1
|
Gui T, Liu Y, Fu M, Wu H, Su P, Feng X, Zheng M, Huang Z, Luo X, Boron WF, Chen LM. Redox state of NAD modulates the activation of Na-bicarbonate cotransporter NBCe1-B via IRBIT and L-IRBIT. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1452-1462. [PMID: 39985648 PMCID: PMC12097937 DOI: 10.1007/s11427-024-2750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/29/2024] [Indexed: 02/24/2025]
Abstract
Nicotinamide adenine dinucleotide (NAD) is well known as a coenzyme involved in many redox reactions in cellular energy metabolism, or as a substrate for many NAD+-consuming enzymes, including those that generate the second messenger cyclic ADP-ribose or deacetylate proteins (e.g., histones). The role of NAD in non-catalytic proteins is poorly understood. IRBIT and L-IRBIT (the IRBITs) are two cytosolic proteins that are structurally related to dehydrogenases but lack catalytic activity. Instead, by interacting directly with their targets, the IRBITs modulate the function of numerous proteins with important roles, ranging from Ca2+ signaling and intracellular pH (pHi) regulation to DNA metabolism to autophagy. Among the targets of the IRBITs is the Na+-HCO3- cotransporter NBCe1-B, which plays a central role in intracellular pH (pHi) regulation and epithelial electrolyte transport. Here, we demonstrate that NAD modulates NBCe1-B activation by serving as a cofactor of IRBIT or L-IRBIT. Blocking NAD salvage pathway greatly decreases NBCe1-B activation by the IRBITs. Administration of the oxidized form NAD+ enhances, whereas the reduced form NADH decreases NBCe1-B activity. Our study represents the first example in which the redox state of NAD, via IRBIT or L-IRBIT, modulates the function of a membrane transport protein. Our findings reveal a new role of NAD and greatly expand our understanding of NAD biology. Because the NAD redox state fluctuates greatly with metabolic status, our work provides insight into how, via the IRBITs, energy metabolism could affect pHi regulation and many other IRBIT-dependent processes.
Collapse
Affiliation(s)
- Tianxiang Gui
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China.
| | - Mingfeng Fu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xuhui Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Mengmeng Zheng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Zixuan Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xudong Luo
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China.
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, 518063, China.
| |
Collapse
|
2
|
Di Mattía RA, Gallo D, Ciarrocchi S, Gonano LA, Blanco PG, Valverde CA, Portiansky EL, Sommese LM, Toischer K, Bleckwedel F, Zelarayán LC, Aiello EA, Orlowski A. Cardiac hypertrophy induced by overexpression of IP3-released inositol 1, 4, 5-trisphosphate receptor-binding protein (IRBIT). J Mol Cell Cardiol 2025; 201:1-15. [PMID: 39929439 DOI: 10.1016/j.yjmcc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION IRBIT, also known as Ahcyl1, is an IP3 receptor (IP3R)-binding protein released with IP3 and was first described as a competitive inhibitor of the mentioned receptor. Studies have shown that overexpression of IP3Rs is associated with cardiac hypertrophy in both human and animal models. Given that IP3Rs play a role in cardiac hypertrophy, IRBIT may also be involved in this condition. AIM Although IRBIT heart expression has been reported, its function in cardiac tissues remains unclear. Thus, we aimed to study the cardiac outcomes of up-and downregulation of IRBIT to establish its pathophysiological role. METHODS AND RESULTS We found that IRBIT is expressed in mouse ventricles and atria, fibroblasts and cardiomyocytes isolated from neonatal mice, and in the myoblast cell line H9c2. Mice with transverse aortic constriction showed a significant increase in both the mRNA and protein expression of IRBIT. Furthermore, we described the differential expression of IRBIT in human myocardial samples of dilated and ischemic cardiomyopathy. IRBIT cardiac overexpression in mice using an adenoassociated virus (AAV9) at two different time points (neonatal mice, day 4 and adult mice, 3 months) resulted in the development of cardiac hypertrophy with impaired systolic function by four months of age. A decrease in the mRNA levels of the IP3 receptor was also observed in both models. Isolated myocytes from the IRBIT-overexpressing neonatal model showed a significantly decreased Ca2+ transient amplitude and slower rise of the global Ca2+ transient, without changes in sarcoplasmic reticulum (SR) Ca2+ content or spontaneous Ca2+ wave frequency. However, the velocity of Ca2+ wave propagation was reduced. Moreover, we found that the dyssynchrony index (DI) is significantly increased under IRBIT overexpression. Nuclear Ca2+ dynamics were assessed, showing no significant changes, but IRBIT overexpression reduced the number of nuclear envelope invaginations. In addition, reducing IRBIT expression using AAV9-shRNA did not result in any changes in the heart morphometric parameters. CONCLUSION Our study describes for the first time that IRBIT plays a critical role in the pathophysiology of the heart. Our findings demonstrate that IRBIT overexpression disrupts Ca2+ signaling, contributing to hypertrophic remodeling and impaired cardiac function. The altered wave propagation, the increase in DI and the decrease of the rate of the Ca2+ transient suggests that IRBIT influences Ca2+ - induced Ca2+ release. This study provides the first evidence linking IRBIT to pathological cardiac remodeling and Ca2+ handling dysregulation. Although significant progress has been made, further research is required to better understand the cardiovascular function of IRBIT and its mechanisms.
Collapse
Affiliation(s)
- R A Di Mattía
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - D Gallo
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - S Ciarrocchi
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - L A Gonano
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - P G Blanco
- Centro de Fisiología Reproductiva & Métodos Complementarios de Diagnóstico (CEFIRE & MECODIAG), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - C A Valverde
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - E L Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - L M Sommese
- Departamento de Ciencia y Tecnología, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - K Toischer
- German Center for Cardiovascular Research (DZHK) Partner Site, 37075 Goettingen, Germany; Clinic for Cardiology and Pneumology, University Medical Center, Göttingen, Germany
| | - F Bleckwedel
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen (UMG), 37075 Goettingen, Germany; German Center for Cardiovascular Research (DZHK) Partner Site, 37075 Goettingen, Germany
| | - L C Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen (UMG), 37075 Goettingen, Germany; German Center for Cardiovascular Research (DZHK) Partner Site, 37075 Goettingen, Germany; Justus Liebig University, Medical Clinic I, Department of Cardiology and Angiology, Klinikstraße 33, 35392 Giessen, Germany
| | - E A Aiello
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - A Orlowski
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina.
| |
Collapse
|
3
|
Kawaai K, Oishi Y, Kuroda Y, Tamura R, Toda M, Matsuo K. Chordoma cells possess bone-dissolving activity at the bone invasion front. Cell Oncol (Dordr) 2024; 47:1663-1677. [PMID: 38652222 PMCID: PMC11466907 DOI: 10.1007/s13402-024-00946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Chordomas are malignant tumors that destroy bones, compress surrounding nerve tissues and exhibit phenotypes that recapitulate notochordal differentiation in the axial skeleton. Chordomas recur frequently, as they resist radio-chemotherapy and are difficult to completely resect, leading to repeated bone destruction and local expansion via unknown mechanisms. Here, using chordoma specimens and JHC7 chordoma cells, we asked whether chordoma cells possess bone-dissolving activity. METHODS CT imaging and histological analysis were performed to evaluate the structure and mineral density of chordoma-invaded bone and osteolytic marker expression. JHC7 cells were subjected to immunocytochemistry, imaging of cell fusion, calcium dynamics and acidic vacuoles, and bone lysis assays. RESULTS In patients, we found that the skull base invaded by chordoma was highly porous, showed low mineral density and contained brachyury-positive chordoma cells and conventional osteoclasts both expressing the osteolytic markers tartrate-resistant acid phosphatase (TRAP) and collagenases. JHC7 cells expressed TRAP and cathepsin K, became multinucleated via cell-cell fusion, showed spontaneous calcium oscillation, and were partly responsive to the osteoclastogenic cytokine RANKL. JHC7 cells exhibited large acidic vacuoles, and nonregulatory bone degradation without forming actin rings. Finally, bone-derived factors, calcium ions, TGF-β1, and IGF-1 enhanced JHC7 cell proliferation. CONCLUSION In chordoma, we propose that in addition to conventional bone resorption by osteoclasts, chordoma cells possess bone-dissolving activity at the tumor-bone boundary. Furthermore, bone destruction and tumor expansion may occur in a positive feedback loop.
Collapse
Affiliation(s)
- Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Yumiko Oishi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Yukiko Kuroda
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Koichi Matsuo
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan.
| |
Collapse
|
4
|
Kim HJ, Hong JH. Multiple Regulatory Signals and Components in the Modulation of Bicarbonate Transporters. Pharmaceutics 2024; 16:78. [PMID: 38258089 PMCID: PMC10820580 DOI: 10.3390/pharmaceutics16010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Bicarbonate transporters are responsible for the appropriate flux of bicarbonate across the plasma membrane to perform various fundamental cellular functions. The functions of bicarbonate transporters, including pH regulation, cell migration, and inflammation, are highlighted in various cellular systems, encompassing their participation in both physiological and pathological processes. In this review, we focused on recently identified modulatory signaling components that regulate the expression and activity of bicarbonate transporters. Moreover, we addressed recent advances in our understanding of cooperative systems of bicarbonate transporters and channelopathies. This current review aims to provide a new, in-depth understanding of numerous human diseases associated with the dysfunction of bicarbonate transporters.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
5
|
Han Y, Bagchi P, Yun CC. Regulation of the intestinal Na +/H + exchanger NHE3 by AMP-activated kinase is dependent on phosphorylation of NHE3 at S555 and S563. Am J Physiol Cell Physiol 2024; 326:C50-C59. [PMID: 38047302 PMCID: PMC11192475 DOI: 10.1152/ajpcell.00540.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023]
Abstract
Electroneutral NaCl transport by Na+/H+ exchanger 3 (NHE3, SLC9A3) is the major Na+ absorptive mechanism in the intestine and decreased NHE3 activity contributes to diarrhea. Patients with diabetes often experience gastrointestinal adverse effects and medications are often a culprit for chronic diarrhea in type 2 diabetes (T2D). We have shown previously that metformin, the most widely prescribed drug for the treatment of T2D, induces diarrhea by inhibition of Na+/H+ exchanger 3 (NHE3) in rodent models of T2D. Metformin was shown to activate AMP-activated protein kinase (AMPK), but AMPK-independent glycemic effects of metformin are also known. The current study is undertaken to determine whether metformin inhibits NHE3 by activation of AMPK and the mechanism by which NHE3 is inhibited by AMPK. Inhibition of NHE3 by metformin was abolished by knockdown of AMPK-α1 or AMPK-α2. AMPK activation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) phosphorylated NHE3 at S555. S555 is the primary site of phosphorylation by protein kinase A (PKA), but AMPK phosphorylated S555 independently of PKA. Using Mass spectrometry, we found S563 as a newly recognized phosphorylation site in NHE3. Altering either S555 or S563 to Ala was sufficient to block the inhibition of NHE3 activity by AMPK. NHE3 inhibition is dependent on ubiquitination by the E3 ubiquitin ligase Nedd4-2 and metformin was shown to induce NHE3 internalization via Nedd4-2-mediated ubiquitination. AICAR did not increase NHE3 ubiquitination when S555 or S563 was mutated. We conclude that AMPK activation inhibits NHE3 activity and NHE3 inhibition is associated with phosphorylation of NHE3 at S555 and S563.NEW & NOTEWORTHY We show that AMP-activated protein kinase (AMPK) phosphorylates NHE3 at S555 and S563 to inhibit NHE3 activity in intestinal epithelial cells. Phosphorylation of NHE3 by AMPK is necessary for ubiquitination of NHE3.
Collapse
Affiliation(s)
- Yiran Han
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, Georgia, United States
| | - C Chris Yun
- Gastroenterology Research, Atlanta Veterans Administration Medical Center, Decatur, Georgia, United States
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
6
|
Cai L, Wang D, Gui T, Wang X, Zhao L, Boron WF, Chen LM, Liu Y. Dietary sodium enhances the expression of SLC4 family transporters, IRBIT, L-IRBIT, and PP1 in rat kidney: Insights into the molecular mechanism for renal sodium handling. Front Physiol 2023; 14:1154694. [PMID: 37082243 PMCID: PMC10111226 DOI: 10.3389/fphys.2023.1154694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
The kidney plays a central role in maintaining the fluid and electrolyte homeostasis in the body. Bicarbonate transporters NBCn1, NBCn2, and AE2 are expressed at the basolateral membrane of the medullary thick ascending limb (mTAL). In a previous study, NBCn1, NBCn2, and AE2 are proposed to play as a regulatory pathway to decrease NaCl reabsorption in the mTAL under high salt condition. When heterologously expressed, the activity of these transporters could be stimulated by the InsP3R binding protein released with inositol 1,4,5-trisphosphate (IRBIT), L-IRBIT (collectively the IRBITs), or protein phosphatase PP1. In the present study, we characterized by immunofluorescence the expression and localization of the IRBITs, and PP1 in rat kidney. Our data showed that the IRBITs were predominantly expressed from the mTAL through the distal renal tubules. PP1 was predominantly expressed in the TAL, but is also present in high abundance from the distal convoluted tubule through the medullary collecting duct. Western blotting analyses showed that the abundances of NBCn1, NBCn2, and AE2 as well as the IRBITs and PP1 were greatly upregulated in rat kidney by dietary sodium. Co-immunoprecipitation study provided the evidence for protein interaction between NBCn1 and L-IRBIT in rat kidney. Taken together, our data suggest that the IRBITs and PP1 play an important role in sodium handling in the kidney. We propose that the IRBITs and PP1 stimulates NBCn1, NBCn2, and AE2 in the basolateral mTAL to inhibit sodium reabsorption under high sodium condition. Our study provides important insights into understanding the molecular mechanism for the regulation of sodium homeostasis in the body.
Collapse
Affiliation(s)
- Lu Cai
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dengke Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Tianxiang Gui
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingyu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Li-Ming Chen, ; Ying Liu,
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Li-Ming Chen, ; Ying Liu,
| |
Collapse
|
7
|
A History of the Origin and Development of Japanese Society for Neurochemistry: International Cooperation to Overcome Dementia and Mental Illness. Neurochem Res 2022; 47:2446-2453. [DOI: 10.1007/s11064-022-03705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 10/15/2022]
|
8
|
Brown-Leung JM, Cannon JR. Neurotransmission Targets of Per- and Polyfluoroalkyl Substance Neurotoxicity: Mechanisms and Potential Implications for Adverse Neurological Outcomes. Chem Res Toxicol 2022; 35:1312-1333. [PMID: 35921496 PMCID: PMC10446502 DOI: 10.1021/acs.chemrestox.2c00072] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of persistent environmental pollutants that are ubiquitously found in the environment and virtually in all living organisms, including humans. PFAS cross the blood-brain barrier and accumulate in the brain. Thus, PFAS are a likely risk for neurotoxicity. Studies that measured PFAS levels in the brains of humans, polar bears, and rats have demonstrated that some areas of the brain accumulate greater amounts of PFAS. Moreover, in humans, there is evidence that PFAS exposure is associated with attention-deficit/hyperactivity disorder (ADHD) in children and an increased cause of death from Parkinson's disease and Alzheimer's disease in elderly populations. Given possible links to neurological disease, critical analyses of possible mechanisms of neurotoxic action are necessary to advance the field. This paper critically reviews studies that investigated potential mechanistic causes for neurotoxicity including (1) a change in neurotransmitter levels, (2) dysfunction of synaptic calcium homeostasis, and (3) alteration of synaptic and neuronal protein expression and function. We found growing evidence that PFAS exposure causes neurotoxicity through the disruption of neurotransmission, particularly the dopamine and glutamate systems, which are implicated in age-related psychiatric illnesses and neurodegenerative diseases. Evaluated research has shown there are highly reproduced increased glutamate levels in the hippocampus and catecholamine levels in the hypothalamus and decreased dopamine in the whole brain after PFAS exposure. There are significant gaps in the literature relative to the assessment of the nigrostriatal system (striatum and ventral midbrain) among other regions associated with PFAS-associated neurologic dysfunction observed in humans. In conclusion, evidence suggests that PFAS may be neurotoxic and associated with chronic and age-related psychiatric illnesses and neurodegenerative diseases. Thus, it is imperative that future mechanistic studies assess the impact of PFAS and PFAS mixtures on the mechanism of neurotransmission and the consequential functional effects.
Collapse
Affiliation(s)
- Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Goto JI, Fujii S, Fujiwara H, Mikoshiba K, Yamazaki Y. Synaptic plasticity in hippocampal CA1 neurons of mice lacking inositol-1,4,5-trisphosphate receptor-binding protein released with IP 3 (IRBIT). Learn Mem 2022; 29:110-119. [PMID: 35351819 PMCID: PMC8973391 DOI: 10.1101/lm.053542.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/02/2022] [Indexed: 01/02/2023]
Abstract
In hippocampal CA1 neurons of wild-type mice, a short tetanus (15 or 20 pulses at 100 Hz) or a standard tetanus (100 pulses at 100 Hz) to a naive input pathway induces long-term potentiation (LTP) of the responses. Low-frequency stimulation (LFS; 1000 pulses at 1 Hz) 60 min after the standard tetanus reverses LTP (depotentiation [DP]), while LFS applied 60 min prior to the standard tetanus suppresses LTP induction (LTP suppression). We investigated LTP, DP, and LTP suppression of both field excitatory postsynaptic potentials and population spikes in CA1 neurons of mice lacking the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R)-binding protein released with IP3 (IRBIT). The mean magnitudes of LTP induced by short and standard tetanus were not different in mutant and wild-type mice. In contrast, DP and LTP suppression were attenuated in mutant mice, whereby the mean magnitude of responses after LFS or tetanus were significantly greater than in wild-type mice. These results suggest that, in hippocampal CA1 neurons, IRBIT is involved in DP and LTP suppression, but is not essential for LTP. The attenuation of DP and LTP suppression in mice lacking IRBIT indicates that this protein, released during or after priming stimulations, determines the direction of LTP expression after the delivery of subsequent stimulations.
Collapse
Affiliation(s)
- Jun-Ichi Goto
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Satoshi Fujii
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Hiroki Fujiwara
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Center for Brain Science, Riken, Wako, Saitama 351-0198, Japan
| | - Yoshihiko Yamazaki
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
10
|
Calmodulin and Its Binding Proteins in Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22063016. [PMID: 33809535 PMCID: PMC8001340 DOI: 10.3390/ijms22063016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that manifests with rest tremor, muscle rigidity and movement disturbances. At the microscopic level it is characterized by formation of specific intraneuronal inclusions, called Lewy bodies (LBs), and by a progressive loss of dopaminergic neurons in the striatum and substantia nigra. All living cells, among them neurons, rely on Ca2+ as a universal carrier of extracellular and intracellular signals that can initiate and control various cellular processes. Disturbances in Ca2+ homeostasis and dysfunction of Ca2+ signaling pathways may have serious consequences on cells and even result in cell death. Dopaminergic neurons are particularly sensitive to any changes in intracellular Ca2+ level. The best known and studied Ca2+ sensor in eukaryotic cells is calmodulin. Calmodulin binds Ca2+ with high affinity and regulates the activity of a plethora of proteins. In the brain, calmodulin and its binding proteins play a crucial role in regulation of the activity of synaptic proteins and in the maintenance of neuronal plasticity. Thus, any changes in activity of these proteins might be linked to the development and progression of neurodegenerative disorders including PD. This review aims to summarize published results regarding the role of calmodulin and its binding proteins in pathology and pathogenesis of PD.
Collapse
|
11
|
Itoh R, Hatano N, Murakami M, Mitsumori K, Kawasaki S, Wakagi T, Kanzaki Y, Kojima H, Kawaai K, Mikoshiba K, Hamada K, Mizutani A. Both IRBIT and long-IRBIT bind to and coordinately regulate Cl -/HCO 3- exchanger AE2 activity through modulating the lysosomal degradation of AE2. Sci Rep 2021; 11:5990. [PMID: 33727633 PMCID: PMC7966362 DOI: 10.1038/s41598-021-85499-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/02/2021] [Indexed: 02/04/2023] Open
Abstract
Anion exchanger 2 (AE2) plays crucial roles in regulating cell volume homeostasis and cell migration. We found that both IRBIT and Long-IRBIT (L-IRBIT) interact with anion exchanger 2 (AE2). The interaction occurred between the conserved AHCY-homologous domain of IRBIT/L-IRBIT and the N-terminal cytoplasmic region of AE2. Interestingly, AE2 activity was reduced in L-IRBIT KO cells, but not in IRBIT KO cells. Moreover, AE2 activity was slightly increased in IRBIT/L-IRBIT double KO cells. These changes in AE2 activity resulted from changes in the AE2 expression level of each mutant cell, and affected the regulatory volume increase and cell migration. The activity and expression level of AE2 in IRBIT/L-IRBIT double KO cells were downregulated if IRBIT, but not L-IRBIT, was expressed again in the cells, and the downregulation was cancelled by the co-expression of L-IRBIT. The mRNA levels of AE2 in each KO cell did not change, and the downregulation of AE2 in L-IRBIT KO cells was inhibited by bafilomycin A1. These results indicate that IRBIT binding facilitates the lysosomal degradation of AE2, which is inhibited by coexisting L-IRBIT, suggesting a novel regulatory mode of AE2 activity through the binding of two homologous proteins with opposing functions.
Collapse
Affiliation(s)
- Ryo Itoh
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Naoya Hatano
- Division of Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Momoko Murakami
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Kosuke Mitsumori
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Satoko Kawasaki
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Tomoka Wakagi
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Yoshino Kanzaki
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hiroyuki Kojima
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Katsuhiro Kawaai
- Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Katsuhiko Mikoshiba
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Koichi Hamada
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Akihiro Mizutani
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
12
|
Gambardella J, Morelli MB, Wang X, Castellanos V, Mone P, Santulli G. The discovery and development of IP3 receptor modulators: an update. Expert Opin Drug Discov 2021; 16:709-718. [PMID: 33356639 DOI: 10.1080/17460441.2021.1858792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Introduction: Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular calcium (Ca2+) release channels located on the endoplasmic/sarcoplasmic reticulum. The availability of the structure of the ligand-binding domain of IP3Rs has enabled the design of compatible ligands, but the limiting step remains their actual effectiveness in a biological context.Areas covered: This article summarizes the compelling literature on both agonists and antagonists targeting IP3Rs, emphasizing their strengths and limitations. The main challenges toward the discovery and development of IP3 receptor modulators are also described.Expert opinion: Despite significant progress in recent years, the pharmacology of IP3R still has major drawbacks, especially concerning the availability of specific antag onists. Moreover, drugs specifically targeting the three different subtypes of IP3R are especially needed.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA.,Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.,International Translational Research and Medical Education (ITME), Naples, Italy
| | - Marco B Morelli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA
| | - Xujun Wang
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA
| | - Vanessa Castellanos
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA
| | - Pasquale Mone
- University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, Montefiore University Hospital, New York City, USA.,Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Einstein-Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, USA.,Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy.,International Translational Research and Medical Education (ITME), Naples, Italy
| |
Collapse
|
13
|
Su P, Wu H, Wang M, Cai L, Liu Y, Chen LM. IRBIT activates NBCe1-B by releasing the auto-inhibition module from the transmembrane domain. J Physiol 2020; 599:1151-1172. [PMID: 33237573 PMCID: PMC7898672 DOI: 10.1113/jp280578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Key points The electrogenic Na+/HCO3−cotransporter NBCe1‐B is widely expressed in many tissues, including pancreas, submandibular gland, brain, heart, etc. NBCe1‐B has very low activity under basal condition due to auto‐inhibition, but can be fully activated by protein interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). The structural components of the auto‐inhibition domain and the IRBIT‐binding domain of NBCe1‐B are finely characterized based on systematic mutations in the present study and data from previous studies. Reducing negative charges on the cytosol side of the transmembrane domain greatly decreases the magnitude of the auto‐inhibition of NBCe1‐B. We propose that the auto‐inhibition domain functions as a brake module that inactivates NBCe1‐B by binding to, via electrostatic attraction, the transmembrane domain; IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain via competitive binding to the auto‐inhibition domain.
Abstract The electrogenic Na+/HCO3− cotransporter NBCe1‐B is widely expressed in many tissues in the body. NBCe1‐B exhibits only basal activity due to the action of the auto‐inhibition domain (AID) in its unique amino‐terminus. However, NBCe1‐B can be activated by interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). Here, we investigate the molecular mechanism underlying the auto‐inhibition of NBCe1‐B and its activation by IRBIT. The IRBIT‐binding domain (IBD) of NBCe1‐B spans residues 1−52, essentially consisting of two arms, one negatively charged (residues 1−24) and the other positively charged (residues 40−52). The AID mainly spans residues 40−85, overlapping with the IBD in the positively charged arm. The magnitude of auto‐inhibition of NBCe1‐B is greatly decreased by manipulating the positively charged residues in the AID or by replacing a set of negatively charged residues with neutral ones in the transmembrane domain. The interaction between IRBIT and NBCe1‐B is abolished by mutating a set of negatively charged Asp/Glu residues (to Asn/Gln) plus a set of Ser/Thr residues (to Ala) in the PEST domain of IRBIT. However, this interaction is not affected by replacing the same set of Ser/Thr residues in the PEST domain with Asp. We propose that: (1) the AID, acting as a brake, binds to the transmembrane domain via electrostatic interaction to slow down NBCe1‐B; (2) IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain. The electrogenic Na+/HCO3−cotransporter NBCe1‐B is widely expressed in many tissues, including pancreas, submandibular gland, brain, heart, etc. NBCe1‐B has very low activity under basal condition due to auto‐inhibition, but can be fully activated by protein interaction with the IP3R‐binding protein released with inositol 1,4,5‐trisphosphate (IRBIT). The structural components of the auto‐inhibition domain and the IRBIT‐binding domain of NBCe1‐B are finely characterized based on systematic mutations in the present study and data from previous studies. Reducing negative charges on the cytosol side of the transmembrane domain greatly decreases the magnitude of the auto‐inhibition of NBCe1‐B. We propose that the auto‐inhibition domain functions as a brake module that inactivates NBCe1‐B by binding to, via electrostatic attraction, the transmembrane domain; IRBIT activates NBCe1‐B by releasing the brake from the transmembrane domain via competitive binding to the auto‐inhibition domain.
Collapse
Affiliation(s)
- Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Meng Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Lu Cai
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Hwang S, Shin DM, Hong JH. Protective Role of IRBIT on Sodium Bicarbonate Cotransporter-n1 for Migratory Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12090816. [PMID: 32867284 PMCID: PMC7558343 DOI: 10.3390/pharmaceutics12090816] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
IP3 receptor-binding protein released with IP3 (IRBIT) interacts with various ion channels and transporters. An electroneutral type of sodium bicarbonate cotransporter, NBCn1, participates in cell migration, and its enhanced expression is related to cancer metastasis. The effect of IRBIT on NBCn1 and its relation to cancer cell migration remain obscure. We therefore aimed to determine the effect of IRBIT on NBCn1 and the regulation of cancer cell migration due to IRBIT-induced alterations in NBCn1 activity. Overexpression of IRBIT enhanced cancer cell migration and NBC activity. Knockdown of IRBIT or NBCn1 and treatment with an NBC-specific inhibitor, S0859, attenuated cell migration. Stimulation with oncogenic epidermal growth factor enhanced the expression of NBCn1 and migration of cancer cells by recruiting IRBIT. The recruited IRBIT stably maintained the expression of the NBCn1 transporter machinery in the plasma membrane. Combined inhibition of IRBIT and NBCn1 dramatically inhibited the migration of cancer cells. Combined modulation of IRBIT and NBCn1 offers an effective strategy for attenuating cancer metastasis.
Collapse
Affiliation(s)
- Soyoung Hwang
- Department of Physiology, College of Medicine, Department of Health Sciences and Technology, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Korea;
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: (D.M.S.); (J.H.H.); Tel.: +82-22-228-3051 (D.M.S.); +82-32-899-6682 (J.H.H.); Fax: +82-23-64-1085 (D.M.S.); +82-32-899-6039 (J.H.H.)
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Department of Health Sciences and Technology, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Korea;
- Correspondence: (D.M.S.); (J.H.H.); Tel.: +82-22-228-3051 (D.M.S.); +82-32-899-6682 (J.H.H.); Fax: +82-23-64-1085 (D.M.S.); +82-32-899-6039 (J.H.H.)
| |
Collapse
|
15
|
M3, a 1,4-Dihydropyridine Derivative and Mixed L-/T-Type Calcium Channel Blocker, Attenuates Isoproterenol-Induced Toxicity in Male Wistar Rats. Cardiovasc Toxicol 2020; 20:627-640. [PMID: 32671560 DOI: 10.1007/s12012-020-09587-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent evidence indicates that Ca2+ dysregulation is involved in the pathogenesis of isoproterenol (ISP)-induced biochemical toxicity and associated oxidative stress. In this study, we investigated the chemopreventive benefit of M3, a 1,4-dihydropyridine calcium channel blocker, against ISP-induced toxicity in male Wistar rats. Adult rats were divided into eight groups of six rats/group. Groups 1-5 received normal saline (control, 10 mL/kg/day, p.o.), ISP (85 mg/kg/day, s.c.), M3 lower dose (M3LD, 5 mg/kg, p.o.), M3 upper dose (M3UD, 20 mg/kg/day, p.o.), and Nifedipine (NFD, 20 mg/kg/day, p.o.), respectively. Others (groups 6-8) were pretreated with either M3LD, M3UD or NFD one hour before ISP administration. All rats were sacrificed 24 h after the last administration and changes in biochemical, hematological, and antioxidant parameters were assessed. Histologic examination of the heart, liver and kidney was also conducted. ISP elevated (p < 0.05) Ca2+, alanine aminotransferase, lactate dehydrogenase, triglycerides, and low-density lipoprotein levels when compared with control. Similarly, ISP increased levels of markers of renal function (p < 0.01), C-reactive protein (148.1%) and myocardial malondialdehyde (MDA, 88.7%) and tumor necrosis factor-alpha (109.2%). Platelet level was reduced (p < 0.05) in the ISP-intoxicated control rats. M3 exhibited antioxidant property, reduced levels of triglycerides, MDA and improved biochemical and hematological alterations associated with ISP toxicity. M3, however, was not effective in restoring histological changes that characterized ISP toxicity at the doses used. M3 offers chemopreventive benefits against ISP toxicity possibly through L-/T-type calcium channels blockade and modulatory actions on biochemical and antioxidant homeostasis.
Collapse
|
16
|
Wang M, Wu H, Liu Y, Chen LM. Activation of mouse NBCe1-B by Xenopus laevis and mouse IRBITs: Role of the variable Nt appendage of IRBITs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183240. [PMID: 32119862 DOI: 10.1016/j.bbamem.2020.183240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
The IP3 receptor binding protein released with inositol 1,4,5-trisphosphate (IRBIT) plays important roles in the regulation of intracellular Ca2+ signaling and intracellular pH. The mammals express two IRBIT paralogs, i.e., IRBIT1 (encoded by AHCYL1) and IRBIT2 (encoded by AHCYL2). The clawed frog Xenopus laevis oocyte is widely used for biophysical studies on ion channels and transporters. It remains unknown whether endogenous IRBIT is expressed in Xenopus oocytes. Here, we cloned from frog oocyte irbit2.L and irbit2.S, orthologs of mammalian IRBIT2. When over-expressed, the frog IRBITs powerfully stimulate the electrogenic Na+/HCO3- cotransporter NBCe1-B as mouse IRBIT2-V2 does. Expression of an isolated Nt fragment of NBCe1-B containing the IRBIT-binding domain greatly decreases NBCe1-B activity in oocytes, suggesting that the basal activity of NBCe1-B contains a large component derived from the stimulation by endogenous frog IRBIT. The frog IRBITs are highly homologous to the mammalian ones in the carboxyl-terminal region, but varies greatly in the amino-terminal (Nt) appendage. Interestingly, truncation study showed that the Nt appendage of IRBIT1 and the long Nt appendage of IRBIT2-V2 modestly enhance, whereas the short Nt appendage of IRBIT2-V4 greatly inhibits the functional interaction between IRBIT and NBCe1-B. Finally, Ala-substitution of Ser68, a key phosphorylation site in the PEST domain of IRBIT, causes distinct functional consequences depending on the structural context of the Nt appendage in different IRBIT isoforms. We conclude that the Nt appendage of IRBITs is not necessary for, but plays an important regulatory role in the functional interaction between IRBIT and NBCe1-B.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China
| | - Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
17
|
Fujii S, Yamazaki Y, Goto JI, Fujiwara H, Mikoshiba K. Depotentiation depends on IP 3 receptor activation sustained by synaptic inputs after LTP induction. ACTA ACUST UNITED AC 2020; 27:52-66. [PMID: 31949037 PMCID: PMC6970427 DOI: 10.1101/lm.050344.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/29/2020] [Indexed: 12/14/2022]
Abstract
In CA1 neurons of guinea pig hippocampal slices, long-term potentiation (LTP) was induced in field excitatory postsynaptic potentials (EPSPs) or population spikes (PSs) by the delivery of high-frequency stimulation (HFS, 100 pulses at 100 Hz) to CA1 synapses, and was reversed by the delivery of a train of low-frequency stimulation (LFS, 1000 pulses at 2 Hz) at 30 min after HFS (depotentiation), and this effect was inhibited when test synaptic stimulation was halted for a 19-min period after HFS or for a 20-min period after LFS or applied over the same time period in the presence of an antagonist of N-methyl-D-aspartate receptors (NMDARs), group I metabotropic glutamate receptors (mGluRs), or inositol 1, 4, 5-trisphosphate receptors (IP3Rs). Depotentiation was also blocked by the application of a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor or a calcineurin inhibitor applied in the presence of test synaptic input for a 10-min period after HFS or for a 20-min period after LFS. These results suggest that, in postsynaptic neurons, the coactivation of NMDARs and group I mGluRs due to sustained synaptic activity following LTP induction results in the activation of IP3Rs and CaMKII, which leads to the activation of calcineurin after LFS and depotentiation of CA1 synaptic responses.
Collapse
Affiliation(s)
- Satoshi Fujii
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan.,Laboratory for Developmental Neurobiology, Riken Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yoshihiko Yamazaki
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Jun-Ichi Goto
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan.,Laboratory for Developmental Neurobiology, Riken Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Hiroki Fujiwara
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Riken Brain Science Institute, Wako, Saitama 351-0198, Japan
| |
Collapse
|
18
|
Alexander CJ, Hammer JA. An Improved Method for Differentiating Mouse Embryonic Stem Cells into Cerebellar Purkinje Neurons. THE CEREBELLUM 2019; 18:406-421. [PMID: 30729383 DOI: 10.1007/s12311-019-1007-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While mixed primary cerebellar cultures prepared from embryonic tissue have proven valuable for dissecting structure-function relationships in cerebellar Purkinje neurons (PNs), this technique is technically challenging and often yields few cells. Recently, mouse embryonic stem cells (mESCs) have been successfully differentiated into PNs, although the published methods are very challenging as well. The focus of this study was to simplify the differentiation of mESCs into PNs. Using a recently described neural differentiation media, we generate monolayers of neural progenitor cells from mESCs and differentiate them into PN precursors using specific extrinsic factors. These PN precursors are then differentiated into mature PNs by co-culturing them with granule neuron (GN) precursors also derived from neural progenitors using different extrinsic factors. The morphology of mESC-derived PNs is indistinguishable from PNs grown in primary culture in terms of gross morphology, spine length, and spine density. Furthermore, mESC-derived PNs express Calbindin D28K, IP3R1, IRBIT, PLCβ4, PSD93, and myosin IIB-B2, all of which are either PN-specific or highly expressed in PNs. Moreover, we show that mESC-derived PNs form synapses with GN-like cells as in primary culture, express proteins driven by the PN-specific promoter Pcp2/L7, and exhibit the defect in spine ER inheritance seen in PNs isolated from dilute-lethal (myosin Va-null) mice when expressing a Pcp2/L7-driven miRNA directed against myosin Va. Finally, we define a novel extracellular matrix formulation that reproducibly yields monolayer cultures conducive for high-resolution imaging. Our improved method for differentiating mESCs into PNs should facilitate the dissection of molecular mechanisms and disease phenotypes in PNs.
Collapse
Affiliation(s)
- Christopher J Alexander
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - John A Hammer
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Cao H, Zhang Y, Chu Z, Zhao B, Wang H, An L. MAP‑1B, PACS‑2 and AHCYL1 are regulated by miR‑34A/B/C and miR‑449 in neuroplasticity following traumatic spinal cord injury in rats: Preliminary explorative results from microarray data. Mol Med Rep 2019; 20:3011-3018. [PMID: 31432119 PMCID: PMC6755151 DOI: 10.3892/mmr.2019.10538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 01/18/2019] [Indexed: 11/06/2022] Open
Abstract
Spinal cord injury (SCI) is a specific type of damage to the central nervous system causing temporary or permanent changes in its function. The present aimed to identify the genetic changes in neuroplasticity following SCI in rats. The GSE52763 microarray dataset, which included 15 samples [3 sham (1 week), 4 injury only (1 week), 4 injury only (3 weeks), 4 injury + treadmill (3 weeks)] was downloaded from the Gene Expression Omnibus database. An empirical Bayes linear regression model in limma package was used to identify the differentially expressed genes (DEGs) in injury vs. sham and treadmill vs. non‑treadmill comparison groups. Subsequently, time series and enrichment analyses were performed using pheatmap and clusterProfile packages, respectively. Additionally, protein‑protein interaction (PPI) and transcription factor (TF)‑microRNA (miRNA)‑target regulatory networks were constructed using Cytoscape software. In total, 159 and 105 DEGs were identified in injury vs. sham groups and treadmill vs. non‑treadmill groups, respectively. There were 40 genes in cluster 1 that presented increased expression levels in the injury (1 week/3 weeks) groups compared with the sham group, and decreased expression levels in the injury + treadmill group compared with the injury only groups; conversely, 52 genes in cluster 2 exhibited decreased expression levels in the injury (1 week/3 weeks) groups compared with the sham group, and increased expression levels in the injury + treadmill group compared with the injury only groups. Enrichment analysis indicated that clusters 1 and 2 were associated with immune response and signal transduction, respectively. Furthermore, microtubule associated protein 1B, phosphofurin acidic cluster sorting protein 2 and adenosylhomocysteinase‑like 1 exhibited the highest degrees in the regulatory network, and were regulated by miRNAs including miR‑34A, miR‑34B, miR‑34C and miR‑449. These miRNAs and their target genes may serve important roles in neuroplasticity following traumatic SCI in rats. Nevertheless, additional in‑depth studies are required to confirm these data.
Collapse
Affiliation(s)
- Hongshi Cao
- School of Nursing, Jilin University, Jilin 130021, P.R. China
| | - Yu Zhang
- Department of Neurovascular Disease, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhe Chu
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bolun Zhao
- School of Nursing, Dalian University, Dalian, Liaoning 116000, P.R. China
| | - Haiyan Wang
- Department of Neurotrauma Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Libin An
- School of Nursing, Dalian University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
20
|
Dunkley PR, Dickson PW. Tyrosine hydroxylase phosphorylation
in vivo. J Neurochem 2019; 149:706-728. [DOI: 10.1111/jnc.14675] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Peter R. Dunkley
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| | - Phillip W. Dickson
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| |
Collapse
|
21
|
Carbone M, Amelio I, Affar EB, Brugarolas J, Cannon-Albright LA, Cantley LC, Cavenee WK, Chen Z, Croce CM, Andrea AD, Gandara D, Giorgi C, Jia W, Lan Q, Mak TW, Manley JL, Mikoshiba K, Onuchic JN, Pass HI, Pinton P, Prives C, Rothman N, Sebti SM, Turkson J, Wu X, Yang H, Yu H, Melino G. Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death Differ 2018; 25:1885-1904. [PMID: 30323273 PMCID: PMC6219489 DOI: 10.1038/s41418-018-0213-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The relative contribution of intrinsic genetic factors and extrinsic environmental ones to cancer aetiology and natural history is a lengthy and debated issue. Gene-environment interactions (G x E) arise when the combined presence of both a germline genetic variant and a known environmental factor modulates the risk of disease more than either one alone. A panel of experts discussed our current understanding of cancer aetiology, known examples of G × E interactions in cancer, and the expanded concept of G × E interactions to include somatic cancer mutations and iatrogenic environmental factors such as anti-cancer treatment. Specific genetic polymorphisms and genetic mutations increase susceptibility to certain carcinogens and may be targeted in the near future for prevention and treatment of cancer patients with novel molecularly based therapies. There was general consensus that a better understanding of the complexity and numerosity of G × E interactions, supported by adequate technological, epidemiological, modelling and statistical resources, will further promote our understanding of cancer and lead to novel preventive and therapeutic approaches.
Collapse
Affiliation(s)
| | | | - El Bachir Affar
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, Quebec, H1T 2M4, Canada
| | - James Brugarolas
- Department of Internal Medicine, Hematology-Oncology Division, Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY, 10021, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhijian Chen
- Department of Molecular Biology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alan D' Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - David Gandara
- Thoracic Oncology, UC Davis, Sacramento, CA, 96817, USA
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Wei Jia
- Hawaii Cancer Center, Honolulu, HI, USA
| | - Qing Lan
- Occupational & Environmental Epidemiology Branch Division of Cancer Epidemiology & Genetics National Cancer Institute NIH, Bethesda, MD, USA
| | - Tak Wah Mak
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2M9, Canada
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Jose N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA
| | - Harvey I Pass
- Division of General Thoracic Surgery, Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, NY, USA
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York, 10027, USA
| | - Nathaniel Rothman
- Occupational & Environmental Epidemiology Branch Division of Cancer Epidemiology & Genetics National Cancer Institute NIH, Bethesda, MD, USA
| | - Said M Sebti
- Drug Discovery Department, Moffitt Cancer Center, and Department of Oncologic Sciences, University of South Florida, Tampa, FL, 33612, USA
| | | | - Xifeng Wu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Gerry Melino
- MRC Toxicology Unit, Leicester, UK.
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
22
|
Vachel L, Shcheynikov N, Yamazaki O, Fremder M, Ohana E, Son A, Shin DM, Yamazaki-Nakazawa A, Yang CR, Knepper MA, Muallem S. Modulation of Cl - signaling and ion transport by recruitment of kinases and phosphatases mediated by the regulatory protein IRBIT. Sci Signal 2018; 11:11/554/eaat5018. [PMID: 30377224 DOI: 10.1126/scisignal.aat5018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IRBIT is a multifunctional protein that controls the activity of various epithelial ion transporters including NBCe1-B. Interaction with IRBIT increases NBCe1-B activity and exposes two cryptic Cl--sensing GXXXP sites that enable regulation of NBCe1-B by intracellular Cl- (Cl- in). Here, phosphoproteomic analysis revealed that IRBIT controlled five phosphorylation sites in NBCe1-B that determined both the active conformation of the transporter and its regulation by Cl- in Mutational analysis suggested that the phosphorylation status of Ser232, Ser233, and Ser235 was regulated by IRBIT and determined whether NBCe1 transporters are in active or inactive conformations. The absence of phosphorylation at Ser232, Ser233, or Ser235 produced NBCe1-B in the conformations pSer233/pSer235, pSer232/pSer235, or pSer232/pSer233, respectively. The activity of the pSer233/pSer235 form was similar to that of IRBIT-activated NBCe1-B, but it was insensitive to inhibition by Cl- in The properties of the pSer232/pSer235 form were similar to those of wild-type NBCe1-B, whereas the pSer232/pSer233 form was partially active, further activated by IRBIT, but retained inhibition by Cl- in Furthermore, IRBIT recruited the phosphatase PP1 and the kinase SPAK to control phosphorylation of Ser65, which affected Cl- in sensing by the 32GXXXP36 motif. IRBIT also recruited the phosphatase calcineurin and the kinase CaMKII to control phosphorylation of Ser12, which affected Cl- in sensing by the 194GXXXP198 motif. Ser232, Ser233, and Ser235 are conserved in all NBCe1 variants and affect their activity. These findings reveal how multiple kinase and phosphatase pathways use phosphorylation sites to fine-tune a transporter, which have important implications for epithelial fluid and HCO3 - secretion.
Collapse
Affiliation(s)
- Laura Vachel
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nikolay Shcheynikov
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Osamu Yamazaki
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.,Apheresis and Dialysis Center/General Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-0016, Japan
| | - Moran Fremder
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Ehud Ohana
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Aran Son
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Ai Yamazaki-Nakazawa
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Yang X, Zhu Z, Ding X, Wang X, Cui G, Hua F, Xiang J. CaMKII inhibition ameliorated levodopa-induced dyskinesia by downregulating tyrosine hydroxylase activity in an experimental model of Parkinson's disease. Brain Res 2018; 1687:66-73. [PMID: 29452071 DOI: 10.1016/j.brainres.2018.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 02/01/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
Levodopa (L-dopa) remains the best treatment for Parkinson's disease (PD). However, long-term L-dopa treatment induces dyskinesia. The mechanism of L-dopa-induced dyskinesia (LID) is not fully understood. Enhanced activity of protein kinase A (PKA) and pulsatile dopamine (DA) stimulation plays an important role in LID. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for DA synthesis. Decreased TH activity causes reduced pulsatile DA stimulation, which in turn reduces LID. Moreover, TH is a substrate of CaMKII. However, it is unknown whether inhibition of CaMKII reduces LID by downregulating the activity of TH. In this study, we found that CaMKII antagonist KN-93 reduced DA released in PC12 cells; in the meantime, KN-93 reduced phosphorylated levels of CaMKIIα and TH at Ser 40. Intrastriatal administration of KN-93 reduced LID without affecting the antiparkinsonian effect of L-dopa in PD mice. Mechanistically, KN-93 treatmentreduced phosphorylated CaMKIIα levels and subsequently downregulated phosphorylated TH at Ser 40 expression. Consequently, extracellular DA efflux was reduced andthe activation threshold of the PKA pathway was lowered. Moreover, KN-93 treatment reduced the expression of Arc and Penk, two immediate early genes, induced by chronic L-dopa. These data indicate that inhibition of CaMKIIα decreases LID at least partially by suppressing TH activity and subsequently reducing extracellular DA efflux and the activity of the PKA pathway, suggesting that CaMKIIα may be an alternative target for the treatment of LID.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Zhongfang Zhu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiqing Ding
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiaoying Wang
- Department of Ultrasound, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Fang Hua
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jie Xiang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
24
|
Jang HJ, Suh PG, Lee YJ, Shin KJ, Cocco L, Chae YC. PLCγ1: Potential arbitrator of cancer progression. Adv Biol Regul 2018; 67:179-189. [PMID: 29174396 DOI: 10.1016/j.jbior.2017.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Phospholipase C (PLC) is an essential mediator of cellular signaling. PLC regulates multiple cellular processes by generating bioactive molecules such as inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG). These products propagate and regulate cellular signaling via calcium (Ca2+) mobilization and activation of protein kinase C (PKC), other kinases, and ion channels. PLCγ1, one of the primary subtypes of PLC, is directly activated by membrane receptors, including receptor tyrosine kinases (RTKs), and adhesion receptors such as integrin. PLCγ1 mediates signaling through direct interactions with other signaling molecules via SH domains, as well as its lipase activity. PLCγ1 is frequently enriched and mutated in various cancers, and is involved in the processes of tumorigenesis, including proliferation, migration, and invasion. Although many studies have suggested that PLCγ functions in cell mobility rather than proliferation in cancer, questions remain as to whether PLCγ regulates mitogenesis and whether PLCγ promotes or inhibits proliferation. Moreover, how PLCγ regulates cancer-associated cellular processes and the interplay among other proteins involved in cancer progression have yet to be fully elucidated. In this review, we discuss the current understanding of the role of PLCγ1 in cancer mobility and proliferation.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yu Jin Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyeong Jin Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, Institute of Human Anatomy, University of Bologna, Bologna, Italy
| | - Young Chan Chae
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
25
|
Ando H, Kawaai K, Bonneau B, Mikoshiba K. Remodeling of Ca 2+ signaling in cancer: Regulation of inositol 1,4,5-trisphosphate receptors through oncogenes and tumor suppressors. Adv Biol Regul 2017; 68:64-76. [PMID: 29287955 DOI: 10.1016/j.jbior.2017.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
The calcium ion (Ca2+) is a ubiquitous intracellular signaling molecule that regulates diverse physiological and pathological processes, including cancer. Increasing evidence indicates that oncogenes and tumor suppressors regulate the Ca2+ transport systems. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are IP3-activated Ca2+ release channels located on the endoplasmic reticulum (ER). They play pivotal roles in the regulation of cell death and survival by controlling Ca2+ transfer from the ER to mitochondria through mitochondria-associated ER membranes (MAMs). Optimal levels of Ca2+ mobilization to mitochondria are necessary for mitochondrial bioenergetics, whereas excessive Ca2+ flux into mitochondria causes loss of mitochondrial membrane integrity and apoptotic cell death. In addition to well-known functions on outer mitochondrial membranes, B-cell lymphoma 2 (Bcl-2) family proteins are localized on the ER and regulate IP3Rs to control Ca2+ transfer into mitochondria. Another regulatory protein of IP3R, IP3R-binding protein released with IP3 (IRBIT), cooperates with or counteracts the Bcl-2 family member depending on cellular states. Furthermore, several oncogenes and tumor suppressors, including Akt, K-Ras, phosphatase and tensin homolog (PTEN), promyelocytic leukemia protein (PML), BRCA1, and BRCA1 associated protein 1 (BAP1), are localized on the ER or at MAMs and negatively or positively regulate apoptotic cell death through interactions with IP3Rs and regulation of Ca2+ dynamics. The remodeling of Ca2+ signaling by oncogenes and tumor suppressors that interact with IP3Rs has fundamental roles in the pathology of cancers.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Benjamin Bonneau
- Institute NeuroMyoGene (INMG), CNRS UMR 5310, INSERM U1217, Gregor Mendel building, 16, rue Raphaël Dubois, 69100 Villeurbanne, France
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
26
|
Neurobiological Correlates of Pain Avoidance-Like Behavior in Morphine-Dependent and Non-Dependent Rats. Neuroscience 2017; 366:1-14. [PMID: 29024786 DOI: 10.1016/j.neuroscience.2017.09.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/30/2022]
Abstract
Repeated use of opioids can lead to the development of analgesic tolerance and dependence. Additionally, chronic opioid exposure can cause a paradoxical emergence of heightened pain sensitivity to noxious stimuli, termed hyperalgesia, which may drive continued or escalated use of opioids to manage worsening pain symptoms. Opioid-induced hyperalgesia has traditionally been measured in rodents via reflex-based assays, including the von Frey method. To better model the cognitive/motivational dimension of pain in a state of opioid dependence and withdrawal, we employed a recently developed non-reflex-based method for measuring pain avoidance-like behavior in animals (mechanical conflict avoidance test). Adult male Wistar rats were administered an escalating dose regimen of morphine (opioid-dependent group) or repeated saline (control group). Morphine-dependent rats exhibited significantly greater avoidance of noxious stimuli during withdrawal. We next investigated individual relationships between pain avoidance-like behavior and alterations in protein phosphorylation in central motivation-related brain areas. We discovered that pain avoidance-like behavior was significantly correlated with alterations in phosphorylation status of protein kinases (ERK, CaMKII), transcription factors (CREB), presynaptic markers of neurotransmitter release (Synapsin), and the rate-limiting enzyme for dopamine synthesis (TH) across specific brain regions. Our findings suggest that alterations in phosphorylation events in specific brain centers may support cognitive/motivational responses to avoid pain.
Collapse
|
27
|
Splicing variation of Long-IRBIT determines the target selectivity of IRBIT family proteins. Proc Natl Acad Sci U S A 2017; 114:3921-3926. [PMID: 28348216 DOI: 10.1073/pnas.1618514114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IRBIT [inositol 1,4,5-trisphosphate receptor (IP3R) binding protein released with inositol 1,4,5-trisphosphate (IP3)] is a multifunctional protein that regulates several target molecules such as ion channels, transporters, polyadenylation complex, and kinases. Through its interaction with multiple targets, IRBIT contributes to calcium signaling, electrolyte transport, mRNA processing, cell cycle, and neuronal function. However, the regulatory mechanism of IRBIT binding to particular targets is poorly understood. Long-IRBIT is an IRBIT homolog with high homology to IRBIT, except for a unique N-terminal appendage. Long-IRBIT splice variants have different N-terminal sequences and a common C-terminal region, which is involved in multimerization of IRBIT and Long-IRBIT. In this study, we characterized IRBIT and Long-IRBIT splice variants (IRBIT family). We determined that the IRBIT family exhibits different mRNA expression patterns in various tissues. The IRBIT family formed homo- and heteromultimers. In addition, N-terminal splicing of Long-IRBIT changed the protein stability and selectivity to target molecules. These results suggest that N-terminal diversity of the IRBIT family and various combinations of multimer formation contribute to the functional diversity of the IRBIT family.
Collapse
|
28
|
Bonneau B, Ando H, Kawaai K, Hirose M, Takahashi-Iwanaga H, Mikoshiba K. IRBIT controls apoptosis by interacting with the Bcl-2 homolog, Bcl2l10, and by promoting ER-mitochondria contact. eLife 2016; 5. [PMID: 27995898 PMCID: PMC5173324 DOI: 10.7554/elife.19896] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022] Open
Abstract
IRBIT is a molecule that interacts with the inositol 1,4,5-trisphosphate (IP3)-binding pocket of the IP3 receptor (IP3R), whereas the antiapoptotic protein, Bcl2l10, binds to another part of the IP3-binding domain. Here we show that Bcl2l10 and IRBIT interact and exert an additive inhibition of IP3R in the physiological state. Moreover, we found that these proteins associate in a complex in mitochondria-associated membranes (MAMs) and that their interplay is involved in apoptosis regulation. MAMs are a hotspot for Ca2+ transfer between endoplasmic reticulum (ER) and mitochondria, and massive Ca2+ release through IP3R in mitochondria induces cell death. We found that upon apoptotic stress, IRBIT is dephosphorylated, becoming an inhibitor of Bcl2l10. Moreover, IRBIT promotes ER mitochondria contact. Our results suggest that by inhibiting Bcl2l10 activity and promoting contact between ER and mitochondria, IRBIT facilitates massive Ca2+ transfer to mitochondria and promotes apoptosis. This work then describes IRBIT as a new regulator of cell death.
Collapse
Affiliation(s)
- Benjamin Bonneau
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | - Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | - Matsumi Hirose
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| | | | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science institute, Wako-shi, Japan
| |
Collapse
|
29
|
Ogundele OM, Lee CC, Francis J. Age-dependent alterations to paraventricular nucleus insulin-like growth factor 1 receptor as a possible link between sympathoexcitation and inflammation. J Neurochem 2016; 139:706-721. [PMID: 27626839 DOI: 10.1111/jnc.13842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/06/2016] [Accepted: 09/09/2016] [Indexed: 01/01/2023]
Abstract
Modifications to neural circuits of the paraventricular hypothalamic nucleus (PVN) have been implicated in sympathoexcitation and systemic cardiovascular dysfunction. However, to date, the role of insulin-like growth factor 1 receptor (IGF-1R) expression on PVN pathophysiology is unknown. Using confocal immunofluorescence quantification and electrophysiological recordings from acute PVN slices, we investigated the mechanism through which age-dependent IGF-1R depletion contributes to the progression of inflammation and sympathoexcitation in the PVN of spontaneously hypertensive rats (SHR). Four and twenty weeks old SHR and Wistar Kyoto (WKY) rats were used for this study. Our data showed that angiotensin I/II and pro-inflammatory high mobility box group protein 1 (HMGB1) exhibited increased expression in the PVN of SHR versus WKY at 4 weeks (p < 0.01), and were even more highly expressed with age in SHR (p < 0.001). This correlated with a significant decrease in IGF-1R expression, with age, in the PVN of SHR when compared with WKY (p < 0.001) and were accompanied by related changes in astrocytes and microglia. In subsequent analyses, we found an age-dependent change in the expression of proteins associated with IGF-1R signaling pathways involved in inflammatory responses and synaptic function in the PVN. MAPK/ErK was more highly expressed in the PVN of SHR by the fourth week (p < 0.001; vs. WKY), while expression of neuronal nitric oxide synthase (p < 0.001) and calcium-calmodulin-dependent kinase II alpha (CamKIIα; p < 0.001) were significantly decreased by the 4th and 20th week, respectively. Age-dependent changes in MAPK/ErK expression in the PVN correlated with an increase in the expression of vesicular glutamate transporter (p < 0.001 vs. WKY), while decreased levels of CamKIIα was associated with a decreased expression of tyrosine hydroxylase (p < 0.001) by the 20th week. In addition, reduced labeling for ϒ-aminobutyric acid in the PVN of SHR (p < 0.001) correlated with a decrease in neuronal nitric oxide synthase labeling (p < 0.001) when compared with the WKY by the 20th week. Electrophysiological recordings from neurons in acute slice preparations of the PVN of 4 weeks old SHR revealed spontaneous post-synaptic currents of higher frequency when compared with neurons from WKY PNV slices of the same age (p < 0.001; n = 14 cells). This also correlated with an increase in PSD-95 in the PVN of SHR when compared with the WKY (p < 0.001). Overall, we found an age-dependent reduction of IGF-1R, and related altered expression of associated downstream signaling molecules that may represent a link between the concurrent progression of synaptic dysfunction and inflammation in the PVN of SHR.
Collapse
Affiliation(s)
- Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| |
Collapse
|
30
|
Role of postsynaptic inositol 1, 4, 5-trisphosphate receptors in depotentiation in guinea pig hippocampal CA1 neurons. Brain Res 2016; 1642:154-162. [DOI: 10.1016/j.brainres.2016.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/12/2016] [Accepted: 03/22/2016] [Indexed: 11/19/2022]
|
31
|
He P, Zhao L, No YR, Karvar S, Yun CC. The NHERF1 PDZ1 domain and IRBIT interact and mediate the activation of Na+/H+ exchanger 3 by ANG II. Am J Physiol Renal Physiol 2016; 311:F343-51. [PMID: 27279487 DOI: 10.1152/ajprenal.00247.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/01/2016] [Indexed: 11/22/2022] Open
Abstract
Na(+)/H(+) exchanger (NHE)3, a major Na(+) transporter in the luminal membrane of the proximal tubule, is subject to ANG II regulation in renal Na(+)/fluid absorption and blood pressure control. We have previously shown that inositol 1,4,5-trisphosphate receptor-binding protein released with inositol 1,4,5-trisphosphate (IRBIT) mediates ANG II-induced exocytosis of NHE3 in cultured proximal tubule epithelial cells. In searching for scaffold protein(s) that coordinates with IRBIT in NHE3 trafficking, we found that NHE regulatory factor (NHERF)1, NHE3, and IRBIT proteins were coexpressed in the same macrocomplexes and that loss of ANG II type 1 receptors decreased their expression in the renal brush-border membrane. We found that NHERF1 was required for ANG II-mediated forward trafficking and activation of NHE3 in cultured cells. ANG II induced a concomitant increase of NHERF1 interactions with NHE3 and IRBIT, which were abolished when the NHERF1 PDZ1 domain was removed. Overexpression of a yellow fluorescent protein-NHERF1 construct that lacks PDZ1, but not PDZ2, failed to exaggerate the ANG II-dependent increase of NHE3 expression in the apical membrane. Moreover, exogenous expression of PDZ1 exerted a dominant negative effect on NHE3 activation by ANG II. We further demonstrated that IRBIT was indispensable for the ANG II-provoked increase in NHERF1-NHE3 interactions and that phosphorylation of IRBIT at Ser(68) was necessary for the assembly of the NHEF1-IRBIT-NHE3 complex. Taken together, our findings suggest that NHERF1 mediates ANG II-induced activation of renal NHE3, which requires coordination between IRBIT and the NHERF1 PDZ1 domain in binding and transporting NHE3.
Collapse
Affiliation(s)
- Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia;
| | - Luqing Zhao
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Gastroenterology, Beijing Hospital of Traditional Chinese Medicine affiliated with Capital Medical University, Beijing, China
| | - Yi Ran No
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Serhan Karvar
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - C Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Atlanta Veterans Affairs Medical Center, Decatur, Georgia; and Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
32
|
Fujii S, Yamazaki Y, Goto JI, Fujiwara H, Mikoshiba K. Prior activation of inositol 1,4,5-trisphosphate receptors suppresses the subsequent induction of long-term potentiation in hippocampal CA1 neurons. Learn Mem 2016; 23:208-20. [PMID: 27084928 PMCID: PMC4836634 DOI: 10.1101/lm.041053.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/25/2016] [Indexed: 11/24/2022]
Abstract
We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population spike by the delivery of high-frequency stimulation (HFS, a tetanus of 100 pulses at 100 Hz) to the Schaffer collateral-commissural pathway to CA1 neuron synapses was suppressed when group I metabotropic glutamate receptors (mGluRs) were activated prior to the delivery of HFS. LTP induction was also suppressed when CA1 synapses were preconditioned 60 min before HFS by LFS of 1000 pulses at 1 Hz and this effect was inhibited when the test stimulation delivered at 0.05 Hz was either halted or applied in the presence of an antagonist ofN-methyl-d-aspartate receptors, group I mGluRs, or IP3Rs during a 20-min period from 20 to 40 min after the end of LFS. Furthermore, blockade of group I mGluRs or IP3Rs immediately before the delivery of HFS overcame the effects of the preconditioning LFS on LTP induction. These results suggest that, in CA1 neurons, after a preconditioning LFS, activation of group I mGluRs caused by the test stimulation results in IP3Rs activation that leads to a failure of LTP induction.
Collapse
Affiliation(s)
- Satoshi Fujii
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan Laboratory for Developmental Neurobiology, Riken Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yoshihiko Yamazaki
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Jun-Ichi Goto
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan Laboratory for Developmental Neurobiology, Riken Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Hiroki Fujiwara
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Riken Brain Science Institute, Wako, Saitama 351-0198, Japan
| |
Collapse
|
33
|
Prole DL, Taylor CW. Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs. J Physiol 2016; 594:2849-66. [PMID: 26830355 PMCID: PMC4887697 DOI: 10.1113/jp271139] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/06/2015] [Indexed: 01/26/2023] Open
Abstract
Inositol 1,4,5‐trisphosphate receptors (IP3Rs) are expressed in nearly all animal cells, where they mediate the release of Ca2+ from intracellular stores. The complex spatial and temporal organization of the ensuing intracellular Ca2+ signals allows selective regulation of diverse physiological responses. Interactions of IP3Rs with other proteins contribute to the specificity and speed of Ca2+ signalling pathways, and to their capacity to integrate information from other signalling pathways. In this review, we provide a comprehensive survey of the proteins proposed to interact with IP3Rs and the functional effects that these interactions produce. Interacting proteins can determine the activity of IP3Rs, facilitate their regulation by multiple signalling pathways and direct the Ca2+ that they release to specific targets. We suggest that IP3Rs function as signalling hubs through which diverse inputs are processed and then emerge as cytosolic Ca2+ signals.
![]()
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| |
Collapse
|
34
|
CaM Kinases: From Memories to Addiction. Trends Pharmacol Sci 2015; 37:153-166. [PMID: 26674562 DOI: 10.1016/j.tips.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/29/2022]
Abstract
Drug addiction is a major psychiatric disorder with a neurobiological basis that is still insufficiently understood. Initially, non-addicted, controlled drug consumption and drug instrumentalization are established. They comprise highly systematic behaviours acquired by learning and the establishment of drug memories. Ca(2+)/calmodulin-dependent protein kinases (CaMKs) are important Ca(2+) sensors translating glutamatergic activation into synaptic plasticity during learning and memory formation. Here we review the role of CaMKs in the establishment of drug-related behaviours in animal models and in humans. Converging evidence now shows that CaMKs are a crucial mechanism of how addictive drugs induce synaptic plasticity and establish various types of drug memories. Thereby, CaMKs are not only molecular relays for glutamatergic activity but they also directly control dopaminergic and serotonergic activity in the mesolimbic reward system. They can now be considered as major molecular pathways translating normal memory formation into establishment of drug memories and possibly transition to drug addiction.
Collapse
|
35
|
Ando H, Hirose M, Gainche L, Kawaai K, Bonneau B, Ijuin T, Itoh T, Takenawa T, Mikoshiba K. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues. PLoS One 2015; 10:e0141569. [PMID: 26509711 PMCID: PMC4624786 DOI: 10.1371/journal.pone.0141569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/10/2015] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylinositol phosphate kinases (PIPKs) are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate) is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα) and type IIα (PIPKIIα) in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3− cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5)P2.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
- * E-mail: (HA); (KM)
| | - Matsumi Hirose
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Laura Gainche
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Benjamin Bonneau
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Takeshi Ijuin
- Division of Biochemistry, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Toshiki Itoh
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Tadaomi Takenawa
- Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, Japan
- * E-mail: (HA); (KM)
| |
Collapse
|
36
|
Yamazaki Y, Fujii S, Goto JI, Fujiwara H, Mikoshiba K. Activation of inositol 1,4,5-trisphosphate receptors during preconditioning low-frequency stimulation suppresses subsequent induction of long-term potentiation in hippocampal CA1 neurons. Neuroscience 2015; 311:195-206. [PMID: 26500182 DOI: 10.1016/j.neuroscience.2015.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 12/30/2022]
Abstract
We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated during preconditioning low-frequency stimulation (LFS) in the subsequent high-frequency stimulation (HFS)-induced induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential (EPSP) or the population spike (PS) by delivery of HFS (a tetanus of 100 pulses at 100 Hz) to the Schaffer collateral-commissural pathway to CA1 neuron synapses was suppressed when the CA1 synapses were preconditioned by LFS of 1000 pulses at 1 Hz. This effect was inhibited when the preconditioning LFS was applied in the presence of an N-methyl-D-aspartate receptors (NMDARs) antagonist, a metabotropic glutamate receptor (mGluR) antagonist, IP3R antagonist, a calmodulin-dependent kinase II inhibitor or a calcineurin inhibitor. Furthermore, blockade of group I mGluRs immediately before the delivery of HFS blocked the inhibitory effect of the preconditioning LFS on subsequent induction of LTP by HFS. These results suggest that, in hippocampal CA1 neuron synapses, co-activation of NMDARs and IP3Rs during a preconditioning LFS results in both phosphorylation and dephosphorylation events that lead to prolonged activation of group I mGluRs that is responsible for the failure of LTP induction.
Collapse
Affiliation(s)
- Y Yamazaki
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - S Fujii
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan; Laboratory for Developmental Neurobiology, Riken Brain Science Institute, Wako, Saitama 351-0198, Japan.
| | - J-I Goto
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan; Laboratory for Developmental Neurobiology, Riken Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - H Fujiwara
- Department of Physiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - K Mikoshiba
- Laboratory for Developmental Neurobiology, Riken Brain Science Institute, Wako, Saitama 351-0198, Japan
| |
Collapse
|
37
|
Fadeel B, Carafoli E. Meeting report: BBRC Symposium on Trends in Biochemistry and Biophysics. Biochem Biophys Res Commun 2015; 465:v-vii. [PMID: 26543928 DOI: 10.1016/s0006-291x(15)01126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|