1
|
Wagstaff JM, Planelles-Herrero VJ, Sharov G, Alnami A, Kozielski F, Derivery E, Löwe J. Diverse cytomotive actins and tubulins share a polymerization switch mechanism conferring robust dynamics. SCIENCE ADVANCES 2023; 9:eadf3021. [PMID: 36989372 PMCID: PMC10058229 DOI: 10.1126/sciadv.adf3021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Protein filaments are used in myriads of ways to organize other molecules within cells. Some filament-forming proteins couple the hydrolysis of nucleotides to their polymerization cycle, thus powering the movement of other molecules. These filaments are termed cytomotive. Only members of the actin and tubulin protein superfamilies are known to form cytomotive filaments. We examined the basis of cytomotivity via structural studies of the polymerization cycles of actin and tubulin homologs from across the tree of life. We analyzed published data and performed structural experiments designed to disentangle functional components of these complex filament systems. Our analysis demonstrates the existence of shared subunit polymerization switches among both cytomotive actins and tubulins, i.e., the conformation of subunits switches upon assembly into filaments. These cytomotive switches can explain filament robustness, by enabling the coupling of kinetic and structural polarities required for cytomotive behaviors and by ensuring that single cytomotive filaments do not fall apart.
Collapse
Affiliation(s)
- James Mark Wagstaff
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Grigory Sharov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Aisha Alnami
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Frank Kozielski
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Emmanuel Derivery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
2
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
3
|
Hayashi I. The C-terminal region of the plasmid partitioning protein TubY is a tetramer that can bind membranes and DNA. J Biol Chem 2020; 295:17770-17780. [PMID: 33454013 PMCID: PMC7762940 DOI: 10.1074/jbc.ra120.014705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/13/2020] [Indexed: 01/07/2023] Open
Abstract
Bacterial low-copy-number plasmids require partition (par) systems to ensure their stable inheritance by daughter cells. In general, these systems consist of three components: a centromeric DNA sequence, a centromere-binding protein and a nucleotide hydrolase that polymerizes and functions as a motor. Type III systems, however, segregate plasmids using three proteins: the FtsZ/tubulin-like GTPase TubZ, the centromere-binding protein TubR and the MerR-like transcriptional regulator TubY. Although the TubZ filament is sufficient to transport the TubR-centromere complex in vitro, TubY is still necessary for the stable maintenance of the plasmid. TubY contains an N-terminal DNA-binding helix-turn-helix motif and a C-terminal coiled-coil followed by a cluster of lysine residues. This study determined the crystal structure of the C-terminal domain of TubY from the Bacillus cereus pXO1-like plasmid and showed that it forms a tetrameric parallel four-helix bundle that differs from the typical MerR family proteins with a dimeric anti-parallel coiled-coil. Biochemical analyses revealed that the C-terminal tail with the conserved lysine cluster helps TubY to stably associate with the TubR-centromere complex as well as to nonspecifically bind DNA. Furthermore, this C-terminal tail forms an amphipathic helix in the presence of lipids but must oligomerize to localize the protein to the membrane in vivo. Taken together, these data suggest that TubY is a component of the nucleoprotein complex within the partitioning machinery, and that lipid membranes act as mediators of type III systems.
Collapse
Affiliation(s)
- Ikuko Hayashi
- Department of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, Kanagawa, Japan
| |
Collapse
|
4
|
Groaz A, Moghimianavval H, Tavella F, Giessen TW, Vecchiarelli AG, Yang Q, Liu AP. Engineering spatiotemporal organization and dynamics in synthetic cells. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1685. [PMID: 33219745 DOI: 10.1002/wnan.1685] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell-sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells-compartmentalization and self-organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self-organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Yang
- University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Hürtgen D, Mascarenhas J, Heymann M, Murray SM, Schwille P, Sourjik V. Reconstitution and Coupling of DNA Replication and Segregation in a Biomimetic System. Chembiochem 2019; 20:2633-2642. [PMID: 31344304 PMCID: PMC6899551 DOI: 10.1002/cbic.201900299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/20/2019] [Indexed: 12/30/2022]
Abstract
A biomimetic system capable of replication and segregation of genetic material constitutes an essential component for the future design of a minimal synthetic cell. Here we have used the simple T7 bacteriophage system and the plasmid-derived ParMRC system to establish in vitro DNA replication and DNA segregation, respectively. These processes were incorporated into biomimetic compartments providing an enclosed reaction space. The functional lifetime of the encapsulated segregation system could be prolonged by equipping it with ATP-regenerating and oxygen-scavenging systems. Finally, we showed that DNA replication and segregation processes could be coupled in vitro by using condensed DNA nanoparticles resulting from DNA replication. ParM spindles extended over tens of micrometers and could thus be used for segregation in compartments that are significantly longer than bacterial cell size. Overall, this work demonstrates the successful bottom-up assembly and coupling of molecular machines that mediate replication and segregation, thus providing an important step towards the development of a fully functional minimal cell.
Collapse
Affiliation(s)
- Daniel Hürtgen
- Max Planck Institute for Terrestrial Microbiology &LOEWE Center for Synthetic Microbiology (Synmikro)Karl-von-Frisch Strasse 1635043MarburgGermany
| | - Judita Mascarenhas
- Max Planck Institute for Terrestrial Microbiology &LOEWE Center for Synthetic Microbiology (Synmikro)Karl-von-Frisch Strasse 1635043MarburgGermany
| | - Michael Heymann
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Seán M. Murray
- Max Planck Institute for Terrestrial Microbiology &LOEWE Center for Synthetic Microbiology (Synmikro)Karl-von-Frisch Strasse 1635043MarburgGermany
| | - Petra Schwille
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology &LOEWE Center for Synthetic Microbiology (Synmikro)Karl-von-Frisch Strasse 1635043MarburgGermany
| |
Collapse
|
6
|
Tarnopol RL, Bowden S, Hinkle K, Balakrishnan K, Nishii A, Kaczmarek CJ, Pawloski T, Vecchiarelli AG. Lessons from a Minimal Genome: What Are the Essential Organizing Principles of a Cell Built from Scratch? Chembiochem 2019; 20:2535-2545. [DOI: 10.1002/cbic.201900249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Rebecca L. Tarnopol
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Sierra Bowden
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Kevin Hinkle
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Krithika Balakrishnan
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Akira Nishii
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Caleb J. Kaczmarek
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Tara Pawloski
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| | - Anthony G. Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
7
|
Schumacher MA, Henderson M, Zhang H. Structures of maintenance of carboxysome distribution Walker-box McdA and McdB adaptor homologs. Nucleic Acids Res 2019; 47:5950-5962. [PMID: 31106331 PMCID: PMC6582323 DOI: 10.1093/nar/gkz314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/06/2019] [Accepted: 04/27/2019] [Indexed: 12/31/2022] Open
Abstract
Carboxysomes, protein-coated organelles in cyanobacteria, are important in global carbon fixation. However, these organelles are present at low copy in each cell and hence must be segregated to ensure transmission from one generation to the next. Recent studies revealed that a DNA partition-like ParA-ParB system mediates carboxysome maintenance, called McdA-McdB. Here, we describe the first McdA and McdB homolog structures. McdA is similar to partition ParA Walker-box proteins, but lacks the P-loop signature lysine involved in ATP binding. Strikingly, a McdA-ATP structure shows that a lysine distant from the P-loop and conserved in McdA homologs, enables ATP-dependent nucleotide sandwich dimer formation. Similar to partition ParA proteins this ATP-bound form binds nonspecific-DNA. McdB, which we show directly binds McdA, harbors a unique fold and appears to form higher-order oligomers like partition ParB proteins. Thus, our data reveal a new signature motif that enables McdA dimer formation and indicates that, similar to DNA segregation, carboxysome maintenance systems employ Walker-box proteins as DNA-binding motors while McdB proteins form higher order oligomers, which could function as adaptors to link carboxysomes and provide for stable transport by the McdA proteins.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Max Henderson
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hengshan Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
8
|
Abstract
Plasmids are ubiquitous in the microbial world and have been identified in almost all species of bacteria that have been examined. Their localization inside the bacterial cell has been examined for about two decades; typically, they are not randomly distributed, and their positioning depends on copy number and their mode of segregation. Low-copy-number plasmids promote their own stable inheritance in their bacterial hosts by encoding active partition systems, which ensure that copies are positioned in both halves of a dividing cell. High-copy plasmids rely on passive diffusion of some copies, but many remain clustered together in the nucleoid-free regions of the cell. Here we review plasmid localization and partition (Par) systems, with particular emphasis on plasmids from Enterobacteriaceae and on recent results describing the in vivo localization properties and molecular mechanisms of each system. Partition systems also cause plasmid incompatibility such that distinct plasmids (with different replicons) with the same Par system cannot be stably maintained in the same cells. We discuss how partition-mediated incompatibility is a consequence of the partition mechanism.
Collapse
Affiliation(s)
- Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31000 Toulouse, France
| | - Barbara E Funnell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
9
|
Hürtgen D, Murray SM, Mascarenhas J, Sourjik V. DNA Segregation in Natural and Synthetic Minimal Systems. ACTA ACUST UNITED AC 2019; 3:e1800316. [DOI: 10.1002/adbi.201800316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/18/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Hürtgen
- MPI for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro) Marburg 35043 Germany
| | - Seán M. Murray
- MPI for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro) Marburg 35043 Germany
| | - Judita Mascarenhas
- MPI for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro) Marburg 35043 Germany
| | - Victor Sourjik
- MPI for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro) Marburg 35043 Germany
| |
Collapse
|
10
|
Abstract
Spatial organization is a hallmark of all living systems. Even bacteria, the smallest forms of cellular life, display defined shapes and complex internal organization, showcasing a highly structured genome, cytoskeletal filaments, localized scaffolding structures, dynamic spatial patterns, active transport, and occasionally, intracellular organelles. Spatial order is required for faithful and efficient cellular replication and offers a powerful means for the development of unique biological properties. Here, we discuss organizational features of bacterial cells and highlight how bacteria have evolved diverse spatial mechanisms to overcome challenges cells face as self-replicating entities.
Collapse
|
11
|
Ramm B, Schwille P. In vitro reconstitution of the bacterial cytoskeleton: expected and unexpected new insights. Microb Biotechnol 2019; 12:74-76. [PMID: 30411506 PMCID: PMC6302739 DOI: 10.1111/1751-7915.13336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022] Open
Abstract
In vitro reconstitution of bacterial cytoskeletal elements, primarily supposed to reveal detailed mechanistic insights, has been an invaluable source of unexpected new protein functionalities. This may be particularly beneficial in the context of a potential construction of artificial cells from the bottom-up.
Collapse
Affiliation(s)
- Beatrice Ramm
- Max Planck Institute of BiochemistryAm Klopferspitz 18D‐82152MartinsriedGermany
| | - Petra Schwille
- Max Planck Institute of BiochemistryAm Klopferspitz 18D‐82152MartinsriedGermany
| |
Collapse
|
12
|
Hayashi I, Oda T, Sato M, Fuchigami S. Cooperative DNA Binding of the Plasmid Partitioning Protein TubR from the Bacillus cereus pXO1 Plasmid. J Mol Biol 2018; 430:5015-5028. [PMID: 30414406 DOI: 10.1016/j.jmb.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 11/19/2022]
Abstract
Tubulin/FtsZ-like GTPase TubZ is responsible for maintaining the stability of pXO1-like plasmids in virulent Bacilli. TubZ forms a filament in a GTP-dependent manner, and like other partitioning systems of low-copy-number plasmids, it requires the centromere-binding protein TubR that connects the plasmid to the TubZ filament. Systems regulating TubZ partitioning have been identified in Clostridium prophages as well as virulent Bacillus species, in which TubZ facilitates partitioning by binding and towing the segrosome: the nucleoprotein complex composed of TubR and the centromere. However, the molecular mechanisms of segrosome assembly and the transient on-off interactions between the segrosome and the TubZ filament remain poorly understood. Here, we determined the crystal structure of TubR from Bacillus cereus at 2.0-Å resolution and investigated the DNA-binding ability of TubR using hydroxyl radical footprinting and electrophoretic mobility shift assays. The TubR dimer possesses 2-fold symmetry and binds to a 15-bp palindromic consensus sequence in the tubRZ promoter region. Continuous TubR-binding sites overlap each other, which enables efficient binding of TubR in a cooperative manner. Interestingly, the segrosome adopts an extended DNA-protein filament structure and likely gains conformational flexibility by introducing non-consensus residues into the palindromes in an asymmetric manner. Together, our experimental results and structural model indicate that the unique centromere recognition mechanism of TubR allows transient complex formation between the segrosome and the dynamic polymer of TubZ.
Collapse
Affiliation(s)
- Ikuko Hayashi
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | - Takashi Oda
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mamoru Sato
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Sotaro Fuchigami
- Department of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
13
|
Martín-García B, Martín-González A, Carrasco C, Hernández-Arriaga AM, Ruíz-Quero R, Díaz-Orejas R, Aicart-Ramos C, Moreno-Herrero F, Oliva MA. The TubR-centromere complex adopts a double-ring segrosome structure in Type III partition systems. Nucleic Acids Res 2018; 46:5704-5716. [PMID: 29762781 PMCID: PMC6009700 DOI: 10.1093/nar/gky370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/27/2018] [Indexed: 11/26/2022] Open
Abstract
In prokaryotes, the centromere is a specialized segment of DNA that promotes the assembly of the segrosome upon binding of the Centromere Binding Protein (CBP). The segrosome structure exposes a specific surface for the interaction of the CBP with the motor protein that mediates DNA movement during cell division. Additionally, the CBP usually controls the transcriptional regulation of the segregation system as a cell cycle checkpoint. Correct segrosome functioning is therefore indispensable for accurate DNA segregation. Here, we combine biochemical reconstruction and structural and biophysical analysis to bring light to the architecture of the segrosome complex in Type III partition systems. We present the particular features of the centromere site, tubC, of the model system encoded in Clostridium botulinum prophage c-st. We find that the split centromere site contains two different iterons involved in the binding and spreading of the CBP, TubR. The resulting nucleoprotein complex consists of a novel double-ring structure that covers part of the predicted promoter. Single molecule data provides a mechanism for the formation of the segrosome structure based on DNA bending and unwinding upon TubR binding.
Collapse
Affiliation(s)
- Bárbara Martín-García
- Department of Structural and Chemical Biology, CSIC-Centro de Investigaciones Biológicas, Madrid 28040, Spain
| | | | - Carolina Carrasco
- Department of Macromolecular Structures, CSIC-Centro Nacional de Biotecnología, Madrid 28049, Spain
| | - Ana M Hernández-Arriaga
- Department of Structural and Chemical Biology, CSIC-Centro de Investigaciones Biológicas, Madrid 28040, Spain
| | - Rubén Ruíz-Quero
- Department of Structural and Chemical Biology, CSIC-Centro de Investigaciones Biológicas, Madrid 28040, Spain
| | - Ramón Díaz-Orejas
- Department of Structural and Chemical Biology, CSIC-Centro de Investigaciones Biológicas, Madrid 28040, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, CSIC-Centro Nacional de Biotecnología, Madrid 28049, Spain
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, CSIC-Centro Nacional de Biotecnología, Madrid 28049, Spain
| | - María A Oliva
- Department of Structural and Chemical Biology, CSIC-Centro de Investigaciones Biológicas, Madrid 28040, Spain
| |
Collapse
|
14
|
Wagstaff J, Löwe J. Prokaryotic cytoskeletons: protein filaments organizing small cells. Nat Rev Microbiol 2018; 16:187-201. [PMID: 29355854 DOI: 10.1038/nrmicro.2017.153] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Most, if not all, bacterial and archaeal cells contain at least one protein filament system. Although these filament systems in some cases form structures that are very similar to eukaryotic cytoskeletons, the term 'prokaryotic cytoskeletons' is used to refer to many different kinds of protein filaments. Cytoskeletons achieve their functions through polymerization of protein monomers and the resulting ability to access length scales larger than the size of the monomer. Prokaryotic cytoskeletons are involved in many fundamental aspects of prokaryotic cell biology and have important roles in cell shape determination, cell division and nonchromosomal DNA segregation. Some of the filament-forming proteins have been classified into a small number of conserved protein families, for example, the almost ubiquitous tubulin and actin superfamilies. To understand what makes filaments special and how the cytoskeletons they form enable cells to perform essential functions, the structure and function of cytoskeletal molecules and their filaments have been investigated in diverse bacteria and archaea. In this Review, we bring these data together to highlight the diverse ways that linear protein polymers can be used to organize other molecules and structures in bacteria and archaea.
Collapse
Affiliation(s)
- James Wagstaff
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jan Löwe
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
15
|
Bacterial Tubulins A and B Exhibit Polarized Growth, Mixed-Polarity Bundling, and Destabilization by GTP Hydrolysis. J Bacteriol 2017; 199:JB.00211-17. [PMID: 28716960 DOI: 10.1128/jb.00211-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the genus Prosthecobacter express homologs of eukaryotic α- and β-tubulin, called BtubA and BtubB (BtubA/B), that have been observed to assemble into filaments in the presence of GTP. BtubA/B polymers are proposed to be composed in vitro by two to six protofilaments in contrast to that in vivo, where they have been reported to form 5-protofilament tubes named bacterial microtubules (bMTs). The btubAB genes likely entered the Prosthecobacter lineage via horizontal gene transfer and may be derived from an early ancestor of the modern eukaryotic microtubule (MT). Previous biochemical studies revealed that BtubA/B polymerization is reversible and that BtubA/B folding does not require chaperones. To better understand BtubA/B filament behavior and gain insight into the evolution of microtubule dynamics, we characterized in vitro BtubA/B assembly using a combination of polymerization kinetics assays and microscopy. Like eukaryotic microtubules, BtubA/B filaments exhibit polarized growth with different assembly rates at each end. GTP hydrolysis stimulated by BtubA/B polymerization drives a stochastic mechanism of filament disassembly that occurs via polymer breakage and/or fast continuous depolymerization. We also observed treadmilling (continuous addition and loss of subunits at opposite ends) of BtubA/B filament fragments. Unlike MTs, polymerization of BtubA/B requires KCl, which reduces the critical concentration for BtubA/B assembly and induces it to form stable mixed-orientation bundles in the absence of any additional BtubA/B-binding proteins. The complex dynamics that we observe in stabilized and unstabilized BtubA/B filaments may reflect common properties of an ancestral eukaryotic tubulin polymer.IMPORTANCE Microtubules are polymers within all eukaryotic cells that perform critical functions; they segregate chromosomes, organize intracellular transport, and support the flagella. These functions rely on the remarkable range of tunable dynamic behaviors of microtubules. Bacterial tubulin A and B (BtubA/B) are evolutionarily related proteins that form polymers. They are proposed to be evolved from the ancestral eukaryotic tubulin, a missing link in microtubule evolution. Using microscopy and biochemical approaches to characterize BtubA/B assembly in vitro, we observed that they exhibit complex and structurally polarized dynamic behavior like eukaryotic microtubules but differ in how they self-associate into bundles and how this bundling affects their stability. Our results demonstrate the diversity of mechanisms through which tubulin homologs promote filament dynamics and monomer turnover.
Collapse
|
16
|
Wagstaff JM, Tsim M, Oliva MA, García-Sanchez A, Kureisaite-Ciziene D, Andreu JM, Löwe J. A Polymerization-Associated Structural Switch in FtsZ That Enables Treadmilling of Model Filaments. mBio 2017; 8:e00254-17. [PMID: 28465423 PMCID: PMC5414002 DOI: 10.1128/mbio.00254-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Bacterial cell division in many organisms involves a constricting cytokinetic ring that is orchestrated by the tubulin-like protein FtsZ. FtsZ forms dynamic filaments close to the membrane at the site of division that have recently been shown to treadmill around the division ring, guiding septal wall synthesis. Here, using X-ray crystallography of Staphylococcus aureus FtsZ (SaFtsZ), we reveal how an FtsZ can adopt two functionally distinct conformations, open and closed. The open form is found in SaFtsZ filaments formed in crystals and also in soluble filaments of Escherichia coli FtsZ as deduced by electron cryomicroscopy. The closed form is found within several crystal forms of two nonpolymerizing SaFtsZ mutants and corresponds to many previous FtsZ structures from other organisms. We argue that FtsZ's conformational switch is polymerization-associated, driven by the formation of the longitudinal intersubunit interfaces along the filament. We show that such a switch provides explanations for both how treadmilling may occur within a single-stranded filament and why filament assembly is cooperative.IMPORTANCE The FtsZ protein is a key molecule during bacterial cell division. FtsZ forms filaments that organize cell membrane constriction, as well as remodeling of the cell wall, to divide cells. FtsZ functions through nucleotide-driven filament dynamics that are poorly understood at the molecular level. In particular, mechanisms for cooperative assembly (nonlinear dependency on concentration) and treadmilling (preferential growth at one filament end and loss at the other) have remained elusive. Here, we show that most likely all FtsZ proteins have two distinct conformations, a "closed" form in monomeric FtsZ and an "open" form in filaments. The conformational switch that occurs upon polymerization explains cooperativity and, in concert with polymerization-dependent nucleotide hydrolysis, efficient treadmilling of FtsZ polymers.
Collapse
Affiliation(s)
| | - Matthew Tsim
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - María A Oliva
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
17
|
Brooks AC, Hwang LC. Reconstitutions of plasmid partition systems and their mechanisms. Plasmid 2017; 91:37-41. [PMID: 28322855 DOI: 10.1016/j.plasmid.2017.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/17/2022]
Abstract
Bacterial plasmid and chromosome segregation systems ensure that genetic material is efficiently transmitted to progeny cells. Cell-based studies have shed light on the dynamic nature and the molecular basis of plasmid partition systems. In vitro reconstitutions, on the other hand, have proved to be an invaluable tool for studying the minimal components required to elucidate the mechanism of DNA segregation. This allows us to gain insight into the biological and biophysical processes that enable bacterial cells to move and position DNA. Here, we review the reconstitutions of plasmid partition systems in cell-free reactions, and discuss recent work that has begun to challenge long standing models of DNA segregation in bacteria.
Collapse
Affiliation(s)
- Adam C Brooks
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield, United Kingdom
| | - Ling Chin Hwang
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
18
|
Zhang H, Schumacher MA. Structures of partition protein ParA with nonspecific DNA and ParB effector reveal molecular insights into principles governing Walker-box DNA segregation. Genes Dev 2017; 31:481-492. [PMID: 28373206 PMCID: PMC5393062 DOI: 10.1101/gad.296319.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/22/2017] [Indexed: 02/02/2023]
Abstract
Walker-box partition systems are ubiquitous in nature and mediate the segregation of bacterial and archaeal DNA. Well-studied plasmid Walker-box partition modules require ParA, centromere-DNA, and a centromere-binding protein, ParB. In these systems, ParA-ATP binds nucleoid DNA and uses it as a substratum to deliver ParB-attached cargo DNA, and ParB drives ParA dynamics, allowing ParA progression along the nucleoid. How ParA-ATP binds nonspecific DNA and is regulated by ParB is unclear. Also under debate is whether ParA polymerizes on DNA to mediate segregation. Here we describe structures of key ParA segregation complexes. The ParA-β,γ-imidoadenosine 5'-triphosphate (AMPPNP)-DNA structure revealed no polymers. Instead, ParA-AMPPNP dimerization creates a multifaceted DNA-binding surface, allowing it to preferentially bind high-density DNA regions (HDRs). DNA-bound ParA-AMPPNP adopts a dimer conformation distinct from the ATP sandwich dimer, optimized for DNA association. Our ParA-AMPPNP-ParB structure reveals that ParB binds at the ParA dimer interface, stabilizing the ATPase-competent ATP sandwich dimer, ultimately driving ParA DNA dissociation. Thus, the data indicate how harnessing a conformationally adaptive dimer can drive large-scale cargo movement without the requirement for polymers and suggest a segregation mechanism by which ParA-ATP dimers equilibrate to HDRs shown to be localized near cell poles of dividing chromosomes, thus mediating equipartition of attached ParB-DNA substrates.
Collapse
Affiliation(s)
- Hengshan Zhang
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
19
|
TubZ filament assembly dynamics requires the flexible C-terminal tail. Sci Rep 2017; 7:43342. [PMID: 28230082 PMCID: PMC5322520 DOI: 10.1038/srep43342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/24/2017] [Indexed: 11/12/2022] Open
Abstract
Cytomotive filaments are essential for the spatial organization in cells, showing a dynamic behavior based on nucleotide hydrolysis. TubZ is a tubulin-like protein that functions in extrachromosomal DNA movement within bacteria. TubZ filaments grow in a helical fashion following treadmilling or dynamic instability, although the underlying mechanism is unclear. We have unraveled the molecular basis for filament assembly and dynamics combining electron and atomic force microscopy and biochemical analyses. Our findings suggest that GTP caps retain the filament helical structure and hydrolysis triggers filament stiffening upon disassembly. We show that the TubZ C-terminal tail is an unstructured domain that fulfills multiple functions contributing to the filament helical arrangement, the polymer remodeling into tubulin-like rings and the full disassembly process. This C-terminal tail displays the binding site for partner proteins and we report how it modulates the interaction of the regulator protein TubY.
Collapse
|
20
|
Gayathri P, Harne S. Structure and Dynamics of Actin-Like Cytomotive Filaments in Plasmid Segregation. Subcell Biochem 2017; 84:299-321. [PMID: 28500530 DOI: 10.1007/978-3-319-53047-5_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One of the well-known functions of the bacterial cytoskeleton is plasmid segregation. Type II plasmid segregation systems, among the best characterized with respect to the mechanism of action, possess an actin-like cytomotive filament as the motor component. This chapter describes the essential components of the plasmid segregation machinery and their mechanism of action, concentrating on the actin-like protein family of the bacterial cytoskeleton. The structures of the actin-like filaments depend on their nucleotide state and these in turn contribute to the dynamics of the filaments. The components that link the filaments to the plasmid DNA also regulate filament dynamics. The modulation of the dynamics facilitates the cytomotive filament to function as a mitotic spindle with a minimal number of components.
Collapse
Affiliation(s)
- Pananghat Gayathri
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India.
| | - Shrikant Harne
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
21
|
Abstract
As discovered over the past 25 years, the cytoskeletons of bacteria and archaea are complex systems of proteins whose central components are dynamic cytomotive filaments. They perform roles in cell division, DNA partitioning, cell shape determination and the organisation of intracellular components. The protofilament structures and polymerisation activities of various actin-like, tubulin-like and ESCRT-like proteins of prokaryotes closely resemble their eukaryotic counterparts but show greater diversity. Their activities are modulated by a wide range of accessory proteins but these do not include homologues of the motor proteins that supplement filament dynamics to aid eukaryotic cell motility. Numerous other filamentous proteins, some related to eukaryotic IF-proteins/lamins and dynamins etc, seem to perform structural roles similar to those in eukaryotes.
Collapse
Affiliation(s)
- Linda A Amos
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
22
|
Abstract
A family of tubulin-related proteins (TubZs) has been identified in prokaryotes as being important for the inheritance of virulence plasmids of several pathogenic Bacilli and also being implicated in the lysogenic life cycle of several bacteriophages. Cell biological studies and reconstitution experiments revealed that TubZs function as prokaryotic cytomotive filaments, providing one-dimensional motive forces. Plasmid-borne TubZ filaments most likely transport plasmid centromeric complexes by depolymerisation, pulling on the plasmid DNA, in vitro. In contrast, phage-borne TubZ (PhuZ) pushes bacteriophage particles (virions) to mid cell by filament growth. Structural studies by both crystallography and electron cryo-microscopy of multiple proteins, both from the plasmid partitioning sub-group and the bacteriophage virion centring group of TubZ homologues, allow a detailed consideration of the structural phylogeny of the group as a whole, while complete structures of both crystallographic protofilaments at high resolution and fully polymerised filaments at intermediate resolution by cryo-EM have revealed details of the polymerisation behaviour of both TubZ sub-groups.
Collapse
|
23
|
Oliva MA. Segrosome Complex Formation during DNA Trafficking in Bacterial Cell Division. Front Mol Biosci 2016; 3:51. [PMID: 27668216 PMCID: PMC5016525 DOI: 10.3389/fmolb.2016.00051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialized partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex.
Collapse
Affiliation(s)
- María A Oliva
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
24
|
The IntXO-PSL Recombination System Is a Key Component of the Second Maintenance System for Bacillus anthracis Plasmid pXO1. J Bacteriol 2016; 198:1939-1951. [PMID: 27137503 DOI: 10.1128/jb.01004-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We previously identified three noncontiguous regions on Bacillus anthracis plasmid pXO1 that comprise a system for accurate plasmid partitioning and maintenance. However, deletion of these regions did not decrease retention of certain shortened pXO1 plasmids during vegetative growth. Using two genetic tools developed for DNA manipulation in B. anthracis (the Cre-loxP and Flp-FRT systems), we found two other noncontiguous pXO1 regions that together are sufficient for plasmid stability. This second pXO1 maintenance system includes the tubZ and tubR genes, characteristic of a type III partitioning system, and the IntXO recombinase gene (GBAA_RS29165), encoding a tyrosine recombinase, along with its adjacent 37-bp perfect stem-loop (PSL) target. Insertion of either the tubZ and tubR genes or the IntXO-PSL system into an unstable mini-pXO1 plasmid did not restore plasmid stability. The need for the two components of the second pXO1 maintenance system follows from the sequential roles of IntXO-PSL in generating monomeric circular daughter pXO1 molecules (thereby presumably preventing dimer catastrophe) and of TubZ/TubR in partitioning the monomers during cell division. We show that the IntXO recombinase deletes DNA regions located between two PSL sites in a manner similar to the actions of the Cre-loxP and Flp-FRT systems. IMPORTANCE Tyrosine recombinases catalyze cutting and joining reactions between short specific DNA sequences. Three types of reactions occur: integration and excision of DNA segments, inversion of DNA segments, and separation of monomeric forms from replicating circular DNA molecules. Here we show that the newly discovered site-specific IntXO-PSL recombinase system that contributes to the maintenance of the B. anthracis plasmid pXO1 can be used for genome engineering in a manner similar to that of the Cre-loxP or Flp-FRT system.
Collapse
|
25
|
Abstract
It is now well established that prokaryotic cells assemble diverse proteins into dynamic cytoskeletal filaments that perform essential cellular functions. Although most of the filaments assemble on their own to form higher order structures, growing evidence suggests that there are a number of prokaryotic proteins that polymerise only in the presence of a matrix such as DNA, lipid membrane or even another filament. Matrix-assisted filament systems are frequently nucleotide dependent and cytomotive but rarely considered as part of the bacterial cytoskeleton. Here, we categorise this family of filament-forming systems as collaborative filaments and introduce a simple nomenclature. Collaborative filaments are frequent in both eukaryotes and prokaryotes and are involved in vital cellular processes including chromosome segregation, DNA repair and maintenance, gene silencing and cytokinesis to mention a few. In this review, we highlight common principles underlying collaborative filaments and correlate these with known functions.
Collapse
Affiliation(s)
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|