1
|
Nakahara H, Sennari G, Azami H, Tsutsumi H, Watanabe Y, Noguchi Y, Inahashi Y, Iwatsuki M, Hirose T, Sunazuka T. Isolation, total synthesis and structure determination of antifungal macrocyclic depsipeptide, tetraselide. Chem Sci 2025; 16:6060-6069. [PMID: 40070467 PMCID: PMC11892018 DOI: 10.1039/d5sc00566c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Macrocyclic peptides, including depsipeptides, are an emerging new modality in drug discovery research. Tetraselide, an antifungal cyclic peptide isolated from a marine-derived filamentous fungus, possesses a unique amphiphilic structural feature consisting of five consecutive β-hydroxy-amino acid residues and fatty acid moieties. Because the structure elucidation of the naturally occurring product left six stereocenters ambiguous, we implemented bioinformatic analyses, chemical degradation studies and chiral pool fragment synthesis to identify two of the undetermined stereocenters. Convergent total synthesis of the four remaining plausible isomers of tetraselide was accomplished via liquid-phase peptide synthesis (LPPS) using soluble hydrophobic tag auxiliaries. The key advances involve fragment coupling by the serine/threonine ligation (STL) reaction and head-to-tail macrolactamization of the carrier-supported precursors that enabled systematic elaboration of the amphiphilic cyclic peptides. Ultimately, we determined the absolute structure of this natural product.
Collapse
Affiliation(s)
- Hiroki Nakahara
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Goh Sennari
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Haruki Azami
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Hayama Tsutsumi
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Yoshihiro Watanabe
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Yoshihiko Noguchi
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Yuki Inahashi
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| | - Toshiaki Sunazuka
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University 5-9-1 Shirokane, Minato-ku Tokyo 108-8641 Japan
| |
Collapse
|
2
|
Dash R, Liu Z, Lepori I, Chordia MD, Ocius K, Holsinger K, Zhang H, Kenyon R, Im W, Siegrist MS, Pires MM. Systematic Determination of the Impact of Structural Edits on Peptide Accumulation into Mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633618. [PMID: 39868157 PMCID: PMC11760776 DOI: 10.1101/2025.01.17.633618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Understanding the factors that influence the accumulation of molecules beyond the mycomembrane of Mycobacterium tuberculosis ( Mtb ) - the main barrier to accumulation - is essential for developing effective antimycobacterial agents. In this study, we investigated two design principles commonly observed in natural products and mammalian cell-permeable peptides: backbone N -alkylation and macrocyclization. To assess how these structural edits impact molecule accumulation beyond the mycomembrane, we utilized our recently developed Peptidoglycan Accessibility Click-Mediated Assessment (PAC-MAN) assay for live-cell analysis. Our findings provide the first empirical evidence that peptide macrocyclization generally enhances accumulation in mycobacteria, while N -alkylation influences accumulation in a context-dependent manner. We examined these design principles in the context of two peptide antibiotics, tridecaptin A1 and griselimycin, which revealed the roles of N -alkylation and macrocyclization in improving both accumulation and antimicrobial activity against mycobacteria in specific contexts. Together, we present a working model for strategic structural modifications aimed at enhancing the accumulation of molecules past the mycomembrane. More broadly, our results also challenge the prevailing belief in the field that large and hydrophilic molecules, such as peptides, cannot readily traverse the mycomembrane.
Collapse
|
3
|
Bannon MS, Ellena JF, Gourishankar AS, Marsh SR, Trevisan-Silva D, Sherman NE, Jourdan LJ, Gourdie RG, Letteri RA. Multi-site esterification: a tunable, reversible strategy to tailor therapeutic peptides for delivery. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2024; 9:1215-1227. [PMID: 39281343 PMCID: PMC11395315 DOI: 10.1039/d4me00072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
Peptides are naturally potent and selective therapeutics with massive potential; however, low cell membrane permeability limits their clinical implementation, particularly for hydrophilic, anionic peptides with intracellular targets. To overcome this limitation, esterification of anionic carboxylic acids on therapeutic peptides can simultaneously increase hydrophobicity and net charge to facilitate cell internalization, whereafter installed esters can be cleaved hydrolytically to restore activity. To date, however, most esterified therapeutics contain either a single esterification site or multiple esters randomly incorporated on multiple sites. This investigation provides molecular engineering insight into how the number and position of esters installed onto the therapeutic peptide α carboxyl terminus 11 (αCT11, RPRPDDLEI) with 4 esterification sites affect hydrophobicity and the hydrolysis process that reverts the peptide to its original form. After installing methyl esters onto αCT11 using Fischer esterification, we isolated 5 distinct products and used 2D nuclear magnetic resonance spectroscopy, reverse-phase high performance liquid chromatography, and mass spectrometry to determine which residues were esterified in each and the resulting increase in hydrophobicity. We found esterifying the C-terminal isoleucine to impart the largest increase in hydrophobicity. Monitoring ester hydrolysis showed the C-terminal isoleucine ester to be the most hydrolytically stable, followed by the glutamic acid, whereas esters on aspartic acids hydrolyze rapidly. LC-MS revealed the formation of transient intramolecular aspartimides prior to hydrolysis to carboxylic acids. In vitro proof-of-concept experiments showed esterifying αCT11 to increase cell migration into a scratch, highlighting the potential of multi-site esterification as a tunable, reversible strategy to enable the delivery of therapeutic peptides.
Collapse
Affiliation(s)
- Mark S Bannon
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22903 USA +1 434 243 3628
| | - Jeffrey F Ellena
- Biomolecular Magnetic Resonance Facility, School of Medicine, University of Virginia Charlottesville VA 22903 USA
| | - Aditi S Gourishankar
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22903 USA +1 434 243 3628
| | - Spencer R Marsh
- Fralin Biomedical Institute, Virginia Tech Carillion School of Medicine Roanoke VA 24016 USA
| | - Dilza Trevisan-Silva
- Biomolecular Analysis Facility, School of Medicine, University of Virginia Charlottesville VA 22903 USA
| | - Nicholas E Sherman
- Biomolecular Analysis Facility, School of Medicine, University of Virginia Charlottesville VA 22903 USA
| | - L Jane Jourdan
- Fralin Biomedical Institute, Virginia Tech Carillion School of Medicine Roanoke VA 24016 USA
| | - Robert G Gourdie
- Fralin Biomedical Institute, Virginia Tech Carillion School of Medicine Roanoke VA 24016 USA
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia Charlottesville VA 22903 USA +1 434 243 3628
| |
Collapse
|
4
|
Yang Y, Qian Z, Wu C, Cheng Y, Yang B, Shao J, Zhao J, Zhu X, Jia X, Feng L. Differential absorption and metabolic characteristics of organic acid components in pudilan xiaoyan oral liquid between young rats and adult rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118528. [PMID: 38972526 DOI: 10.1016/j.jep.2024.118528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pudilan Xiaoyan Oral Liquid (PDL) is a proprietary Chinese medicinal preparation approved by the State for treating acute pharyngitis in both adults and children (Approval No. Z20030095). It is worth noting that children exhibit unique physiopathological characteristics compared to adults. However, the in vivo regulatory characteristics of PDL in treating acute pharyngitis in children remain incompletely understood. AIM OF THE STUDY The differential absorption and metabolism characteristics of the main pharmacological components in PDL in young and adult rats were investigated with a view to providing a reference for preclinical data of PDL in medication for children. MATERIALS AND METHODS This study utilized UPLC-Q-TOF-MS to investigate the pharmacodynamic material basis of PDL. The focus was on the gastrointestinal digestion and absorption characteristics of organic acid components in PDL (PDL-OAC), known as the primary pharmacodynamic components in this formulation. The research combined in vitro dynamic simulation and a Quadruple single-pass intestinal perfusion model to examine these characteristics. The permeability properties of PDL-OAC were evaluated using an artificial parallel membrane model. Additionally, an acute pharyngitis model was established to evaluate the histopathological condition of the pharynx in young rats using H&E staining. The levels of IL-1β, TNF-α, IL-6, and IL-10 in blood and pharyngeal tissue homogenates of young rats were quantified using ELISA kits. RESULTS A total of 91 components were identified in PDL, including 33 organic acids, 24 flavonoids, 14 alkaloids, 5 terpenoids and coumarins, 3 sugars, and 12 amino acids. The PDL-OAC exhibited a significant reduction in IL-1β, TNF-α, IL-6, and IL-10 levels in the pharyngeal tissues of young rats with acute pharyngitis. Results from dynamic simulation studies of gastrointestinal fluids revealed that the PDL-OAC (Specifically chlorogenic acid (CGA), gallic acid (GA), chicoric acid (CRA), and caffeic acid (CA)) were effectively stabilized in the gastrointestinal fluids of both children and adults in vitro. Young rats, characterized by thinner intestinal walls and higher permeability, efficiently absorbed the four organic acids across the entire intestinal segment. The absorption of CGA, GA, and CRA followed a concentration-dependent pattern, with CGA and GA absorption being influenced by exocytosis. CONCLUSION The efficacy of the PDL-OAC in treating acute pharyngitis was demonstrated in young rats. The absorption rate of these components was observed to be faster in young rats compared to adult rats, underscoring the need for dedicated studies on the drug's usage in children. This research provides valuable insights for the appropriate clinical use of PDL in pediatric patients.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Zhouyang Qian
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Chenhui Wu
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yue Cheng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Bing Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Jianguo Shao
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing, 225400, PR China.
| | - Jing Zhao
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing, 225400, PR China.
| | - Xiangjun Zhu
- Jiangsu Health Development Research Center, National Health and Family Planning Commission Contraceptives Adverse Reaction Surveillance Center, Nanjing, 210036, PR China.
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
5
|
Farley KA, Che Y, Lira R, Jones P, Papaioannou N, Hayward M, Flanagan ME, Langille J, Liang S, Pierce BS, Ciszewski G, Bonin P, Vincent F, Ramsey S, Hepworth D. Cyclic Peptide C5aR1 Antagonist Design Using Solution Conformational Analysis Derived from Residual Dipolar Couplings. ACS Med Chem Lett 2024; 15:2060-2066. [PMID: 39563814 PMCID: PMC11571007 DOI: 10.1021/acsmedchemlett.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
To gain further insight into the conformational properties of small cyclic peptides that bind to the G-protein coupled receptor C5aR1, we report here for the first time the elucidation of three peptide solution conformations using residual dipolar couplings and NMR temperature coefficients. Each of these peptides varies by at least one amino acid, adopts a different intramolecular hydrogen bonding pattern, and has a different solution conformation. The solution conformations were used in combination with a homology structure of C5aR1 as a design template for increasing the potency of peptide leads for the C5a receptor. This study provides a framework for using RDC solution conformations to guide the design of peptide mimetics that emulate the target bound state in solution to minimize the strain energy of the bound conformation and improve potency of the peptide for the target.
Collapse
Affiliation(s)
- Kathleen A Farley
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Ye Che
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Ricardo Lira
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Peter Jones
- Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Nikolaos Papaioannou
- Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Matthew Hayward
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Mark E Flanagan
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Jonathan Langille
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Sidney Liang
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Betsy S Pierce
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Gregory Ciszewski
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Paul Bonin
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Fabien Vincent
- Medicine Design, Pfizer Inc., 445 Eastern Point Rd, Groton, Connecticut 06340, United States
| | - Simeon Ramsey
- Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - David Hepworth
- Medicine Design, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Zhao G, Richaud AD, Williamson RT, Feig M, Roche SP. De Novo Synthesis and Structural Elucidation of CDR-H3 Loop Mimics. ACS Chem Biol 2024; 19:1583-1592. [PMID: 38916527 PMCID: PMC11299430 DOI: 10.1021/acschembio.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The binding affinity of antibodies to specific antigens stems from a remarkably broad repertoire of hypervariable loops known as complementarity-determining regions (CDRs). While recognizing the pivotal role of the heavy-chain 3 CDRs (CDR-H3s) in maximizing antibody-antigen affinity and specificity, the key structural determinants responsible for their adaptability to diverse loop sequences, lengths, and noncanonical structures are hitherto unknown. To address this question, we achieved a de novo synthesis of bulged CDR-H3 mimics excised from their full antibody context. CD and NMR data revealed that these stable standalone β-hairpin scaffolds are well-folded and retain many of the native bulge CDR-H3 features in water. In particular, the tryptophan residue, highly conserved across CDR-H3 sequences, was found to extend the kinked base of these β-bulges through a combination of stabilizing intramolecular hydrogen bond and CH/π interaction. The structural ensemble consistent with our NMR observations exposed the dynamic nature of residues at the base of the loop, suggesting that β-bulges act as molecular hinges connecting the rigid stem to the more flexible loops of CDR-H3s. We anticipate that this deeper structural understanding of CDR-H3s will lay the foundation to inform the design of antibody drugs broadly and engineer novel CDR-H3 peptide scaffolds as therapeutics.
Collapse
Affiliation(s)
- Guangkuan Zhao
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Alexis D. Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - R. Thomas Williamson
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28409, United States
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Stéphane P. Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| |
Collapse
|
7
|
Angera IJ, Wright MM, Del Valle JR. Beyond N-Alkylation: Synthesis, Structure, and Function of N-Amino Peptides. Acc Chem Res 2024; 57:1287-1297. [PMID: 38626119 PMCID: PMC12051130 DOI: 10.1021/acs.accounts.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The growing list of physiologically important protein-protein interactions (PPIs) has amplified the need for compounds to target topologically complex biomolecular surfaces. In contrast to small molecules, peptide and protein mimics can exhibit three-dimensional shape complementarity across a large area and thus have the potential to significantly expand the "druggable" proteome. Strategies to stabilize canonical protein secondary structures without sacrificing side-chain content are particularly useful in the design of peptide-based chemical probes and therapeutics.Substitution of the backbone amide in peptides represents a subtle chemical modification with profound effects on conformation and stability. Studies focused on N-alkylation have already led to broad-ranging applications in peptidomimetic design. Inspired by nonribosomal peptide natural products harboring amide N-oxidations, we envisioned that main-chain hydrazide and hydroxamate bonds would impose distinct conformational preferences and offer unique opportunities for backbone diversification. This Account describes our exploration of peptide N-amination as a strategy for stabilizing canonical protein folds and for the structure-based design of soluble amyloid mimics.We developed a general synthetic protocol to access N-amino peptides (NAPs) on solid support. In an effort to stabilize β-strand conformation, we designed stitched peptidomimetics featuring covalent tethering of the backbone N-amino substituent to the preceding residue side chain. Using a combination of NMR, X-ray crystallography, and molecular dynamics simulations, we discovered that backbone N-amination alone could significantly stabilize β-hairpin conformation in multiple models of folding. Our studies revealed that the amide NH2 substituent in NAPs participates in cooperative noncovalent interactions that promote β-sheet secondary structure. In contrast to Cα-substituted α-hydrazino acids, we found that N-aminoglycine and its N'-alkylated derivatives instead stabilize polyproline II (PPII) conformation. The reactivity of hydrazides also allows for late-stage peptide macrocyclization, affording novel covalent surrogates of side-chain-backbone H-bonds.The pronounced β-sheet propensity of Cα-substituted α-hydrazino acids prompted us to target amyloidogenic proteins using NAP-based β-strand mimics. Backbone N-amination was found to render aggregation-prone lead sequences soluble and resistant to proteolysis. Inhibitors of Aβ and tau identified through N-amino scanning blocked protein aggregation and the formation of mature fibrils in vitro. We further identified NAP-based single-strand and cross-β tau mimics capable of inhibiting the prion-like cellular seeding activity of recombinant and patient-derived tau fibrils.Our studies establish backbone N-amination as a valuable addition to the peptido- and proteomimetic tool kit. α-Hydrazino acids show particular promise as minimalist β-strand mimics that retain side-chain information. Late-stage derivatization of hydrazides also provides facile entry into libraries of backbone-edited peptides. We anticipate that NAPs will thus find applications in the development of optimally constrained folds and modulators of PPIs.
Collapse
Affiliation(s)
- Isaac J. Angera
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Madison M. Wright
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Juan R. Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Merz ML, Habeshian S, Li B, David JAGL, Nielsen AL, Ji X, Il Khwildy K, Duany Benitez MM, Phothirath P, Heinis C. De novo development of small cyclic peptides that are orally bioavailable. Nat Chem Biol 2024; 20:624-633. [PMID: 38155304 PMCID: PMC11062899 DOI: 10.1038/s41589-023-01496-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/02/2023] [Indexed: 12/30/2023]
Abstract
Cyclic peptides can bind challenging disease targets with high affinity and specificity, offering enormous opportunities for addressing unmet medical needs. However, as with biological drugs, most cyclic peptides cannot be applied orally because they are rapidly digested and/or display low absorption in the gastrointestinal tract, hampering their development as therapeutics. In this study, we developed a combinatorial synthesis and screening approach based on sequential cyclization and one-pot peptide acylation and screening, with the possibility of simultaneously interrogating activity and permeability. In a proof of concept, we synthesized a library of 8,448 cyclic peptides and screened them against the disease target thrombin. Our workflow allowed multiple iterative cycles of library synthesis and yielded cyclic peptides with nanomolar affinities, high stabilities and an oral bioavailability (%F) as high as 18% in rats. This method for generating orally available peptides is general and provides a promising push toward unlocking the full potential of peptides as therapeutics.
Collapse
Affiliation(s)
- Manuel L Merz
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sevan Habeshian
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bo Li
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jean-Alexandre G L David
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexander L Nielsen
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xinjian Ji
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Khaled Il Khwildy
- Center of Phenogenomics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maury M Duany Benitez
- Center of Phenogenomics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Phoukham Phothirath
- Center of Phenogenomics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
9
|
Dal Poggetto G, DiCaprio A, Reibarkh M, Cohen RD. Ultra-clean pure shift NMR with optimal water suppression for analysis of aqueous pharmaceutical samples. Analyst 2024; 149:2227-2231. [PMID: 38517550 DOI: 10.1039/d3an02150e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Pure shift NMR experiments greatly enhance spectral resolution by collapsing multiplet structures into singlets and, with water suppression, can be used for aqueous samples. Here, we combine ultra-clean pure-shift NMR (SAPPHIRE) with two different internally encoded water suppression schemes to achieve optimal performance for small molecule and macrocyclic peptide pharmaceuticals in water and acetonitrile-water mixtures.
Collapse
Affiliation(s)
| | - Adam DiCaprio
- Merck & Co., Inc., 770 Sumneytown Pike, 19846, West Point, PA, USA
| | - Mikhail Reibarkh
- Merck & Co., Inc., 126 East Lincoln Avenue, 07065, Rahway, NJ, USA.
| | - Ryan D Cohen
- Merck & Co., Inc., 126 East Lincoln Avenue, 07065, Rahway, NJ, USA.
| |
Collapse
|
10
|
Huh S, Batistatou N, Wang J, Saunders GJ, Kritzer JA, Yudin AK. Cell penetration of oxadiazole-containing macrocycles. RSC Chem Biol 2024; 5:328-334. [PMID: 38576720 PMCID: PMC10989506 DOI: 10.1039/d3cb00201b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 04/06/2024] Open
Abstract
Passive membrane permeability is an important property in drug discovery and biological probe design. To elucidate the cell-penetrating ability of oxadiazole-containing (Odz) peptides, we employed the Chloroalkane Penetration Assay. The present study demonstrates that Odz cyclic peptides can be highly cell-penetrant depending on the position of specific side chains and the chloroalkane tag. Solution NMR shows that Odz cyclic peptides adopt a β-turn conformation. However, despite observing high cell penetration, we observed low passive permeability in experiments with artificial membranes. These findings highlight the complexity of controlling cell penetration for conformationally sensitive macrocycles and suggest that Odz cyclic peptides may provide a framework for designing cell-penetrant cyclic peptides.
Collapse
Affiliation(s)
- Sungjoon Huh
- Davenport Research Laboratories, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
| | - Nefeli Batistatou
- Department of Chemistry, Tufts University 62 Talbot Ave Medford MA 02155 USA
| | - Jing Wang
- Department of Chemistry, Tufts University 62 Talbot Ave Medford MA 02155 USA
| | - George J Saunders
- Davenport Research Laboratories, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University 62 Talbot Ave Medford MA 02155 USA
| | - Andrei K Yudin
- Davenport Research Laboratories, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
11
|
Maw ZA, Haltli B, Guo JJ, Baldisseri DM, Cartmell C, Kerr RG. Discovery of Acyl-Surugamide A2 from Marine Streptomyces albidoflavus RKJM-0023-A New Cyclic Nonribosomal Peptide Containing an N-ε-acetyl-L-lysine Residue. Molecules 2024; 29:1482. [PMID: 38611762 PMCID: PMC11012974 DOI: 10.3390/molecules29071482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
We report the discovery of a novel cyclic nonribosomal peptide (NRP), acyl-surugamide A2, from a marine-derived Streptomyces albidoflavus RKJM-0023 (CP133227). The structure of acyl-surugamide A2 was elucidated using a combination of NMR spectroscopy, MS2 fragmentation analysis, and comparative analysis of the sur biosynthetic gene cluster. Acyl-surugamide A2 contains all eight core amino acids of surugamide A, with a modified N-ε-acetyl-L-lysine residue. Our study highlights the potential of marine Streptomyces strains to produce novel natural products with potential therapeutic applications. The structure of cyclic peptides can be solved using MS2 spectra and analysis of their biosynthetic gene clusters.
Collapse
Affiliation(s)
- Zacharie A. Maw
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (Z.A.M.)
| | - Bradley Haltli
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (Z.A.M.)
- Nautilus Biosciences, Croda Canada Limited, Charlottetown, PE C1A 4P3, Canada
| | - Jason J. Guo
- Department of Chemistry & Chemical Biology, Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | | | - Christopher Cartmell
- Department of Pharmacology, Comprehensive Center for Pain & Addiction, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Russell G. Kerr
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; (Z.A.M.)
- Nautilus Biosciences, Croda Canada Limited, Charlottetown, PE C1A 4P3, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
12
|
Faris J, Adaligil E, Popovych N, Ono S, Takahashi M, Nguyen H, Plise E, Taechalertpaisarn J, Lee HW, Koehler MFT, Cunningham CN, Lokey RS. Membrane Permeability in a Large Macrocyclic Peptide Driven by a Saddle-Shaped Conformation. J Am Chem Soc 2024; 146:4582-4591. [PMID: 38330910 PMCID: PMC10885153 DOI: 10.1021/jacs.3c10949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
The effort to modulate challenging protein targets has stimulated interest in ligands that are larger and more complex than typical small-molecule drugs. While combinatorial techniques such as mRNA display routinely produce high-affinity macrocyclic peptides against classically undruggable targets, poor membrane permeability has limited their use toward primarily extracellular targets. Understanding the passive membrane permeability of macrocyclic peptides would, in principle, improve our ability to design libraries whose leads can be more readily optimized against intracellular targets. Here, we investigate the permeabilities of over 200 macrocyclic 10-mers using the thioether cyclization motif commonly found in mRNA display macrocycle libraries. We identified the optimal lipophilicity range for achieving permeability in thioether-cyclized 10-mer cyclic peptide-peptoid hybrid scaffolds and showed that permeability could be maintained upon extensive permutation in the backbone. In one case, changing a single amino acid from d-Pro to d-NMe-Ala, representing the loss of a single methylene group in the side chain, resulted in a highly permeable scaffold in which the low-dielectric conformation shifted from the canonical cross-beta geometry of the parent compounds into a novel saddle-shaped fold in which all four backbone NH groups were sequestered from the solvent. This work provides an example by which pre-existing physicochemical knowledge of a scaffold can benefit the design of macrocyclic peptide mRNA display libraries, pointing toward an approach for biasing libraries toward permeability by design. Moreover, the compounds described herein are a further demonstration that geometrically diverse, highly permeable scaffolds exist well beyond conventional drug-like chemical space.
Collapse
Affiliation(s)
- Justin
H. Faris
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Emel Adaligil
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Nataliya Popovych
- Department
of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Satoshi Ono
- Innovative
Research Division, Mitsubishi Tanabe Pharma
Corporation, Kanagawa 227-0033, Japan
| | - Mifune Takahashi
- Department
of Drug Metabolism and Pharmacokinetics, Genentech, South
San Francisco, California 94080, United States
| | - Huy Nguyen
- Department
of Analytical Research, Genentech, South San Francisco, California 94080, United States
| | - Emile Plise
- Department
of Drug Metabolism and Pharmacokinetics, Genentech, South
San Francisco, California 94080, United States
| | - Jaru Taechalertpaisarn
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Hsiau-Wei Lee
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Michael F. T. Koehler
- Department
of Medicinal Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Christian N. Cunningham
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - R. Scott Lokey
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| |
Collapse
|
13
|
Asano D, Takakusa H, Nakai D. Oral Absorption of Middle-to-Large Molecules and Its Improvement, with a Focus on New Modality Drugs. Pharmaceutics 2023; 16:47. [PMID: 38258058 PMCID: PMC10820198 DOI: 10.3390/pharmaceutics16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
To meet unmet medical needs, middle-to-large molecules, including peptides and oligonucleotides, have emerged as new therapeutic modalities. Owing to their middle-to-large molecular sizes, middle-to-large molecules are not suitable for oral absorption, but there are high expectations around orally bioavailable macromolecular drugs, since oral administration is the most convenient dosing route. Therefore, extensive efforts have been made to create bioavailable middle-to-large molecules or develop absorption enhancement technology, from which some successes have recently been reported. For example, Rybelsus® tablets and Mycapssa® capsules, both of which contain absorption enhancers, were approved as oral medications for type 2 diabetes and acromegaly, respectively. The oral administration of Rybelsus and Mycapssa exposes their pharmacologically active peptides with molecular weights greater than 1000, namely, semaglutide and octreotide, respectively, into systemic circulation. Although these two medications represent major achievements in the development of orally absorbable peptide formulations, the oral bioavailability of peptides after taking Rybelsus and Mycapssa is still only around 1%. In this article, we review the approaches and recent advances of orally bioavailable middle-to-large molecules and discuss challenges for improving their oral absorption.
Collapse
Affiliation(s)
- Daigo Asano
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan; (H.T.); (D.N.)
| | | | | |
Collapse
|
14
|
Ghosh P, Raj N, Verma H, Patel M, Chakraborti S, Khatri B, Doreswamy CM, Anandakumar SR, Seekallu S, Dinesh MB, Jadhav G, Yadav PN, Chatterjee J. An amide to thioamide substitution improves the permeability and bioavailability of macrocyclic peptides. Nat Commun 2023; 14:6050. [PMID: 37770425 PMCID: PMC10539501 DOI: 10.1038/s41467-023-41748-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Solvent shielding of the amide hydrogen bond donor (NH groups) through chemical modification or conformational control has been successfully utilized to impart membrane permeability to macrocyclic peptides. We demonstrate that passive membrane permeability can also be conferred by masking the amide hydrogen bond acceptor (>C = O) through a thioamide substitution (>C = S). The membrane permeability is a consequence of the lower desolvation penalty of the macrocycle resulting from a concerted effect of conformational restriction, local desolvation of the thioamide bond, and solvent shielding of the amide NH groups. The enhanced permeability and metabolic stability on thioamidation improve the bioavailability of a macrocyclic peptide composed of hydrophobic amino acids when administered through the oral route in rats. Thioamidation of a bioactive macrocyclic peptide composed of polar amino acids results in analogs with longer duration of action in rats when delivered subcutaneously. These results highlight the potential of O to S substitution as a stable backbone modification in improving the pharmacological properties of peptide macrocycles.
Collapse
Affiliation(s)
- Pritha Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nishant Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Hitesh Verma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Monika Patel
- Neuroscience & Ageing Biology, CSIR-CDRI, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sohini Chakraborti
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Bhavesh Khatri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Chandrashekar M Doreswamy
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - S R Anandakumar
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - Srinivas Seekallu
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - M B Dinesh
- Central Animal Facility, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Gajanan Jadhav
- Eurofins Advinus Biopharma Services India Pvt. Ltd., Bangalore, 560058, Karnataka, India
| | - Prem Narayan Yadav
- Neuroscience & Ageing Biology, CSIR-CDRI, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayanta Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
15
|
Ramelot TA, Palmer J, Montelione GT, Bhardwaj G. Cell-permeable chameleonic peptides: Exploiting conformational dynamics in de novo cyclic peptide design. Curr Opin Struct Biol 2023; 80:102603. [PMID: 37178478 PMCID: PMC10923192 DOI: 10.1016/j.sbi.2023.102603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
Membrane-traversing peptides offer opportunities for targeting intracellular proteins and oral delivery. Despite progress in understanding the mechanisms underlying membrane traversal in natural cell-permeable peptides, there are still several challenges to designing membrane-traversing peptides with diverse shapes and sizes. Conformational flexibility appears to be a key determinant of membrane permeability of large macrocycles. We review recent developments in the design and validation of chameleonic cyclic peptides, which can switch between alternative conformations to enable improved permeability through cell membranes, while still maintaining reasonable solubility and exposed polar functional groups for target protein binding. Finally, we discuss the principles, strategies, and practical considerations for rational design, discovery, and validation of permeable chameleonic peptides.
Collapse
Affiliation(s)
- Theresa A Ramelot
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jonathan Palmer
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA; Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Gaurav Bhardwaj
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA; Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
16
|
Hosono Y, Uchida S, Shinkai M, Townsend CE, Kelly CN, Naylor MR, Lee HW, Kanamitsu K, Ishii M, Ueki R, Ueda T, Takeuchi K, Sugita M, Akiyama Y, Lokey SR, Morimoto J, Sando S. Amide-to-ester substitution as a stable alternative to N-methylation for increasing membrane permeability in cyclic peptides. Nat Commun 2023; 14:1416. [PMID: 36932083 PMCID: PMC10023679 DOI: 10.1038/s41467-023-36978-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Naturally occurring peptides with high membrane permeability often have ester bonds on their backbones. However, the impact of amide-to-ester substitutions on the membrane permeability of peptides has not been directly evaluated. Here we report the effect of amide-to-ester substitutions on the membrane permeability and conformational ensemble of cyclic peptides related to membrane permeation. Amide-to-ester substitutions are shown to improve the membrane permeability of dipeptides and a model cyclic hexapeptide. NMR-based conformational analysis and enhanced sampling molecular dynamics simulations suggest that the conformational transition of the cyclic hexapeptide upon membrane permeation is differently influenced by an amide-to-ester substitution and an amide N-methylation. The effect of amide-to-ester substitution on membrane permeability of other cyclic hexapeptides, cyclic octapeptides, and a cyclic nonapeptide is also investigated to examine the scope of the substitution. Appropriate utilization of amide-to-ester substitution based on our results will facilitate the development of membrane-permeable peptides.
Collapse
Affiliation(s)
- Yuki Hosono
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoshi Uchida
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Moe Shinkai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Chad E Townsend
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Colin N Kelly
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Matthew R Naylor
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Kayoko Kanamitsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mayumi Ishii
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takumi Ueda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masatake Sugita
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yutaka Akiyama
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
- Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Scott R Lokey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
17
|
Ono T, Tabata KV, Noji H, Morimoto J, Sando S. Each side chain of cyclosporin A is not essential for high passive permeability across lipid bilayers. RSC Adv 2023; 13:8394-8397. [PMID: 36922944 PMCID: PMC10010161 DOI: 10.1039/d3ra01358h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
We compared the passive permeability of cyclosporin A (CsA) derivatives with side chain deletions across lipid bilayers. CsA maintained passive permeability after losing any one of the side chains, which suggests that the propensity of the backbone of CsA is an important component for high passive permeability.
Collapse
Affiliation(s)
- Takahiro Ono
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kazuhito V Tabata
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Jumpei Morimoto
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shinsuke Sando
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan .,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
18
|
Lohman RJ, Reddy Tupally K, Kandale A, Cabot PJ, Parekh HS. Design and development of novel, short, stable dynorphin-based opioid agonists for safer analgesic therapy. Front Pharmacol 2023; 14:1150313. [PMID: 36937883 PMCID: PMC10020352 DOI: 10.3389/fphar.2023.1150313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Kappa opioid receptors have exceptional potential as an analgesic target, seemingly devoid of many problematic Mu receptor side-effects. Kappa-selective, small molecule pharmaceutical agents have been developed, but centrally mediated side-effects limit clinical translation. We modify endogenous dynorphin peptides to improve drug-likeness and develop safer KOP receptor agonists for clinical use. Using rational, iterative design, we developed a series of potent, selective, and metabolically stable peptides from dynorphin 1-7. Peptides were assessed for in vitro cAMP-modulation against three opioid receptors, metabolic stability, KOP receptor selectivity, desensitisation and pERK-signalling capability. Lead peptides were evaluated for in vivo efficacy in a rat model of inflammatory nociception. A library of peptides was synthesised and assessed for pharmacological and metabolic stability. Promising peptide candidates showed low nanomolar KOP receptor selectivity in cAMP assay, and improved plasma and trypsin stability. Selected peptides showed bias towards cAMP signalling over pERK activity, also demonstrating reduced desensitisation. In vivo, two peptides showed significant opioid-like antinociception comparable to morphine and U50844H. These highly potent and metabolically stable peptides are promising opioid analgesic leads for clinical translation. Since they are somewhat biased peptide Kappa agonists they may lack many significant side-effects, such as tolerance, addiction, sedation, and euphoria/dysphoria, common to opioid analgesics.
Collapse
|
19
|
Mueed A, Madjirebaye P, Shibli S, Deng Z. Flaxseed Peptides and Cyclolinopeptides: A Critical Review on Proteomic Approaches, Biological Activity, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14600-14612. [PMID: 36355404 DOI: 10.1021/acs.jafc.2c06769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Linusorbs (LOs) and peptides from flaxseed protein have documented biological activity, such as angiotensin-converting enzyme inhibition, antioxidant, anticancer, and immunosuppressive activities, but their mechanism and structure-related bioactivity have not been summarized previously. Therefore, this study reviews the structure, composition, bioavailability, and health benefits of flaxseed peptides and LOs as well as peptide generation and LO modification. However, these peptides and LOs are long linear and cyclic structures, which affect the absorption and bioavailability of these substances in living beings and, thus, impair their overall efficiency and pharmacological effectiveness. Therefore, the development of novel strategies for optimizing the bioavailability of these peptide compounds is critical to ensure their successful application and delivery to the target sites via specially designed methods that will significantly improve their in vivo concentration and also investigate the structure-related activity of distinct amino acid and functional groups in physiological activity. Additionally, these native peptides and their analogues can be used as scaffolds for the production of antibodies.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Philippe Madjirebaye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Sahar Shibli
- Food Science Research Institute, National Agricultural Research Center, Islamabad 44000, Pakistan
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
20
|
Zheng Y, Ongpipattanakul C, Nair SK. Bioconjugate Platform for Iterative Backbone N-Methylation of Peptides. ACS Catal 2022; 12:14006-14014. [PMID: 36793448 PMCID: PMC9928189 DOI: 10.1021/acscatal.2c04681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
N-methylation of peptide backbones has often been utilized as a strategy towards the development of peptidic drugs. However, difficulties in the chemical synthesis, high cost of enantiopure N-methyl building blocks, and subsequent coupling inefficiencies have hampered larger-scale medicinal chemical efforts. Here, we present a chemoenzymatic strategy for backbone N-methylation by bioconjugation of peptides of interest to the catalytic scaffold of a borosin-type methyltransferase. Crystal structures of a substrate tolerant enzyme from Mycena rosella guided the design of a decoupled catalytic scaffold that can be linked via a heterobifunctional crosslinker to any peptide substrate of choice. Peptides linked to the scaffold, including those with non-proteinogenic residues, show robust backbone N-methylation. Various crosslinking strategies were tested to facilitate substrate disassembly, which enabled a reversible bioconjugation approach that efficiently released modified peptide. Our results provide general framework for the backbone N-methylation on any peptide of interest and may facilitate the production of large libraries of N-methylated peptides.
Collapse
Affiliation(s)
- Yiwu Zheng
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL, 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| |
Collapse
|
21
|
Bhardwaj G, O'Connor J, Rettie S, Huang YH, Ramelot TA, Mulligan VK, Alpkilic GG, Palmer J, Bera AK, Bick MJ, Di Piazza M, Li X, Hosseinzadeh P, Craven TW, Tejero R, Lauko A, Choi R, Glynn C, Dong L, Griffin R, van Voorhis WC, Rodriguez J, Stewart L, Montelione GT, Craik D, Baker D. Accurate de novo design of membrane-traversing macrocycles. Cell 2022; 185:3520-3532.e26. [PMID: 36041435 PMCID: PMC9490236 DOI: 10.1016/j.cell.2022.07.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/01/2022] [Accepted: 07/21/2022] [Indexed: 01/26/2023]
Abstract
We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6-12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6-12 residue size range cross membranes with an apparent permeability greater than 1 × 10-6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics.
Collapse
Affiliation(s)
- Gaurav Bhardwaj
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics, Structure and Design program, University of Washington, Seattle, WA 98195, USA.
| | - Jacob O'Connor
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Biological Physics, Structure and Design program, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Stephen Rettie
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Molecular Cell and Biology program, University of Washington, Seattle, WA 98195, USA
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Theresa A Ramelot
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | - Gizem Gokce Alpkilic
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Molecular Engineering and Sciences Program, University of Washington, Seattle, WA 98195, USA
| | - Jonathan Palmer
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Asim K Bera
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Matthew J Bick
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Maddalena Di Piazza
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Xinting Li
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Parisa Hosseinzadeh
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Timothy W Craven
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Roberto Tejero
- Departamento de Quίmica Fίsica, Universidad de Valencia, Avenida Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
| | - Anna Lauko
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Biological Physics, Structure and Design program, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ryan Choi
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, WA, USA
| | - Calina Glynn
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, USA
| | - Linlin Dong
- Takeda Pharmaceuticals Inc., Cambridge, MA, USA
| | | | - Wesley C van Voorhis
- Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, WA, USA
| | - Jose Rodriguez
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - David Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Ecker AK, Levorse DA, Victor DA, Mitcheltree MJ. Bioisostere Effects on the EPSA of Common Permeability-Limiting Groups. ACS Med Chem Lett 2022; 13:964-971. [DOI: 10.1021/acsmedchemlett.2c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Andrew K. Ecker
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115-5727, United States
| | - Dorothy A. Levorse
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Daniel A. Victor
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew J. Mitcheltree
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115-5727, United States
| |
Collapse
|
23
|
Gruber KA, Ji RL, Gallazzi F, Jiang S, Van Doren SR, Tao YX, Newton Northup J. Development of a Therapeutic Peptide for Cachexia Suggests a Platform Approach for Drug-like Peptides. ACS Pharmacol Transl Sci 2022; 5:344-361. [PMID: 35592439 PMCID: PMC9112415 DOI: 10.1021/acsptsci.1c00270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 12/19/2022]
Abstract
During the development of a melanocortin (MC) peptide drug to treat the condition of cachexia (a hypermetabolic state producing lean body mass wasting), we were confronted with the need for peptide transport across the blood-brain barrier (BBB): the MC-4 receptors (MC4Rs) for metabolic rate control are located in the hypothalamus, i.e., behind the BBB. Using the term "peptides with BBB transport", we screened the medical literature like a peptide library. This revealed numerous "hits"-peptides with BBB transport and/or oral activity. We noted several features common to most peptides in this class, including a dipeptide sequence of nonpolar residues, primary structure cyclization (whole or partial), and a Pro-aromatic motif usually within the cyclized region. Based on this, we designed an MC4R antagonist peptide, TCMCB07, that successfully treated many forms of cachexia. As part of our pharmacokinetic characterization of TCMCB07, we discovered that hepatobiliary extraction from blood accounted for a majority of the circulating peptide's excretion. Further screening of the literature revealed that TCMCB07 is a member of a long-forgotten peptide class, showing active transport by a multi-specific bile salt carrier. Bile salt transport peptides have predictable pharmacokinetics, including BBB transport, but rapid hepatic clearance inhibited their development as drugs. TCMCB07 shares the general characteristics of the bile salt peptide class but with a much longer half-life of hours, not minutes. A change in its C-terminal amino acid sequence slows hepatic clearance. This modification is transferable to other peptides in this class, suggesting a platform approach for producing drug-like peptides.
Collapse
Affiliation(s)
- Kenneth A Gruber
- John M. Dalton Cardiovascular Research Center, and Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, Missouri 65211, United States.,Tensive Controls, Inc., Columbia, Missouri 65211, United States
| | - Ren-Lai Ji
- Department of Anatomy, Physiology and Pharmacology, Auburn University, College of Veterinary Medicine, Auburn, Alabama 36849, United States
| | - Fabio Gallazzi
- Department of Chemistry and Molecular Interaction Core, University of Missouri, Columbia, Missouri 65211, United States
| | - Shaokai Jiang
- Department of Chemistry and NMR Core, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven R Van Doren
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States`
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, Auburn University, College of Veterinary Medicine, Auburn, Alabama 36849, United States
| | | |
Collapse
|
24
|
Faugeras V, Duclos O, Bazile D, Thiam AR. Impact of Cyclization and Methylation on Peptide Penetration through Droplet Interface Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5682-5691. [PMID: 35452243 DOI: 10.1021/acs.langmuir.2c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell-penetrating peptides enter cells via diverse mechanisms, such as endocytosis, active transport, or direct translocation. For the design of orally delivered cell-penetrating peptides, it is crucial to know the contribution of these different mechanisms. In particular, the ability of a peptide to translocate through a lipid bilayer remains a key parameter for the delivery of cargos. However, existing approaches used to assess translocation often provide discrepant results probably because they have different sensitivities to the distinct translocation mechanisms. Here, we focus on the passive permeation of a range of hydrophobic cyclic peptides inspired by somatostatin, a somatotropin release-inhibiting factor. Using droplet interface bilayers (DIB), we assess the passive membrane permeability of these peptides and study the impact of the peptide cyclization and backbone methylation on translocation rates. Cyclization systematically improved the permeability of the tested peptides while methylation did not. By studying the interaction of the peptides with the DIB interfaces, we found membrane insertion and peptide intrinsic diffusion to be two independent factors of permeability. Compared to the industrial gold standard Caco-2 and parallel artificial membrane permeability assay (PAMPA) models, DIBs provide intermediate membrane permeability values, closer to Caco-2. Even for conditions where Caco-2 and PAMPA are discrepant, the DIB approach also gives results closer to Caco-2. Thereupon, DIBs represent a robust alternative to the PAMPA approach for predicting the permeability of peptides, even if the latter present extremely small structural differences.
Collapse
Affiliation(s)
- Vincent Faugeras
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, F-75005 Paris, France
- Pharmaceutics Development Platform, Sanofi R&D, 94250 Gentilly, France
| | - Olivier Duclos
- Integrated Drug Discovery Platform, Sanofi R&D, 91380 Chilly-Mazarin, France
| | - Didier Bazile
- Pharmaceutics Development Platform, Sanofi R&D, 94250 Gentilly, France
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris Cité, F-75005 Paris, France
| |
Collapse
|
25
|
Taechalertpaisarn J, Ono S, Okada O, Johnstone TC, Scott Lokey R. A New Amino Acid for Improving Permeability and Solubility in Macrocyclic Peptides through Side Chain-to-Backbone Hydrogen Bonding. J Med Chem 2022; 65:5072-5084. [PMID: 35275623 PMCID: PMC10681114 DOI: 10.1021/acs.jmedchem.2c00010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the notoriously poor membrane permeability of peptides, many cyclic peptide natural products show high passive membrane permeability and potently inhibit a variety of "undruggable" intracellular targets. A major impediment to the design of cyclic peptides with good permeability is the high desolvation energy associated with the peptide backbone amide NH groups. While several strategies have been proposed to mitigate this deleterious effect, only few studies have used polar side chains to sequester backbone NH groups. We investigated the ability of N,N-pyrrolidinylglutamine (Pye), whose side chain contains a powerful hydrogen-bond-accepting C═O amide group but no hydrogen-bond donors, to sequester exposed backbone NH groups in a series of cyclic hexapeptide diastereomers. Analyses revealed that specific Leu-to-Pye substitutions conferred dramatic improvements in aqueous solubility and permeability in a scaffold- and position-dependent manner. Therefore, this approach offers a complementary tool for improving membrane permeability and solubility in cyclic peptides.
Collapse
Affiliation(s)
- Jaru Taechalertpaisarn
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Satoshi Ono
- Modality Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshidacho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
| | - Okimasa Okada
- Modality Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshidacho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
| | - Timothy C. Johnstone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - R. Scott Lokey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
26
|
Tamura T, Inoue M, Yoshimitsu Y, Hashimoto I, Ohashi N, Tsumura K, Suzuki K, Watanabe T, Hohsaka T. Chemical Synthesis and Cell-Free Expression of Thiazoline Ring-Bridged Cyclic Peptides and Their Properties on Biomembrane Permeability. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Takashi Tamura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Masaaki Inoue
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Yuji Yoshimitsu
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Ichihiko Hashimoto
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Noriyuki Ohashi
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Kyosuke Tsumura
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Koo Suzuki
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Takayoshi Watanabe
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| | - Takahiro Hohsaka
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| |
Collapse
|
27
|
Klein VG, Bond AG, Craigon C, Lokey RS, Ciulli A. Amide-to-Ester Substitution as a Strategy for Optimizing PROTAC Permeability and Cellular Activity. J Med Chem 2021; 64:18082-18101. [PMID: 34881891 PMCID: PMC8713283 DOI: 10.1021/acs.jmedchem.1c01496] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Criteria for predicting the druglike properties of "beyond Rule of 5" Proteolysis Targeting Chimeras (PROTAC) degraders are underdeveloped. PROTAC components are often combined via amide couplings due to their reliability. Amides, however, can give rise to poor absorption, distribution, metabolism, and excretion (ADME) properties. We hypothesized that a bioisosteric amide-to-ester substitution could lead to improvements in both physicochemical properties and bioactivity. Using model compounds, bearing either amides or esters, we identify parameters for optimal lipophilicity and permeability. We applied these learnings to design a set of novel amide-to-ester-substituted, VHL-based BET degraders with the goal to increase permeability. Our ester PROTACs retained intracellular stability, were overall more potent degraders than their amide counterparts, and showed an earlier onset of the hook effect. These enhancements were driven by greater cell permeability rather than improvements in ternary complex formation. This largely unexplored amide-to-ester substitution provides a simple strategy to enhance PROTAC permeability and bioactivity and may prove beneficial to other beyond Ro5 molecules.
Collapse
Affiliation(s)
- Victoria G Klein
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Adam G Bond
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Conner Craigon
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - R Scott Lokey
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K
| |
Collapse
|
28
|
Adpressa DA, Reibarkh M, Jiang Y, Saurí J, Makarov AA. Interrogation of solution conformation of complex macrocyclic peptides utilizing a combined SEC-HDX-MS, circular dichroism, and NMR workflow. Analyst 2021; 147:325-332. [PMID: 34927633 DOI: 10.1039/d1an01619a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent technological and synthetic advances have led to a resurgence in the exploration of peptides as potential therapeutics. Understanding peptide conformation in both free and protein-bound states remains one of the most critical areas for successful development of peptide drugs. In this study it was demonstrated that the combination of Size-Exclusion Chromatography with Hydrogen-Deuterium Exchange Mass Spectrometry (SEC-HDX-MS) and Circular Dichroism Spectroscopy (CD) can be used to guide the selection of peptides for further NMR analysis. Moreover, the insights from this workflow guide the choice of the best biologically relevant conditions for NMR conformational studies of peptide ligands in a free state in solution. Combined information about solution conformation character and stability across temperatures and co-solvent compositions greatly expedites selection of optimal conditions for NMR analysis. In total, the combination of SEC-HDX-MS, CD, and NMR into a single complementary workflow greatly accelerates conformational analysis of peptides in the drug discovery lead optimization process.
Collapse
Affiliation(s)
- Donovon A Adpressa
- Analytical Research & Development, Merck & Co. Inc., Boston, Massachusetts 02115, USA.
| | - Mikhail Reibarkh
- Analytical Research & Development, Merck & Co. Inc., Rahway, New Jersey 07065, USA.
| | - Yuan Jiang
- Analytical Research & Development, Merck & Co. Inc., Boston, Massachusetts 02115, USA.
| | - Josep Saurí
- Analytical Research & Development, Merck & Co. Inc., Boston, Massachusetts 02115, USA.
| | - Alexey A Makarov
- Analytical Research & Development, Merck & Co. Inc., Boston, Massachusetts 02115, USA.
| |
Collapse
|
29
|
Hosono Y, Morimoto J, Sando S. A comprehensive study on the effect of backbone stereochemistry of a cyclic hexapeptide on membrane permeability and microsomal stability. Org Biomol Chem 2021; 19:10326-10331. [PMID: 34821247 DOI: 10.1039/d1ob02090k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Backbone stereochemistry of cyclic peptides has been reported to have a great influence on microsomal stability and membrane permeability, two important factors that determine oral bioavailability. Here, we comprehensively investigated the correlation between the backbone stereochemistry of cyclic hexapeptide stereoisomers and their stability in liver microsomes, as well as passive membrane permeability.
Collapse
Affiliation(s)
- Yuki Hosono
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
30
|
Ono T, Aikawa K, Okazoe T, Morimoto J, Sando S. Methyl to trifluoromethyl substitution as a strategy to increase the membrane permeability of short peptides. Org Biomol Chem 2021; 19:9386-9389. [PMID: 34676842 DOI: 10.1039/d1ob01565f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we investigated the effect of CH3 to CF3 substitution on the membrane permeability of peptides. We synthesized a series of peptides with CF3 groups and corresponding nonfluorinated peptides and measured the membrane permeability of the peptides. As a result, we demonstrated that CH3 to CF3 substitution is useful for increasing the membrane permeability of di-/tri-peptides.
Collapse
Affiliation(s)
- Takahiro Ono
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kohsuke Aikawa
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takashi Okazoe
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Material Integration Laboratories, Yokohama Technical Center, AGC Inc., Yokohama 230-0045, Japan
| | - Jumpei Morimoto
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shinsuke Sando
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
31
|
Amiss AS, Henriques ST, Lawrence N. Antimicrobial peptides provide wider coverage for targeting drug‐resistant bacterial pathogens. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anna S. Amiss
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
- School of Biomedical Sciences Queensland University of Technology, Translational Research Institute Brisbane Queensland Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
32
|
Craik DJ, Kan MW. How can we improve peptide drug discovery? Learning from the past. Expert Opin Drug Discov 2021; 16:1399-1402. [PMID: 34344242 DOI: 10.1080/17460441.2021.1961740] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- David J Craik
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, the University of Queensland, Brisbane, Australia
| | - Meng-Wei Kan
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, the University of Queensland, Brisbane, Australia
| |
Collapse
|
33
|
Lee D, Lee S, Choi J, Song YK, Kim MJ, Shin DS, Bae MA, Kim YC, Park CJ, Lee KR, Choi JH, Seo J. Interplay among Conformation, Intramolecular Hydrogen Bonds, and Chameleonicity in the Membrane Permeability and Cyclophilin A Binding of Macrocyclic Peptide Cyclosporin O Derivatives. J Med Chem 2021; 64:8272-8286. [PMID: 34096287 DOI: 10.1021/acs.jmedchem.1c00211] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A macrocyclic peptide scaffold with well-established structure-property relationship is desirable for tackling undruggable targets. Here, we adopted a natural macrocycle, cyclosporin O (CsO) and its derivatives (CP1-3), and evaluated the impact of conformation on membrane permeability, cyclophilin A (CypA) binding, and the pharmacokinetic (PK) profile. In nonpolar media, CsO showed a similar conformation to cyclosporin A (CsA), a well-known chameleonic macrocycle, but less chameleonic behavior in a polar environment. The weak chameleonicity of CsO resulted in decreased membrane permeability; however, the more rigid conformation of CsO was not detrimental to its PK profile. CsO exhibited a higher plasma concentration than CsA, which resulted from minimal CypA binding and lower accumulation in red blood cells and moderate oral bioavailability (F = 12%). Our study aids understanding of CsO, a macrocyclic peptide that is less explored than CsA but with greater potential for diversity generation and rational design.
Collapse
Affiliation(s)
- Dongjae Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sungjin Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yoo-Kyung Song
- Laboratory of Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Republic of Korea
| | - Min Ju Kim
- Laboratory of Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Republic of Korea
| | - Dae-Seop Shin
- Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Myung Ae Bae
- Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Kyeong-Ryoon Lee
- Laboratory of Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
34
|
Vincenzi M, Mercurio FA, Leone M. NMR Spectroscopy in the Conformational Analysis of Peptides: An Overview. Curr Med Chem 2021; 28:2729-2782. [PMID: 32614739 DOI: 10.2174/0929867327666200702131032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND NMR spectroscopy is one of the most powerful tools to study the structure and interaction properties of peptides and proteins from a dynamic perspective. Knowing the bioactive conformations of peptides is crucial in the drug discovery field to design more efficient analogue ligands and inhibitors of protein-protein interactions targeting therapeutically relevant systems. OBJECTIVE This review provides a toolkit to investigate peptide conformational properties by NMR. METHODS Articles cited herein, related to NMR studies of peptides and proteins were mainly searched through PubMed and the web. More recent and old books on NMR spectroscopy written by eminent scientists in the field were consulted as well. RESULTS The review is mainly focused on NMR tools to gain the 3D structure of small unlabeled peptides. It is more application-oriented as it is beyond its goal to deliver a profound theoretical background. However, the basic principles of 2D homonuclear and heteronuclear experiments are briefly described. Protocols to obtain isotopically labeled peptides and principal triple resonance experiments needed to study them, are discussed as well. CONCLUSION NMR is a leading technique in the study of conformational preferences of small flexible peptides whose structure can be often only described by an ensemble of conformations. Although NMR studies of peptides can be easily and fast performed by canonical protocols established a few decades ago, more recently we have assisted to tremendous improvements of NMR spectroscopy to investigate instead large systems and overcome its molecular weight limit.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council of Italy, Via Mezzocannone 16, 80134, Naples, Italy
| |
Collapse
|
35
|
Rathman BM, Rowe JL, Del Valle JR. Synthesis and conformation of backbone N-aminated peptides. Methods Enzymol 2021; 656:271-294. [PMID: 34325790 DOI: 10.1016/bs.mie.2021.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The chemical modification of peptides is a promising approach for the design of protein-protein interaction inhibitors and peptide-based drug candidates. Among several peptidomimetic strategies, substitution of the amide backbone maintains side-chain functionality that may be important for engagement of biological targets. Backbone amide substitution has been largely limited to N-alkylation, which can promote cis amide geometry and disrupt important H-bonding interactions. In contrast, N-amination of peptides induces distinct backbone geometries and maintains H-bond donor capacity. In this chapter we discuss the conformational characteristics of designed N-amino peptides and present a detailed protocol for their synthesis on solid support. The described methods allow for backbone N-amino scanning of biologically active parent sequences.
Collapse
|
36
|
Cecchini C, Pannilunghi S, Tardy S, Scapozza L. From Conception to Development: Investigating PROTACs Features for Improved Cell Permeability and Successful Protein Degradation. Front Chem 2021; 9:672267. [PMID: 33959589 PMCID: PMC8093871 DOI: 10.3389/fchem.2021.672267] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/22/2021] [Indexed: 01/16/2023] Open
Abstract
Proteolysis Targeting Chimeras (PROTACs) are heterobifunctional degraders that specifically eliminate targeted proteins by hijacking the ubiquitin-proteasome system (UPS). This modality has emerged as an orthogonal approach to the use of small-molecule inhibitors for knocking down classic targets and disease-related proteins classified, until now, as "undruggable." In early 2019, the first targeted protein degraders reached the clinic, drawing attention to PROTACs as one of the most appealing technology in the drug discovery landscape. Despite these promising results, PROTACs are often affected by poor cellular permeability due to their high molecular weight (MW) and large exposed polar surface area (PSA). Herein, we report a comprehensive record of PROTAC design, pharmacology and thermodynamic challenges and solutions, as well as some of the available strategies to enhance cellular uptake, including suggestions of promising biological tools for the in vitro evaluation of PROTACs permeability toward successful protein degradation.
Collapse
Affiliation(s)
- Carlotta Cecchini
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Pharmaceutical Biochemistry/Chemistry, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Sara Pannilunghi
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Pharmaceutical Biochemistry/Chemistry, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Sébastien Tardy
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Pharmaceutical Biochemistry/Chemistry, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Pharmaceutical Biochemistry/Chemistry, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
37
|
Miyachi H, Kanamitsu K, Ishii M, Watanabe E, Katsuyama A, Otsuguro S, Yakushiji F, Watanabe M, Matsui K, Sato Y, Shuto S, Tadokoro T, Kita S, Matsumaru T, Matsuda A, Hirose T, Iwatsuki M, Shigeta Y, Nagano T, Kojima H, Ichikawa S, Sunazuka T, Maenaka K. Structure, solubility, and permeability relationships in a diverse middle molecule library. Bioorg Med Chem Lett 2021; 37:127847. [PMID: 33571648 DOI: 10.1016/j.bmcl.2021.127847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
To develop methodology to predict the potential druggability of middle molecules, we examined the structure, solubility, and permeability relationships of a diverse library (HKDL ver.1) consisting of 510 molecules (359 natural product derivatives, 76 non-natural products, 46 natural products, and 29 non-natural product derivatives). The library included peptides, depsipeptides, macrolides, and lignans, and 476 of the 510 compounds had a molecular weight in the range of 500-2000 Da. The solubility and passive diffusion velocity of the middle molecules were assessed using the parallel artificial membrane permeability assay (PAMPA). Quantitative values of solubility of 471 molecules and passive diffusion velocity of 287 molecules were obtained, and their correlations with the structural features of the molecules were examined. Based on the results, we propose a method to predict the passive diffusion characteristics of middle molecules from their three-dimensional structural features.
Collapse
Affiliation(s)
- Hiroyuki Miyachi
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kayoko Kanamitsu
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mayumi Ishii
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eri Watanabe
- Lead Exploration Unit, Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Katsuyama
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Science, Hokkaido University, Kita 12, Nishi 6, Kita ku, Sapporo 060 0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoko Otsuguro
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Science, Hokkaido University, Kita 12, Nishi 6, Kita ku, Sapporo 060 0812, Japan
| | - Fumika Yakushiji
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Science, Hokkaido University, Kita 12, Nishi 6, Kita ku, Sapporo 060 0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kouhei Matsui
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yukina Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takanori Matsumaru
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Research Institute, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Ōmura Satoshi Memorial Research Institute, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tetsuo Nagano
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Ichikawa
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Science, Hokkaido University, Kita 12, Nishi 6, Kita ku, Sapporo 060 0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Toshiaki Sunazuka
- Ōmura Satoshi Memorial Research Institute, Kitasato University, Shirokane 5-9-1, Minato-ku, Tokyo 108-8641, Japan.
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Science, Hokkaido University, Kita 12, Nishi 6, Kita ku, Sapporo 060 0812, Japan; Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita 12, Nishi 6, Kita ku, Sapporo 060 0812, Japan.
| |
Collapse
|
38
|
Comeau C, Ries B, Stadelmann T, Tremblay J, Poulet S, Fröhlich U, Côté J, Boudreault PL, Derbali RM, Sarret P, Grandbois M, Leclair G, Riniker S, Marsault É. Modulation of the Passive Permeability of Semipeptidic Macrocycles: N- and C-Methylations Fine-Tune Conformation and Properties. J Med Chem 2021; 64:5365-5383. [PMID: 33750117 DOI: 10.1021/acs.jmedchem.0c02036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Incorporating small modifications to peptidic macrocycles can have a major influence on their properties. For instance, N-methylation has been shown to impact permeability. A better understanding of the relationship between permeability and structure is of key importance as peptidic drugs are often associated with unfavorable pharmacokinetic profiles. Starting from a semipeptidic macrocycle backbone composed of a tripeptide tethered head-to-tail with an alkyl linker, we investigated two small changes: peptide-to-peptoid substitution and various methyl placements on the nonpeptidic linker. Implementing these changes in parallel, we created a collection of 36 compounds. Their permeability was then assessed in parallel artificial membrane permeability assay (PAMPA) and Caco-2 assays. Our results show a systematic improvement in permeability associated with one peptoid position in the cycle, while the influence of methyl substitution varies on a case-by-case basis. Using a combination of molecular dynamics simulations and NMR measurements, we offer hypotheses to explain such behavior.
Collapse
Affiliation(s)
- Christian Comeau
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Benjamin Ries
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Thomas Stadelmann
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Jacob Tremblay
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Sylvain Poulet
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Ulrike Fröhlich
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Jérôme Côté
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Rabeb Mouna Derbali
- Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Quebec, Canada H3C 3J7
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Michel Grandbois
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Grégoire Leclair
- Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Quebec, Canada H3C 3J7
| | - Sereina Riniker
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Éric Marsault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| |
Collapse
|
39
|
Brueckner AC, Deng Q, Cleves AE, Lesburg CA, Alvarez JC, Reibarkh MY, Sherer EC, Jain AN. Conformational Strain of Macrocyclic Peptides in Ligand-Receptor Complexes Based on Advanced Refinement of Bound-State Conformers. J Med Chem 2021; 64:3282-3298. [PMID: 33724820 DOI: 10.1021/acs.jmedchem.0c02159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macrocyclic peptides are an important modality in drug discovery, but molecular design is limited due to the complexity of their conformational landscape. To better understand conformational propensities, global strain energies were estimated for 156 protein-macrocyclic peptide cocrystal structures. Unexpectedly large strain energies were observed when the bound-state conformations were modeled with positional restraints. Instead, low-energy conformer ensembles were generated using xGen that fit experimental X-ray electron density maps and gave reasonable strain energy estimates. The ensembles featured significant conformational adjustments while still fitting the electron density as well or better than the original coordinates. Strain estimates suggest the interaction energy in protein-ligand complexes can offset a greater amount of strain for macrocyclic peptides than for small molecules and non-peptidic macrocycles. Across all molecular classes, the approximate upper bound on global strain energies had the same relationship with molecular size, and bound-state ensembles from xGen yielded favorable binding energy estimates.
Collapse
Affiliation(s)
- Alexander C Brueckner
- Computational & Structural Chemistry, Merck & Co Inc, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Qiaolin Deng
- Computational & Structural Chemistry, Merck & Co Inc, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ann E Cleves
- Bioengineering and Therapeutic Sciences, University of California San Francisco, Box 0128, San Francisco, California 94158, United States
| | - Charles A Lesburg
- Computational and Structural Chemistry, Merck and Co Inc, 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Juan C Alvarez
- Computational and Structural Chemistry, Merck and Co Inc, 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Mikhail Y Reibarkh
- Analytical Research and Development, Merck & Co Inc, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Edward C Sherer
- Analytical Research and Development, Merck & Co Inc, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ajay N Jain
- Bioengineering and Therapeutic Sciences, University of California San Francisco, Box 0128, San Francisco, California 94158, United States
| |
Collapse
|
40
|
Golosov AA, Flyer AN, Amin J, Babu C, Gampe C, Li J, Liu E, Nakajima K, Nettleton D, Patel TJ, Reid PC, Yang L, Monovich LG. Design of Thioether Cyclic Peptide Scaffolds with Passive Permeability and Oral Exposure. J Med Chem 2021; 64:2622-2633. [PMID: 33629858 DOI: 10.1021/acs.jmedchem.0c01505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advances in the design of permeable peptides and in the synthesis of large arrays of macrocyclic peptides with diverse amino acids have evolved on parallel but independent tracks. Less precedent combines their respective attributes, thereby limiting the potential to identify permeable peptide ligands for key targets. Herein, we present novel 6-, 7-, and 8-mer cyclic peptides (MW 774-1076 g·mol-1) with passive permeability and oral exposure that feature the amino acids and thioether ring-closing common to large array formats, including DNA- and RNA-templated synthesis. Each oral peptide herein, selected from virtual libraries of partially N-methylated peptides using in silico methods, reflects the subset consistent with low energy conformations, low desolvation penalties, and passive permeability. We envision that, by retaining the backbone N-methylation pattern and consequent bias toward permeability, one can generate large peptide arrays with sufficient side chain diversity to identify permeability-biased ligands to a variety of protein targets.
Collapse
Affiliation(s)
- Andrei A Golosov
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alec N Flyer
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jakal Amin
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Charles Babu
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Christian Gampe
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jingzhou Li
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eugene Liu
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Katsumasa Nakajima
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David Nettleton
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tajesh J Patel
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Patrick C Reid
- PeptiDream, Inc., 3-25-23 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Lihua Yang
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Lauren G Monovich
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Hoang HN, Hill TA, Fairlie DP. Connecting Hydrophobic Surfaces in Cyclic Peptides Increases Membrane Permeability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huy N. Hoang
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
- ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
42
|
Hoang HN, Hill TA, Fairlie DP. Connecting Hydrophobic Surfaces in Cyclic Peptides Increases Membrane Permeability. Angew Chem Int Ed Engl 2021; 60:8385-8390. [PMID: 33185961 DOI: 10.1002/anie.202012643] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/04/2020] [Indexed: 12/16/2022]
Abstract
N- or C-methylation in natural and synthetic cyclic peptides can increase membrane permeability, but it remains unclear why this happens in some cases but not others. Here we compare three-dimensional structures for cyclic peptides from six families, including isomers differing only in the location of an N- or Cα-methyl substituent. We show that a single methyl group only increases membrane permeability when it connects or expands hydrophobic surface patches. Positional isomers, with the same molecular weight, hydrogen bond donors/acceptors, rotatable bonds, calculated LogP, topological polar surface area, and total hydrophobic surface area, can have different membrane permeabilities that correlate with the size of the largest continuous hydrophobic surface patch. These results illuminate a key local molecular determinant of membrane permeability.
Collapse
Affiliation(s)
- Huy N Hoang
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy A Hill
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
43
|
Pursuing Orally Bioavailable Hepcidin Analogues via Cyclic N-Methylated Mini-Hepcidins. Biomedicines 2021; 9:biomedicines9020164. [PMID: 33567510 PMCID: PMC7915682 DOI: 10.3390/biomedicines9020164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 11/20/2022] Open
Abstract
The peptide hormone hepcidin is one of the key regulators of iron absorption, plasma iron levels, and tissue iron distribution. Hepcidin functions by binding to and inducing the internalisation and subsequent lysosomal degradation of ferroportin, which reduces both iron absorption in the gut and export of iron from storage to ultimately decrease systemic iron levels. The key interaction motif in hepcidin has been localised to the highly conserved N-terminal region, comprising the first nine amino acid residues, and has led to the development of mini-hepcidin analogs that induce ferroportin internalisation and have improved drug-like properties. In this work, we have investigated the use of head-to-tail cyclisation and N-methylation of mini-hepcidin as a strategy to increase oral bioavailability by reducing proteolytic degradation and enhancing membrane permeability. We found that backbone cyclisation and N-methylation was well-tolerated in the mini-hepcidin analogues, with the macrocylic analogues often surpassing their linear counterparts in potency. Both macrocyclisation and backbone N-methylation were found to improve the stability of the mini-hepcidins, however, there was no effect on membrane-permeabilizing activity.
Collapse
|
44
|
Kelly CN, Townsend CE, Jain AN, Naylor MR, Pye CR, Schwochert J, Lokey RS. Geometrically Diverse Lariat Peptide Scaffolds Reveal an Untapped Chemical Space of High Membrane Permeability. J Am Chem Soc 2021; 143:705-714. [PMID: 33381960 PMCID: PMC8514148 DOI: 10.1021/jacs.0c06115] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Constrained, membrane-permeable peptides offer the possibility of engaging challenging intracellular targets. Structure-permeability relationships have been extensively studied in cyclic peptides whose backbones are cyclized from head to tail, like the membrane permeable and orally bioavailable natural product cyclosporine A. In contrast, the physicochemical properties of lariat peptides, which are cyclized from one of the termini onto a side chain, have received little attention. Many lariat peptide natural products exhibit interesting biological activities, and some, such as griselimycin and didemnin B, are membrane permeable and have intracellular targets. To investigate the structure-permeability relationships in the chemical space exemplified by these natural products, we generated a library of scaffolds using stable isotopes to encode stereochemistry and determined the passive membrane permeability of over 1000 novel lariat peptide scaffolds with molecular weights around 1000. Many lariats were surprisingly permeable, comparable to many known orally bioavailable drugs. Passive permeability was strongly dependent on N-methylation, stereochemistry, and ring topology. A variety of structure-permeability trends were observed including a relationship between alternating stereochemistry and high permeability, as well as a set of highly permeable consensus sequences. For the first time, robust structure-permeability relationships are established in synthetic lariat peptides exceeding 1000 compounds.
Collapse
Affiliation(s)
- Colin N. Kelly
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, USA
| | - Chad E. Townsend
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, USA
| | - Ajay N. Jain
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | - Matthew R. Naylor
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, USA
| | | | | | - R. Scott Lokey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, USA
| |
Collapse
|
45
|
Monty OBC, Simmons N, Chamakuri S, Matzuk MM, Young DW. Solution-Phase Fmoc-Based Peptide Synthesis for DNA-Encoded Chemical Libraries: Reaction Conditions, Protecting Group Strategies, and Pitfalls. ACS COMBINATORIAL SCIENCE 2020; 22:833-843. [PMID: 33074645 DOI: 10.1021/acscombsci.0c00144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peptide drug discovery has shown a resurgence since 2000, bringing 28 non-insulin therapeutics to the market compared to 56 since its first peptide drug, insulin, in 1923. While the main method of discovery has been biological display-phage, mRNA, and ribosome-the synthetic limitations of biological systems has restricted the depth of exploration of peptide chemical space. In contrast, DNA-encoded chemistry offers the synergy of large numbers and ribosome-independent synthetic flexibility for the fast and deeper exploration of the same space. Hence, as a bridge to building DNA-encoded chemical libraries (DECLs) of peptides, we have developed substrate-tolerant amide coupling reaction conditions for amino acid monomers, performed a coupling screen to illustrate such tolerance, developed protecting group strategies for relevant amino acids and reported the limitations thereof, developed a strategy for the coupling of α,α-disubstituted alkenyl amino acids relevant to all-hydrocarbon stapled peptide drug discovery, developed reaction conditions for the coupling of tripeptides likely to be used in DECL builds, and synthesized a fully deprotected DNA-decamer conjugate to illustrate the potency of the developed methodology for on-DNA peptide synthesis.
Collapse
Affiliation(s)
- Olivier B. C. Monty
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005 United States
| | - Nicholas Simmons
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
| | - Srinivas Chamakuri
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
| | - Damian W. Young
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030 United States
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005 United States
| |
Collapse
|
46
|
Furukawa A, Schwochert J, Pye CR, Asano D, Edmondson QD, Turmon AC, Klein VG, Ono S, Okada O, Lokey RS. Drug-Like Properties in Macrocycles above MW 1000: Backbone Rigidity versus Side-Chain Lipophilicity. Angew Chem Int Ed Engl 2020; 59:21571-21577. [PMID: 32789999 PMCID: PMC7719619 DOI: 10.1002/anie.202004550] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/10/2020] [Indexed: 12/22/2022]
Abstract
Large macrocyclic peptides can achieve surprisingly high membrane permeability, although the properties that govern permeability in this chemical space are only beginning to come into focus. We generated two libraries of cyclic decapeptides with stable cross-β conformations, and found that peptoid substitutions within the β-turns of the macrocycle preserved the rigidity of the parent scaffold, whereas peptoid substitutions in the opposing β-strands led to "chameleonic" species that were rigid in nonpolar media but highly flexible in water. Both rigid and chameleonic compounds showed high permeability over a wide lipophilicity range, with peak permeabilities differing significantly depending on scaffold rigidity. Our findings indicate that modulating lipophilicity can be used to engineer favorable ADME properties into both rigid and flexible macrocyclic peptides, and that scaffold rigidity can be used to tune optimal lipophilicity.
Collapse
Affiliation(s)
- Akihiro Furukawa
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Joshua Schwochert
- Unnatural Products, Inc., 250 Natural Bridges Drive, Santa Cruz, CA 95060 USA
| | - Cameron R. Pye
- Unnatural Products, Inc., 250 Natural Bridges Drive, Santa Cruz, CA 95060 USA
| | - Daigo Asano
- Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Quinn D. Edmondson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, USA
| | - Alexandra C. Turmon
- Unnatural Products, Inc., 250 Natural Bridges Drive, Santa Cruz, CA 95060 USA
| | - Victoria G. Klein
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 96064 USA
| | - Satoshi Ono
- Discovery Technology Laboratories, Mitsubishi Tanabe Pharma Corporation, Yokohama, 227-0033, Japan
| | - Okimasa Okada
- Discovery Technology Laboratories, Mitsubishi Tanabe Pharma Corporation, Yokohama, 227-0033, Japan
| | - R. Scott Lokey
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 96064 USA
| |
Collapse
|
47
|
Buckton LK, Rahimi MN, McAlpine SR. Cyclic Peptides as Drugs for Intracellular Targets: The Next Frontier in Peptide Therapeutic Development. Chemistry 2020; 27:1487-1513. [PMID: 32875673 DOI: 10.1002/chem.201905385] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/26/2020] [Indexed: 12/18/2022]
Abstract
Developing macrocyclic peptides that can reach intracellular targets is a significant challenge. This review discusses the most recent strategies used to develop cell permeable cyclic peptides that maintain binding to their biological target inside the cell. Macrocyclic peptides are unique from small molecules because traditional calculated physical properties are unsuccessful for predicting cell membrane permeability. Peptide synthesis and experimental membrane permeability is the only strategy that effectively differentiates between cell permeable and cell impermeable molecules. Discussed are chemical strategies, including backbone N-methylation and stereochemical changes, which have produced molecular scaffolds with improved cell permeability. However, these improvements often come at the expense of biological activity as chemical modifications alter the peptide conformation, frequently impacting the compound's ability to bind to the target. Highlighted is the most promising approach, which involves side-chain alterations that improve cell permeability without impact binding events.
Collapse
Affiliation(s)
- Laura K Buckton
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| | - Marwa N Rahimi
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| | - Shelli R McAlpine
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| |
Collapse
|
48
|
Richaud AD, Roche SP. Structure-Property Relationship Study of N-(Hydroxy)Peptides for the Design of Self-Assembled Parallel β-Sheets. J Org Chem 2020; 85:12329-12342. [PMID: 32881524 DOI: 10.1021/acs.joc.0c01441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The design of novel and functional biomimetic foldamers remains a major challenge in creating mimics of native protein structures. Herein, we report the stabilization of a remarkably short β-sheet by incorporating N-(hydroxy)glycine (Hyg) residues into the backbone of peptides. These peptide-peptoid hybrids form unique parallel β-sheet structures by self-assembly upon hydrogenation. Our spectroscopic and crystallographic data suggest that the local conformational perturbations induced by N-(hydroxy)amides are outweighed by a network of strong interstrand hydrogen bonds.
Collapse
Affiliation(s)
- Alexis D Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States.,Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
49
|
Furukawa A, Schwochert J, Pye CR, Asano D, Edmondson QD, Turmon AC, Klein VG, Ono S, Okada O, Lokey RS. Drug‐Like Properties in Macrocycles above MW 1000: Backbone Rigidity versus Side‐Chain Lipophilicity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Akihiro Furukawa
- Daiichi Sankyo Co., Ltd. 1-2-58, Hiromachi, Shinagawa-ku Tokyo 140-8710 Japan
| | - Joshua Schwochert
- Unnatural Products, Inc. 250 Natural Bridges Drive Santa Cruz CA 95060 USA
| | - Cameron R. Pye
- Unnatural Products, Inc. 250 Natural Bridges Drive Santa Cruz CA 95060 USA
| | - Daigo Asano
- Daiichi Sankyo Co., Ltd. 1-2-58, Hiromachi, Shinagawa-ku Tokyo 140-8710 Japan
| | - Quinn D. Edmondson
- Department of Pharmaceutical Chemistry University of California, San Francisco San Francisco California 94158 USA
| | | | - Victoria G. Klein
- Department of Chemistry & Biochemistry University of California Santa Cruz Santa Cruz CA 96064 USA
| | - Satoshi Ono
- Discovery Technology Laboratories Mitsubishi Tanabe Pharma Corporation Yokohama 227-0033 Japan
| | - Okimasa Okada
- Discovery Technology Laboratories Mitsubishi Tanabe Pharma Corporation Yokohama 227-0033 Japan
| | - R. Scott Lokey
- Department of Chemistry & Biochemistry University of California Santa Cruz Santa Cruz CA 96064 USA
| |
Collapse
|
50
|
Barlow N, Chalmers DK, Williams-Noonan BJ, Thompson PE, Norton RS. Improving Membrane Permeation in the Beyond Rule-of-Five Space by Using Prodrugs to Mask Hydrogen Bond Donors. ACS Chem Biol 2020; 15:2070-2078. [PMID: 32628005 DOI: 10.1021/acschembio.0c00218] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A wide range of drug targets can be effectively modulated by peptides and macrocycles. Unfortunately, the size and polarity of these compounds prevents them from crossing the cell membrane to reach target sites in the cell cytosol. As such, these compounds do not conform to standard measures of drug-likeness and exist in beyond the rule-of-five space. In this work, we investigate whether prodrug moieties that mask hydrogen bond donors can be applied in the beyond rule-of-five domain to improve the permeation of macrocyclic compounds. Using a cyclic peptide model, we show that masking hydrogen bond donors in the natural polar amino acid residues (His, Ser, Gln, Asn, Glu, Asp, Lys, and Arg) imparts membrane permeability to the otherwise impermeable parent molecules, even though the addition of the masking group increases the overall compound molecular weight and the number of hydrogen bond acceptors. We demonstrate this strategy in PAMPA and Caco2 membrane permeability assays and show that masking with groups that reduce the number of hydrogen-bond donors at the cost of additional mass and hydrogen bond acceptors, a donor-acceptor swap, is effective.
Collapse
Affiliation(s)
- Nicholas Barlow
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David K. Chalmers
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Billy J. Williams-Noonan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Philip E. Thompson
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Raymond S. Norton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|