1
|
Köster T, Henning P, Warnke T, Uhrmacher A. Expressive rule-based modeling and fast simulation for dynamic compartments. PLoS One 2024; 19:e0312813. [PMID: 39480777 PMCID: PMC11527154 DOI: 10.1371/journal.pone.0312813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Compartmentalization is vital for cell biological processes. The field of rule-based stochastic simulation has acknowledged this, and many tools and methods have capabilities for compartmentalization. However, mostly, this is limited to a static compartmental hierarchy and does not integrate compartmental changes. Integrating compartmental dynamics is challenging for the design of the modeling language and the simulation engine. The language should support a concise yet flexible modeling of compartmental dynamics. Our work is based on ML-Rules, a rule-based language for multi-level cell biological modeling that supports a wide variety of compartmental dynamics, whose syntax we slightly adapt. To develop an efficient simulation engine for compartmental dynamics, we combine specific data structures and new and existing algorithms and implement them in the Rust programming language. We evaluate the concept and implementation using two case studies from existing cell-biological models. The execution of these models outperforms previous simulations of ML-Rules by two orders of magnitude. Finally, we present a prototype of a WebAssembly-based implementation to allow for a low barrier of entry when exploring the language and associated models without the need for local installation.
Collapse
Affiliation(s)
- Till Köster
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Philipp Henning
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Tom Warnke
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
- Limbus Medical Technologies GmbH, Rostock, Germany
| | - Adelinde Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Lubenia PVN, Mendoza ER, Lao AR. Comparative analysis of kinetic realizations of insulin signaling. J Theor Biol 2024; 577:111672. [PMID: 37984585 DOI: 10.1016/j.jtbi.2023.111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Several studies have developed dynamical models to understand the underlying mechanisms of insulin signaling, a signaling cascade that leads to the translocation of glucose, the human body's main source of energy. Fortunately, reaction network analysis allows us to extract properties of dynamical systems without depending on their model parameter values. This study focuses on the comparison of insulin signaling in healthy state (INSMS or INSulin Metabolic Signaling) and in type 2 diabetes (INRES or INsulin RESistance) using reaction network analysis. The analysis uses network decomposition to identify the different subsystems involved in insulin signaling (e.g., insulin receptor binding and recycling, GLUT4 translocation, and ERK signaling pathway, among others). Furthermore, results show that INSMS and INRES are similar with respect to some network, structo-kinetic, and kinetic properties. Their differences, however, provide insights into what happens when insulin resistance occurs. First, the variation in the number of species involved in INSMS and INRES suggests that when irregularities occur in the insulin signaling pathway, other complexes (and, hence, other processes) get involved, characterizing insulin resistance. Second, the loss of concordance exhibited by INRES suggests less restrictive interplay between the species involved in insulin signaling, leading to unusual activities in the signaling cascade. Lastly, GLUT4 losing its absolute concentration robustness in INRES may signify that the transporter has lost its reliability in shuttling glucose to the cell, inhibiting efficient cellular energy production. This study also suggests possible applications of the equilibria parametrization and network decomposition, resulting from the analysis, to potentially establish absolute concentration robustness in a species.
Collapse
Affiliation(s)
- Patrick Vincent N Lubenia
- Systems and Computational Biology Research Unit, Center for Natural Sciences and Environmental Research, 2401 Taft Avenue, Manila, 0922, Metro Manila, Philippines.
| | - Eduardo R Mendoza
- Systems and Computational Biology Research Unit, Center for Natural Sciences and Environmental Research, 2401 Taft Avenue, Manila, 0922, Metro Manila, Philippines; Department of Mathematics and Statistics, De La Salle University, 2401 Taft Avenue, Manila, 0922, Metro Manila, Philippines; Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Munich, Germany.
| | - Angelyn R Lao
- Systems and Computational Biology Research Unit, Center for Natural Sciences and Environmental Research, 2401 Taft Avenue, Manila, 0922, Metro Manila, Philippines; Department of Mathematics and Statistics, De La Salle University, 2401 Taft Avenue, Manila, 0922, Metro Manila, Philippines; Center for Complexity and Emerging Technologies, 2401 Taft Avenue, Manila, 0922, Metro Manila, Philippines.
| |
Collapse
|
3
|
Roesch E, Greener JG, MacLean AL, Nassar H, Rackauckas C, Holy TE, Stumpf MPH. Julia for biologists. Nat Methods 2023; 20:655-664. [PMID: 37024649 PMCID: PMC10216852 DOI: 10.1038/s41592-023-01832-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/27/2023] [Indexed: 04/08/2023]
Abstract
Major computational challenges exist in relation to the collection, curation, processing and analysis of large genomic and imaging datasets, as well as the simulation of larger and more realistic models in systems biology. Here we discuss how a relative newcomer among programming languages-Julia-is poised to meet the current and emerging demands in the computational biosciences and beyond. Speed, flexibility, a thriving package ecosystem and readability are major factors that make high-performance computing and data analysis available to an unprecedented degree. We highlight how Julia's design is already enabling new ways of analyzing biological data and systems, and we provide a list of resources that can facilitate the transition into Julian computing.
Collapse
Affiliation(s)
- Elisabeth Roesch
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Melbourne, Victoria, Australia
- JuliaHub, Somerville, MA, USA
| | - Joe G Greener
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Adam L MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | - Christopher Rackauckas
- JuliaHub, Somerville, MA, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Pumas-AI, Centreville, VA, USA
| | - Timothy E Holy
- Departments of Neuroscience and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael P H Stumpf
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia.
- Melbourne Integrative Genomics, University of Melbourne, Melbourne, Victoria, Australia.
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia.
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Marsh L, Dufresne E, Byrne HM, Harrington HA. Algebra, Geometry and Topology of ERK Kinetics. Bull Math Biol 2022; 84:137. [PMID: 36273372 PMCID: PMC9588486 DOI: 10.1007/s11538-022-01088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/16/2022] [Indexed: 12/01/2022]
Abstract
The MEK/ERK signalling pathway is involved in cell division, cell specialisation, survival and cell death (Shaul and Seger in Biochim Biophys Acta (BBA)-Mol Cell Res 1773(8):1213-1226, 2007). Here we study a polynomial dynamical system describing the dynamics of MEK/ERK proposed by Yeung et al. (Curr Biol 2019, https://doi.org/10.1016/j.cub.2019.12.052 ) with their experimental setup, data and known biological information. The experimental dataset is a time-course of ERK measurements in different phosphorylation states following activation of either wild-type MEK or MEK mutations associated with cancer or developmental defects. We demonstrate how methods from computational algebraic geometry, differential algebra, Bayesian statistics and computational algebraic topology can inform the model reduction, identification and parameter inference of MEK variants, respectively. Throughout, we show how this algebraic viewpoint offers a rigorous and systematic analysis of such models.
Collapse
Affiliation(s)
- Lewis Marsh
- Mathematical Institute, University of Oxford, Oxford, UK.
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK.
| | | | - Helen M Byrne
- Mathematical Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | | |
Collapse
|
5
|
Budde K, Smith J, Wilsdorf P, Haack F, Uhrmacher AM. Relating simulation studies by provenance-Developing a family of Wnt signaling models. PLoS Comput Biol 2021; 17:e1009227. [PMID: 34351901 PMCID: PMC8407594 DOI: 10.1371/journal.pcbi.1009227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/31/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022] Open
Abstract
For many biological systems, a variety of simulation models exist. A new simulation model is rarely developed from scratch, but rather revises and extends an existing one. A key challenge, however, is to decide which model might be an appropriate starting point for a particular problem and why. To answer this question, we need to identify entities and activities that contributed to the development of a simulation model. Therefore, we exploit the provenance data model, PROV-DM, of the World Wide Web Consortium and, building on previous work, continue developing a PROV ontology for simulation studies. Based on a case study of 19 Wnt/β-catenin signaling models, we identify crucial entities and activities as well as useful metadata to both capture the provenance information from individual simulation studies and relate these forming a family of models. The approach is implemented in WebProv, a web application for inserting and querying provenance information. Our specialization of PROV-DM contains the entities Research Question, Assumption, Requirement, Qualitative Model, Simulation Model, Simulation Experiment, Simulation Data, and Wet-lab Data as well as activities referring to building, calibrating, validating, and analyzing a simulation model. We show that most Wnt simulation models are connected to other Wnt models by using (parts of) these models. However, the overlap, especially regarding the Wet-lab Data used for calibration or validation of the models is small. Making these aspects of developing a model explicit and queryable is an important step for assessing and reusing simulation models more effectively. Exposing this information helps to integrate a new simulation model within a family of existing ones and may lead to the development of more robust and valid simulation models. We hope that our approach becomes part of a standardization effort and that modelers adopt the benefits of provenance when considering or creating simulation models. We revise a provenance ontology for simulation studies of cellular biochemical models. Provenance information is useful for understanding the creation of a simulation model because it not only contains information about the entities and activities that have led to a simulation model but also their relations, all of which can be visualized. It provides additional structure by explicitly recording research questions, assumptions, and requirements and relating them along with data, qualitative models, simulation models, and simulation experiments through a small set of predefined but extensible activities. We have applied our concept to a family of 19 Wnt signaling models and implemented a web-based tool (WebProv) to store the provenance information from these studies. The resulting provenance graph visualizes the story line of simulation studies and demonstrates the creation and calibration of simulation models, the successive attempts of validation and extension, and shows, beyond an individual simulation study, how the Wnt models are related. Thereby, the steps and sources that contributed to a simulation model are made explicit. Our approach complements other approaches aimed at facilitating the reuse and assessment of simulation products in systems biology such as model repositories as well as annotation and documentation guidelines.
Collapse
Affiliation(s)
- Kai Budde
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
- * E-mail:
| | - Jacob Smith
- Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
| | - Pia Wilsdorf
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Fiete Haack
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Adelinde M. Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Cavallo JC, Scholpp S, Flegg MB. Delay-driven oscillations via Axin2 feedback in the Wnt/β-catenin signalling pathway. J Theor Biol 2020; 507:110458. [DOI: 10.1016/j.jtbi.2020.110458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022]
|
7
|
Gross E, Harrington H, Meshkat N, Shiu A. Joining and decomposing reaction networks. J Math Biol 2020; 80:1683-1731. [PMID: 32123964 DOI: 10.1007/s00285-020-01477-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/09/2020] [Indexed: 12/30/2022]
Abstract
In systems and synthetic biology, much research has focused on the behavior and design of single pathways, while, more recently, experimental efforts have focused on how cross-talk (coupling two or more pathways) or inhibiting molecular function (isolating one part of the pathway) affects systems-level behavior. However, the theory for tackling these larger systems in general has lagged behind. Here, we analyze how joining networks (e.g., cross-talk) or decomposing networks (e.g., inhibition or knock-outs) affects three properties that reaction networks may possess-identifiability (recoverability of parameter values from data), steady-state invariants (relationships among species concentrations at steady state, used in model selection), and multistationarity (capacity for multiple steady states, which correspond to multiple cell decisions). Specifically, we prove results that clarify, for a network obtained by joining two smaller networks, how properties of the smaller networks can be inferred from or can imply similar properties of the original network. Our proofs use techniques from computational algebraic geometry, including elimination theory and differential algebra.
Collapse
Affiliation(s)
| | | | | | - Anne Shiu
- Texas A&M University, College Station, USA
| |
Collapse
|
8
|
Romijn LB, Almet AA, Tan CW, Osborne JM. Modelling the effect of subcellular mutations on the migration of cells in the colorectal crypt. BMC Bioinformatics 2020; 21:95. [PMID: 32126976 PMCID: PMC7053074 DOI: 10.1186/s12859-020-3391-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
Background Many cancers arise from mutations in cells within epithelial tissues. Mutations manifesting at the subcellular level influence the structure and function of the tissue resulting in cancer. Previous work has proposed how cell level properties can lead to mutant cell invasion, but has not incorporated detailed subcellular modelling Results We present a framework that allows the straightforward integration and simulation of SBML representations of subcellular dynamics within multiscale models of epithelial tissues. This allows us to investigate the effect of mutations in subcellular pathways on the migration of cells within the colorectal crypt. Using multiple models we find that mutations in APC, a key component in the Wnt signalling pathway, can bias neutral drift and can also cause downward invasion of mutant cells in the crypt. Conclusions Our framework allows us to investigate how subcellular mutations, i.e. knockouts and knockdowns, affect cell-level properties and the resultant migration of cells within epithelial tissues. In the context of the colorectal crypt, we see that mutations in APC can lead directly to mutant cell invasion.
Collapse
Affiliation(s)
- Lotte B Romijn
- School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, Australia
| | - Axel A Almet
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK.,NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California, USA.,Department of Mathematics, University of California, Irvine, California, USA
| | - Chin Wee Tan
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Osborne
- School of Mathematics and Statistics, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Ward D, Montes Olivas S, Fletcher A, Homer M, Marucci L. Cross-talk between Hippo and Wnt signalling pathways in intestinal crypts: Insights from an agent-based model. Comput Struct Biotechnol J 2020; 18:230-240. [PMID: 33489001 PMCID: PMC7790739 DOI: 10.1016/j.csbj.2019.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 12/01/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal crypts are responsible for the total cell renewal of the lining of the intestines; this turnover is governed by the interplay between signalling pathways and the cell cycle. The role of Wnt signalling in cell proliferation and differentiation in the intestinal crypt has been extensively studied, with increased signalling found towards the lower regions of the crypt. Recent studies have shown that the Wnt signalling gradient found within the crypt may arise as a result of division-based spreading from a Wnt ‘reservoir’ at the crypt base. The discovery of the Hippo pathway’s involvement in maintaining crypt homeostasis is more recent; a mechanistic understanding of Hippo pathway dynamics, and its possible cross-talk with the Wnt pathway, remains lacking. To explore how the interplay between these pathways may control crypt homeostasis, we extended an ordinary differential equation model of the Wnt signalling pathway to include a phenomenological description of Hippo signalling in single cells, and then coupled it to a cell-based description of cell movement, proliferation and contact inhibition in agent-based simulations. Furthermore, we compared an imposed Wnt gradient with a division-based Wnt gradient model. Our results suggest that Hippo signalling affects the Wnt pathway by reducing the presence of free cytoplasmic β-catenin, causing cell cycle arrest. We also show that a division-based spreading of Wnt can form a Wnt gradient, resulting in proliferative dynamics comparable to imposed-gradient models. Finally, a simulated APC double mutant, with misregulated Wnt and Hippo signalling activity, is predicted to cause monoclonal conversion of the crypt.
Collapse
Affiliation(s)
- Daniel Ward
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Sandra Montes Olivas
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Alexander Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK.,Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Martin Homer
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK.,BrisSynBio, Bristol BS8 1TQ, UK
| |
Collapse
|
10
|
Sun S, Yu X, Sun F, Tang Y, Zhao J, Zeng T. Dynamically characterizing individual clinical change by the steady state of disease-associated pathway. BMC Bioinformatics 2019; 20:697. [PMID: 31874621 PMCID: PMC6929545 DOI: 10.1186/s12859-019-3271-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Along with the development of precision medicine, individual heterogeneity is attracting more and more attentions in clinical research and application. Although the biomolecular reaction seems to be some various when different individuals suffer a same disease (e.g. virus infection), the final pathogen outcomes of individuals always can be mainly described by two categories in clinics, i.e. symptomatic and asymptomatic. Thus, it is still a great challenge to characterize the individual specific intrinsic regulatory convergence during dynamic gene regulation and expression. Except for individual heterogeneity, the sampling time also increase the expression diversity, so that, the capture of similar steady biological state is a key to characterize individual dynamic biological processes. Results Assuming the similar biological functions (e.g. pathways) should be suitable to detect consistent functions rather than chaotic genes, we design and implement a new computational framework (ABP: Attractor analysis of Boolean network of Pathway). ABP aims to identify the dynamic phenotype associated pathways in a state-transition manner, using the network attractor to model and quantify the steady pathway states characterizing the final steady biological sate of individuals (e.g. normal or disease). By analyzing multiple temporal gene expression datasets of virus infections, ABP has shown its effectiveness on identifying key pathways associated with phenotype change; inferring the consensus functional cascade among key pathways; and grouping pathway activity states corresponding to disease states. Conclusions Collectively, ABP can detect key pathways and infer their consensus functional cascade during dynamical process (e.g. virus infection), and can also categorize individuals with disease state well, which is helpful for disease classification and prediction.
Collapse
Affiliation(s)
- Shaoyan Sun
- School of Mathematics and Statistics Science, Ludong University, Yantai, 264025, China.
| | - Xiangtian Yu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Chinese Academy Science, Shanghai, 200031, China
| | - Fengnan Sun
- Medical Laboratory, Yantaishan Hospital, Yantai, 264001, China
| | - Ying Tang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Chinese Academy Science, Shanghai, 200031, China
| | - Juan Zhao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Chinese Academy Science, Shanghai, 200031, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Chinese Academy Science, Shanghai, 200031, China. .,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| |
Collapse
|
11
|
Gayrard C, Bernaudin C, Déjardin T, Seiler C, Borghi N. Src- and confinement-dependent FAK activation causes E-cadherin relaxation and β-catenin activity. J Cell Biol 2018; 217:1063-1077. [PMID: 29311227 PMCID: PMC5839785 DOI: 10.1083/jcb.201706013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/20/2017] [Accepted: 12/04/2017] [Indexed: 01/22/2023] Open
Abstract
β-Catenin is a transcription cofactor proposed to be released from E-cadherin upon mechanically induced phosphorylation. However, evidence for this mechanism is lacking. Gayrard et al. show instead that during epithelial-to-mesenchymal transition, Src- and multicellular confinement–dependent FAK-induced cytoskeleton remodeling causes E-cadherin tension relaxation and phosphorylation-independent β-catenin nuclear translocation from the membrane. In epithelia, E-cadherin cytoplasmic tail is under cytoskeleton-generated tension via a link that contains β-catenin. A cotranscription factor, β-catenin, is also active in morphogenetic processes associated with epithelial-to-mesenchymal transition. β-Catenin signaling appears mechanically inducible and was proposed to follow phosphorylation-induced β-catenin release from E-cadherin. Evidence for this mechanism is lacking, and whether E-cadherin tension is involved is unknown. To test this, we combined quantitative fluorescence microscopies with genetic and pharmacological perturbations of epithelial-to-mesenchymal transition–induced cells in culture. We showed that β-catenin nuclear activity follows a substantial release from the membrane specific to migrating cells and requires multicellular deconfinement and Src activity. Selective nuclear translocation occurs downstream of focal adhesion kinase activation, which targets E-cadherin tension relaxation through actomyosin remodeling. In contrast, phosphorylations of the cadherin/catenin complex are not substantially required. These data demonstrate that E-cadherin acts as a sensor of intracellular mechanics in a crosstalk with cell-substrate adhesions that target β-catenin signaling.
Collapse
Affiliation(s)
- Charlène Gayrard
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Clément Bernaudin
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Théophile Déjardin
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Cynthia Seiler
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| | - Nicolas Borghi
- Institut Jacques Monod, Unité Mixte de Recherche 7592, Centre National de la Recherche Scientifique, Université Paris-Diderot, Paris, France
| |
Collapse
|
12
|
Sinha S. Hilbert-Schmidt and Sobol sensitivity indices for static and time series Wnt signaling measurements in colorectal cancer - part A. BMC SYSTEMS BIOLOGY 2017; 11:120. [PMID: 29202761 PMCID: PMC5716378 DOI: 10.1186/s12918-017-0488-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 11/09/2017] [Indexed: 11/10/2022]
Abstract
Background Ever since the accidental discovery of Wingless [Sharma R.P., Drosophila information service, 1973, 50, p 134], research in the field of Wnt signaling pathway has taken significant strides in wet lab experiments and various cancer clinical trials, augmented by recent developments in advanced computational modeling of the pathway. Information rich gene expression profiles reveal various aspects of the signaling pathway and help in studying different issues simultaneously. Hitherto, not many computational studies exist which incorporate the simultaneous study of these issues. Results This manuscript ∙ explores the strength of contributing factors in the signaling pathway, ∙ analyzes the existing causal relations among the inter/extracellular factors effecting the pathway based on prior biological knowledge and ∙ investigates the deviations in fold changes in the recently found prevalence of psychophysical laws working in the pathway. To achieve this goal, local and global sensitivity analysis is conducted on the (non)linear responses between the factors obtained from static and time series expression profiles using the density (Hilbert-Schmidt Information Criterion) and variance (Sobol) based sensitivity indices. Conclusion The results show the advantage of using density based indices over variance based indices mainly due to the former’s employment of distance measures & the kernel trick via Reproducing kernel Hilbert space (RKHS) that capture nonlinear relations among various intra/extracellular factors of the pathway in a higher dimensional space. In time series data, using these indices it is now possible to observe where in time, which factors get influenced & contribute to the pathway, as changes in concentration of the other factors are made. This synergy of prior biological knowledge, sensitivity analysis & representations in higher dimensional spaces can facilitate in time based administration of target therapeutic drugs & reveal hidden biological information within colorectal cancer samples.
Collapse
Affiliation(s)
- Shriprakash Sinha
- Faculty of Maths & IT, Royal Thimphu College, Nagbiphu, Thimphu, 1122, Bhutan.
| |
Collapse
|
13
|
Gross E, Davis B, Ho KL, Bates DJ, Harrington HA. Numerical algebraic geometry for model selection and its application to the life sciences. J R Soc Interface 2017; 13:rsif.2016.0256. [PMID: 27733697 PMCID: PMC5095207 DOI: 10.1098/rsif.2016.0256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology.
Collapse
Affiliation(s)
- Elizabeth Gross
- Department of Mathematics, San José State University, San José, CA 95112, USA
| | - Brent Davis
- Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA
| | - Kenneth L Ho
- Department of Mathematics, Stanford University, Stanford, CA 94305, USA
| | - Daniel J Bates
- Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
14
|
Hartung N, Benary U, Wolf J, Kofahl B. Paracrine and autocrine regulation of gene expression by Wnt-inhibitor Dickkopf in wild-type and mutant hepatocytes. BMC SYSTEMS BIOLOGY 2017; 11:98. [PMID: 29029622 PMCID: PMC5640931 DOI: 10.1186/s12918-017-0470-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/02/2017] [Indexed: 12/12/2022]
Abstract
Background Cells are able to communicate and coordinate their function within tissues via secreted factors. Aberrant secretion by cancer cells can modulate this intercellular communication, in particular in highly organised tissues such as the liver. Hepatocytes, the major cell type of the liver, secrete Dickkopf (Dkk), which inhibits Wnt/ β-catenin signalling in an autocrine and paracrine manner. Consequently, Dkk modulates the expression of Wnt/ β-catenin target genes. We present a mathematical model that describes the autocrine and paracrine regulation of hepatic gene expression by Dkk under wild-type conditions as well as in the presence of mutant cells. Results Our spatial model describes the competition of Dkk and Wnt at receptor level, intra-cellular Wnt/ β-catenin signalling, and the regulation of target gene expression for 21 individual hepatocytes. Autocrine and paracrine regulation is mediated through a feedback mechanism via Dkk and Dkk diffusion along the porto-central axis. Along this axis an APC concentration gradient is modelled as experimentally detected in liver. Simulations of mutant cells demonstrate that already a single mutant cell increases overall Dkk concentration. The influence of the mutant cell on gene expression of surrounding wild-type hepatocytes is limited in magnitude and restricted to hepatocytes in close proximity. To explore the underlying molecular mechanisms, we perform a comprehensive analysis of the model parameters such as diffusion coefficient, mutation strength and feedback strength. Conclusions Our simulations show that Dkk concentration is elevated in the presence of a mutant cell. However, the impact of these elevated Dkk levels on wild-type hepatocytes is confined in space and magnitude. The combination of inter- and intracellular processes, such as Dkk feedback, diffusion and Wnt/ β-catenin signal transduction, allow wild-type hepatocytes to largely maintain their gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0470-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Niklas Hartung
- University of Potsdam, Institute of Mathematics, Karl-Liebknecht-Str. 24, Potsdam, 14476, Germany
| | - Uwe Benary
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Str. 10, Berlin, 13125, Germany
| | - Jana Wolf
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Str. 10, Berlin, 13125, Germany
| | - Bente Kofahl
- Mathematical Modelling of Cellular Processes, Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Str. 10, Berlin, 13125, Germany. .,Current address: Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg i. Br., 79104, Germany.
| |
Collapse
|
15
|
Gasior K, Hauck M, Wilson A, Bhattacharya S. A Theoretical Model of the Wnt Signaling Pathway in the Epithelial Mesenchymal Transition. Theor Biol Med Model 2017; 14:19. [PMID: 28992816 PMCID: PMC5634852 DOI: 10.1186/s12976-017-0064-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/28/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Following the formation of a primary carcinoma, neoplastic cells metastasize by undergoing the epithelial mesenchymal transition (EMT), which is triggered by cues from inflammatory and stromal cells in the microenvironment. EMT allows epithelial cells to lose their highly adhesive nature and instead adopt the spindle-like appearance, as well as the invasive and migratory behavior, of mesenchymal cells. We hypothesize that a bistable switch between the epithelial and mesenchymal phenotypes governs EMT, allowing the cell to maintain its mesenchymal phenotype even after it leaves the primary tumor microenvironment and EMT-inducing extracellular signal. RESULTS This work presents a simple mathematical model of EMT, specifically the roles played by four key proteins in the Wnt signaling pathway: Dishevelled (Dvl), E-cadherin, β-catenin, and Slug. The model predicts that following activation of the Wnt pathway, an epithelial cell in the primary carcinoma must attain a threshold level of membrane-bound Dvl to convert to the mesenchymal-like phenotype and maintain that phenotype once it has migrated away from the primary tumor. Furthermore, sensitivity analysis of the model suggests that in both the epithelial and the mesenchymal states, the steady state behavior of E-cadherin and the transcription factor Slug are sensitive to changes in the degradation rate of Slug, while E-cadherin is also sensitive to the IC50 (half-maximal) concentration of Slug necessary to inhibit E-cadherin production. The steady state behavior of Slug exhibits sensitivity to changes in the rate at which it is induced by β-catenin upon activation of the Wnt pathway. In the presence of sufficient amount of Wnt ligand, E-cadherin levels are sensitive to the ratio of the rate of Slug activation via β-catenin to the IC50 concentration of Slug necessary to inhibit E-cadherin production. CONCLUSIONS The sensitivity of E-cadherin to the degradation rate of Slug, as well as the IC50 concentration of Slug necessary to inhibit E-cadherin production, shows how the adhesive nature of the cell depends on finely-tuned regulation of Slug. By highlighting the role of β-catenin in the activation of EMT and the relationship between E-cadherin and Slug, this model identifies critical parameters of therapeutic concern, such as the threshold level of Dvl necessary to inactivate the GSK-3β complex mediating β-catenin degradation, the rate at which β-catenin translocates to the nucleus, and the IC50 concentration of Slug needed to inhibit E-cadherin production.
Collapse
Affiliation(s)
- Kelsey Gasior
- North Carolina State University Biomathematics Program, Cox Hall, 2700 Stinson Dr, Raleigh, NC, 27607, USA.,Present address: University of North Carolina at Chapel Hill Department of Biology, Coker Hall CB #3280, 120 South Rd, Chapel Hill, NC, 27599, USA
| | - Marlene Hauck
- North Carolina State University Biomathematics Program, Cox Hall, 2700 Stinson Dr, Raleigh, NC, 27607, USA.,North Carolina State University College of Veterinary Medicine, 1060 William Moore Dr, Raleigh, NC, 27607, USA
| | - Alyson Wilson
- North Carolina State University Department of Statistics, SAS Hall, 2311 Stinson Dr, Raleigh, NC, 27607, USA
| | - Sudin Bhattacharya
- Department of Biomedical Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824-1226, USA. .,Pharmacology & Toxicology, Michigan State University, 1355 Bogue Street, B305 Life Sciences Building, East Lansing, MI, 48824, USA. .,Center for Research on Ingredient Safety, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA. .,Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824, USA.
| |
Collapse
|
16
|
Otero-Muras I, Yordanov P, Stelling J. Chemical Reaction Network Theory elucidates sources of multistability in interferon signaling. PLoS Comput Biol 2017; 13:e1005454. [PMID: 28369103 PMCID: PMC5400276 DOI: 10.1371/journal.pcbi.1005454] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/21/2017] [Accepted: 03/13/2017] [Indexed: 11/29/2022] Open
Abstract
Bistability has important implications in signaling pathways, since it indicates a potential cell decision between alternative outcomes. We present two approaches developed in the framework of the Chemical Reaction Network Theory for easy and efficient search of multiple steady state behavior in signaling networks (both with and without mass conservation), and apply them to search for sources of bistability at different levels of the interferon signaling pathway. Different type I interferon subtypes and/or doses are known to elicit differential bioactivities (ranging from antiviral, antiproliferative to immunomodulatory activities). How different signaling outcomes can be generated through the same receptor and activating the same JAK/STAT pathway is still an open question. Here, we detect bistability at the level of early STAT signaling, showing how two different cell outcomes are achieved under or above a threshold in ligand dose or ligand-receptor affinity. This finding could contribute to explain the differential signaling (antiviral vs apoptotic) depending on interferon dose and subtype (α vs β) observed in type I interferons.
Collapse
Affiliation(s)
- Irene Otero-Muras
- Department of Biosystems Science and Engineering and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Pencho Yordanov
- Department of Biosystems Science and Engineering and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Joerg Stelling
- Department of Biosystems Science and Engineering and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Kay SK, Harrington HA, Shepherd S, Brennan K, Dale T, Osborne JM, Gavaghan DJ, Byrne HM. The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt. PLoS Comput Biol 2017; 13:e1005400. [PMID: 28245235 PMCID: PMC5363986 DOI: 10.1371/journal.pcbi.1005400] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/23/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
The Notch pathway plays a vital role in determining whether cells in the intestinal epithelium adopt a secretory or an absorptive phenotype. Cell fate specification is coordinated via Notch's interaction with the canonical Wnt pathway. Here, we propose a new mathematical model of the Notch and Wnt pathways, in which the Hes1 promoter acts as a hub for pathway crosstalk. Computational simulations of the model can assist in understanding how healthy intestinal tissue is maintained, and predict the likely consequences of biochemical knockouts upon cell fate selection processes. Chemical reaction network theory (CRNT) is a powerful, generalised framework which assesses the capacity of our model for monostability or multistability, by analysing properties of the underlying network structure without recourse to specific parameter values or functional forms for reaction rates. CRNT highlights the role of β-catenin in stabilising the Notch pathway and damping oscillations, demonstrating that Wnt-mediated actions on the Hes1 promoter can induce dynamic transitions in the Notch system, from multistability to monostability. Time-dependent model simulations of cell pairs reveal the stabilising influence of Wnt upon the Notch pathway, in which β-catenin- and Dsh-mediated action on the Hes1 promoter are key in shaping the subcellular dynamics. Where Notch-mediated transcription of Hes1 dominates, there is Notch oscillation and maintenance of fate flexibility; Wnt-mediated transcription of Hes1 favours bistability akin to cell fate selection. Cells could therefore regulate the proportion of Wnt- and Notch-mediated control of the Hes1 promoter to coordinate the timing of cell fate selection as they migrate through the intestinal epithelium and are subject to reduced Wnt stimuli. Furthermore, mutant cells characterised by hyperstimulation of the Wnt pathway may, through coupling with Notch, invert cell fate in neighbouring healthy cells, enabling an aberrant cell to maintain its neighbours in mitotically active states.
Collapse
Affiliation(s)
- Sophie K. Kay
- Department of Computer Science, University of Oxford, Oxford, U.K.
| | | | - Sarah Shepherd
- School of Mathematical Sciences, University of Nottingham, Nottingham, U.K.
| | - Keith Brennan
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester, U.K.
| | - Trevor Dale
- School of Biosciences, Cardiff University, Cardiff, U.K.
| | - James M. Osborne
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | | | - Helen M. Byrne
- Department of Computer Science, University of Oxford, Oxford, U.K.
- Mathematical Institute, University of Oxford, Oxford, U.K.
| |
Collapse
|
18
|
Marcondes de Freitas M, Feliu E, Wiuf C. Intermediates, catalysts, persistence, and boundary steady states. J Math Biol 2016; 74:887-932. [PMID: 27480320 DOI: 10.1007/s00285-016-1046-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 07/20/2016] [Indexed: 11/28/2022]
Abstract
For dynamical systems arising from chemical reaction networks, persistence is the property that each species concentration remains positively bounded away from zero, as long as species concentrations were all positive in the beginning. We describe two graphical procedures for simplifying reaction networks without breaking known necessary or sufficient conditions for persistence, by iteratively removing so-called intermediates and catalysts from the network. The procedures are easy to apply and, in many cases, lead to highly simplified network structures, such as monomolecular networks. For specific classes of reaction networks, we show that these conditions for persistence are equivalent to one another. Furthermore, they can also be characterized by easily checkable strong connectivity properties of a related graph. In particular, this is the case for (conservative) monomolecular networks, as well as cascades of a large class of post-translational modification systems (of which the MAPK cascade and the n-site futile cycle are prominent examples). Since one of the aforementioned sufficient conditions for persistence precludes the existence of boundary steady states, our method also provides a graphical tool to check for that.
Collapse
Affiliation(s)
| | - Elisenda Feliu
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Wiuf
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
MacLean AL, Harrington HA, Stumpf MPH, Byrne HM. Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study. Methods Mol Biol 2016; 1386:405-439. [PMID: 26677193 DOI: 10.1007/978-1-4939-3283-2_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non-exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.
Collapse
Affiliation(s)
- Adam L MacLean
- Mathematical Institute, University of Oxford, Oxford, UK.
- Department of Life Sciences, Imperial College London, London, UK.
| | | | | | - Helen M Byrne
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
20
|
Gross E, Harrington HA, Rosen Z, Sturmfels B. Algebraic Systems Biology: A Case Study for the Wnt Pathway. Bull Math Biol 2015; 78:21-51. [PMID: 26645985 DOI: 10.1007/s11538-015-0125-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
Abstract
Steady-state analysis of dynamical systems for biological networks gives rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here, the variety is described by a polynomial system in 19 unknowns and 36 parameters. It has degree 9 over the parameter space. This case study explores multistationarity, model comparison, dynamics within regions of the state space, identifiability, and parameter estimation, from a geometric point of view. We employ current methods from computational algebraic geometry, polyhedral geometry, and combinatorics.
Collapse
Affiliation(s)
| | | | - Zvi Rosen
- Pennsylvania State University, State College, PA, USA.
| | | |
Collapse
|
21
|
MacLean AL, Kirk PDW, Stumpf MPH. Cellular population dynamics control the robustness of the stem cell niche. Biol Open 2015; 4:1420-6. [PMID: 26453624 PMCID: PMC4728354 DOI: 10.1242/bio.013714] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Within populations of cells, fate decisions are controlled by an indeterminate combination of cell-intrinsic and cell-extrinsic factors. In the case of stem cells, the stem cell niche is believed to maintain ‘stemness’ through communication and interactions between the stem cells and one or more other cell-types that contribute to the niche conditions. To investigate the robustness of cell fate decisions in the stem cell hierarchy and the role that the niche plays, we introduce simple mathematical models of stem and progenitor cells, their progeny and their interplay in the niche. These models capture the fundamental processes of proliferation and differentiation and allow us to consider alternative possibilities regarding how niche-mediated signalling feedback regulates the niche dynamics. Generalised stability analysis of these stem cell niche systems enables us to describe the stability properties of each model. We find that although the number of feasible states depends on the model, their probabilities of stability in general do not: stem cell–niche models are stable across a wide range of parameters. We demonstrate that niche-mediated feedback increases the number of stable steady states, and show how distinct cell states have distinct branching characteristics. The ecological feedback and interactions mediated by the stem cell niche thus lend (surprisingly) high levels of robustness to the stem and progenitor cell population dynamics. Furthermore, cell–cell interactions are sufficient for populations of stem cells and their progeny to achieve stability and maintain homeostasis. We show that the robustness of the niche – and hence of the stem cell pool in the niche – depends only weakly, if at all, on the complexity of the niche make-up: simple as well as complicated niche systems are capable of supporting robust and stable stem cell dynamics. Summary: Stem cell niche dynamics are very robust to external and physiological perturbations because proliferation and differentiation are naturally balanced and controlled by the reliance on a shared niche environment.
Collapse
Affiliation(s)
- Adam L MacLean
- Theoretical Systems Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Paul D W Kirk
- MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge CB2 0SR, UK
| | - Michael P H Stumpf
- Theoretical Systems Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|