1
|
Qin B, Xue H, Wang X, Kim H, Jin LH. Atg2 controls Drosophila hematopoiesis through the PVR/TOR signaling pathways. FEBS J 2025; 292:294-312. [PMID: 39513270 DOI: 10.1111/febs.17288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/01/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024]
Abstract
The hematopoietic system of Drosophila is a well-established genetic model for studying hematopoiesis mechanisms, which are strictly regulated by multiple signaling pathways. Autophagy-related 2 (Atg2) protein is involved in autophagosome formation through its lipid transfer function; however, other functions in animal development, especially the role of Atg2 in maintaining hematopoietic homeostasis, are unclear. Here, we show that Atg2 knockdown in the cortical zone (CZ) induced the proliferation and differentiation of mature plasmatocytes and disrupted progenitor maintenance in the medullary zone (MZ). We also observed the differentiation of lamellocytes among circulating hemocytes and in the lymph gland, which is rarely observed in healthy larvae. The above results on hematopoiesis disorders are due to Atg2 regulating the Drosophila PDGF/VEGF receptor (PVR) and target of rapamycin (TOR) in the CZ of lymph gland. In conclusion, we identified Atg2 as a previously undescribed regulator of hematopoiesis. Understanding the mechanism of maintenance of hematopoietic homeostasis in Drosophila will help us better evaluate human blood disorder-related diseases.
Collapse
Affiliation(s)
- Bo Qin
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Institute of Crop Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Hongmei Xue
- Peking University People's Hospital, Qingdao, China
- Women and Children's Hospital, Qingdao University, China
| | - Xiaoran Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hyonil Kim
- College of Life Sciences, Northeast Forestry University, Harbin, China
- College of Life Science, Kim Il Sung University, Pyongyang, Korea
| | - Li Hua Jin
- College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Goins LM, Girard JR, Mondal BC, Buran S, Su CC, Tang R, Biswas T, Kissi JA, Banerjee U. Wnt signaling couples G2 phase control with differentiation during hematopoiesis in Drosophila. Dev Cell 2024; 59:2477-2496.e5. [PMID: 38866012 PMCID: PMC11421984 DOI: 10.1016/j.devcel.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/27/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
During homeostasis, a critical balance is maintained between myeloid-like progenitors and their differentiated progeny, which function to mitigate stress and innate immune challenges. The molecular mechanisms that help achieve this balance are not fully understood. Using genetic dissection in Drosophila, we show that a Wnt6/EGFR-signaling network simultaneously controls progenitor growth, proliferation, and differentiation. Unlike G1-quiescence of stem cells, hematopoietic progenitors are blocked in G2 phase by a β-catenin-independent (Wnt/STOP) Wnt6 pathway that restricts Cdc25 nuclear entry and promotes cell growth. Canonical β-catenin-dependent Wnt6 signaling is spatially confined to mature progenitors through localized activation of the tyrosine kinases EGFR and Abelson kinase (Abl), which promote nuclear entry of β-catenin and facilitate exit from G2. This strategy combines transcription-dependent and -independent forms of both Wnt6 and EGFR pathways to create a direct link between cell-cycle control and differentiation. This unique combinatorial strategy employing conserved components may underlie homeostatic balance and stress response in mammalian hematopoiesis.
Collapse
Affiliation(s)
- Lauren M Goins
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Juliet R Girard
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Bama Charan Mondal
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sausan Buran
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chloe C Su
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruby Tang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Titash Biswas
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jessica A Kissi
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Ray A, Rai Y, Inamdar MS. The Endosomal Sorting Complex, ESCRT, has diverse roles in blood progenitor maintenance, lineage choice and immune response. Biol Open 2024; 13:bio060412. [PMID: 38828842 PMCID: PMC11212638 DOI: 10.1242/bio.060412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Most hematological malignancies are associated with reduced expression of one or more components of the Endosomal Sorting Complex Required for Transport (ESCRT). However, the roles of ESCRT in stem cell and progenitor maintenance are not resolved. Parsing signaling pathways in relation to the canonical role of ESCRT poses a challenge. The Drosophila hematopoietic organ, the larval lymph gland, provides a path to dissect the roles of cellular trafficking pathways such as ESCRT in blood development and maintenance. Drosophila has 13 core ESCRT components. Knockdown of individual ESCRTs showed that only Vps28 and Vp36 were required in all lymph gland progenitors. Using the well-conserved ESCRT-II complex as an example of the range of phenotypes seen upon ESCRT depletion, we show that ESCRTs have cell-autonomous as well as non-autonomous roles in progenitor maintenance and differentiation. ESCRT depletion also sensitized posterior lobe progenitors to respond to immunogenic wasp infestation. We also identify key heterotypic roles for ESCRT in position-dependent control of Notch activation to suppress crystal cell differentiation. Our study shows that the cargo sorting machinery determines the identity of progenitors and their adaptability to the dynamic microenvironment. These mechanisms for control of cell fate may tailor developmental diversity in multiple contexts.
Collapse
Affiliation(s)
- Arindam Ray
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Yashashwinee Rai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Maneesha S. Inamdar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bangalore 560065, India
| |
Collapse
|
4
|
Monticelli S, Sommer A, AlHajj Hassan Z, Garcia Rodriguez C, Adé K, Cattenoz P, Delaporte C, Gomez Perdiguero E, Giangrande A. Early-wave macrophages control late hematopoiesis. Dev Cell 2024; 59:1284-1301.e8. [PMID: 38569551 DOI: 10.1016/j.devcel.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/08/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Macrophages constitute the first defense line against the non-self, but their ability to remodel their environment in organ development/homeostasis is starting to be appreciated. Early-wave macrophages (EMs), produced from hematopoietic stem cell (HSC)-independent progenitors, seed the mammalian fetal liver niche wherein HSCs expand and differentiate. The involvement of niche defects in myeloid malignancies led us to identify the cues controlling HSCs. In Drosophila, HSC-independent EMs also colonize the larva when late hematopoiesis occurs. The evolutionarily conserved immune system allowed us to investigate whether/how EMs modulate late hematopoiesis in two models. We show that loss of EMs in Drosophila and mice accelerates late hematopoiesis, which does not correlate with inflammation and does not rely on macrophage phagocytic ability. Rather, EM-derived extracellular matrix components underlie late hematopoiesis acceleration. This demonstrates a developmental role for EMs.
Collapse
Affiliation(s)
- Sara Monticelli
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Alina Sommer
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Zeinab AlHajj Hassan
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Clarisabel Garcia Rodriguez
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Kémy Adé
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France
| | - Pierre Cattenoz
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Claude Delaporte
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Elisa Gomez Perdiguero
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France.
| | - Angela Giangrande
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France.
| |
Collapse
|
5
|
Cho B, Shin M, Chang E, Son S, Shin I, Shim J. S-nitrosylation-triggered unfolded protein response maintains hematopoietic progenitors in Drosophila. Dev Cell 2024; 59:1075-1090.e6. [PMID: 38521056 DOI: 10.1016/j.devcel.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
The Drosophila lymph gland houses blood progenitors that give rise to myeloid-like blood cells. Initially, blood progenitors proliferate, but later, they become quiescent to maintain multipotency before differentiation. Despite the identification of various factors involved in multipotency maintenance, the cellular mechanism controlling blood progenitor quiescence remains elusive. Here, we identify the expression of nitric oxide synthase in blood progenitors, generating nitric oxide for post-translational S-nitrosylation of protein cysteine residues. S-nitrosylation activates the Ire1-Xbp1-mediated unfolded protein response, leading to G2 cell-cycle arrest. Specifically, we identify the epidermal growth factor receptor as a target of S-nitrosylation, resulting in its retention within the endoplasmic reticulum and blockade of its receptor function. Overall, our findings highlight developmentally programmed S-nitrosylation as a critical mechanism that induces protein quality control in blood progenitors, maintaining their undifferentiated state by inhibiting cell-cycle progression and rendering them unresponsive to paracrine factors.
Collapse
Affiliation(s)
- Bumsik Cho
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Mingyu Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunji Chang
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Seogho Son
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Incheol Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
6
|
Sinenko SA. Molecular Mechanisms of Drosophila Hematopoiesis. Acta Naturae 2024; 16:4-21. [PMID: 39188265 PMCID: PMC11345091 DOI: 10.32607/actanaturae.27410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/31/2024] [Indexed: 08/28/2024] Open
Abstract
As a model organism, the fruit fly (Drosophila melanogaster) has assumed a leading position in modern biological research. The Drosophila genetic system has a number of advantages making it a key model in investigating the molecular mechanisms of metazoan developmental processes. Over the past two decades, significant progress has been made in understanding the molecular mechanisms regulating Drosophila hematopoiesis. This review discusses the major advances in investigating the molecular mechanisms involved in maintaining the population of multipotent progenitor cells and their differentiation into mature hemocytes in the hematopoietic organ of the Drosophila larva. The use of the Drosophila hematopoietic organ as a model system for hematopoiesis has allowed to characterize the complex interactions between signaling pathways and transcription factors in regulating the maintenance and differentiation of progenitor cells through the signals from the hematopoietic niche, autocrine and paracrine signals, and the signals emanated by differentiated cells.
Collapse
Affiliation(s)
- S. A. Sinenko
- Institute of Cytology Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| |
Collapse
|
7
|
Ho KYL, An K, Carr RL, Dvoskin AD, Ou AYJ, Vogl W, Tanentzapf G. Maintenance of hematopoietic stem cell niche homeostasis requires gap junction-mediated calcium signaling. Proc Natl Acad Sci U S A 2023; 120:e2303018120. [PMID: 37903259 PMCID: PMC10636368 DOI: 10.1073/pnas.2303018120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023] Open
Abstract
Regulation of stem cells requires coordination of the cells that make up the stem cell niche. Here, we describe a mechanism that allows communication between niche cells to coordinate their activity and shape the signaling environment surrounding resident stem cells. Using the Drosophila hematopoietic organ, the lymph gland, we show that cells of the hematopoietic niche, the posterior signaling center (PSC), communicate using gap junctions (GJs) and form a signaling network. This network allows PSC cells to exchange Ca2+ signals repetitively which regulate the hematopoietic niche. Disruption of Ca2+ signaling in the PSC or the GJ-mediated network connecting niche cells causes dysregulation of the PSC and blood progenitor differentiation. Analysis of PSC-derived cell signaling shows that the Hedgehog pathway acts downstream of GJ-mediated Ca2+ signaling to modulate the niche microenvironment. These data show that GJ-mediated communication between hematopoietic niche cells maintains their homeostasis and consequently controls blood progenitor behavior.
Collapse
Affiliation(s)
- Kevin Y. L. Ho
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Kevin An
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Rosalyn L. Carr
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
- British Columbia Children’s Hospital Research Institute, British Columbia Children’s Hospital, Vancouver, BCV5Z 4H4, Canada
| | - Alexandra D. Dvoskin
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Annie Y. J. Ou
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
- School of Kinesiology, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Wayne Vogl
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| |
Collapse
|
8
|
Hirschhäuser A, Molitor D, Salinas G, Großhans J, Rust K, Bogdan S. Single-cell transcriptomics identifies new blood cell populations in Drosophila released at the onset of metamorphosis. Development 2023; 150:dev201767. [PMID: 37681301 PMCID: PMC10560556 DOI: 10.1242/dev.201767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Drosophila blood cells called hemocytes form an efficient barrier against infections and tissue damage. During metamorphosis, hemocytes undergo tremendous changes in their shape and behavior, preparing them for tissue clearance. Yet, the diversity and functional plasticity of pupal blood cells have not been explored. Here, we combine single-cell transcriptomics and high-resolution microscopy to dissect the heterogeneity and plasticity of pupal hemocytes. We identified undifferentiated and specified hemocytes with different molecular signatures associated with distinct functions such as antimicrobial, antifungal immune defense, cell adhesion or secretion. Strikingly, we identified a highly migratory and immune-responsive pupal cell population expressing typical markers of the posterior signaling center (PSC), which is known to be an important niche in the larval lymph gland. PSC-like cells become restricted to the abdominal segments and are morphologically very distinct from typical Hemolectin (Hml)-positive plasmatocytes. G-TRACE lineage experiments further suggest that PSC-like cells can transdifferentiate to lamellocytes triggered by parasitoid wasp infestation. In summary, we present the first molecular description of pupal Drosophila blood cells, providing insights into blood cell functional diversification and plasticity during pupal metamorphosis.
Collapse
Affiliation(s)
- Alexander Hirschhäuser
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | - Darius Molitor
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Justus von Liebig Weg 11, 37077 Göttingen, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| | - Katja Rust
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps University Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany
| |
Collapse
|
9
|
Tian Y, Morin-Poulard I, Liu X, Vanzo N, Crozatier M. A mechanosensitive vascular niche for Drosophila hematopoiesis. Proc Natl Acad Sci U S A 2023; 120:e2217862120. [PMID: 37094122 PMCID: PMC10160988 DOI: 10.1073/pnas.2217862120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023] Open
Abstract
Hematopoietic stem and progenitor cells maintain blood cell homeostasis by integrating various cues provided by specialized microenvironments or niches. Biomechanical forces are emerging as key regulators of hematopoiesis. Here, we report that mechanical stimuli provided by blood flow in the vascular niche control Drosophila hematopoiesis. In vascular niche cells, the mechanosensitive channel Piezo transduces mechanical forces through intracellular calcium upregulation, leading to Notch activation and repression of FGF ligand transcription, known to regulate hematopoietic progenitor maintenance. Our results provide insight into how the vascular niche integrates mechanical stimuli to regulate hematopoiesis.
Collapse
Affiliation(s)
- Yushun Tian
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Ismaël Morin-Poulard
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Xiaohui Liu
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Nathalie Vanzo
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| | - Michèle Crozatier
- Molecular, Cellular, and Development/UMR5077, Centre de Biologie Intégrative, Toulouse Cedex 931062, France
| |
Collapse
|
10
|
Hultmark D, Andó I. Hematopoietic plasticity mapped in Drosophila and other insects. eLife 2022; 11:e78906. [PMID: 35920811 PMCID: PMC9348853 DOI: 10.7554/elife.78906] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022] Open
Abstract
Hemocytes, similar to vertebrate blood cells, play important roles in insect development and immunity, but it is not well understood how they perform their tasks. New technology, in particular single-cell transcriptomic analysis in combination with Drosophila genetics, may now change this picture. This review aims to make sense of recently published data, focusing on Drosophila melanogaster and comparing to data from other drosophilids, the malaria mosquito, Anopheles gambiae, and the silkworm, Bombyx mori. Basically, the new data support the presence of a few major classes of hemocytes: (1) a highly heterogenous and plastic class of professional phagocytes with many functions, called plasmatocytes in Drosophila and granular cells in other insects. (2) A conserved class of cells that control melanin deposition around parasites and wounds, called crystal cells in D. melanogaster, and oenocytoids in other insects. (3) A new class of cells, the primocytes, so far only identified in D. melanogaster. They are related to cells of the so-called posterior signaling center of the larval hematopoietic organ, which controls the hematopoiesis of other hemocytes. (4) Different kinds of specialized cells, like the lamellocytes in D. melanogaster, for the encapsulation of parasites. These cells undergo rapid evolution, and the homology relationships between such cells in different insects are uncertain. Lists of genes expressed in the different hemocyte classes now provide a solid ground for further investigation of function.
Collapse
Affiliation(s)
- Dan Hultmark
- Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - István Andó
- Biological Research Centre, Institute of Genetics, Innate Immunity Group, Eötvös Loránd Research NetworkSzegedHungary
| |
Collapse
|
11
|
Kharrat B, Csordás G, Honti V. Peeling Back the Layers of Lymph Gland Structure and Regulation. Int J Mol Sci 2022; 23:7767. [PMID: 35887113 PMCID: PMC9319083 DOI: 10.3390/ijms23147767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/18/2022] Open
Abstract
During the past 60 years, the fruit fly, Drosophila melanogaster, has proven to be an excellent model to study the regulation of hematopoiesis. This is not only due to the evolutionarily conserved signalling pathways and transcription factors contributing to blood cell fate, but also to convergent evolution that led to functional similarities in distinct species. An example of convergence is the compartmentalization of blood cells, which ensures the quiescence of hematopoietic stem cells and allows for the rapid reaction of the immune system upon challenges. The lymph gland, a widely studied hematopoietic organ of the Drosophila larva, represents a microenvironment with similar features and functions to classical hematopoietic stem cell niches of vertebrates. Lymph gland studies were effectively supported by the unparalleled toolkit developed in Drosophila, which enabled the high-resolution investigation of the cellular composition and regulatory interaction networks of the lymph gland. In this review, we summarize how our understanding of lymph gland structure and hematopoietic cell-to-cell communication evolved during the past decades and compare their analogous features to those of the vertebrate hematopoietic stem cell niche.
Collapse
Affiliation(s)
- Bayan Kharrat
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary;
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, P.O. Box 427, H-6720 Szeged, Hungary
| | - Gábor Csordás
- Lysosomal Degradation Research Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary;
| | - Viktor Honti
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary;
| |
Collapse
|
12
|
Koranteng F, Cho B, Shim J. Intrinsic and Extrinsic Regulation of Hematopoiesis in Drosophila. Mol Cells 2022; 45:101-108. [PMID: 35253654 PMCID: PMC8926866 DOI: 10.14348/molcells.2022.2039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Abstract
Drosophila melanogaster lymph gland, the primary site of hematopoiesis, contains myeloid-like progenitor cells that differentiate into functional hemocytes in the circulation of pupae and adults. Fly hemocytes are dynamic and plastic, and they play diverse roles in the innate immune response and wound healing. Various hematopoietic regulators in the lymph gland ensure the developmental and functional balance between progenitors and mature blood cells. In addition, systemic factors, such as nutrient availability and sensory inputs, integrate environmental variabilities to synchronize the blood development in the lymph gland with larval growth, physiology, and immunity. This review examines the intrinsic and extrinsic factors determining the progenitor states during hemocyte development in the lymph gland and provides new insights for further studies that may extend the frontier of our collective knowledge on hematopoiesis and innate immunity.
Collapse
Affiliation(s)
| | - Bumsik Cho
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Jiwon Shim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
13
|
Morin-Poulard I, Destalminil-Letourneau M, Bataillé L, Frendo JL, Lebreton G, Vanzo N, Crozatier M. Identification of Bipotential Blood Cell/Nephrocyte Progenitors in Drosophila: Another Route for Generating Blood Progenitors. Front Cell Dev Biol 2022; 10:834720. [PMID: 35237606 PMCID: PMC8883574 DOI: 10.3389/fcell.2022.834720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The Drosophila lymph gland is the larval hematopoietic organ and is aligned along the anterior part of the cardiovascular system, composed of cardiac cells, that form the cardiac tube and its associated pericardial cells or nephrocytes. By the end of embryogenesis the lymph gland is composed of a single pair of lobes. Two additional pairs of posterior lobes develop during larval development to contribute to the mature lymph gland. In this study we describe the ontogeny of lymph gland posterior lobes during larval development and identify the genetic basis of the process. By lineage tracing we show here that each posterior lobe originates from three embryonic pericardial cells, thus establishing a bivalent blood cell/nephrocyte potential for a subset of embryonic pericardial cells. The posterior lobes of L3 larvae posterior lobes are composed of heterogeneous blood progenitors and their diversity is progressively built during larval development. We further establish that in larvae, homeotic genes and the transcription factor Klf15 regulate the choice between blood cell and nephrocyte fates. Our data underline the sequential production of blood cell progenitors during larval development.
Collapse
Affiliation(s)
- Ismaël Morin-Poulard
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France
| | - Manon Destalminil-Letourneau
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France
| | - Laetitia Bataillé
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France.,CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes), UMR6290, ERL U1305, Rennes, France
| | - Jean-Louis Frendo
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France.,INSERM U1301, CNRS 5070, Université de Toulouse, Toulouse, France
| | - Gaëlle Lebreton
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France
| | - Nathalie Vanzo
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France
| | - Michèle Crozatier
- Unité de Biologie Moléculaire et Cellulaire et du Développement (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse UMR 5077/CNRS, Toulouse, France
| |
Collapse
|
14
|
Spratford CM, Goins LM, Chi F, Girard JR, Macias SN, Ho VW, Banerjee U. Intermediate progenitor cells provide a transition between hematopoietic progenitors and their differentiated descendants. Development 2021; 148:273785. [PMID: 34918741 PMCID: PMC8722385 DOI: 10.1242/dev.200216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Genetic and genomic analysis in Drosophila suggests that hematopoietic progenitors likely transition into terminal fates via intermediate progenitors (IPs) with some characteristics of either, but perhaps maintaining IP-specific markers. In the past, IPs have not been directly visualized and investigated owing to lack of appropriate genetic tools. Here, we report a Split GAL4 construct, CHIZ-GAL4, that identifies IPs as cells physically juxtaposed between true progenitors and differentiating hemocytes. IPs are a distinct cell type with a unique cell-cycle profile and they remain multipotent for all blood cell fates. In addition, through their dynamic control of the Notch ligand Serrate, IPs specify the fate of direct neighbors. The Ras pathway controls the number of IP cells and promotes their transition into differentiating cells. This study suggests that it would be useful to characterize such intermediate populations of cells in mammalian hematopoietic systems.
Collapse
Affiliation(s)
- Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA
| | - Fangtao Chi
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, USA
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA
| | - Savannah N Macias
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA
| | - Vivien W Ho
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA
| | - Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, USA.,Department of Biological Chemistry, University of California, Los Angeles, USA
| |
Collapse
|
15
|
Rodrigues D, VijayRaghavan K, Waltzer L, Inamdar MS. Intact in situ Preparation of the Drosophila melanogaster Lymph Gland for a Comprehensive Analysis of Larval Hematopoiesis. Bio Protoc 2021; 11:e4204. [PMID: 34859119 DOI: 10.21769/bioprotoc.4204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 11/02/2022] Open
Abstract
Blood cells have a limited lifespan and are replenished by a small number of hematopoietic stem and progenitor cells (HSPCs). Adult vertebrate hematopoiesis occurs in the bone marrow, liver, and spleen, rendering a comprehensive analysis of the entire HSPC pool nearly impossible. The Drosophila blood system is well studied and has developmental, molecular, and functional parallels with that of vertebrates. Unlike vertebrates, post-embryonic hematopoiesis in Drosophila is essentially restricted to the larval lymph gland (LG), a multi-lobed organ that flanks the dorsal vessel. Because the anterior-most or primary lobes of the LG are easy to dissect out, their cellular and molecular characteristics have been studied in considerable detail. The 2-3 pairs of posterior lobes are more delicate and fragile and have largely been ignored. However, posterior lobes harbor a significant blood progenitor pool, and several hematopoietic mutants show differences in phenotype between the anterior and posterior lobes. Hence, a comprehensive analysis of the LG is important for a thorough understanding of Drosophila hematopoiesis. Most studies focus on isolating the primary lobes by methods that generally dislodge and damage other lobes. To obtain preparations of the whole LG, including intact posterior lobes, here we provide a detailed protocol for larval fillet dissection. This allows accessing and analyzing complete LG lobes, along with dorsal vessel and pericardial cells. We demonstrate that tissue architecture and integrity is maintained and provide methods for quantitative analysis. This protocol can be used to quickly and effectively isolate complete LGs from first instar larval to pupal stages and can be implemented with ease.
Collapse
Affiliation(s)
- Diana Rodrigues
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Shanmugha Arts, Science, Technology and Research Academy, Tamil Nadu, India
| | - K VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Shanmugha Arts, Science, Technology and Research Academy, Tamil Nadu, India
| | - Lucas Waltzer
- University of Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Maneesha S Inamdar
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
16
|
Boulet M, Renaud Y, Lapraz F, Benmimoun B, Vandel L, Waltzer L. Characterization of the Drosophila Adult Hematopoietic System Reveals a Rare Cell Population With Differentiation and Proliferation Potential. Front Cell Dev Biol 2021; 9:739357. [PMID: 34722521 PMCID: PMC8550105 DOI: 10.3389/fcell.2021.739357] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
While many studies have described Drosophila embryonic and larval blood cells, the hematopoietic system of the imago remains poorly characterized and conflicting data have been published concerning adult hematopoiesis. Using a combination of blood cell markers, we show that the adult hematopoietic system is essentially composed of a few distinct mature blood cell types. In addition, our transcriptomics results indicate that adult and larval blood cells have both common and specific features and it appears that adult hemocytes reactivate many genes expressed in embryonic blood cells. Interestingly, we identify a small set of blood cells that does not express differentiation markers but rather maintains the expression of the progenitor marker domeMeso. Yet, we show that these cells are derived from the posterior signaling center, a specialized population of cells present in the larval lymph gland, rather than from larval blood cell progenitors, and that their maintenance depends on the EBF transcription factor Collier. Furthermore, while these cells are normally quiescent, we find that some of them can differentiate and proliferate in response to bacterial infection. In sum, our results indicate that adult flies harbor a small population of specialized cells with limited hematopoietic potential and further support the idea that no substantial hematopoiesis takes place during adulthood.
Collapse
Affiliation(s)
- Manon Boulet
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Sante et de la Recherche Medicale, Institut Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Sante et de la Recherche Medicale, Institut Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - François Lapraz
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Billel Benmimoun
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Laurence Vandel
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Sante et de la Recherche Medicale, Institut Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - Lucas Waltzer
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Sante et de la Recherche Medicale, Institut Génétique Reproduction et Développement, Clermont-Ferrand, France.,Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
17
|
Girard JR, Goins LM, Vuu DM, Sharpley MS, Spratford CM, Mantri SR, Banerjee U. Paths and pathways that generate cell-type heterogeneity and developmental progression in hematopoiesis. eLife 2021; 10:e67516. [PMID: 34713801 PMCID: PMC8610493 DOI: 10.7554/elife.67516] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022] Open
Abstract
Mechanistic studies of Drosophila lymph gland hematopoiesis are limited by the availability of cell-type-specific markers. Using a combination of bulk RNA-Seq of FACS-sorted cells, single-cell RNA-Seq, and genetic dissection, we identify new blood cell subpopulations along a developmental trajectory with multiple paths to mature cell types. This provides functional insights into key developmental processes and signaling pathways. We highlight metabolism as a driver of development, show that graded Pointed expression allows distinct roles in successive developmental steps, and that mature crystal cells specifically express an alternate isoform of Hypoxia-inducible factor (Hif/Sima). Mechanistically, the Musashi-regulated protein Numb facilitates Sima-dependent non-canonical, and inhibits canonical, Notch signaling. Broadly, we find that prior to making a fate choice, a progenitor selects between alternative, biologically relevant, transitory states allowing smooth transitions reflective of combinatorial expressions rather than stepwise binary decisions. Increasingly, this view is gaining support in mammalian hematopoiesis.
Collapse
Affiliation(s)
- Juliet R Girard
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Lauren M Goins
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Dung M Vuu
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Mark S Sharpley
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Carrie M Spratford
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Shreya R Mantri
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
18
|
Morin-Poulard I, Tian Y, Vanzo N, Crozatier M. Drosophila as a Model to Study Cellular Communication Between the Hematopoietic Niche and Blood Progenitors Under Homeostatic Conditions and in Response to an Immune Stress. Front Immunol 2021; 12:719349. [PMID: 34484226 PMCID: PMC8415499 DOI: 10.3389/fimmu.2021.719349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
In adult mammals, blood cells are formed from hematopoietic stem progenitor cells, which are controlled by a complex cellular microenvironment called "niche". Drosophila melanogaster is a powerful model organism to decipher the mechanisms controlling hematopoiesis, due both to its limited number of blood cell lineages and to the conservation of genes and signaling pathways throughout bilaterian evolution. Insect blood cells or hemocytes are similar to the mammalian myeloid lineage that ensures innate immunity functions. Like in vertebrates, two waves of hematopoiesis occur in Drosophila. The first wave takes place during embryogenesis. The second wave occurs at larval stages, where two distinct hematopoietic sites are identified: subcuticular hematopoietic pockets and a specialized hematopoietic organ called the lymph gland. In both sites, hematopoiesis is regulated by distinct niches. In hematopoietic pockets, sensory neurons of the peripheral nervous system provide a microenvironment that promotes embryonic hemocyte expansion and differentiation. In the lymph gland blood cells are produced from hematopoietic progenitors. A small cluster of cells called Posterior Signaling Centre (PSC) and the vascular system, along which the lymph gland develops, act collectively as a niche, under homeostatic conditions, to control the balance between maintenance and differentiation of lymph gland progenitors. In response to an immune stress such as wasp parasitism, lymph gland hematopoiesis is drastically modified and shifts towards emergency hematopoiesis, leading to increased progenitor proliferation and their differentiation into lamellocyte, a specific blood cell type which will neutralize the parasite. The PSC is essential to control this emergency response. In this review, we summarize Drosophila cellular and molecular mechanisms involved in the communication between the niche and hematopoietic progenitors, both under homeostatic and stress conditions. Finally, we discuss similarities between mechanisms by which niches regulate hematopoietic stem/progenitor cells in Drosophila and mammals.
Collapse
Affiliation(s)
| | - Yushun Tian
- MCD/UMR5077, Centre de Biologie Intégrative (CBI), Toulouse, France
| | - Nathalie Vanzo
- MCD/UMR5077, Centre de Biologie Intégrative (CBI), Toulouse, France
| | | |
Collapse
|
19
|
Ramesh P, Dey NS, Kanwal A, Mandal S, Mandal L. Relish plays a dynamic role in the niche to modulate Drosophila blood progenitor homeostasis in development and infection. eLife 2021; 10:67158. [PMID: 34292149 PMCID: PMC8363268 DOI: 10.7554/elife.67158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Immune challenges demand the gearing up of basal hematopoiesis to combat infection. Little is known about how during development, this switch is achieved to take care of the insult. Here, we show that the hematopoietic niche of the larval lymph gland of Drosophila senses immune challenge and reacts to it quickly through the nuclear factor-κB (NF-κB), Relish, a component of the immune deficiency (Imd) pathway. During development, Relish is triggered by ecdysone signaling in the hematopoietic niche to maintain the blood progenitors. Loss of Relish causes an alteration in the cytoskeletal architecture of the niche cells in a Jun Kinase-dependent manner, resulting in the trapping of Hh implicated in progenitor maintenance. Notably, during infection, downregulation of Relish in the niche tilts the maintenance program toward precocious differentiation, thereby bolstering the cellular arm of the immune response.
Collapse
Affiliation(s)
- Parvathy Ramesh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Nidhi Sharma Dey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Aditya Kanwal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Sudip Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Molecular Cell and Developmental Biology Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Lolitika Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
20
|
A parasitoid wasp of Drosophila employs preemptive and reactive strategies to deplete its host's blood cells. PLoS Pathog 2021; 17:e1009615. [PMID: 34048506 PMCID: PMC8191917 DOI: 10.1371/journal.ppat.1009615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/10/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
The wasps Leptopilina heterotoma parasitize and ingest their Drosophila hosts. They produce extracellular vesicles (EVs) in the venom that are packed with proteins, some of which perform immune suppressive functions. EV interactions with blood cells of host larvae are linked to hematopoietic depletion, immune suppression, and parasite success. But how EVs disperse within the host, enter and kill hematopoietic cells is not well understood. Using an antibody marker for L. heterotoma EVs, we show that these parasite-derived structures are readily distributed within the hosts’ hemolymphatic system. EVs converge around the tightly clustered cells of the posterior signaling center (PSC) of the larval lymph gland, a small hematopoietic organ in Drosophila. The PSC serves as a source of developmental signals in naïve animals. In wasp-infected animals, the PSC directs the differentiation of lymph gland progenitors into lamellocytes. These lamellocytes are needed to encapsulate the wasp egg and block parasite development. We found that L. heterotoma infection disassembles the PSC and PSC cells disperse into the disintegrating lymph gland lobes. Genetically manipulated PSC-less lymph glands remain non-responsive and largely intact in the face of L. heterotoma infection. We also show that the larval lymph gland progenitors use the endocytic machinery to internalize EVs. Once inside, L. heterotoma EVs damage the Rab7- and LAMP-positive late endocytic and phagolysosomal compartments. Rab5 maintains hematopoietic and immune quiescence as Rab5 knockdown results in hematopoietic over-proliferation and ectopic lamellocyte differentiation. Thus, both aspects of anti-parasite immunity, i.e., (a) phagocytosis of the wasp’s immune-suppressive EVs, and (b) progenitor differentiation for wasp egg encapsulation reside in the lymph gland. These results help explain why the lymph gland is specifically and precisely targeted for destruction. The parasite’s simultaneous and multipronged approach to block cellular immunity not only eliminates blood cells, but also tactically blocks the genetic programming needed for supplementary hematopoietic differentiation necessary for host success. In addition to its known functions in hematopoiesis, our results highlight a previously unrecognized phagocytic role of the lymph gland in cellular immunity. EV-mediated virulence strategies described for L. heterotoma are likely to be shared by other parasitoid wasps; their understanding can improve the design and development of novel therapeutics and biopesticides as well as help protect biodiversity. Parasitoid wasps serve as biological control agents of agricultural insect pests and are worthy of study. Many parasitic wasps develop inside their hosts to emerge as free-living adults. To overcome the resistance of their hosts, parasitic wasps use varied and ingenious strategies such as mimicry, evasion, bioactive venom, virus-like particles, viruses, and extracellular vesicles (EVs). We describe the effects of a unique class of EVs containing virulence proteins and produced in the venom of wasps that parasitize fruit flies of Drosophila species. EVs from Leptopilina heterotoma are widely distributed throughout the Drosophila hosts’ circulatory system after infection. They enter and kill macrophages by destroying the very same subcellular machinery that facilitates their uptake. An important protein in this process, Rab5, is needed to maintain the identity of the macrophage; when Rab5 function is reduced, macrophages turn into a different cell type called lamellocytes. Activities in the EVs can eliminate lamellocytes as well. EVs also interfere with the hosts’ genetic program that promotes lamellocyte differentiation needed to block parasite development. Thus, wasps combine specific preemptive and reactive strategies to deplete their hosts of the very cells that would otherwise sequester and kill them. These findings have applied value in agricultural pest control and medical therapeutics.
Collapse
|
21
|
Rodrigues D, Renaud Y, VijayRaghavan K, Waltzer L, Inamdar MS. Differential activation of JAK-STAT signaling reveals functional compartmentalization in Drosophila blood progenitors. eLife 2021; 10:61409. [PMID: 33594977 PMCID: PMC7920551 DOI: 10.7554/elife.61409] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Blood cells arise from diverse pools of stem and progenitor cells. Understanding progenitor heterogeneity is a major challenge. The Drosophila larval lymph gland is a well-studied model to understand blood progenitor maintenance and recapitulates several aspects of vertebrate hematopoiesis. However in-depth analysis has focused on the anterior lobe progenitors (AP), ignoring the posterior progenitors (PP) from the posterior lobes. Using in situ expression mapping and developmental and transcriptome analysis, we reveal PP heterogeneity and identify molecular-genetic tools to study this abundant progenitor population. Functional analysis shows that PP resist differentiation upon immune challenge, in a JAK-STAT-dependent manner. Upon wasp parasitism, AP downregulate JAK-STAT signaling and form lamellocytes. In contrast, we show that PP activate STAT92E and remain undifferentiated, promoting survival. Stat92E knockdown or genetically reducing JAK-STAT signaling permits PP lamellocyte differentiation. We discuss how heterogeneity and compartmentalization allow functional segregation in response to systemic cues and could be widely applicable.
Collapse
Affiliation(s)
- Diana Rodrigues
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Shanmugha Arts, Science, Technology & Research Academy, Tamil Nadu, India
| | - Yoan Renaud
- University of Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - K VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Shanmugha Arts, Science, Technology & Research Academy, Tamil Nadu, India
| | - Lucas Waltzer
- University of Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Maneesha S Inamdar
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
22
|
Yu S, Luo F, Jin LH. Rab5 and Rab11 maintain hematopoietic homeostasis by restricting multiple signaling pathways in Drosophila. eLife 2021; 10:60870. [PMID: 33560224 PMCID: PMC7891935 DOI: 10.7554/elife.60870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022] Open
Abstract
The hematopoietic system of Drosophila is a powerful genetic model for studying hematopoiesis, and vesicle trafficking is important for signal transduction during various developmental processes; however, its interaction with hematopoiesis is currently largely unknown. In this article, we selected three endosome markers, Rab5, Rab7, and Rab11, that play a key role in membrane trafficking and determined whether they participate in hematopoiesis. Inhibiting Rab5 or Rab11 in hemocytes or the cortical zone (CZ) significantly induced cell overproliferation and lamellocyte formation in circulating hemocytes and lymph glands and disrupted blood cell progenitor maintenance. Lamellocyte formation involves the JNK, Toll, and Ras/EGFR signaling pathways. Notably, lamellocyte formation was also associated with JNK-dependent autophagy. In conclusion, we identified Rab5 and Rab11 as novel regulators of hematopoiesis, and our results advance the understanding of the mechanisms underlying the maintenance of hematopoietic homeostasis as well as the pathology of blood disorders such as leukemia.
Collapse
Affiliation(s)
- Shichao Yu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Fangzhou Luo
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
23
|
Destalminil-Letourneau M, Morin-Poulard I, Tian Y, Vanzo N, Crozatier M. The vascular niche controls Drosophila hematopoiesis via fibroblast growth factor signaling. eLife 2021; 10:64672. [PMID: 33395389 PMCID: PMC7781598 DOI: 10.7554/elife.64672] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
In adult mammals, hematopoiesis, the production of blood cells from hematopoietic stem and progenitor cells (HSPCs), is tightly regulated by extrinsic signals from the microenvironment called 'niche'. Bone marrow HSPCs are heterogeneous and controlled by both endosteal and vascular niches. The Drosophila hematopoietic lymph gland is located along the cardiac tube which corresponds to the vascular system. In the lymph gland, the niche called Posterior Signaling Center controls only a subset of the heterogeneous hematopoietic progenitor population indicating that additional signals are necessary. Here we report that the vascular system acts as a second niche to control lymph gland homeostasis. The FGF ligand Branchless produced by vascular cells activates the FGF pathway in hematopoietic progenitors. By regulating intracellular calcium levels, FGF signaling maintains progenitor pools and prevents blood cell differentiation. This study reveals that two niches contribute to the control ofDrosophila blood cell homeostasis through their differential regulation of progenitors.
Collapse
Affiliation(s)
- Manon Destalminil-Letourneau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ismaël Morin-Poulard
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yushun Tian
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nathalie Vanzo
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michele Crozatier
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
24
|
Rodrigues D, VijayRaghavan K, Waltzer L, Inamdar M. Intact in situ Preparation of Drosophila melanogaster Lymph Gland for Comprehensive Analysis of Larval Hematopoiesis. Bio Protoc 2021. [DOI: 10.21769/bioprotoc.4052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
25
|
Cho B, Yoon SH, Lee D, Koranteng F, Tattikota SG, Cha N, Shin M, Do H, Hu Y, Oh SY, Lee D, Vipin Menon A, Moon SJ, Perrimon N, Nam JW, Shim J. Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila. Nat Commun 2020; 11:4483. [PMID: 32900993 PMCID: PMC7479620 DOI: 10.1038/s41467-020-18135-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
Abstract
The Drosophila lymph gland, the larval hematopoietic organ comprised of prohemocytes and mature hemocytes, has been a valuable model for understanding mechanisms underlying hematopoiesis and immunity. Three types of mature hemocytes have been characterized in the lymph gland: plasmatocytes, lamellocytes, and crystal cells, which are analogous to vertebrate myeloid cells, yet molecular underpinnings of the lymph gland hemocytes have been less investigated. Here, we use single-cell RNA sequencing to comprehensively analyze heterogeneity of developing hemocytes in the lymph gland, and discover previously undescribed hemocyte types including adipohemocytes, stem-like prohemocytes, and intermediate prohemocytes. Additionally, we identify the developmental trajectory of hemocytes during normal development as well as the emergence of the lamellocyte lineage following active cellular immunity caused by wasp infestation. Finally, we establish similarities and differences between embryonically derived- and larval lymph gland hemocytes. Altogether, our study provides detailed insights into the hemocyte development and cellular immune responses at single-cell resolution. How the Drosophila lymph gland hemocytes develop and are regulated at a single-cell level is unclear. Here, the authors use single-cell RNA sequencing to show heterogeneity of developing hemocytes in the lymph gland and how they react to wasp infestation, and compare hemocytes from two independent origins.
Collapse
Affiliation(s)
- Bumsik Cho
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Sang-Ho Yoon
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Daewon Lee
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Ferdinand Koranteng
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | | | - Nuri Cha
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Mingyu Shin
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Hobin Do
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sue Young Oh
- Department of Oral Biology, Yonsei University, College of Dentistry, Seoul, 03722, Republic of Korea
| | - Daehan Lee
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - A Vipin Menon
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Seok Jun Moon
- Department of Oral Biology, Yonsei University, College of Dentistry, Seoul, 03722, Republic of Korea
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Jin-Wu Nam
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea. .,Research Institute for Natural Sciences, Hanyang University, Seoul, 04736, Republic of Korea. .,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04736, Republic of Korea.
| | - Jiwon Shim
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea. .,Research Institute for Natural Sciences, Hanyang University, Seoul, 04736, Republic of Korea. .,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04736, Republic of Korea.
| |
Collapse
|
26
|
Lan W, Liu S, Zhao L, Su Y. Regulation of Drosophila Hematopoiesis in Lymph Gland: From a Developmental Signaling Point of View. Int J Mol Sci 2020; 21:ijms21155246. [PMID: 32722007 PMCID: PMC7432643 DOI: 10.3390/ijms21155246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
The Drosophila hematopoietic system is becoming increasingly attractive for its simple blood cell lineage and its developmental and functional parallels with the vertebrate system. As the dedicated organ for Drosophila larval hematopoiesis, the lymph gland harbors both multipotent stem-like progenitor cells and differentiated blood cells. The balance between progenitor maintenance and differentiation in the lymph gland must be precisely and tightly controlled. Multiple developmental signaling pathways, such as Notch, Hedgehog, and Wnt/Wingless, have been demonstrated to regulate the hematopoietic processes in the lymph gland. Focusing on blood cell maintenance and differentiation, this article summarizes the functions of several classic developmental signaling pathways for lymph gland growth and patterning, highlighting the important roles of developmental signaling during lymph gland development as well as Drosophila larval hematopoiesis.
Collapse
Affiliation(s)
- Wenwen Lan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (W.L.); (S.L.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Sumin Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (W.L.); (S.L.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Long Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (W.L.); (S.L.)
- Fisheries College, Ocean University of China, Qingdao 266003, China
- Correspondence: (L.Z.); (Y.S.)
| | - Ying Su
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (W.L.); (S.L.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Correspondence: (L.Z.); (Y.S.)
| |
Collapse
|
27
|
Khadilkar RJ, Ho KYL, Venkatesh B, Tanentzapf G. Integrins Modulate Extracellular Matrix Organization to Control Cell Signaling during Hematopoiesis. Curr Biol 2020; 30:3316-3329.e5. [PMID: 32649911 DOI: 10.1016/j.cub.2020.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 05/04/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022]
Abstract
During hematopoiesis, progenitor cells receive and interpret a diverse array of regulatory signals from their environment. These signals control the maintenance of the progenitors and regulate the production of mature blood cells. Integrins are well known in vertebrates for their roles in hematopoiesis, particularly in assisting in the migration to, as well as the physical attachment of, progenitors to the niche. However, whether and how integrins are also involved in the signaling mechanisms that control hematopoiesis remains to be resolved. Here, we show that integrins play a key role during fly hematopoiesis in regulating cell signals that control the behavior of hematopoietic progenitors. Integrins can regulate hematopoiesis directly, via focal adhesion kinase (FAK) signaling, and indirectly, by directing extracellular matrix (ECM) assembly and/or maintenance. ECM organization and density controls blood progenitor behavior by modulating multiple signaling pathways, including bone morphogenetic protein (BMP) and Hedgehog (Hh). Furthermore, we show that integrins and the ECM are reduced following infection, which may assist in activating the immune response. Our results provide mechanistic insight into how integrins can shape the signaling environment around hematopoietic progenitors.
Collapse
Affiliation(s)
- Rohan J Khadilkar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kevin Y L Ho
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Bhavya Venkatesh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
28
|
Cattenoz PB, Sakr R, Pavlidaki A, Delaporte C, Riba A, Molina N, Hariharan N, Mukherjee T, Giangrande A. Temporal specificity and heterogeneity of Drosophila immune cells. EMBO J 2020; 39:e104486. [PMID: 32162708 PMCID: PMC7298292 DOI: 10.15252/embj.2020104486] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Immune cells provide defense against non-self and have recently been shown to also play key roles in diverse processes such as development, metabolism, and tumor progression. The heterogeneity of Drosophila immune cells (hemocytes) remains an open question. Using bulk RNA sequencing, we find that the hemocytes display distinct features in the embryo, a closed and rapidly developing system, compared to the larva, which is exposed to environmental and metabolic challenges. Through single-cell RNA sequencing, we identify fourteen hemocyte clusters present in unchallenged larvae and associated with distinct processes, e.g., proliferation, phagocytosis, metabolic homeostasis, and humoral response. Finally, we characterize the changes occurring in the hemocyte clusters upon wasp infestation, which triggers the differentiation of a novel hemocyte type, the lamellocyte. This first molecular atlas of hemocytes provides insights and paves the way to study the biology of the Drosophila immune cells in physiological and pathological conditions.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Rosy Sakr
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Alexia Pavlidaki
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Claude Delaporte
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Andrea Riba
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Nacho Molina
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| | - Nivedita Hariharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
- The University of Trans‐disciplinary Health Sciences and TechnologyBangaloreIndia
| | - Tina Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche ScientifiqueUMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
- Université de StrasbourgIllkirchFrance
| |
Collapse
|
29
|
Luo F, Yu S, Jin LH. The Posterior Signaling Center Is an Important Microenvironment for Homeostasis of the Drosophila Lymph Gland. Front Cell Dev Biol 2020; 8:382. [PMID: 32509789 PMCID: PMC7253591 DOI: 10.3389/fcell.2020.00382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/28/2020] [Indexed: 01/02/2023] Open
Abstract
Hematopoiesis is a necessary process for development and immune defense in Drosophila from the embryonic period to adulthood. There are two main stages in this process: the first stage occurs in the head mesoderm during the embryonic stage, and the second occurs in a specialized hematopoietic organ along the dorsal vessel, the lymph gland, during the larval stage. The lymph gland consists of paired lobes, each of which has distinct regions: the cortical zone (CZ), which contains mature hemocytes; the medullary zone (MZ), which contains hematopoietic progenitors; and the posterior signaling center (PSC), which specifically expresses the early B-cell factor (EBF) transcription factor Collier (Col) and the HOX factor Antennapedia (Antp) to form a microenvironment similar to that of the mammalian bone marrow hematopoietic stem cell niche. The PSC plays a key role in regulating hematopoietic progenitor differentiation. Moreover, the PSC contributes to the cellular immune response to wasp parasitism triggered by elevated ROS levels. Two recent studies have revealed that hematopoietic progenitor maintenance is directly regulated by Col expressed in the MZ and is independent of the PSC, challenging the traditional model. In this review, we summarize the regulatory networks of PSC cell proliferation, the controversy regarding PSC-mediated regulation of hematopoietic progenitor differentiation, and the wasp egg infection response. In addition, we discuss why the PSC is an ideal model for investigating mammalian hematopoietic stem cell niches and leukemia.
Collapse
Affiliation(s)
| | | | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
30
|
Blanco-Obregon D, Katz MJ, Durrieu L, Gándara L, Wappner P. Context-specific functions of Notch in Drosophila blood cell progenitors. Dev Biol 2020; 462:101-115. [PMID: 32243888 DOI: 10.1016/j.ydbio.2020.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/10/2023]
Abstract
Drosophila Larval hematopoiesis takes place at the lymph gland, where myeloid-like progenitors differentiate into Plasmatocytes and Crystal Cells, under regulation of conserved signaling pathways. It has been established that the Notch pathway plays a specific role in Crystal Cell differentiation and maintenance. In mammalian hematopoiesis, the Notch pathway has been proposed to fulfill broader functions, including Hematopoietic Stem Cell maintenance and cell fate decision in progenitors. In this work we describe different roles that Notch plays in the lymph gland. We show that Notch, activated by its ligand Serrate, expressed at the Posterior Signaling Center, is required to restrain Core Progenitor differentiation. We define a novel population of blood cell progenitors that we name Distal Progenitors, where Notch, activated by Serrate expressed in Lineage Specifying Cells at the Medullary Zone/Cortical Zone boundary, regulates a binary decision between Plasmatocyte and Crystal Cell fates. Thus, Notch plays context-specific functions in different blood cell progenitor populations of the Drosophila lymph gland.
Collapse
Affiliation(s)
- D Blanco-Obregon
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina
| | - M J Katz
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - L Durrieu
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
| | - L Gándara
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - P Wappner
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, Buenos Aires, 1428, Argentina.
| |
Collapse
|
31
|
Cell Adhesion-Mediated Actomyosin Assembly Regulates the Activity of Cubitus Interruptus for Hematopoietic Progenitor Maintenance in Drosophila. Genetics 2019; 212:1279-1300. [PMID: 31138608 PMCID: PMC6707476 DOI: 10.1534/genetics.119.302209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
The actomyosin network is involved in crucial cellular processes including morphogenesis, cell adhesion, apoptosis, proliferation, differentiation, and collective cell migration in Drosophila, Caenorhabditiselegans, and mammals. Here, we demonstrate that Drosophila larval blood stem-like progenitors require actomyosin activity for their maintenance. Genetic loss of the actomyosin network from progenitors caused a decline in their number. Likewise, the progenitor population increased upon sustained actomyosin activation via phosphorylation by Rho-associated kinase. We show that actomyosin positively regulates larval blood progenitors by controlling the maintenance factor Cubitus interruptus (Ci). Overexpression of the maintenance signal via a constitutively activated construct (ci.HA) failed to sustain Ci-155 in the absence of actomyosin components like Zipper (zip) and Squash (sqh), thus favoring protein kinase A (PKA)-independent regulation of Ci activity. Furthermore, we demonstrate that a change in cortical actomyosin assembly mediated by DE-cadherin modulates Ci activity, thereby determining progenitor status. Thus, loss of cell adhesion and downstream actomyosin activity results in desensitization of the progenitors to Hh signaling, leading to their differentiation. Our data reveal how cell adhesion and the actomyosin network cooperate to influence patterning, morphogenesis, and maintenance of the hematopoietic stem-like progenitor pool in the developing Drosophila hematopoietic organ.
Collapse
|
32
|
Mihajlovic Z, Tanasic D, Bajgar A, Perez-Gomez R, Steffal P, Krejci A. Lime is a new protein linking immunity and metabolism in Drosophila. Dev Biol 2019; 452:83-94. [PMID: 31085193 DOI: 10.1016/j.ydbio.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
The proliferation, differentiation and function of immune cells in vertebrates, as well as in the invertebrates, is regulated by distinct signalling pathways and crosstalk with systemic and cellular metabolism. We have identified the Lime gene (Linking Immunity and Metabolism, CG18446) as one such connecting factor, linking hemocyte development with systemic metabolism in Drosophila. Lime is expressed in larval plasmatocytes and the fat body and regulates immune cell type and number by influencing the size of hemocyte progenitor populations in the lymph gland and in circulation. Lime mutant larvae exhibit low levels of glycogen and trehalose energy reserves and they develop low number of hemocytes. The low number of hemocytes in Lime mutants can be rescued by Lime overexpression in the fat body. It is well known that immune cell metabolism is tightly regulated with the progress of infection and it must be supported by systemic metabolic changes. Here we demonstrate that Lime mutants fails to induce such systemic metabolic changes essential for the larval immune response. Indeed, Lime mutants are not able to sustain high numbers of circulating hemocytes and are compromised in the number of lamellocytes produced during immune system challenge, using a parasitic wasp infection model. We therefore propose the Lime gene as a novel functional link between systemic metabolism and Drosophila immunity.
Collapse
Affiliation(s)
- Zorana Mihajlovic
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| | - Dajana Tanasic
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Adam Bajgar
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| | - Raquel Perez-Gomez
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| | - Pavel Steffal
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Alena Krejci
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| |
Collapse
|
33
|
Mahony CB, Bertrand JY. How HSCs Colonize and Expand in the Fetal Niche of the Vertebrate Embryo: An Evolutionary Perspective. Front Cell Dev Biol 2019; 7:34. [PMID: 30915333 PMCID: PMC6422921 DOI: 10.3389/fcell.2019.00034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Rare hematopoietic stem cells (HSCs) can self-renew, establish the entire blood system and represent the basis of regenerative medicine applied to hematological disorders. Clinical use of HSCs is however limited by their inefficient expansion ex vivo, creating a need to further understand HSC expansion in vivo. After embryonic HSCs are born from the hemogenic endothelium, they migrate to the embryonic/fetal niche, where the future adult HSC pool is established by considerable expansion. This takes place at different anatomical sites and is controlled by numerous signals. HSCs then migrate to their adult niche, where they are maintained throughout adulthood. Exactly how HSC expansion is controlled during embryogenesis remains to be characterized and is an important step to improve the therapeutic use of HSCs. We will review the current knowledge of HSC expansion in the different fetal niches across several model organisms and highlight possible clinical applications.
Collapse
Affiliation(s)
- Christopher B Mahony
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Julien Y Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Headcase is a Repressor of Lamellocyte Fate in Drosophila melanogaster. Genes (Basel) 2019; 10:genes10030173. [PMID: 30841641 PMCID: PMC6470581 DOI: 10.3390/genes10030173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/12/2023] Open
Abstract
Due to the evolutionary conservation of the regulation of hematopoiesis, Drosophila provides an excellent model organism to study blood cell differentiation and hematopoietic stem cell (HSC) maintenance. The larvae of Drosophila melanogaster respond to immune induction with the production of special effector blood cells, the lamellocytes, which encapsulate and subsequently kill the invader. Lamellocytes differentiate as a result of a concerted action of all three hematopoietic compartments of the larva: the lymph gland, the circulating hemocytes, and the sessile tissue. Within the lymph gland, the communication of the functional zones, the maintenance of HSC fate, and the differentiation of effector blood cells are regulated by a complex network of signaling pathways. Applying gene conversion, mutational analysis, and a candidate based genetic interaction screen, we investigated the role of Headcase (Hdc), the homolog of the tumor suppressor HECA in the hematopoiesis of Drosophila. We found that naive loss-of-function hdc mutant larvae produce lamellocytes, showing that Hdc has a repressive role in effector blood cell differentiation. We demonstrate that hdc genetically interacts with the Hedgehog and the Decapentaplegic pathways in the hematopoietic niche of the lymph gland. By adding further details to the model of blood cell fate regulation in the lymph gland of the larva, our findings contribute to the better understanding of HSC maintenance.
Collapse
|
35
|
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019; 211:367-417. [PMID: 30733377 PMCID: PMC6366919 DOI: 10.1534/genetics.118.300223] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
Collapse
Affiliation(s)
- Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
36
|
Baldeosingh R, Gao H, Wu X, Fossett N. Hedgehog signaling from the Posterior Signaling Center maintains U-shaped expression and a prohemocyte population in Drosophila. Dev Biol 2018; 441:132-145. [PMID: 29966604 PMCID: PMC6064674 DOI: 10.1016/j.ydbio.2018.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022]
Abstract
Hematopoietic progenitor choice between multipotency and differentiation is tightly regulated by intrinsic factors and extrinsic signals from the surrounding microenvironment. The Drosophila melanogaster hematopoietic lymph gland has emerged as a powerful tool to investigate mechanisms that regulate hematopoietic progenitor choice in vivo. The lymph gland contains progenitor cells, which share key characteristics with mammalian hematopoietic progenitors such as quiescence, multipotency and niche-dependence. The lymph gland is zonally arranged, with progenitors located in medullary zone, differentiating cells in the cortical zone, and the stem cell niche or Posterior Signaling Center (PSC) residing at the base of the medullary zone (MZ). This arrangement facilitates investigations into how signaling from the microenvironment controls progenitor choice. The Drosophila Friend of GATA transcriptional regulator, U-shaped, is a conserved hematopoietic regulator. To identify additional novel intrinsic and extrinsic regulators that interface with U-shaped to control hematopoiesis, we conducted an in vivo screen for factors that genetically interact with u-shaped. Smoothened, a downstream effector of Hedgehog signaling, was one of the factors identified in the screen. Here we report our studies that characterized the relationship between Smoothened and U-shaped. We showed that the PSC and Hedgehog signaling are required for U-shaped expression and that U-shaped is an important intrinsic progenitor regulator. These observations identify a potential link between the progenitor regulatory machinery and extrinsic signals from the PSC. Furthermore, we showed that both Hedgehog signaling and the PSC are required to maintain a subpopulation of progenitors. This led to a delineation of PSC-dependent versus PSC-independent progenitors and provided further evidence that the MZ progenitor population is heterogeneous. Overall, we have identified a connection between a conserved hematopoietic master regulator and a putative stem cell niche, which adds to our understanding of how signals from the microenvironment regulate progenitor multipotency.
Collapse
Affiliation(s)
- Rajkumar Baldeosingh
- Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hongjuan Gao
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaorong Wu
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nancy Fossett
- Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
37
|
Yu S, Luo F, Jin LH. The Drosophila lymph gland is an ideal model for studying hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:60-69. [PMID: 29191551 DOI: 10.1016/j.dci.2017.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/30/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
Hematopoiesis in Drosophila melanogaster occurs throughout the entire life cycle, from the embryo to adulthood. The healthy lymph gland, as a hematopoietic organ during the larval stage, can give rise to two mature types of hemocytes, plasmatocytes and crystal cells, which persist into the pupal and adult stages. Homeostasis of the lymph gland is tightly controlled by a series of conserved factors and signaling pathways, which also play key roles in mammalian hematopoiesis. Thus, revealing the hematopoietic mechanisms in Drosophila will advance our understanding of hematopoietic stem cells and their niche as well as leukemia in mammals. In addition, the lymph gland employs a battery of strategies to produce lamellocytes, another type of mature hemocyte, to fight against parasitic wasp eggs, making the lymph gland an important immunological organ. In this review, the developmental process of the lymph gland and the regulatory networks of hematopoiesis are summarized. Moreover, we outline the current knowledge and novel insight into homeostasis of the lymph gland.
Collapse
Affiliation(s)
- Shichao Yu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Fangzhou Luo
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China.
| |
Collapse
|
38
|
Tokusumi T, Tokusumi Y, Schulz RA. The mir-7 and bag of marbles genes regulate Hedgehog pathway signaling in blood cell progenitors in Drosophila larval lymph glands. Genesis 2018; 56:e23210. [PMID: 29663653 DOI: 10.1002/dvg.23210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 01/03/2023]
Abstract
Hedgehog (Hh) pathway signaling is crucial for the maintenance of blood cell progenitors in the lymph gland hematopoietic organ present in Drosophila third instar larvae. Previous studies from our lab have likewise shown the importance of the mir-7 and bag of marbles (bam) genes in maintaining the progenitor state. Thus, we sought to investigate a possible interaction between the Hh pathway and mir-7/bam in the prohemocyte population within this hematopoietic tissue. Gain of function mir-7 was able to rescue a blood cell progenitor depletion phenotype caused by Patched (Ptc) inhibition of Hh pathway signaling in these cells. Similarly, expression of a dominant/negative version of Ptc was able to rescue the severe reduction of prohemocytes due to bam loss of function. Furthermore, we demonstrated that Suppressor of fused [Su(fu)], another known inhibitor of Hh signaling, likely serves as a translational repression target of the mir-7 miRNA. Our results suggest the mir-7/bam combination regulates the Hh signaling network through repression of Su(fu) to maintain hemocyte progenitors in the larval lymph gland.
Collapse
Affiliation(s)
- Tsuyoshi Tokusumi
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Yumiko Tokusumi
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Robert A Schulz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
39
|
From Drosophila Blood Cells to Human Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:195-214. [PMID: 29951821 DOI: 10.1007/978-981-13-0529-0_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hematopoietic system plays a critical role in establishing the proper response against invading pathogens or in removing cancerous cells. Furthermore, deregulations of the hematopoietic differentiation program are at the origin of numerous diseases including leukemia. Importantly, many aspects of blood cell development have been conserved from human to Drosophila. Hence, Drosophila has emerged as a potent genetic model to study blood cell development and leukemia in vivo. In this chapter, we give a brief overview of the Drosophila hematopoietic system, and we provide a protocol for the dissection and the immunostaining of the larval lymph gland, the most studied hematopoietic organ in Drosophila. We then focus on the various paradigms that have been used in fly to investigate how conserved genes implicated in leukemogenesis control blood cell development. Specific examples of Drosophila models for leukemia are presented, with particular attention to the most translational ones. Finally, we discuss some limitations and potential improvements of Drosophila models for studying blood cell cancer.
Collapse
|
40
|
Louradour I, Sharma A, Morin-Poulard I, Letourneau M, Vincent A, Crozatier M, Vanzo N. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. eLife 2017; 6:25496. [PMID: 29091025 PMCID: PMC5681226 DOI: 10.7554/elife.25496] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem/progenitor cells in the adult mammalian bone marrow ensure blood cell renewal. Their cellular microenvironment, called 'niche', regulates hematopoiesis both under homeostatic and immune stress conditions. In the Drosophila hematopoietic organ, the lymph gland, the posterior signaling center (PSC) acts as a niche to regulate the hematopoietic response to immune stress such as wasp parasitism. This response relies on the differentiation of lamellocytes, a cryptic cell type, dedicated to pathogen encapsulation and killing. Here, we establish that Toll/NF-κB pathway activation in the PSC in response to wasp parasitism non-cell autonomously induces the lymph gland immune response. Our data further establish a regulatory network where co-activation of Toll/NF-κB and EGFR signaling by ROS levels in the PSC/niche controls lymph gland hematopoiesis under parasitism. Whether a similar regulatory network operates in mammals to control emergency hematopoiesis is an open question.
Collapse
Affiliation(s)
- Isabelle Louradour
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anurag Sharma
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ismael Morin-Poulard
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Manon Letourneau
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alain Vincent
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michèle Crozatier
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nathalie Vanzo
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
41
|
Khadilkar RJ, Vogl W, Goodwin K, Tanentzapf G. Modulation of occluding junctions alters the hematopoietic niche to trigger immune activation. eLife 2017; 6:28081. [PMID: 28841136 PMCID: PMC5597334 DOI: 10.7554/elife.28081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/24/2017] [Indexed: 12/04/2022] Open
Abstract
Stem cells are regulated by signals from their microenvironment, or niche. During Drosophila hematopoiesis, a niche regulates prohemocytes to control hemocyte production. Immune challenges activate cell-signalling to initiate the cellular and innate immune response. Specifically, certain immune challenges stimulate the niche to produce signals that induce prohemocyte differentiation. However, the mechanisms that promote prohemocyte differentiation subsequent to immune challenges are poorly understood. Here we show that bacterial infection induces the cellular immune response by modulating occluding-junctions at the hematopoietic niche. Occluding-junctions form a permeability barrier that regulates the accessibility of prohemocytes to niche derived signals. The immune response triggered by infection causes barrier breakdown, altering the prohemocyte microenvironment to induce immune cell production. Moreover, genetically induced barrier ablation provides protection against infection by activating the immune response. Our results reveal a novel role for occluding-junctions in regulating niche-hematopoietic progenitor signalling and link this mechanism to immune cell production following infection.
Collapse
Affiliation(s)
- Rohan J Khadilkar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Wayne Vogl
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Katharine Goodwin
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
42
|
Miller M, Chen A, Gobert V, Augé B, Beau M, Burlet-Schiltz O, Haenlin M, Waltzer L. Control of RUNX-induced repression of Notch signaling by MLF and its partner DnaJ-1 during Drosophila hematopoiesis. PLoS Genet 2017; 13:e1006932. [PMID: 28742844 PMCID: PMC5549762 DOI: 10.1371/journal.pgen.1006932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/08/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
A tight regulation of transcription factor activity is critical for proper development. For instance, modifications of RUNX transcription factors dosage are associated with several diseases, including hematopoietic malignancies. In Drosophila, Myeloid Leukemia Factor (MLF) has been shown to control blood cell development by stabilizing the RUNX transcription factor Lozenge (Lz). However, the mechanism of action of this conserved family of proteins involved in leukemia remains largely unknown. Here we further characterized MLF's mode of action in Drosophila blood cells using proteomic, transcriptomic and genetic approaches. Our results show that MLF and the Hsp40 co-chaperone family member DnaJ-1 interact through conserved domains and we demonstrate that both proteins bind and stabilize Lz in cell culture, suggesting that MLF and DnaJ-1 form a chaperone complex that directly regulates Lz activity. Importantly, dnaj-1 loss causes an increase in Lz+ blood cell number and size similarly as in mlf mutant larvae. Moreover we find that dnaj-1 genetically interacts with mlf to control Lz level and Lz+ blood cell development in vivo. In addition, we show that mlf and dnaj-1 loss alters Lz+ cell differentiation and that the increase in Lz+ blood cell number and size observed in these mutants is caused by an overactivation of the Notch signaling pathway. Finally, using different conditions to manipulate Lz activity, we show that high levels of Lz are required to repress Notch transcription and signaling. All together, our data indicate that the MLF/DnaJ-1-dependent increase in Lz level allows the repression of Notch expression and signaling to prevent aberrant blood cell development. Thus our findings establish a functional link between MLF and the co-chaperone DnaJ-1 to control RUNX transcription factor activity and Notch signaling during blood cell development in vivo.
Collapse
Affiliation(s)
- Marion Miller
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Aichun Chen
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vanessa Gobert
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Benoit Augé
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mathilde Beau
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marc Haenlin
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucas Waltzer
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
43
|
Wood W, Martin P. Macrophage Functions in Tissue Patterning and Disease: New Insights from the Fly. Dev Cell 2017; 40:221-233. [PMID: 28171746 PMCID: PMC5300050 DOI: 10.1016/j.devcel.2017.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/02/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022]
Abstract
Macrophages are multifunctional innate immune cells that seed all tissues within the body and play disparate roles throughout development and in adult tissues, both in health and disease. Their complex developmental origins and many of their functions are being deciphered in mammalian tissues, but opportunities for live imaging and the genetic tractability of Drosophila are offering complementary insights into how these fascinating cells integrate a multitude of guidance cues to fulfill their many tasks and migrate to distant sites to either direct developmental patterning or raise an inflammatory response.
Collapse
Affiliation(s)
- Will Wood
- Department of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | - Paul Martin
- Departments of Biochemistry and Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK; School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; Lee Kong Chiang School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
44
|
Zhang CU, Cadigan KM. The matrix protein Tiggrin regulates plasmatocyte maturation in Drosophila larva. Development 2017; 144:2415-2427. [PMID: 28526755 DOI: 10.1242/dev.149641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/11/2017] [Indexed: 01/24/2023]
Abstract
The lymph gland (LG) is a major source of hematopoiesis during Drosophila development. In this tissue, prohemocytes differentiate into multiple lineages, including macrophage-like plasmatocytes, which comprise the vast majority of mature hemocytes. Previous studies have uncovered genetic pathways that regulate prohemocyte maintenance and some cell fate choices between hemocyte lineages. However, less is known about how the plasmatocyte pool of the LG is established and matures. Here, we report that Tiggrin, a matrix protein expressed in the LG, is a specific regulator of plasmatocyte maturation. Tiggrin mutants exhibit precocious maturation of plasmatocytes, whereas Tiggrin overexpression blocks this process, resulting in a buildup of intermediate progenitors (IPs) expressing prohemocyte and hemocyte markers. These IPs likely represent a transitory state in prohemocyte to plasmatocyte differentiation. We also found that overexpression of Wee1 kinase, which slows G2/M progression, results in a phenotype similar to Tiggrin overexpression, whereas String/Cdc25 expression phenocopies Tiggrin mutants. Further analysis revealed that Wee1 inhibits plasmatocyte maturation through upregulation of Tiggrin transcription. Our results elucidate connections between the extracellular matrix and cell cycle regulators in the regulation of hematopoiesis.
Collapse
Affiliation(s)
- Chen U Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ken M Cadigan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
45
|
Ferguson GB, Martinez-Agosto JA. The TEAD family transcription factor Scalloped regulates blood progenitor maintenance and proliferation in Drosophila through PDGF/VEGFR receptor (Pvr) signaling. Dev Biol 2017; 425:21-32. [DOI: 10.1016/j.ydbio.2017.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 11/08/2016] [Accepted: 03/13/2017] [Indexed: 11/29/2022]
|
46
|
Hao Y, Jin LH. Dual role for Jumu in the control of hematopoietic progenitors in the Drosophila lymph gland. eLife 2017; 6. [PMID: 28350299 PMCID: PMC5391210 DOI: 10.7554/elife.25094] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022] Open
Abstract
The Drosophila lymph gland is a hematopoietic organ in which the maintenance of hematopoietic progenitor cell fate relies on intrinsic factors and extensive interaction with cells within a microenvironment. The posterior signaling center (PSC) is required for maintaining the balance between progenitors and their differentiation into mature hemocytes. Moreover, some factors from the progenitors cell-autonomously control blood cell differentiation. Here, we show that Jumeau (Jumu), a member of the forkhead (Fkh) transcription factor family, controls hemocyte differentiation of lymph gland through multiple regulatory mechanisms. Jumu maintains the proper differentiation of prohemocytes by cell-autonomously regulating the expression of Col in medullary zone and by non-cell-autonomously preventing the generation of expanded PSC cells. Jumu can also cell-autonomously control the proliferation of PSC cells through positive regulation of dMyc expression. We also show that a deficiency of jumu throughout the lymph gland can induce the differentiation of lamellocytes via activating Toll signaling.
Collapse
Affiliation(s)
- Yangguang Hao
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
47
|
Screening and Analysis of Janelia FlyLight Project Enhancer-Gal4 Strains Identifies Multiple Gene Enhancers Active During Hematopoiesis in Normal and Wasp-Challenged Drosophila Larvae. G3-GENES GENOMES GENETICS 2017; 7:437-448. [PMID: 27913635 PMCID: PMC5295592 DOI: 10.1534/g3.116.034439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A GFP expression screen has been conducted on >1000 Janelia FlyLight Project enhancer-Gal4 lines to identify transcriptional enhancers active in the larval hematopoietic system. A total of 190 enhancers associated with 87 distinct genes showed activity in cells of the third instar larval lymph gland and hemolymph. That is, gene enhancers were active in cells of the lymph gland posterior signaling center (PSC), medullary zone (MZ), and/or cortical zone (CZ), while certain of the transcriptional control regions were active in circulating hemocytes. Phenotypic analyses were undertaken on 81 of these hematopoietic-expressed genes, with nine genes characterized in detail as to gain- and loss-of-function phenotypes in larval hematopoietic tissues and blood cells. These studies demonstrated the functional requirement of the cut gene for proper PSC niche formation, the hairy, Btk29A, and E2F1 genes for blood cell progenitor production in the MZ domain, and the longitudinals lacking, dFOXO, kayak, cap-n-collar, and delilah genes for lamellocyte induction and/or differentiation in response to parasitic wasp challenge and infestation of larvae. Together, these findings contribute substantial information to our knowledge of genes expressed during the larval stage of Drosophila hematopoiesis and newly identify multiple genes required for this developmental process.
Collapse
|
48
|
El Chamy L, Matt N, Reichhart JM. Advances in Myeloid-Like Cell Origins and Functions in the Model Organism Drosophila melanogaster. Microbiol Spectr 2017; 5:10.1128/microbiolspec.mchd-0038-2016. [PMID: 28102122 PMCID: PMC11687447 DOI: 10.1128/microbiolspec.mchd-0038-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
Drosophila has long served as a valuable model for deciphering many biological processes, including immune responses. Indeed, the genetic tractability of this organism is particularly suited for large-scale analyses. Studies performed during the last 3 decades have proven that the signaling pathways that regulate the innate immune response are conserved between Drosophila and mammals. This review summarizes the recent advances on Drosophila hematopoiesis and immune cellular responses, with a particular emphasis on phagocytosis.
Collapse
Affiliation(s)
- Laure El Chamy
- Laboratoire de Génétique de la drosophile et virulence microbienne, UR. EGFEM, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 17-5208 Mar Mikhaël Beyrouth 1104 2020, Liban
| | - Nicolas Matt
- Université de Strasbourg, UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex 67084, France
| | - Jean-Marc Reichhart
- Université de Strasbourg, UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg Cedex 67084, France
| |
Collapse
|
49
|
Reimels TA, Pfleger CM. Methods to Examine the Lymph Gland and Hemocytes in Drosophila Larvae. J Vis Exp 2016. [PMID: 27929462 DOI: 10.3791/54544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Many parallels exist between the Drosophila and mammalian hematopoietic systems, even though Drosophila lack the lymphoid lineage that characterize mammalian adaptive immunity. Drosophila and mammalian hematopoiesis occur in spatially and temporally distinct phases to produce several blood cell lineages. Both systems maintain reservoirs of blood cell progenitors with which to expand or replace mature lineages. The hematopoietic system allows Drosophila and mammals to respond to and to adapt to immune challenges. Importantly, the transcriptional regulators and signaling pathways that control the generation, maintenance, and function of the hematopoietic system are conserved from flies to mammals. These similarities allow Drosophila to be used to genetically model hematopoietic development and disease. Here we detail assays to examine the hematopoietic system of Drosophila larvae. In particular, we outline methods to measure blood cell numbers and concentration, visualize a specific mature lineage in vivo, and perform immunohistochemistry on blood cells in circulation and in the hematopoietic organ. These assays can reveal changes in gene expression and cellular processes including signaling, survival, proliferation, and differentiation and can be used to investigate a variety of questions concerning hematopoiesis. Combined with the genetic tools available in Drosophila, these assays can be used to evaluate the hematopoietic system upon defined genetic alterations. While not specifically outlined here, these assays can also be used to examine the effect of environmental alterations, such as infection or diet, on the hematopoietic system.
Collapse
Affiliation(s)
- Theresa A Reimels
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai; Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai
| | - Cathie M Pfleger
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai; Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai;
| |
Collapse
|
50
|
Baril C, Gavory G, Bidla G, Knævelsrud H, Sauvageau G, Therrien M. Human NUP98-HOXA9 promotes hyperplastic growth of hematopoietic tissues in Drosophila. Dev Biol 2016; 421:16-26. [PMID: 27838340 DOI: 10.1016/j.ydbio.2016.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) is a complex malignancy with poor prognosis. Several genetic lesions can lead to the disease. One of these corresponds to the NUP98-HOXA9 (NA9) translocation that fuses sequences encoding the N-terminal part of NUP98 to those encoding the DNA-binding domain of HOXA9. Despite several studies, the mechanism underlying NA9 ability to induce leukemia is still unclear. To bridge this gap, we sought to functionally dissect NA9 activity using Drosophila. For this, we generated transgenic NA9 fly lines and expressed the oncoprotein during larval hematopoiesis. This markedly enhanced cell proliferation and tissue growth, but did not alter cell fate specification. Moreover, reminiscent to NA9 activity in mammals, strong cooperation was observed between NA9 and the MEIS homolog HTH. Genetic characterization of NA9-induced phenotypes suggested interference with PVR (Flt1-4 RTK homolog) signaling, which is similar to functional interactions observed in mammals between Flt3 and HOXA9 in leukemia. Finally, NA9 expression was also found to induce non-cell autonomous effects, raising the possibility that its leukemia-inducing activity also relies on this property. Together, our work suggests that NA9 ability to induce blood cell expansion is evolutionarily conserved. The amenability of NA9 activity to a genetically-tractable system should facilitate unraveling its molecular underpinnings.
Collapse
Affiliation(s)
- Caroline Baril
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Gwenaëlle Gavory
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Gawa Bidla
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Helene Knævelsrud
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7; Département de médecine, Université de Montréal, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7; Département de pathologie et de biologie cellulaire, Université de Montréal, Canada.
| |
Collapse
|