1
|
Bedera-García R, García-Gómez ME, Personat JM, Couso I. Inositol polyphosphates regulate resilient mechanisms in the green alga Chlamydomonas reinhardtii to adapt to extreme nutrient conditions. PHYSIOLOGIA PLANTARUM 2025; 177:e70089. [PMID: 39868659 DOI: 10.1111/ppl.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
In the context of climate changing environments, microalgae can be excellent organisms to understand molecular mechanisms that activate survival strategies under stress. Chlamydomonas reinhardtii signalling mutants are extremely useful to decipher which strategies photosynthetic organisms use to cope with changeable environments. The mutant vip1-1 has an altered profile of pyroinositol polyphosphates (PP-InsPs), which are signalling molecules present in all eukaryotes and have been connected to P signalling in other organisms including plants, but their implications in other nutrient signalling are still under evaluation. In this study, we conducted prolonged starvation in WT and vip1-1 Chlamydomonas cells. After N and P had been consumed, they showed important differences in the levels of chlorophyll, photosystem II (PSII) activity and ultrastructural morphology, including differences in the cell size and cell division. Metabolomic analysis under these conditions revealed an overall decrease in different organic compounds such as amino acids, including arginine and its precursors and tryptophan, which is considered a signalling molecule itself in plants. In addition, we observed significant differences in RNA levels of genes related to N assimilation that are under the control of the NIT2 transcription factor. These data are of important relevance in understanding the signalling role of PP-InsPs in nutrient sensing, especially regarding N, which has not directly been connected to these molecules in green organisms before. Additionally, the PP-InsPs regulation over cell size and photosynthesis supports novel strategies for the generation of resilient strains, expanding the biotechnological applications of green microalgae.
Collapse
Affiliation(s)
- Rodrigo Bedera-García
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - María Elena García-Gómez
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - José María Personat
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Inmaculada Couso
- Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
2
|
Verwee E, Van de Walle D, De Bruyne M, Mienis E, Sekulic M, Chaerle P, Vyverman W, Foubert I, Dewettinck K. Visualisation of microalgal lipid bodies through electron microscopy. J Microsc 2024; 293:118-131. [PMID: 38149687 DOI: 10.1111/jmi.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
In this study, transmission electron microscopy (TEM) and cryo-scanning electron microscopy (cryo-SEM) were evaluated for their ability to detect lipid bodies in microalgae. To do so, Phaeodactylum tricornutum and Nannochloropsis oculata cells were harvested in both the mid-exponential and early stationary growth phase. Two different cryo-SEM cutting methods were compared: cryo-planing and freeze-fracturing. The results showed that, despite the longer preparation time, TEM visualisation preceded by cryo-immobilisation allows a clear detection of lipid bodies and is preferable to cryo-SEM. Using freeze-fracturing, lipid bodies were rarely detected. This was only feasible if crystalline layers in the internal structure, most likely related to sterol esters or di-saturated triacylglycerols, were revealed. Furthermore, lipid bodies could not be detected using cryo-planing. Cryo-SEM is also not the preferred technique to recognise other organelles besides lipid bodies, yet it did reveal chloroplasts in both species and filament-containing organelles in cryo-planed Nannochloropsis oculata samples.
Collapse
Affiliation(s)
- Ellen Verwee
- Department of Food Technology, Food Structure & Function research group, Safety and Health, Ghent University, Ghent, Belgium
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Davy Van de Walle
- Department of Food Technology, Food Structure & Function research group, Safety and Health, Ghent University, Ghent, Belgium
| | - Michiel De Bruyne
- VIB BioImaging Core VIB, Ghent, Belgium
- VIB Center for Inflammation Research VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Esther Mienis
- Research Unit Food & Lipids, KU Leuven Kulak, Kortrijk, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Mirna Sekulic
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology VIB, Ghent, Belgium
| | - Peter Chaerle
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
- Department of Biology, BCCM/DCG Diatoms Collection, Ghent University, Ghent, Belgium
| | - Wim Vyverman
- Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Imogen Foubert
- Research Unit Food & Lipids, KU Leuven Kulak, Kortrijk, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Koen Dewettinck
- Department of Food Technology, Food Structure & Function research group, Safety and Health, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Li X, Jonikas MC. High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii. Subcell Biochem 2016; 86:223-247. [PMID: 27023238 DOI: 10.1007/978-3-319-25979-6_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microalgal lipid metabolism is of broad interest because microalgae accumulate large amounts of triacylglycerols (TAGs) that can be used for biodiesel production (Durrett et al Plant J 54(4):593-607, 2008; Hu et al Plant J 54(4):621-639, 2008). Additionally, green algae are close relatives of land plants and serve as models to understand conserved lipid metabolism pathways in the green lineage. The green alga Chlamydomonas reinhardtii (Chlamydomonas hereafter) is a powerful model organism for understanding algal lipid metabolism. Various methods have been used to screen Chlamydomonas mutants for lipid amount or composition, and for identification of the mutated loci in mutants of interest. In this chapter, we summarize the advantages and caveats for each of these methods with a focus on screens for mutants with perturbed TAG content. We also discuss technical opportunities and new tools that are becoming available for screens of mutants altered in TAG content or perturbed in other processes in Chlamydomonas.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| |
Collapse
|