1
|
Haggard M, Chacron MJ. Nonresponsive Neurons Improve Population Coding of Object Location. J Neurosci 2025; 45:e1068242024. [PMID: 39542727 PMCID: PMC11735655 DOI: 10.1523/jneurosci.1068-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/24/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024] Open
Abstract
Understanding how heterogeneous neural populations represent sensory input to give rise to behavior remains a central problem in systems neuroscience. Here we investigated how midbrain neurons within the electrosensory system of Apteronotus leptorhynchus code for object location in space. In vivo simultaneous recordings were achieved via Neuropixels probes, high-density electrode arrays, with the stimulus positioned at different locations relative to the animal. Midbrain neurons exhibited heterogeneous response profiles, with a significant proportion (65%) seemingly nonresponsive to moving stimuli. Remarkably, we found that nonresponsive neurons increased population coding of object location through synergistic interactions with responsive neurons by effectively reducing noise. Mathematical modeling demonstrated that increased response heterogeneity together with the experimentally observed correlations was sufficient to give rise to independent encoding by responsive neurons. Furthermore, the addition of nonresponsive neurons in the model gave rise to synergistic population coding. Taken together, our findings reveal that nonresponsive neurons, which are frequently excluded from analysis, can significantly improve population coding of object location through synergistic interactions with responsive neurons. Combinations of responsive and nonresponsive neurons have been observed in sensory systems across taxa; it is likely that similar synergistic interactions improve population coding across modalities and behavioral tasks.
Collapse
Affiliation(s)
- Myriah Haggard
- Quantitative Life Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Maurice J Chacron
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
2
|
Metzen MG, Chacron MJ. Descending pathways increase sensory neural response heterogeneity to facilitate decoding and behavior. iScience 2023; 26:107139. [PMID: 37416462 PMCID: PMC10320509 DOI: 10.1016/j.isci.2023.107139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
The functional role of heterogeneous spiking responses of otherwise similarly tuned neurons to stimulation, which has been observed ubiquitously, remains unclear to date. Here, we demonstrate that such response heterogeneity serves a beneficial function that is used by downstream brain areas to generate behavioral responses that follows the detailed timecourse of the stimulus. Multi-unit recordings from sensory pyramidal cells within the electrosensory system of Apteronotus leptorhynchus were performed and revealed highly heterogeneous responses that were similar for all cell types. By comparing the coding properties of a given neural population before and after inactivation of descending pathways, we found that heterogeneities were beneficial as decoding was then more robust to the addition of noise. Taken together, our results not only reveal that descending pathways actively promote response heterogeneity within a given cell type, but also uncover a beneficial function for such heterogeneity that is used by the brain to generate behavior.
Collapse
Affiliation(s)
- Michael G. Metzen
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Maurice J. Chacron
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
3
|
Lacquaniti F, La Scaleia B, Zago M. Noise and vestibular perception of passive self-motion. Front Neurol 2023; 14:1159242. [PMID: 37181550 PMCID: PMC10169592 DOI: 10.3389/fneur.2023.1159242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
Noise defined as random disturbances is ubiquitous in both the external environment and the nervous system. Depending on the context, noise can degrade or improve information processing and performance. In all cases, it contributes to neural systems dynamics. We review some effects of various sources of noise on the neural processing of self-motion signals at different stages of the vestibular pathways and the resulting perceptual responses. Hair cells in the inner ear reduce the impact of noise by means of mechanical and neural filtering. Hair cells synapse on regular and irregular afferents. Variability of discharge (noise) is low in regular afferents and high in irregular units. The high variability of irregular units provides information about the envelope of naturalistic head motion stimuli. A subset of neurons in the vestibular nuclei and thalamus are optimally tuned to noisy motion stimuli that reproduce the statistics of naturalistic head movements. In the thalamus, variability of neural discharge increases with increasing motion amplitude but saturates at high amplitudes, accounting for behavioral violation of Weber's law. In general, the precision of individual vestibular neurons in encoding head motion is worse than the perceptual precision measured behaviorally. However, the global precision predicted by neural population codes matches the high behavioral precision. The latter is estimated by means of psychometric functions for detection or discrimination of whole-body displacements. Vestibular motion thresholds (inverse of precision) reflect the contribution of intrinsic and extrinsic noise to perception. Vestibular motion thresholds tend to deteriorate progressively after the age of 40 years, possibly due to oxidative stress resulting from high discharge rates and metabolic loads of vestibular afferents. In the elderly, vestibular thresholds correlate with postural stability: the higher the threshold, the greater is the postural imbalance and risk of falling. Experimental application of optimal levels of either galvanic noise or whole-body oscillations can ameliorate vestibular function with a mechanism reminiscent of stochastic resonance. Assessment of vestibular thresholds is diagnostic in several types of vestibulopathies, and vestibular stimulation might be useful in vestibular rehabilitation.
Collapse
Affiliation(s)
- Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Barbara La Scaleia
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Myrka Zago
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Civil Engineering and Computer Science Engineering, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
Sharma H, Azouz R. Coexisting neuronal coding strategies in the barrel cortex. Cereb Cortex 2022; 32:4986-5004. [PMID: 35149866 DOI: 10.1093/cercor/bhab527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022] Open
Abstract
During tactile sensation by rodents, whisker movements across surfaces generate complex whisker motions, including discrete, transient stick-slip events, which carry information about surface properties. The characteristics of these events and how the brain encodes this tactile information remain enigmatic. We found that cortical neurons show a mixture of synchronized and nontemporally correlated spikes in their tactile responses. Synchronous spikes convey the magnitude of stick-slip events by numerous aspects of temporal coding. These spikes show preferential selectivity for kinetic and kinematic whisker motion. By contrast, asynchronous spikes in each neuron convey the magnitude of stick-slip events by their discharge rates, response probability, and interspike intervals. We further show that the differentiation between these two types of activity is highly dependent on the magnitude of stick-slip events and stimulus and response history. These results suggest that cortical neurons transmit multiple components of tactile information through numerous coding strategies.
Collapse
Affiliation(s)
- Hariom Sharma
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rony Azouz
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
5
|
Weber AI, Shea-Brown E, Rieke F. Identification of Multiple Noise Sources Improves Estimation of Neural Responses across Stimulus Conditions. eNeuro 2021; 8:ENEURO.0191-21.2021. [PMID: 34083382 PMCID: PMC8260275 DOI: 10.1523/eneuro.0191-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Most models of neural responses are constructed to reproduce the average response to inputs but lack the flexibility to capture observed variability in responses. The origins and structure of this variability have significant implications for how information is encoded and processed in the nervous system, both by limiting information that can be conveyed and by determining processing strategies that are favorable for minimizing its negative effects. Here, we present a new modeling framework that incorporates multiple sources of noise to better capture observed features of neural response variability across stimulus conditions. We apply this model to retinal ganglion cells at two different ambient light levels and demonstrate that it captures the full distribution of responses. Further, the model reveals light level-dependent changes that could not be seen with previous models, showing both large changes in rectification of nonlinear circuit elements and systematic differences in the contributions of different noise sources under different conditions.
Collapse
Affiliation(s)
- Alison I Weber
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
| | - Eric Shea-Brown
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| |
Collapse
|
6
|
Metzen MG, Chacron MJ. Population Coding of Natural Electrosensory Stimuli by Midbrain Neurons. J Neurosci 2021; 41:3822-3841. [PMID: 33687962 PMCID: PMC8084312 DOI: 10.1523/jneurosci.2232-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
Natural stimuli display spatiotemporal characteristics that typically vary over orders of magnitude, and their encoding by sensory neurons remains poorly understood. We investigated population coding of highly heterogeneous natural electrocommunication stimuli in Apteronotus leptorhynchus of either sex. Neuronal activities were positively correlated with one another in the absence of stimulation, and correlation magnitude decayed with increasing distance between recording sites. Under stimulation, we found that correlations between trial-averaged neuronal responses (i.e., signal correlations) were positive and higher in magnitude for neurons located close to another, but that correlations between the trial-to-trial variability (i.e., noise correlations) were independent of physical distance. Overall, signal and noise correlations were independent of stimulus waveform as well as of one another. To investigate how neuronal populations encoded natural electrocommunication stimuli, we considered a nonlinear decoder for which the activities were combined. Decoding performance was best for a timescale of 6 ms, indicating that midbrain neurons transmit information via precise spike timing. A simple summation of neuronal activities (equally weighted sum) revealed that noise correlations limited decoding performance by introducing redundancy. Using an evolution algorithm to optimize performance when considering instead unequally weighted sums of neuronal activities revealed much greater performance values, indicating that midbrain neuron populations transmit information that reliably enable discrimination between different stimulus waveforms. Interestingly, we found that different weight combinations gave rise to similar discriminability, suggesting robustness. Our results have important implications for understanding how natural stimuli are integrated by downstream brain areas to give rise to behavioral responses.SIGNIFICANCE STATEMENT We show that midbrain electrosensory neurons display correlations between their activities and that these can significantly impact performance of decoders. While noise correlations limited discrimination performance by introducing redundancy, considering unequally weighted sums of neuronal activities gave rise to much improved performance and mitigated the deleterious effects of noise correlations. Further analysis revealed that increased discriminability was achieved by making trial-averaged responses more separable, as well as by reducing trial-to-trial variability by eliminating noise correlations. We further found that multiple combinations of weights could give rise to similar discrimination performances, which suggests that such combinatorial codes could be achieved in the brain. We conclude that the activities of midbrain neuronal populations can be used to reliably discriminate between highly heterogeneous stimulus waveforms.
Collapse
Affiliation(s)
- Michael G Metzen
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Maurice J Chacron
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
7
|
Metzen MG, Hofmann V, Chacron MJ. Neural Synchrony Gives Rise to Amplitude- and Duration-Invariant Encoding Consistent With Perception of Natural Communication Stimuli. Front Neurosci 2020; 14:79. [PMID: 32116522 PMCID: PMC7025533 DOI: 10.3389/fnins.2020.00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/20/2020] [Indexed: 11/13/2022] Open
Abstract
When confronted with a highly variable environment, it remains poorly understood how neural populations encode and classify natural stimuli to give rise to appropriate and consistent behavioral responses. Here we investigated population coding of natural communication signals with different attributes (i.e., amplitude and duration) in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus. Our results show that, while single peripheral neurons encode the detailed timecourse of different stimulus waveforms, measures of population synchrony are effectively unchanged because of coordinated increases and decreases in activity. A phenomenological mathematical model reproduced this invariance and shows that this can be explained by considering homogeneous populations whose responses are solely determined by single neuron firing properties. Moreover, recordings from downstream central neurons reveal that synchronous afferent activity is actually decoded and thus most likely transmitted to higher brain areas. Finally, we demonstrate that the associated behavioral responses at the organism level are invariant. Our results provide a mechanism by which amplitude- and duration-invariant coding of behaviorally relevant sensory input emerges across successive brain areas thereby presumably giving rise to invariant behavioral responses. Such mechanisms are likely to be found in other systems that share anatomical and functional features with the electrosensory system (e.g., auditory, visual, vestibular).
Collapse
Affiliation(s)
- Michael G Metzen
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| | - Volker Hofmann
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| | - Maurice J Chacron
- Computational Systems Neuroscience Laboratory, Department of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Huang CG, Metzen MG, Chacron MJ. Descending pathways mediate adaptive optimized coding of natural stimuli in weakly electric fish. SCIENCE ADVANCES 2019; 5:eaax2211. [PMID: 31693006 PMCID: PMC6821470 DOI: 10.1126/sciadv.aax2211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Biological systems must be flexible to environmental changes to survive. This is exemplified by the fact that sensory systems continuously adapt to changes in the environment to optimize coding and behavioral responses. However, the nature of the underlying mechanisms remains poorly understood in general. Here, we investigated the mechanisms mediating adaptive optimized coding of naturalistic stimuli with varying statistics depending on the animal's velocity during movement. We found that central neurons adapted their responses to stimuli with different power spectral densities such as to optimally encode them, thereby ensuring that behavioral responses are, in turn, better matched to the new stimulus statistics. Sensory adaptation further required descending inputs from the forebrain as well as the raphe nuclei. Our findings thus reveal a previously unknown functional role for descending pathways in mediating adaptive optimized coding of natural stimuli that is likely generally applicable across sensory systems and species.
Collapse
|
9
|
Hofmann V, Chacron MJ. Novel Functions of Feedback in Electrosensory Processing. Front Integr Neurosci 2019; 13:52. [PMID: 31572137 PMCID: PMC6753188 DOI: 10.3389/fnint.2019.00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
Environmental signals act as input and are processed across successive stages in the brain to generate a meaningful behavioral output. However, a ubiquitous observation is that descending feedback projections from more central to more peripheral brain areas vastly outnumber ascending feedforward projections. Such projections generally act to modify how sensory neurons respond to afferent signals. Recent studies in the electrosensory system of weakly electric fish have revealed novel functions for feedback pathways in that their transformation of the afferent input generates neural firing rate responses to sensory signals mediating perception and behavior. In this review, we focus on summarizing these novel and recently uncovered functions and put them into context by describing the more "classical" functions of feedback in the electrosensory system. We further highlight the parallels between the electrosensory system and other systems as well as outline interesting future directions.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
10
|
Cullen KE. Vestibular processing during natural self-motion: implications for perception and action. Nat Rev Neurosci 2019; 20:346-363. [PMID: 30914780 PMCID: PMC6611162 DOI: 10.1038/s41583-019-0153-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
How the brain computes accurate estimates of our self-motion relative to the world and our orientation relative to gravity in order to ensure accurate perception and motor control is a fundamental neuroscientific question. Recent experiments have revealed that the vestibular system encodes this information during everyday activities using pathway-specific neural representations. Furthermore, new findings have established that vestibular signals are selectively combined with extravestibular information at the earliest stages of central vestibular processing in a manner that depends on the current behavioural goal. These findings have important implications for our understanding of the brain mechanisms that ensure accurate perception and behaviour during everyday activities and for our understanding of disorders of vestibular processing.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Lankarany M, Al-Basha D, Ratté S, Prescott SA. Differentially synchronized spiking enables multiplexed neural coding. Proc Natl Acad Sci U S A 2019; 116:10097-10102. [PMID: 31028148 PMCID: PMC6525513 DOI: 10.1073/pnas.1812171116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Multiplexing refers to the simultaneous encoding of two or more signals. Neurons have been shown to multiplex, but different stimuli require different multiplexing strategies. Whereas the frequency and amplitude of periodic stimuli can be encoded by the timing and rate of the same spikes, natural scenes, which comprise areas over which intensity varies gradually and sparse edges where intensity changes abruptly, require a different multiplexing strategy. Recording in vivo from neurons in primary somatosensory cortex during tactile stimulation, we found that stimulus onset and offset (edges) evoked highly synchronized spiking, whereas other spikes in the same neurons occurred asynchronously. Stimulus intensity modulated the rate of asynchronous spiking, but did not affect the timing of synchronous spikes. From this, we hypothesized that spikes driven by high- and low-contrast stimulus features can be distinguished on the basis of their synchronization, and that differentially synchronized spiking can thus be used to form multiplexed representations. Applying a Bayesian decoding method, we verified that information about high- and low-contrast features can be recovered from an ensemble of model neurons receiving common input. Equally good decoding was achieved by distinguishing synchronous from asynchronous spikes and applying reverse correlation methods separately to each spike type. This result, which we verified with patch clamp recordings in vitro, demonstrates that neurons receiving common input can use the rate of asynchronous spiking to encode the intensity of low-contrast features while using the timing of synchronous spikes to encode the occurrence of high-contrast features. We refer to this strategy as synchrony-division multiplexing.
Collapse
Affiliation(s)
- Milad Lankarany
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Dhekra Al-Basha
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
12
|
Hofmann V, Chacron MJ. Population Coding and Correlated Variability in Electrosensory Pathways. Front Integr Neurosci 2018; 12:56. [PMID: 30542271 PMCID: PMC6277784 DOI: 10.3389/fnint.2018.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/30/2018] [Indexed: 11/29/2022] Open
Abstract
The fact that perception and behavior depend on the simultaneous and coordinated activity of neural populations is well established. Understanding encoding through neuronal population activity is however complicated by the statistical dependencies between the activities of neurons, which can be present in terms of both their mean (signal correlations) and their response variability (noise correlations). Here, we review the state of knowledge regarding population coding and the influence of correlated variability in the electrosensory pathways of the weakly electric fish Apteronotus leptorhynchus. We summarize known population coding strategies at the peripheral level, which are largely unaffected by noise correlations. We then move on to the hindbrain, where existing data from the electrosensory lateral line lobe (ELL) shows the presence of noise correlations. We summarize the current knowledge regarding the mechanistic origins of noise correlations and known mechanisms of stimulus dependent correlation shaping in ELL. We finish by considering future directions for understanding population coding in the electrosensory pathways of weakly electric fish, highlighting the benefits of this model system for understanding the origins and impact of noise correlations on population coding.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, Montréal, QC, Canada
| | | |
Collapse
|
13
|
Huang CG, Metzen MG, Chacron MJ. Feedback optimizes neural coding and perception of natural stimuli. eLife 2018; 7:e38935. [PMID: 30289387 PMCID: PMC6181564 DOI: 10.7554/elife.38935] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
Growing evidence suggests that sensory neurons achieve optimal encoding by matching their tuning properties to the natural stimulus statistics. However, the underlying mechanisms remain unclear. Here we demonstrate that feedback pathways from higher brain areas mediate optimized encoding of naturalistic stimuli via temporal whitening in the weakly electric fish Apteronotus leptorhynchus. While one source of direct feedback uniformly enhances neural responses, a separate source of indirect feedback selectively attenuates responses to low frequencies, thus creating a high-pass neural tuning curve that opposes the decaying spectral power of natural stimuli. Additionally, we recorded from two populations of higher brain neurons responsible for the direct and indirect descending inputs. While one population displayed broadband tuning, the other displayed high-pass tuning and thus performed temporal whitening. Hence, our results demonstrate a novel function for descending input in optimizing neural responses to sensory input through temporal whitening that is likely to be conserved across systems and species.
Collapse
|
14
|
Thomas RA, Metzen MG, Chacron MJ. Weakly electric fish distinguish between envelope stimuli arising from different behavioral contexts. ACTA ACUST UNITED AC 2018; 221:jeb.178244. [PMID: 29954835 DOI: 10.1242/jeb.178244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/14/2018] [Indexed: 11/20/2022]
Abstract
Understanding how sensory information is processed by the brain in order to give rise to behavior remains poorly understood in general. Here, we investigated the behavioral responses of the weakly electric fish Apteronotus albifrons to stimuli arising from different contexts, by measuring changes in the electric organ discharge (EOD) frequency. Specifically, we focused on envelopes, which can arise either because of movement (i.e. motion envelopes) or because of interactions between the electric fields of three of more fish (i.e. social envelopes). Overall, we found that the animal's EOD frequency effectively tracked the detailed time course of both motion and social envelopes. In general, behavioral sensitivity (i.e. gain) decreased while phase lag increased with increasing envelope and carrier frequency. However, changes in gain and phase lag as a function of changes in carrier frequency were more prominent for motion than for social envelopes in general. Importantly, we compared behavioral responses to motion and social envelopes with similar characteristics. Although behavioral sensitivities were similar, we observed an increased response lag for social envelopes, primarily for low carrier frequencies. Thus, our results imply that the organism can, based on behavioral responses, distinguish envelope stimuli resulting from movement from those that instead result from social interactions. We discuss the implications of our results for neural coding of envelopes and propose that behavioral responses to motion and social envelopes are mediated by different neural circuits in the brain.
Collapse
Affiliation(s)
- Rhalena A Thomas
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | - Michael G Metzen
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | - Maurice J Chacron
- Department of Physiology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
15
|
Metzen MG, Huang CG, Chacron MJ. Descending pathways generate perception of and neural responses to weak sensory input. PLoS Biol 2018; 16:e2005239. [PMID: 29939982 PMCID: PMC6040869 DOI: 10.1371/journal.pbio.2005239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/11/2018] [Accepted: 06/12/2018] [Indexed: 01/24/2023] Open
Abstract
Natural sensory stimuli frequently consist of a fast time-varying waveform whose amplitude or contrast varies more slowly. While changes in contrast carry behaviorally relevant information necessary for sensory perception, their processing by the brain remains poorly understood to this day. Here, we investigated the mechanisms that enable neural responses to and perception of low-contrast stimuli in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus. We found that fish reliably detected such stimuli via robust behavioral responses. Recordings from peripheral electrosensory neurons revealed stimulus-induced changes in firing activity (i.e., phase locking) but not in their overall firing rate. However, central electrosensory neurons receiving input from the periphery responded robustly via both phase locking and increases in firing rate. Pharmacological inactivation of feedback input onto central electrosensory neurons eliminated increases in firing rate but did not affect phase locking for central electrosensory neurons in response to low-contrast stimuli. As feedback inactivation eliminated behavioral responses to these stimuli as well, our results show that it is changes in central electrosensory neuron firing rate that are relevant for behavior, rather than phase locking. Finally, recordings from neurons projecting directly via feedback to central electrosensory neurons revealed that they provide the necessary input to cause increases in firing rate. Our results thus provide the first experimental evidence that feedback generates both neural and behavioral responses to low-contrast stimuli that are commonly found in the natural environment. Feedback input from more central to more peripheral brain areas is found ubiquitously in the central nervous system of vertebrates. In this study, we used a combination of electrophysiological, behavioral, and pharmacological approaches to reveal a novel function for feedback pathways in generating neural and behavioral responses to weak sensory input in the weakly electric fish. We first determined that weak sensory input gives rise to responses that are phase locked in both peripheral sensory neurons and in the central neurons that are their downstream targets. However, central neurons also responded to weak sensory inputs that were not relayed via a feedforward input from the periphery, because complete inactivation of the feedback pathway abolished increases in firing rate but not the phase locking in response to weak sensory input. Because such inactivation also abolished the behavioral responses, our results show that the increases in firing rate in central neurons, and not the phase locking, are decoded downstream to give rise to perception. Finally, we discovered that the neurons providing feedback input were also activated by weak sensory input, thereby offering further evidence that feedback is necessary to elicit increases in firing rate that are needed for perception.
Collapse
Affiliation(s)
- Michael G. Metzen
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Chengjie G. Huang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Maurice J. Chacron
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
16
|
Serotonin Selectively Increases Detectability of Motion Stimuli in the Electrosensory System. eNeuro 2018; 5:eN-NWR-0013-18. [PMID: 29845105 PMCID: PMC5969320 DOI: 10.1523/eneuro.0013-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 11/21/2022] Open
Abstract
Serotonergic innervation of sensory areas is found ubiquitously across the central nervous system of vertebrates. Here, we used a system's level approach to investigate the role of serotonin on processing motion stimuli in the electrosensory system of the weakly electric fish Apteronotus albifrons. We found that exogenous serotonin application increased the firing activity of pyramidal neural responses to both looming and receding motion. Separating spikes belonging to bursts from those that were isolated revealed that this effect was primarily due to increased burst firing. Moreover, when investigating whether firing activity during stimulation could be discriminated from baseline (i.e., in the absence of stimulation), we found that serotonin increased stimulus discriminability only for some stimuli. This is because increased burst firing was most prominent for these. Further, the effects of serotonin were highly heterogeneous, with some neurons displaying large while others instead displaying minimal changes in responsiveness following serotonin application. Further analysis revealed that serotonin application had the greatest effect on neurons with low baseline firing rates and little to no effect on neurons with high baseline firing rates. Finally, the effects of serotonin on sensory neuron responses were largely independent of object velocity. Our results therefore reveal a novel function for the serotonergic system in selectively enhancing discriminability for motion stimuli.
Collapse
|
17
|
Hofmann V, Chacron MJ. Differential receptive field organizations give rise to nearly identical neural correlations across three parallel sensory maps in weakly electric fish. PLoS Comput Biol 2017; 13:e1005716. [PMID: 28863136 PMCID: PMC5599069 DOI: 10.1371/journal.pcbi.1005716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/14/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
Understanding how neural populations encode sensory information thereby leading to perception and behavior (i.e., the neural code) remains an important problem in neuroscience. When investigating the neural code, one must take into account the fact that neural activities are not independent but are actually correlated with one another. Such correlations are seen ubiquitously and have a strong impact on neural coding. Here we investigated how differences in the antagonistic center-surround receptive field (RF) organization across three parallel sensory maps influence correlations between the activities of electrosensory pyramidal neurons. Using a model based on known anatomical differences in receptive field center size and overlap, we initially predicted large differences in correlated activity across the maps. However, in vivo electrophysiological recordings showed that, contrary to modeling predictions, electrosensory pyramidal neurons across all three segments displayed nearly identical correlations. To explain this surprising result, we incorporated the effects of RF surround in our model. By systematically varying both the RF surround gain and size relative to that of the RF center, we found that multiple RF structures gave rise to similar levels of correlation. In particular, incorporating known physiological differences in RF structure between the three maps in our model gave rise to similar levels of correlation. Our results show that RF center overlap alone does not determine correlations which has important implications for understanding how RF structure influences correlated neural activity. Growing evidence across nervous systems and species shows that the activities of neighboring neurons are not independent but are correlated with one another, which has important implications for neural coding. Such correlations are generally thought to be due to shared input. However, how this shared input is integrated by neurons in order to give rise to correlated activity is not well understood in general. Here we investigated how receptive field structure determines correlations between the activities of electrosensory pyramidal neurons in weakly electric fish. To do so, we used a combination of mathematical modeling of the known antagonistic center-surround RF structure as well as in vivo electrophysiological recordings. Our results show that the amount of receptive field center overlap alone is not sufficient to explain experimentally observed neural correlations in general. This is because our experimental data shows that pyramidal neurons with very different amounts of receptive field center overlap display almost identical correlations between their activities. Further, our modeling shows that both receptive field center and surround play important roles in determining correlated activity, such that very different combinations of relative RF surround strength and size can generate nearly identical correlations between neural activities. We discuss the implications of our results for sensory processing.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, McIntyre Medical Building, Montreal, Québec, Canada
| | - Maurice J. Chacron
- Department of Physiology, McGill University, McIntyre Medical Building, Montreal, Québec, Canada
- * E-mail:
| |
Collapse
|
18
|
Optimized Parallel Coding of Second-Order Stimulus Features by Heterogeneous Neural Populations. J Neurosci 2017; 36:9859-72. [PMID: 27656024 DOI: 10.1523/jneurosci.1433-16.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/09/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Efficient processing of sensory input is essential to ensure an organism's survival in its natural environment. Growing evidence suggests that sensory neurons can optimally encode natural stimuli by ensuring that their tuning opposes stimulus statistics, such that the resulting neuronal response contains equal power at all frequencies (i.e., is "white"). Such temporal decorrelation or whitening has been observed across modalities, but the effects of neural heterogeneities on determining tuning and thus responses to natural stimuli have not been investigated. Here, we investigate how heterogeneities in sensory pyramidal neurons organized in three parallel maps representing the body surface determine responses to second-order electrosensory stimulus features in the weakly electric fish Apteronotus leptorhynchus While some sources of heterogeneities such as ON- and OFF-type responses to first-order did not affect responses to second-order electrosensory stimulus features, other sources of heterogeneity within and across the maps strongly determined responses. We found that these cells effectively performed a fractional differentiation operation on their input with exponents ranging from zero (no differentiation) to 0.4 (strong differentiation). Varying adaptation in a simple model explained these heterogeneities and predicted a strong correlation between fractional differentiation and adaptation. Using natural stimuli, we found that only a small fraction of neurons implemented temporal whitening. Rather, a large fraction of neurons did not perform any significant whitening and thus preserved natural input statistics in their responses. We propose that this information is needed to properly decode optimized information sent in parallel through temporally whitened responses based on context. SIGNIFICANCE STATEMENT We demonstrate that heterogeneities in the same sensory neuron type can either have no or significant influence on their responses to second-order stimulus features. While an ON- or OFF-type response to first-order stimulus attributes has no significant influence on responses to second-order stimulus features, we found that only a small fraction of sensory neurons optimally encoded natural stimuli through high-pass filtering, thereby implementing temporal whitening. Surprisingly, a large fraction of sensory neurons performed little if no filtering of stimuli, thereby preserving natural stimulus statistics. We hypothesize that this pathway is necessary to properly decode optimized information contained in temporally whitened responses based on context.
Collapse
|
19
|
Carriot J, Jamali M, Cullen KE, Chacron MJ. Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing. PLoS One 2017; 12:e0178664. [PMID: 28575032 PMCID: PMC5456318 DOI: 10.1371/journal.pone.0178664] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/17/2017] [Indexed: 11/19/2022] Open
Abstract
There is accumulating evidence that the brain's neural coding strategies are constrained by natural stimulus statistics. Here we investigated the statistics of the time varying envelope (i.e. a second-order stimulus attribute that is related to variance) of rotational and translational self-motion signals experienced by human subjects during everyday activities. We found that envelopes can reach large values across all six motion dimensions (~450 deg/s for rotations and ~4 G for translations). Unlike results obtained in other sensory modalities, the spectral power of envelope signals decreased slowly for low (< 2 Hz) and more sharply for high (>2 Hz) temporal frequencies and thus was not well-fit by a power law. We next compared the spectral properties of envelope signals resulting from active and passive self-motion, as well as those resulting from signals obtained when the subject is absent (i.e. external stimuli). Our data suggest that different mechanisms underlie deviation from scale invariance in rotational and translational self-motion envelopes. Specifically, active self-motion and filtering by the human body cause deviation from scale invariance primarily for translational and rotational envelope signals, respectively. Finally, we used well-established models in order to predict the responses of peripheral vestibular afferents to natural envelope stimuli. We found that irregular afferents responded more strongly to envelopes than their regular counterparts. Our findings have important consequences for understanding the coding strategies used by the vestibular system to process natural second-order self-motion signals.
Collapse
Affiliation(s)
- Jérome Carriot
- Department of Physiology, McGill University, Montreal, Québec, Canada
| | - Mohsen Jamali
- Department of Physiology, McGill University, Montreal, Québec, Canada
| | | | - Maurice J. Chacron
- Department of Physiology, McGill University, Montreal, Québec, Canada
- * E-mail:
| |
Collapse
|
20
|
Metzen MG, Chacron MJ. Stimulus background influences phase invariant coding by correlated neural activity. eLife 2017; 6:e24482. [PMID: 28315519 PMCID: PMC5389862 DOI: 10.7554/elife.24482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/17/2017] [Indexed: 11/13/2022] Open
Abstract
Previously we reported that correlations between the activities of peripheral afferents mediate a phase invariant representation of natural communication stimuli that is refined across successive processing stages thereby leading to perception and behavior in the weakly electric fish Apteronotus leptorhynchus (Metzen et al., 2016). Here, we explore how phase invariant coding and perception of natural communication stimuli are affected by changes in the sinusoidal background over which they occur. We found that increasing background frequency led to phase locking, which decreased both detectability and phase invariant coding. Correlated afferent activity was a much better predictor of behavior as assessed from both invariance and detectability than single neuron activity. Thus, our results provide not only further evidence that correlated activity likely determines perception of natural communication signals, but also a novel explanation as to why these preferentially occur on top of low frequency as well as low-intensity sinusoidal backgrounds.
Collapse
|
21
|
Huang CG, Chacron MJ. SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus attributes: A review. Channels (Austin) 2017; 11:281-304. [PMID: 28277938 DOI: 10.1080/19336950.2017.1299835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Ion channels play essential roles toward determining how neurons respond to sensory input to mediate perception and behavior. Small conductance calcium-activated potassium (SK) channels are found ubiquitously throughout the brain and have been extensively characterized both molecularly and physiologically in terms of structure and function. It is clear that SK channels are key determinants of neural excitability as they mediate important neuronal response properties such as spike frequency adaptation. However, the functional roles of the different known SK channel subtypes are not well understood. Here we review recent evidence from the electrosensory system of weakly electric fish suggesting that the function of different SK channel subtypes is to optimize the processing of independent but behaviorally relevant stimulus attributes. Indeed, natural sensory stimuli frequently consist of a fast time-varying waveform (i.e., the carrier) whose amplitude (i.e., the envelope) varies slowly and independently. We first review evidence showing how somatic SK2 channels mediate tuning and responses to carrier waveforms. We then review evidence showing how dendritic SK1 channels instead determine tuning and optimize responses to envelope waveforms based on their statistics as found in the organism's natural environment in an independent fashion. The high degree of functional homology between SK channels in electric fish and their mammalian orthologs, as well as the many important parallels between the electrosensory system and the mammalian visual, auditory, and vestibular systems, suggest that these functional roles are conserved across systems and species.
Collapse
Affiliation(s)
- Chengjie G Huang
- a Department of Physiology , McGill University , Montreal , QC , Canada
| | - Maurice J Chacron
- a Department of Physiology , McGill University , Montreal , QC , Canada
| |
Collapse
|
22
|
Martinez D, Metzen MG, Chacron MJ. Electrosensory processing in Apteronotus albifrons: implications for general and specific neural coding strategies across wave-type weakly electric fish species. J Neurophysiol 2016; 116:2909-2921. [PMID: 27683890 PMCID: PMC5224934 DOI: 10.1152/jn.00594.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/26/2016] [Indexed: 11/22/2022] Open
Abstract
Understanding how the brain processes sensory input to generate behavior remains an important problem in neuroscience. Towards this end, it is useful to compare results obtained across multiple species to gain understanding as to the general principles of neural coding. Here we investigated hindbrain pyramidal cell activity in the weakly electric fish Apteronotus albifrons We found strong heterogeneities when looking at baseline activity. Additionally, ON- and OFF-type cells responded to increases and decreases of sinusoidal and noise stimuli, respectively. While both cell types displayed band-pass tuning, OFF-type cells were more broadly tuned than their ON-type counterparts. The observed heterogeneities in baseline activity as well as the greater broadband tuning of OFF-type cells were both similar to those previously reported in other weakly electric fish species, suggesting that they constitute general features of sensory processing. However, we found that peak tuning occurred at frequencies ∼15 Hz in A. albifrons, which is much lower than values reported in the closely related species Apteronotus leptorhynchus and the more distantly related species Eigenmannia virescens In response to stimuli with time-varying amplitude (i.e., envelope), ON- and OFF-type cells displayed similar high-pass tuning curves characteristic of fractional differentiation and possibly indicate optimized coding. These tuning curves were qualitatively similar to those of pyramidal cells in the closely related species A. leptorhynchus In conclusion, comparison between our and previous results reveals general and species-specific neural coding strategies. We hypothesize that differences in coding strategies, when observed, result from different stimulus distributions in the natural/social environment.
Collapse
Affiliation(s)
- Diana Martinez
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Michael G Metzen
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Maurice J Chacron
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Metzen MG, Krahe R, Chacron MJ. Burst Firing in the Electrosensory System of Gymnotiform Weakly Electric Fish: Mechanisms and Functional Roles. Front Comput Neurosci 2016; 10:81. [PMID: 27531978 PMCID: PMC4969294 DOI: 10.3389/fncom.2016.00081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/20/2016] [Indexed: 11/13/2022] Open
Abstract
Neurons across sensory systems and organisms often display complex patterns of action potentials in response to sensory input. One example of such a pattern is the tendency of neurons to fire packets of action potentials (i.e., a burst) followed by quiescence. While it is well known that multiple mechanisms can generate bursts of action potentials at both the single-neuron and the network level, the functional role of burst firing in sensory processing is not so well understood to date. Here we provide a comprehensive review of the known mechanisms and functions of burst firing in processing of electrosensory stimuli in gymnotiform weakly electric fish. We also present new evidence from existing data showing that bursts and isolated spikes provide distinct information about stimulus variance. It is likely that these functional roles will be generally applicable to other systems and species.
Collapse
Affiliation(s)
- Michael G Metzen
- Department of Physiology, McGill University Montreal, QC, Canada
| | - Rüdiger Krahe
- Department of Biology, McGill University Montreal, QC, Canada
| | | |
Collapse
|
24
|
Zhang ZD, Chacron MJ. Adaptation to second order stimulus features by electrosensory neurons causes ambiguity. Sci Rep 2016; 6:28716. [PMID: 27349635 PMCID: PMC4923874 DOI: 10.1038/srep28716] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
Understanding the coding strategies used to process sensory input remains a central problem in neuroscience. Growing evidence suggests that sensory systems process natural stimuli efficiently by ensuring a close match between neural tuning and stimulus statistics through adaptation. However, adaptation causes ambiguity as the same response can be elicited by different stimuli. The mechanisms by which the brain resolves ambiguity remain poorly understood. Here we investigated adaptation in electrosensory pyramidal neurons within different parallel maps in the weakly electric fish Apteronotus leptorhynchus. In response to step increases in stimulus variance, we found that pyramidal neurons within the lateral segment (LS) displayed strong scale invariant adaptation whereas those within the centromedial segment (CMS) instead displayed weaker degrees of scale invariant adaptation. Signal detection analysis revealed that strong adaptation in LS neurons significantly reduced stimulus discriminability. In contrast, weaker adaptation displayed by CMS neurons led to significantly lesser impairment of discriminability. Thus, while LS neurons display adaptation that is matched to natural scene statistics, thereby optimizing information transmission, CMS neurons instead display weaker adaptation and would instead provide information about the context in which these statistics occur. We propose that such a scheme is necessary for decoding by higher brain structures.
Collapse
Affiliation(s)
- Zhubo D Zhang
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
25
|
Roles for Coincidence Detection in Coding Amplitude-Modulated Sounds. PLoS Comput Biol 2016; 12:e1004997. [PMID: 27322612 PMCID: PMC4920552 DOI: 10.1371/journal.pcbi.1004997] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/25/2016] [Indexed: 12/30/2022] Open
Abstract
Many sensory neurons encode temporal information by detecting coincident arrivals of synaptic inputs. In the mammalian auditory brainstem, binaural neurons of the medial superior olive (MSO) are known to act as coincidence detectors, whereas in the lateral superior olive (LSO) roles of coincidence detection have remained unclear. LSO neurons receive excitatory and inhibitory inputs driven by ipsilateral and contralateral acoustic stimuli, respectively, and vary their output spike rates according to interaural level differences. In addition, LSO neurons are also sensitive to binaural phase differences of low-frequency tones and envelopes of amplitude-modulated (AM) sounds. Previous physiological recordings in vivo found considerable variations in monaural AM-tuning across neurons. To investigate the underlying mechanisms of the observed temporal tuning properties of LSO and their sources of variability, we used a simple coincidence counting model and examined how specific parameters of coincidence detection affect monaural and binaural AM coding. Spike rates and phase-locking of evoked excitatory and spontaneous inhibitory inputs had only minor effects on LSO output to monaural AM inputs. In contrast, the coincidence threshold of the model neuron affected both the overall spike rates and the half-peak positions of the AM-tuning curve, whereas the width of the coincidence window merely influenced the output spike rates. The duration of the refractory period affected only the low-frequency portion of the monaural AM-tuning curve. Unlike monaural AM coding, temporal factors, such as the coincidence window and the effective duration of inhibition, played a major role in determining the trough positions of simulated binaural phase-response curves. In addition, empirically-observed level-dependence of binaural phase-coding was reproduced in the framework of our minimalistic coincidence counting model. These modeling results suggest that coincidence detection of excitatory and inhibitory synaptic inputs is essential for LSO neurons to encode both monaural and binaural AM sounds. Detecting coincident arrivals of synaptic inputs is a shared fundamental property of many sensory neurons. Such 'coincidence detection' usually refers to the detection of synchronized excitatory inputs only. Experimental evidence, however, indicated that some auditory neurons are also sensitive to the relative timing of excitatory and inhibitory synaptic inputs. This type of sensitivity is suggested to be important for coding temporal information of amplitude-modulated sounds, such as speech and other naturalistic sounds. In this study, we used a minimal model of coincidence detection to identify the key elements for temporal information processing. Our series of simulations demonstrated that (1) the threshold and time window for coincidence detection were the major factors for determining the response properties to excitatory inputs, and that (2) timed interactions between excitatory and inhibitory synaptic inputs are responsible for determining the temporal tuning properties of the neuron. These results suggest that coincidence detection is an essential function of neurons that detect the 'anti-coincidence' of excitatory and inhibitory inputs to encode temporal information of sounds.
Collapse
|
26
|
Metzen MG, Hofmann V, Chacron MJ. Neural correlations enable invariant coding and perception of natural stimuli in weakly electric fish. eLife 2016; 5. [PMID: 27128376 PMCID: PMC4851552 DOI: 10.7554/elife.12993] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/08/2016] [Indexed: 11/13/2022] Open
Abstract
Neural representations of behaviorally relevant stimulus features displaying invariance with respect to different contexts are essential for perception. However, the mechanisms mediating their emergence and subsequent refinement remain poorly understood in general. Here, we demonstrate that correlated neural activity allows for the emergence of an invariant representation of natural communication stimuli that is further refined across successive stages of processing in the weakly electric fish Apteronotus leptorhynchus. Importantly, different patterns of input resulting from the same natural communication stimulus occurring in different contexts all gave rise to similar behavioral responses. Our results thus reveal how a generic neural circuit performs an elegant computation that mediates the emergence and refinement of an invariant neural representation of natural stimuli that most likely constitutes a neural correlate of perception. DOI:http://dx.doi.org/10.7554/eLife.12993.001 We can effortlessly recognize an object – a car, for example – in many different contexts such as when seen from behind, under different lighting levels or even from different viewpoints. This phenomenon is known as perceptual invariance: objects are correctly recognized, despite variations in exactly what is seen (or otherwise sensed). However, it is still not clear how the brain processes perceptual information to recognize the same object under a wide variety of contexts. Some fish, such as the brown ghost knifefish, produce a weak electric signal that they can alter to communicate with other members of their species. A communication call may be produced in a variety of contexts that alter which aspects of the signal nearby fish detect. Despite this, fish tend to respond to a given communication call in the same way regardless of its context; this suggests that these fish also have perceptual invariance. The communication calls of weakly electric fish can be easily mimicked in a laboratory and produce reliable behavioral responses, which makes these fish a good model for understanding how perceptual invariance might be coded in the brain. Therefore, Metzen et al. recorded the activity of the receptor neurons that first respond to communication calls in weakly electric fish. The results revealed that a given communication signal made the firing patterns of all receptor neurons in the fish’s brain more similar to each other, regardless of the signal’s context. This occurs despite the changes in context causing single receptor neurons to respond in different ways. At each stage of the process by which information is transmitted from the receptor neurons to neurons deeper in the brain, the similarity in the neurons’ firing patterns is refined, thereby giving rise to perceptual invariance. While perceptual invariance to a given object in different contexts is desirable, it is also important to be able to distinguish between different objects. This implies that neurons should respond similarly to stimuli associated with the same object and differently to stimuli associated with different objects. Further studies are now needed to confirm whether this is the case. DOI:http://dx.doi.org/10.7554/eLife.12993.002
Collapse
Affiliation(s)
| | - Volker Hofmann
- Department of Physiology, McGill University, Montreal, Canada
| | | |
Collapse
|
27
|
Huang CG, Zhang ZD, Chacron MJ. Temporal decorrelation by SK channels enables efficient neural coding and perception of natural stimuli. Nat Commun 2016; 7:11353. [PMID: 27088670 PMCID: PMC4837484 DOI: 10.1038/ncomms11353] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/17/2016] [Indexed: 11/21/2022] Open
Abstract
It is commonly assumed that neural systems efficiently process natural sensory input. However, the mechanisms by which such efficient processing is achieved, and the consequences for perception and behaviour remain poorly understood. Here we show that small conductance calcium-activated potassium (SK) channels enable efficient neural processing and perception of natural stimuli. Specifically, these channels allow for the high-pass filtering of sensory input, thereby removing temporal correlations or, equivalently, whitening frequency response power. Varying the degree of adaptation through pharmacological manipulation of SK channels reduced efficiency of coding of natural stimuli, which in turn gave rise to predictable changes in behavioural responses that were no longer matched to natural stimulus statistics. Our results thus demonstrate a novel mechanism by which the nervous system can implement efficient processing and perception of natural sensory input that is likely to be shared across systems and species.
Collapse
Affiliation(s)
- Chengjie G. Huang
- Department of Physiology, McGill University, 3655 Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Zhubo D. Zhang
- Department of Physiology, McGill University, 3655 Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Maurice J. Chacron
- Department of Physiology, McGill University, 3655 Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
28
|
Jung SN, Longtin A, Maler L. Weak signal amplification and detection by higher-order sensory neurons. J Neurophysiol 2016; 115:2158-75. [PMID: 26843601 DOI: 10.1152/jn.00811.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/30/2016] [Indexed: 12/22/2022] Open
Abstract
Sensory systems must extract behaviorally relevant information and therefore often exhibit a very high sensitivity. How the nervous system reaches such high sensitivity levels is an outstanding question in neuroscience. Weakly electric fish (Apteronotus leptorhynchus/albifrons) are an excellent model system to address this question because detailed background knowledge is available regarding their behavioral performance and its underlying neuronal substrate. Apteronotus use their electrosense to detect prey objects. Therefore, they must be able to detect electrical signals as low as 1 μV while using a sensory integration time of <200 ms. How these very weak signals are extracted and amplified by the nervous system is not yet understood. We studied the responses of cells in the early sensory processing areas, namely, the electroreceptor afferents (EAs) and pyramidal cells (PCs) of the electrosensory lobe (ELL), the first-order electrosensory processing area. In agreement with previous work we found that EAs cannot encode very weak signals with a spike count code. However, PCs can encode prey mimic signals by their firing rate, revealing a huge signal amplification between EAs and PCs and also suggesting differences in their stimulus encoding properties. Using a simple leaky integrate-and-fire (LIF) model we predict that the target neurons of PCs in the midbrain torus semicircularis (TS) are able to detect very weak signals. In particular, TS neurons could do so by assuming biologically plausible convergence rates as well as very simple decoding strategies such as temporal integration, threshold crossing, and combining the inputs of PCs.
Collapse
Affiliation(s)
- Sarah N Jung
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Physics, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Andre Longtin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Physics, University of Ottawa, Ottawa, Ontario, Canada; and Brain and Mind Institute and Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Brain and Mind Institute and Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
29
|
Abstract
The relative simplicity of the neural circuits that mediate vestibular reflexes is well suited for linking systems and cellular levels of analyses. Notably, a distinctive feature of the vestibular system is that neurons at the first central stage of sensory processing in the vestibular nuclei are premotor neurons; the same neurons that receive vestibular-nerve input also send direct projections to motor pathways. For example, the simplicity of the three-neuron pathway that mediates the vestibulo-ocular reflex leads to the generation of compensatory eye movements within ~5ms of a head movement. Similarly, relatively direct pathways between the labyrinth and spinal cord control vestibulospinal reflexes. A second distinctive feature of the vestibular system is that the first stage of central processing is strongly multimodal. This is because the vestibular nuclei receive inputs from a wide range of cortical, cerebellar, and other brainstem structures in addition to direct inputs from the vestibular nerve. Recent studies in alert animals have established how extravestibular signals shape these "simple" reflexes to meet the needs of current behavioral goal. Moreover, multimodal interactions at higher levels, such as the vestibular cerebellum, thalamus, and cortex, play a vital role in ensuring accurate self-motion and spatial orientation perception.
Collapse
Affiliation(s)
- K E Cullen
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
30
|
Contrast coding in the electrosensory system: parallels with visual computation. Nat Rev Neurosci 2015; 16:733-44. [PMID: 26558527 DOI: 10.1038/nrn4037] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To identify and interact with moving objects, including other members of the same species, an animal's nervous system must correctly interpret patterns of contrast in the physical signals (such as light or sound) that it receives from the environment. In weakly electric fish, the motion of objects in the environment and social interactions with other fish create complex patterns of contrast in the electric fields that they produce and detect. These contrast patterns can extend widely over space and time and represent a multitude of relevant features, as is also true for other sensory systems. Mounting evidence suggests that the computational principles underlying contrast coding in electrosensory neural networks are conserved elements of spatiotemporal processing that show strong parallels with the vertebrate visual system.
Collapse
|
31
|
Aumentado-Armstrong T, Metzen MG, Sproule MKJ, Chacron MJ. Electrosensory Midbrain Neurons Display Feature Invariant Responses to Natural Communication Stimuli. PLoS Comput Biol 2015; 11:e1004430. [PMID: 26474395 PMCID: PMC4608831 DOI: 10.1371/journal.pcbi.1004430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Neurons that respond selectively but in an invariant manner to a given feature of natural stimuli have been observed across species and systems. Such responses emerge in higher brain areas, thereby suggesting that they occur by integrating afferent input. However, the mechanisms by which such integration occurs are poorly understood. Here we show that midbrain electrosensory neurons can respond selectively and in an invariant manner to heterogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not seen in hindbrain electrosensory neurons providing afferent input to these midbrain neurons, suggesting that response invariance results from nonlinear integration of such input. To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that received realistic afferent input. We found that multiple combinations of parameter values could give rise to invariant responses matching those seen experimentally. Our model thus shows that there are multiple solutions towards achieving invariant responses and reveals how subthreshold membrane conductances help promote robust and invariant firing in response to heterogeneous stimulus waveforms associated with behaviorally relevant stimuli. We discuss the implications of our findings for the electrosensory and other systems.
Collapse
Affiliation(s)
| | - Michael G. Metzen
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | - Maurice J. Chacron
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
32
|
Sproule MKJ, Metzen MG, Chacron MJ. Parallel sparse and dense information coding streams in the electrosensory midbrain. Neurosci Lett 2015; 607:1-6. [PMID: 26375927 DOI: 10.1016/j.neulet.2015.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/27/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
Efficient processing of incoming sensory information is critical for an organism's survival. It has been widely observed across systems and species that the representation of sensory information changes across successive brain areas. Indeed, peripheral sensory neurons tend to respond densely to a broad range of sensory stimuli while more central neurons tend to instead respond sparsely to a narrow range of stimuli. Such a transition might be advantageous as sparse neural codes are thought to be metabolically efficient and optimize coding efficiency. Here we investigated whether the neural code transitions from dense to sparse within the midbrain Torus semicircularis (TS) of weakly electric fish. Confirming previous results, we found both dense and sparse coding neurons. However, subsequent histological classification revealed that most dense neurons projected to higher brain areas. Our results thus provide strong evidence against the hypothesis that the neural code transitions from dense to sparse in the electrosensory system. Rather, they support the alternative hypothesis that higher brain areas receive parallel streams of dense and sparse coded information from the electrosensory midbrain. We discuss the implications and possible advantages of such a coding strategy and argue that it is a general feature of sensory processing.
Collapse
Affiliation(s)
| | - Michael G Metzen
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
33
|
Metzen MG, Ávila-Åkerberg O, Chacron MJ. Coding stimulus amplitude by correlated neural activity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042717. [PMID: 25974537 PMCID: PMC4461379 DOI: 10.1103/physreve.91.042717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 06/04/2023]
Abstract
While correlated activity is observed ubiquitously in the brain, its role in neural coding has remained controversial. Recent experimental results have demonstrated that correlated but not single-neuron activity can encode the detailed time course of the instantaneous amplitude (i.e., envelope) of a stimulus. These have furthermore demonstrated that such coding required and was optimal for a nonzero level of neural variability. However, a theoretical understanding of these results is still lacking. Here we provide a comprehensive theoretical framework explaining these experimental findings. Specifically, we use linear response theory to derive an expression relating the correlation coefficient to the instantaneous stimulus amplitude, which takes into account key single-neuron properties such as firing rate and variability as quantified by the coefficient of variation. The theoretical prediction was in excellent agreement with numerical simulations of various integrate-and-fire type neuron models for various parameter values. Further, we demonstrate a form of stochastic resonance as optimal coding of stimulus variance by correlated activity occurs for a nonzero value of noise intensity. Thus, our results provide a theoretical explanation of the phenomenon by which correlated but not single-neuron activity can code for stimulus amplitude and how key single-neuron properties such as firing rate and variability influence such coding. Correlation coding by correlated but not single-neuron activity is thus predicted to be a ubiquitous feature of sensory processing for neurons responding to weak input.
Collapse
Affiliation(s)
- Michael G Metzen
- Department of Physiology, McGill University, 3655 Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| | - Oscar Ávila-Åkerberg
- Department of Physics, McGill University, 3655 Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| | - Maurice J Chacron
- Department of Physiology, McGill University, 3655 Sir William Osler, Montréal, Québec H3G 1Y6, Canada
- Department of Physics, McGill University, 3655 Sir William Osler, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|