen, Auf Der Morgenstelle 18, A-Bau, Tübingen, 72076, Germany
| |
Collapse
|
27
|
Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses. ENERGIES 2020. [DOI: 10.3390/en13020420] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Innovative renewable routes are potentially able to sustain the transition to a decarbonized energy economy. Green synthetic fuels, including hydrogen and natural gas, are considered viable alternatives to fossil fuels. Indeed, they play a fundamental role in those sectors that are difficult to electrify (e.g., road mobility or high-heat industrial processes), are capable of mitigating problems related to flexibility and instantaneous balance of the electric grid, are suitable for large-size and long-term storage and can be transported through the gas network. This article is an overview of the overall supply chain, including production, transport, storage and end uses. Available fuel conversion technologies use renewable energy for the catalytic conversion of non-fossil feedstocks into hydrogen and syngas. We will show how relevant technologies involve thermochemical, electrochemical and photochemical processes. The syngas quality can be improved by catalytic CO and CO2 methanation reactions for the generation of synthetic natural gas. Finally, the produced gaseous fuels could follow several pathways for transport and lead to different final uses. Therefore, storage alternatives and gas interchangeability requirements for the safe injection of green fuels in the natural gas network and fuel cells are outlined. Nevertheless, the effects of gas quality on combustion emissions and safety are considered.
Collapse
|
28
|
Pratomo U, Purnama I, Mulyana JY. Photo-induced water oxidation via cascade charge transfer on nanostructured BiVO4/TiO2 modified with dye and co-catalyst molecules. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Chouk R, Aguir C, Haouanoh D, Bergaoui M, Tala-Ighil R, Stathatos E, Khalfaoui M. A first-principles computational and experimental investigation on schiff base cobalt complex towards designing solar cells. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Creissen CE, Warnan J, Antón-García D, Farré Y, Odobel F, Reisner E. Inverse Opal CuCrO 2 Photocathodes for H 2 Production Using Organic Dyes and a Molecular Ni Catalyst. ACS Catal 2019; 9:9530-9538. [PMID: 32064143 PMCID: PMC7011728 DOI: 10.1021/acscatal.9b02984] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Indexed: 01/08/2023]
Abstract
Dye-sensitized photoelectrochemical (DSPEC) cells are an emerging approach to producing solar fuels. The recent development of delafossite CuCrO2 as a p-type semiconductor has enabled H2 generation through the coassembly of catalyst and dye components. Here, we present a CuCrO2 electrode based on a high-surface-area inverse opal (IO) architecture with benchmark performance in DSPEC H2 generation. Coimmobilization of a phosphonated diketopyrrolopyrrole (DPP-P) or perylene monoimide (PMI-P) dye with a phosphonated molecular Ni catalyst (NiP) demonstrates the ability of IO-CuCrO2 to photogenerate H2. A positive photocurrent onset potential of approximately +0.8 V vs RHE was achieved with these photocathodes. The DPP-P-based photoelectrodes delivered photocurrents of -18 μA cm-2 and generated 160 ± 24 nmol of H2 cm-2, whereas the PMI-P-based photocathodes displayed higher photocurrents of -25 μA cm-2 and produced 215 ± 10 nmol of H2 cm-2 at 0.0 V vs RHE over the course of 2 h under visible light illumination (100 mW cm-2, AM 1.5G, λ > 420 nm, 25 °C). The high performance of the PMI-constructed system is attributed to the well-suited molecular structure and photophysical properties for p-type sensitization. These precious-metal-free photocathodes highlight the benefits of using bespoke IO-CuCrO2 electrodes as well as the important role of the molecular dye structure in DSPEC fuel synthesis.
Collapse
Affiliation(s)
- Charles E. Creissen
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Julien Warnan
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Daniel Antón-García
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Yoann Farré
- Université
LUNAM, Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse,
Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, 44322 Nantes cedex 3, France
| | - Fabrice Odobel
- Université
LUNAM, Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse,
Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, 44322 Nantes cedex 3, France
| | - Erwin Reisner
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
31
|
Dye-sensitized photocatalytic and photoelectrochemical hydrogen production through water splitting. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2019. [DOI: 10.1007/s12210-019-00824-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Daoudi S, Semmeq A, Badawi M, Assfeld X, Arfaoui Y, Pastore M. Electronic structure and optical properties of isolated and TiO
2
‐grafted free base porphyrins for water oxidation: A challenging test case for DFT and TD‐DFT. J Comput Chem 2019; 40:2530-2538. [DOI: 10.1002/jcc.26027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Syrine Daoudi
- CNRS & Université de LorraineLaboratoire de Physique et Chimie Théoriques Boulevard des Aiguillettes, BP 70239 54506 Vandoeuvre‐lès‐Nancy Cedex France
- Laboratory of Physical Chemistry of Condensed Materials, Faculty of Mathematical, Physical and Natural Sciences of TunisUniversity of Tunis El Manar Campus Farhat‐Hached, 1068 Tunis Tunisia
| | - Abderrahmane Semmeq
- CNRS & Université de LorraineLaboratoire de Physique et Chimie Théoriques Boulevard des Aiguillettes, BP 70239 54506 Vandoeuvre‐lès‐Nancy Cedex France
- Laboratoire Physique de la Matière Condensée, Faculté des Sciences Ben M'sikUniversité Hassan II de Casablanca Casablanca, Morocco
| | - Michael Badawi
- CNRS & Université de LorraineLaboratoire de Physique et Chimie Théoriques Boulevard des Aiguillettes, BP 70239 54506 Vandoeuvre‐lès‐Nancy Cedex France
| | - Xavier Assfeld
- CNRS & Université de LorraineLaboratoire de Physique et Chimie Théoriques Boulevard des Aiguillettes, BP 70239 54506 Vandoeuvre‐lès‐Nancy Cedex France
| | - Youssef Arfaoui
- Laboratory of Physical Chemistry of Condensed Materials, Faculty of Mathematical, Physical and Natural Sciences of TunisUniversity of Tunis El Manar Campus Farhat‐Hached, 1068 Tunis Tunisia
| | - Mariachiara Pastore
- CNRS & Université de LorraineLaboratoire de Physique et Chimie Théoriques Boulevard des Aiguillettes, BP 70239 54506 Vandoeuvre‐lès‐Nancy Cedex France
| |
Collapse
|
33
|
Wang B, Bauroth S, Saha A, Chen M, Clark T, Lu X, Guldi DM. Tuning electron transfer in supramolecular nano-architectures made of fullerenes and porphyrins. NANOSCALE 2019; 11:10782-10790. [PMID: 31134246 DOI: 10.1039/c9nr02824b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The current work focuses on self-assembled nano-architectures in which metal-ligand coordination between a zinc tetraphenyl-porphyrin (ZnP) and a zinc tetrakis(4-((1,3-dithiol-2-ylidene)methyl)phenyl)-porphyrin (ZnP-TDP), as electron donors, and functionalized fullerenes (C60) featuring different conjugated pyridine substituents as electron acceptors have been designed and investigated. Stoichiometric ratios and binding constants were derived from absorption and fluorescence measurements. Important insight into the free-energy change of charge separation and recombination was obtained from differential pulse voltammetry studies. Compelling evidence for energy transfer, charge separation and recombination was obtained from femtosecond and nanosecond transient-absorption measurements in a wide temperature range. Intramolecular energy transfer is found to take place from TDP to ZnP followed by intramolecular charge transfer from ZnP to C60. Semiempirical and density-functional theory calculations were used to help understand the excited-state deactivation mechanisms.
Collapse
Affiliation(s)
- Bingzhe Wang
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | - Stefan Bauroth
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany. and Computer-Chemie-Centrum, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany.
| | - Avishek Saha
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | - Muqing Chen
- Department of Materials Science and Engineering, University of Science and Technology of China, 230026 Hefei, China.
| | - Timothy Clark
- Computer-Chemie-Centrum, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany.
| | - Xing Lu
- State Key Laboratory of Materials Processing, School of Material Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan, China.
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| |
Collapse
|
34
|
Zhang L, Lin S. Effect of novel anchoring groups on the electronic and optical properties of water-splitting metal-free dye molecules: A first-principles investigation. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Espinoza EM, Bao D, Krzeszewski M, Gryko DT, Vullev VI. Is it common for charge recombination to be faster than charge separation? INT J CHEM KINET 2019. [DOI: 10.1002/kin.21285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Eli M. Espinoza
- Department of Chemistry University of California Riverside California
| | - Duoduo Bao
- Department of Bioengineering University of California Riverside California
| | - Maciej Krzeszewski
- Department of Bioengineering University of California Riverside California
- Instytut Chemii Organicznej Polskiej Akademii Nauk Warsaw Poland
| | - Daniel T. Gryko
- Instytut Chemii Organicznej Polskiej Akademii Nauk Warsaw Poland
| | - Valentine I. Vullev
- Department of Chemistry University of California Riverside California
- Department of Bioengineering University of California Riverside California
- Department of Biochemistry University of California Riverside California
- Materials Science and Engineering Program University of California Riverside California
- Instituto de Química Universidade de São Paulo Cidade Universitária São Paulo Brazil
| |
Collapse
|
36
|
Zhang L, Xu L, Li J. First Principles Study on Structurally Resolved Titanium Dioxide Nanoparticles Functionalized by Organic Ligands. J STRUCT CHEM+ 2019. [DOI: 10.1134/s002247661904019x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Mohan Kumar G, Cho H, Ilanchezhiyan P, Siva C, Ganesh V, Yuldashev S, Madhan Kumar A, Kang T. Evidencing enhanced charge-transfer with superior photocatalytic degradation and photoelectrochemical water splitting in Mg modified few-layered SnS2. J Colloid Interface Sci 2019; 540:476-485. [DOI: 10.1016/j.jcis.2019.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 11/25/2022]
|
38
|
Volokh M, Peng G, Barrio J, Shalom M. Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells. Angew Chem Int Ed Engl 2019; 58:6138-6151. [PMID: 30020555 DOI: 10.1002/anie.201806514] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 01/07/2023]
Abstract
Graphitic carbon nitride materials (CNs) have emerged as suitable photocatalysts and heterogeneous catalysts for various reactions thanks to their tunable band gap, suitable energy-band position, high stability under harsh chemical conditions, and low cost. However, the utilization of CN in photoelectrochemical (PEC) and photoelectronic devices is still at an early stage owing to the difficulties in depositing high-quality and homogenous CN layer on substrates, its wide band gap, poor charge-separation efficiency, and low electronic conductivity. In this Minireview, we discuss the synthetic pathways for the preparation of various structures of CN on substrates and their underlying photophysical properties and current photoelectrochemical performance. The main challenges for CN incorporation into PEC cell are described, together with possible routes to overcome the standing limitations toward the integration of CN materials in PEC and other photoelectronic devices.
Collapse
Affiliation(s)
- Michael Volokh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Guiming Peng
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Jesús Barrio
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
39
|
Volokh M, Peng G, Barrio J, Shalom M. Kohlenstoffnitridmaterialien für photochemische Zellen zur Wasserspaltung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806514] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michael Volokh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Guiming Peng
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Jesús Barrio
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the Negev Beer-Sheva 8410501 Israel
| |
Collapse
|
40
|
Liu Q, Wang D, Shan B, Sherman BD, Marquard SL, Eberhart MS, Liu M, Li C, Meyer TJ. Light-driven water oxidation by a dye-sensitized photoanode with a chromophore/catalyst assembly on a mesoporous double-shell electrode. J Chem Phys 2019; 150:041727. [DOI: 10.1063/1.5048780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Qing Liu
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Degao Wang
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Bing Shan
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Benjamin D. Sherman
- Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, USA
| | - Seth L. Marquard
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michael S. Eberhart
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Meichuan Liu
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chunhui Li
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Chemistry, Zhengzou University, Henan 4500001, China
| | - Thomas J. Meyer
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
41
|
|
42
|
Bao L, Wang B, Yu P, Huang C, Pan C, Fang H, Akasaka T, Guldi DM, Lu X. Intermolecular packing and charge transfer in metallofullerene/porphyrin cocrystals. Chem Commun (Camb) 2019; 55:6018-6021. [DOI: 10.1039/c9cc02095k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge transfer in metallofullerene/porphyrin cocrystals is revealed for the first time.
Collapse
Affiliation(s)
- Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering, Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Bingzhe Wang
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials
- Friedrich-Alexander University Erlangen-Nürnberg
- Erlangen 91058
- Germany
| | - Pengyuan Yu
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering, Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Chenli Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering, Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Changwang Pan
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering, Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Hongyun Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering, Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Takeshi Akasaka
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering, Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials
- Friedrich-Alexander University Erlangen-Nürnberg
- Erlangen 91058
- Germany
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology
- School of Materials Science and Engineering, Huazhong University of Science and Technology
- Wuhan 430074
- China
| |
Collapse
|
43
|
Warnan J, Willkomm J, Farré Y, Pellegrin Y, Boujtita M, Odobel F, Reisner E. Solar electricity and fuel production with perylene monoimide dye-sensitised TiO 2 in water. Chem Sci 2018; 10:2758-2766. [PMID: 30996994 PMCID: PMC6419928 DOI: 10.1039/c8sc05693e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022] Open
Abstract
Anchor-bearing perylene monoimide dyes were synthesised and studied back-to-back in both aqueous dye-sensitised solar cells and semiconductor photocatalysis.
Dye-sensitisation of TiO2 and other metal oxides is an established strategy to couple solar light harvesting with efficient charge separation for the production of electricity in dye-sensitised solar cells (DSCs) or fuels in dye-sensitised semiconductor photocatalysis (DSP). Perylene monoimide (PMI) dyes have emerged as promising organic dyes, but they have not previously been used in a functional assembly with TiO2 in aqueous solution. Here, five novel PMI dyes bearing carboxylic acid, phosphonic acid, acetylacetone, hydroxyquinoline or dipicolinic acid anchoring groups for attachment onto TiO2 are reported. We identified functional DSC and DSP systems with PMI-sensitised TiO2 in aqueous solution, which permitted a side-by-side comparison with respect to performance between the two systems. Structure–activity relationships allowed us to suggest anchor-condition-system associations to suit specific anchoring groups at various pH values, and with different electron mediators (redox couple or sacrificial electron donor) and catalysts in DSC and DSP schemes. A DSC sensitised with the hydroxyquinoline-modified PMI dye reached the highest short-circuit current density (JSC ≈ 1.4 mA cm–2) in aqueous electrolyte solution during irradiation with simulated solar light. This dye also achieved a turnover number (TONPMI) of approximately 4900 for sacrificial proton reduction after 24 h irradiation in a DSP scheme with Pt as a H2-evolving co-catalyst at pH 4.5. This performance was only surpassed by the carboxylic acid-bearing dye, which reached a new benchmark turnover number (TONPMI ≈ 1.1 × 104 after 72 h) for an organic dye in nanoparticulate DSP for solar fuel production. At higher pH (8.5), our results showed that the phosphonic acid group allows for higher performance due to a stronger anchoring ability. This study provides a platform for aqueous PMI dye-sensitised TiO2 chemistry and gives valuable insights into the performance of different anchoring groups in DSC and DSP systems.
Collapse
Affiliation(s)
- Julien Warnan
- Christian Doppler Laboratory for Sustainable SynGas Chemistry , Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Janina Willkomm
- Christian Doppler Laboratory for Sustainable SynGas Chemistry , Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Yoann Farré
- Université LUNAM , Université de Nantes , CNRS , Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM) , UMR 6230 , 2 rue de la Houssinière , 44322 Nantes cedex 3 , France . ;
| | - Yann Pellegrin
- Université LUNAM , Université de Nantes , CNRS , Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM) , UMR 6230 , 2 rue de la Houssinière , 44322 Nantes cedex 3 , France . ;
| | - Mohammed Boujtita
- Université LUNAM , Université de Nantes , CNRS , Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM) , UMR 6230 , 2 rue de la Houssinière , 44322 Nantes cedex 3 , France . ;
| | - Fabrice Odobel
- Université LUNAM , Université de Nantes , CNRS , Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM) , UMR 6230 , 2 rue de la Houssinière , 44322 Nantes cedex 3 , France . ;
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry , Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
44
|
Youssef L, Roualdès S, Bassil J, Zakhour M, Rouessac V, Lamy C, Nakhl M. Effect of plasma power on the semiconducting behavior of low-frequency PECVD TiO2 and nitrogen-doped TiO2 anodic thin coatings: photo-electrochemical studies in a single compartment cell for hydrogen generation by solar water splitting. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1265-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Khusnutdinova D, Wadsworth BL, Flores M, Beiler AM, Reyes Cruz EA, Zenkov Y, Moore GF. Electrocatalytic Properties of Binuclear Cu(II) Fused Porphyrins for Hydrogen Evolution. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01776] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L. Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Marco Flores
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Anna M. Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Edgar A. Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Yegor Zenkov
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Gary F. Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
46
|
Stabilized photoanodes for water oxidation by integration of organic dyes, water oxidation catalysts, and electron-transfer mediators. Proc Natl Acad Sci U S A 2018; 115:8523-8528. [PMID: 30082396 DOI: 10.1073/pnas.1802903115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Stabilized photoanodes for light-driven water oxidation have been prepared on nanoparticle core/shell electrodes with surface-stabilized donor-acceptor chromophores, a water oxidation catalyst, and an electron-transfer mediator. For the electrode, fluorine-doped tin oxide FTO|SnO2/TiO2|-Org1-|1.1 nm Al2O3|-RuP2+-WOC (water oxidation catalyst) with Org1 (1-cyano-2-(4-(diphenylamino)phenyl)vinyl)phosphonic acid), the mediator RuP2+ ([Ru(4,4-(PO3H2)2-2,2-bipyridine)(2,2-bipyridine)2]2+), and the WOC, Ru(bda)(py(CH2)(3or10)P(O3H)2)2 (bda is 2,2-bipyridine-6,6-dicarboxylate with x = 3 or 10), solar excitation resulted in photocurrents of ∼500 µA/cm2 and quantitative O2 evolution at pH 4.65. Related results were obtained for other Ru(II) polypyridyl mediators. For the organic dye PP (5-(4-(dihydroxyphosphoryl)phenyl)-10,15,20-Tris(mesityl)porphyrin), solar water oxidation occurred with a driving force near 0 V.
Collapse
|
47
|
Lei Zhang, Qiaoyi Wang. First Principles Study on the Interfacial Structure and Electronic Properties of a Metal-Free Organic Dye/TiO2 Photoanode for Water Oxidation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418080162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Khusnutdinova D, Beiler AM, Wadsworth BL, Nanyangwe SK, Moore GF. Vibrational structure analysis of cobalt fluoro-porphyrin surface coatings on gallium phosphide. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Grazing angle attenuated total reflectance Fourier transform infrared (GATR–FTIR) spectroscopy is used to characterize chemically modified gallium phosphide (GaP) surfaces containing grafted cobalt(II) porphyrins with 3-fluorophenyl substituents installed at the meso-positions. In these hybrid constructs, porphyrin surface attachment is achieved using either a two-step method involving coordination of cobalt fluoro-porphyrin metal centers to nitrogen sites on an initially applied thin-film polypyridyl surface coating, or via a direct modification strategy using a cobalt fluoro-porphyrin precursor bearing a covalently bonded 4-vinylphenyl surface attachment group at a [Formula: see text]-position. Both surface-attachment chemistries leverage the UV-induced immobilization of alkenes but result in distinct structural connectivities of the grafted porphyrin units and their associated vibrational spectra. In particular, the in-plane deformation vibrational frequency of metalloporphyrin components in samples prepared via coordination to the polymeric interface is characterized by an eight wavenumber shift to higher frequencies compared to that measured on metalloporphyrin-modified surfaces prepared using the one-step attachment method. The more rigid ring structure in the polymeric architecture is consistent with coordination of porphyrin cobalt centers to pyridyl-nitrogen sites on the surface graft. These results demonstrate the use of GATR–FTIR spectroscopy as a sensitive tool for characterizing porphyrin-modified surfaces with absorption signals that are close to the detection limits of many common spectroscopic techniques.
Collapse
Affiliation(s)
- Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ 85287-1604, USA
| | - Anna M. Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ 85287-1604, USA
| | - Brian L. Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ 85287-1604, USA
| | - Sylvia K. Nanyangwe
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ 85287-1604, USA
| | - Gary F. Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, AZ 85287-1604, USA
| |
Collapse
|
49
|
Dye-sensitized photoelectrochemical water oxidation through a buried junction. Proc Natl Acad Sci U S A 2018; 115:6946-6951. [PMID: 29915092 DOI: 10.1073/pnas.1804728115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water oxidation has long been a challenge in artificial photosynthetic devices that convert solar energy into fuels. Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) provide a modular approach for integrating light-harvesting molecules with water-oxidation catalysts on metal-oxide electrodes. Despite recent progress in improving the efficiency of these devices by introducing good molecular water-oxidation catalysts, WS-DSPECs have poor stability, owing to the oxidation of molecular components at very positive electrode potentials. Here we demonstrate that a solid-state dye-sensitized solar cell (ss-DSSC) can be used as a buried junction for stable photoelectrochemical water splitting. A thin protecting layer of TiO2 grown by atomic layer deposition (ALD) stabilizes the operation of the photoanode in aqueous solution, although as a solar cell there is a performance loss due to increased series resistance after the coating. With an electrodeposited iridium oxide layer, a photocurrent density of 1.43 mA cm-2 was observed in 0.1 M pH 6.7 phosphate solution at 1.23 V versus reversible hydrogen electrode, with good stability over 1 h. We measured an incident photon-to-current efficiency of 22% at 540 nm and a Faradaic efficiency of 43% for oxygen evolution. While the potential profile of the catalyst layer suggested otherwise, we confirmed the formation of a buried junction in the as-prepared photoelectrode. The buried junction design of ss-DSSs adds to our understanding of semiconductor-electrocatalyst junction behaviors in the presence of a poor semiconducting material.
Collapse
|
50
|
Manfredi N, Boldrini CL, Abbotto A. Organic Sensitizers for Photoanode Water Splitting in Dye-Sensitized Photoelectrochemical Cells. ChemElectroChem 2018. [DOI: 10.1002/celc.201800592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Norberto Manfredi
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR; University of Milano-Bicocca; INSTM Milano-Bicocca Research; Via Cozzi 55 I-20125 Milano Italy
| | - Chiara Liliana Boldrini
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR; University of Milano-Bicocca; INSTM Milano-Bicocca Research; Via Cozzi 55 I-20125 Milano Italy
| | - Alessandro Abbotto
- Department of Materials Science and Solar Energy Research Center MIB-SOLAR; University of Milano-Bicocca; INSTM Milano-Bicocca Research; Via Cozzi 55 I-20125 Milano Italy
| |
Collapse
|