1
|
Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 2024; 724:150218. [PMID: 38865810 DOI: 10.1016/j.bbrc.2024.150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/β, and α/β) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.
Collapse
Affiliation(s)
- Indu Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Mal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anushka Paul
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
2
|
Gómez-González GB, Becerra-González M, Martínez-Mendoza ML, Rodríguez-Arzate CA, Martínez-Torres A. Organization of the ventricular zone of the cerebellum. Front Cell Neurosci 2022; 16:955550. [PMID: 35959470 PMCID: PMC9358289 DOI: 10.3389/fncel.2022.955550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022] Open
Abstract
The roof of the fourth ventricle (4V) is located on the ventral part of the cerebellum, a region with abundant vascularization and cell heterogeneity that includes tanycyte-like cells that define a peculiar glial niche known as ventromedial cord. This cord is composed of a group of biciliated cells that run along the midline, contacting the ventricular lumen and the subventricular zone. Although the complex morphology of the glial cells composing the cord resembles to tanycytes, cells which are known for its proliferative capacity, scarce or non-proliferative activity has been evidenced in this area. The subventricular zone of the cerebellum includes astrocytes, oligodendrocytes, and neurons whose function has not been extensively studied. This review describes to some extent the phenotypic, morphological, and functional characteristics of the cells that integrate the roof of the 4V, primarily from rodent brains.
Collapse
|
3
|
Thabault M, Turpin V, Maisterrena A, Jaber M, Egloff M, Galvan L. Cerebellar and Striatal Implications in Autism Spectrum Disorders: From Clinical Observations to Animal Models. Int J Mol Sci 2022; 23:2294. [PMID: 35216408 PMCID: PMC8874522 DOI: 10.3390/ijms23042294] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) are complex conditions that stem from a combination of genetic, epigenetic and environmental influences during early pre- and postnatal childhood. The review focuses on the cerebellum and the striatum, two structures involved in motor, sensory, cognitive and social functions altered in ASD. We summarize clinical and fundamental studies highlighting the importance of these two structures in ASD. We further discuss the relation between cellular and molecular alterations with the observed behavior at the social, cognitive, motor and gait levels. Functional correlates regarding neuronal activity are also detailed wherever possible, and sexual dimorphism is explored pointing to the need to apprehend ASD in both sexes, as findings can be dramatically different at both quantitative and qualitative levels. The review focuses also on a set of three recent papers from our laboratory where we explored motor and gait function in various genetic and environmental ASD animal models. We report that motor and gait behaviors can constitute an early and quantitative window to the disease, as they often correlate with the severity of social impairments and loss of cerebellar Purkinje cells. The review ends with suggestions as to the main obstacles that need to be surpassed before an appropriate management of the disease can be proposed.
Collapse
Affiliation(s)
- Mathieu Thabault
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| | - Valentine Turpin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| | - Alexandre Maisterrena
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| | - Mohamed Jaber
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
- Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Matthieu Egloff
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
- Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Laurie Galvan
- Laboratoire de Neurosciences Expérimentales et Cliniques, Institut National de la Santé et de la Recherche Médicale, Université de Poitiers, 86073 Poitiers, France; (M.T.); (V.T.); (A.M.); (M.J.); (M.E.)
| |
Collapse
|
4
|
Rodríguez-Arzate CA, Martínez-Mendoza ML, Rocha-Mendoza I, Luna-Palacios Y, Licea-Rodríguez J, Martínez-Torres A. Morphological and Calcium Signaling Alterations of Neuroglial Cells in Cerebellar Cortical Dysplasia Induced by Carmustine. Cells 2021; 10:cells10071581. [PMID: 34201497 PMCID: PMC8304447 DOI: 10.3390/cells10071581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Cortical dysplasias are alterations in the organization of the layers of the brain cortex due to problems in neuronal migration during development. The neuronal component has been widely studied in experimental models of cortical dysplasias. In contrast, little is known about how glia are affected. In the cerebellum, Bergmann glia (BG) are essential for neuronal migration during development, and in adult they mediate the control of fine movements through glutamatergic transmission. The aim of this study was to characterize the morphology and intracellular calcium dynamics of BG and astrocytes from mouse cerebellum and their modifications in a model of cortical dysplasia induced by carmustine (BCNU). Carmustine-treated mice were affected in their motor coordination and balance. Cerebellar dysplasias and heterotopias were more frequently found in lobule X. Morphology of BG cells and astrocytes was affected, as were their spontaneous [Ca2+]i transients in slice preparation and in vitro.
Collapse
Affiliation(s)
- Cynthia Alejandra Rodríguez-Arzate
- Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, QT, Mexico; (C.A.R.-A.); (M.L.M.-M.)
| | - Marianne Lizeth Martínez-Mendoza
- Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, QT, Mexico; (C.A.R.-A.); (M.L.M.-M.)
| | - Israel Rocha-Mendoza
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana, No. 3918, Zona Playitas, Ensenada 22860, BC, Mexico; (I.R.-M.); (Y.L.-P.); (J.L.-R.)
| | - Yryx Luna-Palacios
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana, No. 3918, Zona Playitas, Ensenada 22860, BC, Mexico; (I.R.-M.); (Y.L.-P.); (J.L.-R.)
| | - Jacob Licea-Rodríguez
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana, No. 3918, Zona Playitas, Ensenada 22860, BC, Mexico; (I.R.-M.); (Y.L.-P.); (J.L.-R.)
- Cátedras CONACYT, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, BC, Mexico
| | - Ataúlfo Martínez-Torres
- Instituto de Neurobiología (INB), Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, QT, Mexico; (C.A.R.-A.); (M.L.M.-M.)
- Correspondence:
| |
Collapse
|
5
|
Sparrow EL, James S, Hussain K, Beers SA, Cragg MS, Bogdanov YD. Activation of GABA(A) receptors inhibits T cell proliferation. PLoS One 2021; 16:e0251632. [PMID: 34014994 PMCID: PMC8136847 DOI: 10.1371/journal.pone.0251632] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/29/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The major sites for fast synaptic inhibition in the central nervous system (CNS) are ion channels activated by γ-aminobutyric acid (GABA). These receptors are referred as GABA(A) receptors (GABA(A)R). Recent evidence indicates a role of GABA(A)R in modulating the immune response. This work aimed to discern the role of GABA and GABA(A)Rs in human and mouse T cell activity. METHODS Mouse splenocytes or human peripheral blood mononuclear cells (PBMCs) were activated with anti-CD3 antibodies and the proliferation of both CD8+ and CD4+ T cells assessed through flow cytometry. Subsequently, the effects on T cell proliferation of either GABA(A)R modulation by diazepam that is also capable of activating mitochondrial based translocator protein (TSPO), alprazolam and allopregnanolone or inhibition by bicucculine methiodide (BMI) and (1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) were assessed. RESULTS Positive modulation of GABA(A)Rs either by benzodiazepines or the neurosteroid allopregnanolone inhibits both mouse and human T cell proliferation. GABAergic inhibition of T cell proliferation by benzodiazepines could be rescued by GABA(A)R blocking. Our data suggest that benzodiazepines influence T cell proliferation through both TSPO and GABA(A)Rs activation. CONCLUSIONS We conclude that activation of GABA(A)Rs provides immunosuppression by inhibiting T cell proliferation.
Collapse
Affiliation(s)
- Emma L. Sparrow
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants, United Kingdom
| | - Sonya James
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants, United Kingdom
| | - Khiyam Hussain
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants, United Kingdom
| | - Stephen A. Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants, United Kingdom
| | - Yury D. Bogdanov
- Antibody and Vaccine Group, Centre for Cancer Immunology, MP127, University of Southampton Faculty of Medicine, Southampton, Hants, United Kingdom
| |
Collapse
|
6
|
Targeting GABA C Receptors Improves Post-Stroke Motor Recovery. Brain Sci 2021; 11:brainsci11030315. [PMID: 33801560 PMCID: PMC8000079 DOI: 10.3390/brainsci11030315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke remains a leading cause of disability worldwide, with limited treatment options available. This study investigates GABAC receptors as novel pharmacological targets for stroke recovery. The expression of ρ1 and ρ2 mRNA in mice were determined in peri-infarct tissue following photothrombotic motor cortex stroke. (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (R)-4-ACPBPA and (S)-4-ACPBPA were assessed using 2-elecotrode voltage electrophysiology in Xenopus laevis oocytes. Stroke mice were treated for 4 weeks with either vehicle, the α5-selective negative allosteric modulator, L655,708, or the ρ1/2 antagonists, (R)-4-ACPBPA and (S)-4-ACPBPA respectively from 3 days post-stroke. Infarct size and expression levels of GAT3 and reactive astrogliosis were determined using histochemistry and immunohistochemistry respectively, and motor function was assessed using both the grid-walking and cylinder tasks. After stroke, significant increases in ρ1 and ρ2 mRNAs were observed on day 3, with ρ2 showing a further increase on day 7. (R)- and (S)-4-ACPBPA are both potent antagonists at ρ2 and only weak inhibitors of α5β2γ2 receptors. Treatment with either L655,708, (S)-4-ACPBPA (ρ1/2 antagonist; 5 mM only), or (R)-4-ACPBPA (ρ2 antagonist; 2.5 and 5 mM) from 3 days after stroke resulted in a significant improvement in motor recovery on the grid-walking task, with L655,708 and (R)-4-ACPBPA also showing an improvement in the cylinder task. Infarct size was unaffected, and only (R)-4-ACPBPA significantly increased peri-infarct GAT3 expression and decreased the level of reactive astrogliosis. Importantly, inhibiting GABAC receptors affords significant improvement in motor function after stroke. Targeting the ρ-subunit could provide a novel delayed treatment option for stroke recovery.
Collapse
|
7
|
Labrada-Moncada FE, Martínez-Torres A, Reyes-Haro D. GABA A Receptors are Selectively Expressed in NG2 Glia of the Cerebellar White Matter. Neuroscience 2020; 433:132-143. [PMID: 32171821 DOI: 10.1016/j.neuroscience.2020.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
Abstract
The cerebellum is involved in the coordination of movement. Its cellular composition is dominated by GABAergic neuronal types, and glial cells are known to express functional receptors. GABAergic signaling regulates cell proliferation, differentiation, and migration during neurodevelopment. However, little is known about the functional expression of GABA receptors in the cerebellar white matter (WM). Thus, the aim of this study was to test whether glial cells express functional GABA receptors during postnatal development (P7-P9) of cerebellar WM. Immunofluorescence showed that half of the astrocytes express GAD67, suggesting that glial cells synthesize GABA. Calcium imaging in cerebellar slices revealed that GABA and the GABAA agonist muscimol evoked calcium transients in sulforhodamine B negative cells, whereas the GABAB agonist baclofen failed to evoke responses in cerebellar WM. Whole-cell patch-clamp recordings of GFAP+ cells showed dye coupling and a passive current-voltage relation typical of astrocytes. Surprisingly, these cells did not respond to muscimol. Two additional populations were identified as GFAP- cells. The first population showed dye coupling, slow decaying inward and outward currents with no voltage dependence, and did not respond to GABAA agonists. The second population showed an outward-rectifying current-voltage relationship and responded to muscimol, but dye coupling was absent. These cells received synaptic input and were NG2+, but evoked calcium waves failed to modulate the frequency of spontaneous postsynaptic currents (sPSCs) or signaling into NG2 glia. We conclude that GABAA receptor-mediated signaling is selective for NG2 glia in the WM of the cerebellum.
Collapse
Affiliation(s)
- Francisco Emmanuel Labrada-Moncada
- Departamento Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - Ataúlfo Martínez-Torres
- Departamento Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - Daniel Reyes-Haro
- Departamento Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico.
| |
Collapse
|
8
|
Diverse Actions of Astrocytes in GABAergic Signaling. Int J Mol Sci 2019; 20:ijms20122964. [PMID: 31216630 PMCID: PMC6628243 DOI: 10.3390/ijms20122964] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023] Open
Abstract
An imbalance of excitatory and inhibitory neurotransmission leading to over excitation plays a crucial role in generating seizures, while enhancing GABAergic mechanisms are critical in terminating seizures. In recent years, it has been reported in many studies that astrocytes are deeply involved in synaptic transmission. Astrocytes form a critical component of the “tripartite” synapses by wrapping around the pre- and post-synaptic elements. From this location, astrocytes are known to greatly influence the dynamics of ions and transmitters in the synaptic cleft. Despite recent extensive research on excitatory tripartite synapses, inhibitory tripartite synapses have received less attention, even though they influence inhibitory synaptic transmission by affecting chloride and GABA concentration dynamics. In this review, we will discuss the diverse actions of astrocytic chloride and GABA homeostasis at GABAergic tripartite synapses. We will then consider the pathophysiological impacts of disturbed GABA homeostasis at the tripartite synapse.
Collapse
|
9
|
Varman DR, Soria-Ortíz MB, Martínez-Torres A, Reyes-Haro D. GABAρ3 expression in lobule X of the cerebellum is reduced in the valproate model of autism. Neurosci Lett 2018; 687:158-163. [PMID: 30261230 DOI: 10.1016/j.neulet.2018.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
Autism spectrum disorder (ASD) is a group of developmental disorders characterized by social interaction deficits, communication impairments, and stereotyped and repetitive behaviors. Additionally, impairments in the GABAergic circuitry have been associated with ASD. Several studies have shown that dysfunction of the cerebellum is a hallmark of ASD, and postmortem studies in humans reported a reduced density of Purkinje cells (PCs) together with an abnormal expression of GABAA subunits, among which GABAρ3 is expressed in early postnatal development, forms homomeric receptors with high affinity to the agonist (GABA EC50 ∼ 3 μM) and desensitize very little upon activation. Thus, we tested if the expression of GABAρ3 was modified by prenatal exposure to valproate (VPA), a well-known murine model of autism. The latency to find the nest increased in VPA-treated mice when compared to controls at postnatal day 8 (P8). Immunofluorescence studies showed a reduced expression of GABAρ3 in Purkinje cells (PCs) and ependymal glial cells (EGCs) from lobule X of VPA-treated mice. Finally, the expression of GABAρ3 increases linearly throughout normal development of the cerebellum, but this pattern is disrupted in the VPA model of autism. We conclude that the expression of GABAρ3 is reduced in PCs and EGCs from lobule X of the cerebellum in the VPA model of autism. Thus, GABAρ3 may be a relevant marker for ASD etiology.
Collapse
Affiliation(s)
- D R Varman
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, México
| | - M B Soria-Ortíz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, México
| | - A Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, México
| | - D Reyes-Haro
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, México.
| |
Collapse
|
10
|
Rosas-Arellano A, Tejeda-Guzmán C, Lorca-Ponce E, Palma-Tirado L, Mantellero CA, Rojas P, Missirlis F, Castro MA. Huntington's disease leads to decrease of GABA-A tonic subunits in the D2 neostriatal pathway and their relocalization into the synaptic cleft. Neurobiol Dis 2018; 110:142-153. [DOI: 10.1016/j.nbd.2017.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/12/2017] [Accepted: 11/27/2017] [Indexed: 01/24/2023] Open
|
11
|
Antagonistic effect of dopamine structural analogues on human GABAρ1 receptor. Sci Rep 2017; 7:17385. [PMID: 29234054 PMCID: PMC5727059 DOI: 10.1038/s41598-017-17530-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022] Open
Abstract
GABAergic and dopaminergic pathways are co-localized in several areas of the central nervous system and recently several reports have shown co-release of both neurotransmitters. The GABA-A receptor (β and ρ1 subunits) is modulated by dopamine (DA) and, interestingly, GABAρ1 can be modulated by several biogenic amines. Here we explored the effects of the metabolites of the dopaminergic pathway and other structural analogues of DA on GABAρ1 and the DA gated ion channel (LGC-53) from Caenorhabditis elegans expressed in Xenopus laevis oocytes. Our findings show an antagonistic effect of the metabolite 3-Methoxytyramine (3-MT, IC50 = 285 ± 30 µM) with similar potency compared to DA on induced GABA currents; however, it was inactive on LGC-53. The structural DA analogues and metabolites, 3, 4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 2-phenylethylamine (β-PEA) and 4-amino-1-butanol (4-AM-1-OH), antagonized GABAρ1 currents, whereas β-PEA acted as partial agonists on LGC-53, indicating that the putative binding sites of both receptors may share structural characteristics. These results suggest that the DA metabolites 3-MT, DOPAC and HVA modulate GABAρ1 and possibly affect the activity of the receptors that include this subunit in vivo.
Collapse
|
12
|
Van Assche E, Moons T, Cinar O, Viechtbauer W, Oldehinkel AJ, Van Leeuwen K, Verschueren K, Colpin H, Lambrechts D, Van den Noortgate W, Goossens L, Claes S, van Winkel R. Gene-based interaction analysis shows GABAergic genes interacting with parenting in adolescent depressive symptoms. J Child Psychol Psychiatry 2017; 58:1301-1309. [PMID: 28660714 DOI: 10.1111/jcpp.12766] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Most gene-environment interaction studies (G × E) have focused on single candidate genes. This approach is criticized for its expectations of large effect sizes and occurrence of spurious results. We describe an approach that accounts for the polygenic nature of most psychiatric phenotypes and reduces the risk of false-positive findings. We apply this method focusing on the role of perceived parental support, psychological control, and harsh punishment in depressive symptoms in adolescence. METHODS Analyses were conducted on 982 adolescents of Caucasian origin (Mage (SD) = 13.78 (.94) years) genotyped for 4,947 SNPs in 263 genes, selected based on a literature survey. The Leuven Adolescent Perceived Parenting Scale (LAPPS) and the Parental Behavior Scale (PBS) were used to assess perceived parental psychological control, harsh punishment, and support. The Center for Epidemiologic Studies Depression Scale (CES-D) was the outcome. We used gene-based testing taking into account linkage disequilibrium to identify genes containing SNPs exhibiting an interaction with environmental factors yielding a p-value per single gene. Significant results at the corrected p-value of p < 1.90 × 10-4 were examined in an independent replication sample of Dutch adolescents (N = 1354). RESULTS Two genes showed evidence for interaction with perceived support: GABRR1 (p = 4.62 × 10-5 ) and GABRR2 (p = 9.05 × 10-6 ). No genes interacted significantly with psychological control or harsh punishment. Gene-based analysis was unable to confirm the interaction of GABRR1 or GABRR2 with support in the replication sample. However, for GABRR2, but not GABRR1, the correlation of the estimates between the two datasets was significant (r (46) = .32; p = .027) and a gene-based analysis of the combined datasets supported GABRR2 × support interaction (p = 1.63 × 10-4 ). CONCLUSIONS We present a gene-based method for gene-environment interactions in a polygenic context and show that genes interact differently with particular aspects of parenting. This accentuates the importance of polygenic approaches and the need to accurately assess environmental exposure in G × E.
Collapse
Affiliation(s)
- Evelien Van Assche
- GRASP-Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium.,University Psychiatric Center, KU Leuven, Leuven, Belgium
| | - Tim Moons
- GRASP-Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium.,OPZ Geel, Geel, Belgium
| | - Ozan Cinar
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Wolfgang Viechtbauer
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Albertine J Oldehinkel
- University Medical Center Groningen, Groningen, The Netherlands.,Interdisciplinary Center Psychopathology and Emotion Regulation, University of Groningen, Groningen, The Netherlands
| | - Karla Van Leeuwen
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Karine Verschueren
- School Psychology and Child and Adolescent Development Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Hilde Colpin
- School Psychology and Child and Adolescent Development Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Wim Van den Noortgate
- Department of Methodology of Educational Sciences, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Luc Goossens
- School Psychology and Child and Adolescent Development Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Stephan Claes
- GRASP-Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium.,University Psychiatric Center, KU Leuven, Leuven, Belgium
| | - Ruud van Winkel
- Department of Neuroscience, Center for Contextual Psychiatry, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Naffaa MM, Hung S, Chebib M, Johnston GAR, Hanrahan JR. GABA-ρ receptors: distinctive functions and molecular pharmacology. Br J Pharmacol 2017; 174:1881-1894. [PMID: 28258627 DOI: 10.1111/bph.13768] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 01/14/2023] Open
Abstract
The homomeric GABA-ρ ligand-gated ion channels (also known as GABAC or GABAA -ρ receptors) are similar to heteromeric GABAA receptors in structure, function and mechanism of action. However, their distinctive pharmacological properties and distribution make them of special interest. This review focuses on GABA-ρ ion channel structure, ligand selectivity toward ρ receptors over heteromeric GABAA receptor sub-types and selectivity between different homomeric ρ sub-type receptors. Several GABA analogues show selectivity at homomeric GABA-ρ receptors over heteromeric GABAA receptors. More recently, some synthetic ligands have been found to show selectivity at receptors formed from one ρ subtype over others. The unique pharmacological profiles of these agents are discussed in this review. The classical binding site of GABA within the orthosteric site of GABA-ρ homomeric receptors is discussed in detail regarding the loops and residues that constitute the binding site. The ligand-residue interactions in this classical binding and those of mutant receptors are discussed. The structure and conformations of GABA are discussed in regard to its flexibility and molecular properties. Although the binding mode of GABA is difficult to predict, several interactions between GABA and the receptor assist in predicting its potential conformation and mode of action. The structure-activity relationships of GABA and structurally key ligands at ρ receptors are described and discussed.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Sandy Hung
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Mary Chebib
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | - Jane R Hanrahan
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Reyes-Haro D, Hernández-Santos JA, Miledi R, Martínez-Torres A. GABAρ selective antagonist TPMPA partially inhibits GABA-mediated currents recorded from neurones and astrocytes in mouse striatum. Neuropharmacology 2016; 113:407-415. [PMID: 27793773 DOI: 10.1016/j.neuropharm.2016.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 11/19/2022]
Abstract
The neostriatum plays a central role in motor coordination where nerve cells operate neuronal inhibition through GABAergic transmission. The neostriatum expresses a wide range of GABA-A subunits, including GABAρ1 and ρ2 which are restricted to a fraction of GABAergic interneurons and astrocytes. Spontaneous postsynaptic currents (sPSCs) evoked by 4-aminopyridine (4-AP) were recorded from neurones of the dorsal neostriatum, and their frequency was reduced > 50% by the selective GABAρ antagonist (1,2,5,6-Tetrahydropyridine-4-yl) methylphosphinic acid (TPMPA). Additionally, we recorded GABA evoked currents from astrocytes in vitro and in situ. Astrocytes in vitro showed modulation by pentobarbital and desensitization upon consecutive applications of GABA. However, modulation by pentobarbital was absent and no significant desensitization was detected from astrocytes in situ. Moreover, TPMPA-sensitive GABA-currents that were insensitive to bicuculline were also recorded from astrocytes in situ, consistent with our previous study where GABAρ expression was demonstrated. Finally, we assessed the mRNA expression of GABAρ3, through different stages of postnatal development; double immunofluorescence disclosed GABAρ3 expression in calretinin-positive interneurons as well as in astrocytes (>70%). These results add new information about the participation of GABAρ subunits in neostriatal interneurons and astrocytes.
Collapse
Affiliation(s)
- Daniel Reyes-Haro
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico.
| | - José Antonio Hernández-Santos
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - Ricardo Miledi
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico.
| |
Collapse
|
15
|
A simple solution for antibody signal enhancement in immunofluorescence and triple immunogold assays. Histochem Cell Biol 2016; 146:421-30. [DOI: 10.1007/s00418-016-1447-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
|