1
|
Jurich C, Shao Q, Ran X, Yang ZJ. Physics-based modeling in the new era of enzyme engineering. NATURE COMPUTATIONAL SCIENCE 2025; 5:279-291. [PMID: 40275092 DOI: 10.1038/s43588-025-00788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/04/2025] [Indexed: 04/26/2025]
Abstract
Enzyme engineering is entering a new era characterized by the integration of computational strategies. While bioinformatics and artificial intelligence methods have been extensively applied to accelerate the screening of function-enhancing mutants, physics-based modeling methods, such as molecular mechanics and quantum mechanics, are essential complements in many objectives. In this Perspective, we highlight how physics-based modeling will help the field of computational enzyme engineering reach its full potential by exploring current developments, unmet challenges and emerging opportunities for tool development.
Collapse
Affiliation(s)
| | - Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Xinchun Ran
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
- The Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA.
- Data Science Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Wang F, Zhou X, Wang H, Zhou Z, Yang L, Hu Y, Qi S, Wang P. Multisubstrate-based system: a kinetic mechanism study of catechol-O-methyltransferase. FEBS J 2025; 292:899-914. [PMID: 39726140 DOI: 10.1111/febs.17372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/24/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Catechol-O-methyltransferase (COMT, EC 2.1.1.6) can transfer the methyl group from S-adenosyl-l-methionine (SAM) to one of the hydroxyl groups of a catechol substrate in the presence of Mg2+. However, there is no consensus view of the kinetic mechanism of COMT involving multiple substrates. Further progress requires the development of methods for determining enzyme kinetic behavior and the binding mode of ligands to the protein. Here, we establish a multisubstrate kinetic system covering the fluorescence and mass spectrometry techniques to quantify the products in a COMT-catalyzed reaction. The catechol substrate, 3-BTD, can be methylated by COMT to form a single product, 3-BTMD, with a sensitive fluorescence response and the conversion of SAM to S-adenosyl-l-homocysteine (SAH) was monitored by LC-MS/MS. The kinetic assays suggested that the reaction occurred via an ordered sequential mechanism, in which SAM first bound to COMT, followed by the addition of Mg2+ and 3-BTD. The chemical step involved a quaternary complex of COMT-SAM-Mg2+-3-BTD, followed by the ordered dissociation of 3-BTMD, Mg2+, and SAH. In cooperation with molecular dynamics simulation, the binding of COMT to Mg2+ induced a shape change in the catechol-binding site, which accommodated 3-BTD binding and facilitated catalysis. These findings provide new insights into the kinetic mechanism of COMT, contributing to the development of previously undescribed functional COMT ligands.
Collapse
Affiliation(s)
- Fangyuan Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Xianglu Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, China
| | - Haonan Wang
- China Technology Center, Shanghai Inoherb Co. Ltd, China
| | - Ziqiong Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Yonghong Hu
- Institute of Surgery of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, China
| | - Shenglan Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Ping Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| |
Collapse
|
3
|
Hudspeth J, Rogge K, Dörner S, Müll M, Hoffmeister D, Rupp B, Werten S. Methyl transfer in psilocybin biosynthesis. Nat Commun 2024; 15:2709. [PMID: 38548735 PMCID: PMC10978996 DOI: 10.1038/s41467-024-46997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Psilocybin, the natural hallucinogen produced by Psilocybe ("magic") mushrooms, holds great promise for the treatment of depression and several other mental health conditions. The final step in the psilocybin biosynthetic pathway, dimethylation of the tryptophan-derived intermediate norbaeocystin, is catalysed by PsiM. Here we present atomic resolution (0.9 Å) crystal structures of PsiM trapped at various stages of its reaction cycle, providing detailed insight into the SAM-dependent methylation mechanism. Structural and phylogenetic analyses suggest that PsiM derives from epitranscriptomic N6-methyladenosine writers of the METTL16 family, which is further supported by the observation that bound substrates physicochemically mimic RNA. Inherent limitations of the ancestral monomethyltransferase scaffold hamper the efficiency of psilocybin assembly and leave PsiM incapable of catalysing trimethylation to aeruginascin. The results of our study will support bioengineering efforts aiming to create novel variants of psilocybin with improved therapeutic properties.
Collapse
Affiliation(s)
- Jesse Hudspeth
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Chemistry, Colorado School of Mines, Golden, CO, USA
| | - Kai Rogge
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Sebastian Dörner
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Maximilian Müll
- Research Group Biosynthetic Design of Natural Products, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Research Group Pharmaceutical Microbiology, Leibniz Institute of Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Bernhard Rupp
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- k.-k. Hofkristallamt, San Diego, California, USA
| | - Sebastiaan Werten
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Alam S, Lee J, Sahebkar A. Curcumin in Cancer Prevention: Insights from Clinical Trials and Strategies to Enhance Bioavailability. Curr Pharm Des 2024; 30:1838-1851. [PMID: 38808709 DOI: 10.2174/0113816128303514240517054617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Cancer remains a leading cause of death worldwide, and current cancer drugs often have high costs and undesirable side effects. Additionally, the development of drug resistance can reduce their effectiveness over time. Natural products have gained attention as potential sources for the treatment and prevention of various diseases. Curcumin, an extract from turmeric (Curcuma longa), is a natural phenolic compound with diverse pharmacological properties, including antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, antiprotozoal, antidiabetic, antivenom, antiulcer, anticarcinogenic, antimutagenic, anticoagulant, and antifertility activities. Given the increasing interest in curcumin for cancer prevention, this review aims to comprehensively examine clinical trials investigating the use of curcumin in different types of cancer. Additionally, effective techniques and approaches to enhance the bioavailability of curcumin are discussed and summarized. This review article provides insights into the properties of curcumin and its potential as a future anticancer drug.
Collapse
Affiliation(s)
- Shabaz Alam
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewon Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Jurich C, Yang ZJ. High-throughput computational investigation of protein electrostatics and cavity for SAM-dependent methyltransferases. Protein Sci 2023; 32:e4690. [PMID: 37278582 PMCID: PMC10273352 DOI: 10.1002/pro.4690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/25/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
S-adenosyl methionine (SAM)-dependent methyl transferases (MTases) are a ubiquitous class of enzymes catalyzing dozens of essential life processes. Despite targeting a large space of substrates with diverse intrinsic reactivity, SAM MTases have similar catalytic efficiency. While understanding of MTase mechanism has grown tremendously through the integration of structural characterization, kinetic assays, and multiscale simulations, it remains elusive how these enzymes have evolved to fit the diverse chemical needs of their respective substrates. In this work, we performed a high-throughput molecular modeling analysis of 91 SAM MTases to better understand how their properties (i.e., electric field [EF] strength and active site volumes) help achieve similar catalytic efficiency toward substrates of different reactivity. We found that EF strengths have largely adjusted to make the target atom a better methyl acceptor. For MTases that target RNA/DNA and histone proteins, our results suggest that EF strength accommodates formal hybridization state and variation in cavity volume trends with diversity of substrate classes. Metal ions in SAM MTases contribute negatively to EF strength for methyl donation and enzyme scaffolds tend to offset these contributions.
Collapse
Affiliation(s)
| | - Zhongyue J. Yang
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashvilleTennesseeUSA
- Data Science InstituteVanderbilt UniversityNashvilleTennesseeUSA
- Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
6
|
Bowling PE, Broderick DR, Herbert JM. Fragment-Based Calculations of Enzymatic Thermochemistry Require Dielectric Boundary Conditions. J Phys Chem Lett 2023; 14:3826-3834. [PMID: 37061921 DOI: 10.1021/acs.jpclett.3c00533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Electronic structure calculations on enzymes require hundreds of atoms to obtain converged results, but fragment-based approximations offer a cost-effective solution. We present calculations on enzyme models containing 500-600 atoms using the many-body expansion, comparing to benchmarks in which the entire enzyme-substrate complex is described at the same level of density functional theory. When the amino acid fragments contain ionic side chains, the many-body expansion oscillates under vacuum boundary conditions but rapid convergence is restored using low-dielectric boundary conditions. This implies that full-system calculations in the gas phase are inappropriate benchmarks for assessing errors in fragment-based approximations. A three-body protocol retains sub-kilocalorie per mole fidelity with respect to a supersystem calculation, as does a two-body calculation combined with a full-system correction at a low-cost level of theory. These protocols pave the way for application of high-level quantum chemistry to large systems via rigorous, ab initio treatment of many-body polarization.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dustin R Broderick
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Wang XN, Zhang JC, Zhang HY, Wang XF, You CX. Ectopic expression of MmSERT, a mouse serotonin transporter gene, regulates salt tolerance and ABA sensitivity in apple and Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107627. [PMID: 36940523 DOI: 10.1016/j.plaphy.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
5-hydroxytryptamine (5-HT) is ubiquitously present in animals and plants, playing a vital regulatory role. SERT, a conserved serotonin reuptake transporter in animals, regulates intracellular and extracellular concentrations of 5-HT. Few studies have reported 5-HT transporters in plants. Hence, we cloned MmSERT, a serotonin reuptake transporter, from Mus musculus. Ectopic expression of MmSERT into apple calli, apple roots and Arabidopsis. Because 5-HT plays a momentous role in plant stress tolerance, we used MmSERT transgenic materials for stress treatment. We found that MmSERT transgenic materials, including apple calli, apple roots and Arabidopsis, exhibited a stronger salt tolerance phenotype. The reactive oxygen species (ROS) produced were significantly lower in MmSERT transgenic materials compared with controls under salt stress. Meanwhile, MmSERT induced the expression of SOS1, SOS3, NHX1, LEA5 and LTP1 in response to salt stress. 5-HT is the precursor of melatonin, which regulates plant growth under adversity and effectively scavenges ROS. Detection of MmSERT transgenic apple calli and Arabidopsis revealed higher melatonin levels than controls. Besides, MmSERT decreased the sensitivity of apple calli and Arabidopsis to abscisic acid (ABA). In summary, these results demonstrated that MmSERT plays a vital role in plant stress resistances, which perhaps serves as a reference for the application of transgenic technology to improve crops in the future.
Collapse
Affiliation(s)
- Xiao-Na Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jiu-Cheng Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hai-Yuan Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
8
|
Gao S, Klinman JP. Functional roles of enzyme dynamics in accelerating active site chemistry: Emerging techniques and changing concepts. Curr Opin Struct Biol 2022; 75:102434. [PMID: 35872562 PMCID: PMC9901422 DOI: 10.1016/j.sbi.2022.102434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/08/2023]
Abstract
With the growing acceptance of the contribution of protein conformational ensembles to enzyme catalysis and regulation, research in the field of protein dynamics has shifted toward an understanding of the atomistic properties of protein dynamical networks and the mechanisms and time scales that control such behavior. A full description of an enzymatic reaction coordinate is expected to extend beyond the active site and include site-specific networks that communicate with the protein/water interface. Advances in experimental tools for the spatial resolution of thermal activation pathways are being complemented by biophysical methods for visualizing dynamics in real time. An emerging multidimensional model integrates the impacts of bound substrate/effector on the distribution of protein substates that are in rapid equilibration near room temperature with reaction-specific protein embedded heat transfer conduits.
Collapse
Affiliation(s)
- Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, United States. https://twitter.com/S_H_Gao
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, CA, 94720, United States; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, United States; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, United States.
| |
Collapse
|
9
|
Brandt F, Jacob CR. Systematic QM Region Construction in QM/MM Calculations Based on Uncertainty Quantification. J Chem Theory Comput 2022; 18:2584-2596. [PMID: 35271768 DOI: 10.1021/acs.jctc.1c01093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While QM/MM studies of enzymatic reactions are widely used in computational chemistry, the results of such studies are subject to numerous sources of uncertainty, and the effect of different choices by the simulation scientist that are required when setting up QM/MM calculations is often unclear. In particular, the selection of the QM region is crucial for obtaining accurate and reliable results. Simply including amino acids by their distance to the active site is mostly not sufficient as necessary residues are missing or unimportant residues are included without evidence. Here, we take a first step toward quantifying uncertainties in QM/MM calculations by assessing the sensitivity of QM/MM reaction energies with respect to variations of the MM point charges. We show that such a point charge variation analysis (PCVA) can be employed to judge the accuracy of QM/MM reaction energies obtained with a selected QM region and devise a protocol to systematically construct QM regions that minimize this uncertainty. We apply such a PCVA to the example of catechol O-methyltransferase and demonstrate that it provides a simple and reliable approach for the construction of the QM region. Our PCVA-based scheme is computationally efficient and requires only calculations for a system with a minimal QM region. Our work highlights the promise of applying methods of uncertainty quantification in computational chemistry.
Collapse
Affiliation(s)
- Felix Brandt
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| |
Collapse
|
10
|
Demapan D, Kussmann J, Ochsenfeld C, Cui Q. Factors That Determine the Variation of Equilibrium and Kinetic Properties of QM/MM Enzyme Simulations: QM Region, Conformation, and Boundary Condition. J Chem Theory Comput 2022; 18:2530-2542. [PMID: 35226489 PMCID: PMC9652774 DOI: 10.1021/acs.jctc.1c00714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To analyze the impact of various technical details on the results of quantum mechanical (QM)/molecular mechanical (MM) enzyme simulations, including the QM region size, catechol-O-methyltransferase (COMT) is studied as a model system using an approximate QM/MM method (DFTB3/CHARMM). The results show that key equilibrium and kinetic properties for methyl transfer in COMT exhibit limited variations with respect to the size of the QM region, which ranges from ∼100 to ∼500 atoms in this study. With extensive sampling, local and global structural characteristics of the enzyme are largely conserved across the studied QM regions, while the nature of the transition state (e.g., secondary kinetic isotope effect) and reaction exergonicity are largely maintained. Deviations in the free energy profile with different QM region sizes are similar in magnitude to those observed with changes in other simulation protocols, such as different initial enzyme conformations and boundary conditions. Electronic structural properties, such as the covariance matrix of residual charge fluctuations, appear to exhibit rather long-range correlations, especially when the peptide backbone is included in the QM region; this observation holds when a range-separated DFT approach is used as the QM region, suggesting that delocalization error is unlikely the origin. Overall, the analyses suggest that multiple simulation details determine the results of QM/MM enzyme simulations with comparable contributions.
Collapse
Affiliation(s)
- Darren Demapan
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 7 (C), D-81377 Munich, Germany.,Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jörg Kussmann
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 7 (C), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 7 (C), D-81377 Munich, Germany
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
11
|
Harder, better, faster, stronger: Large-scale QM and QM/MM for predictive modeling in enzymes and proteins. Curr Opin Struct Biol 2021; 72:9-17. [PMID: 34388673 DOI: 10.1016/j.sbi.2021.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022]
Abstract
Computational prediction of enzyme mechanism and protein function requires accurate physics-based models and suitable sampling. We discuss recent advances in large-scale quantum mechanical (QM) modeling of biochemical systems that have reduced the cost of high-accuracy models. Tradeoffs between sampling and accuracy have motivated modeling with molecular mechanics (MM) in a multiscale QM/MM or iterative approach. Limitations to both conventional density-functional theory and classical MM force fields remain for describing noncovalent interactions in comparison to experiment or wavefunction theory. Because predictions of enzyme action (i.e. electrostatics), free energy barriers, and mechanisms are sensitive to the protocol and embedding method in QM/MM, convergence tests and systematic methods for quantifying QM-level interactions are a needed, active area of development.
Collapse
|
12
|
Wilamowski M, Sherrell DA, Minasov G, Kim Y, Shuvalova L, Lavens A, Chard R, Maltseva N, Jedrzejczak R, Rosas-Lemus M, Saint N, Foster IT, Michalska K, Satchell KJF, Joachimiak A. 2'-O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography. Proc Natl Acad Sci U S A 2021; 118:e2100170118. [PMID: 33972410 PMCID: PMC8166198 DOI: 10.1073/pnas.2100170118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus has a capping modification at the 5'-untranslated region (UTR) to prevent its degradation by host nucleases. These modifications are performed by the Nsp10/14 and Nsp10/16 heterodimers using S-adenosylmethionine as the methyl donor. Nsp10/16 heterodimer is responsible for the methylation at the ribose 2'-O position of the first nucleotide. To investigate the conformational changes of the complex during 2'-O methyltransferase activity, we used a fixed-target serial synchrotron crystallography method at room temperature. We determined crystal structures of Nsp10/16 with substrates and products that revealed the states before and after methylation, occurring within the crystals during the experiments. Here we report the crystal structure of Nsp10/16 in complex with Cap-1 analog (m7GpppAm2'-O). Inhibition of Nsp16 activity may reduce viral proliferation, making this protein an attractive drug target.
Collapse
Affiliation(s)
- Mateusz Wilamowski
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, Krakow 30387, Poland
| | - Darren A Sherrell
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Ludmilla Shuvalova
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Alex Lavens
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Ryan Chard
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439
| | - Natalia Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Monica Rosas-Lemus
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Nickolaus Saint
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439
| | - Ian T Foster
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439
| | - Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Karla J F Satchell
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637;
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439
| |
Collapse
|
13
|
Liu F, Zhang J. Nano-second protein dynamics of key residue at Position 38 in catechol-O-methyltransferase system: a time-resolved fluorescence study. J Biochem 2020; 168:417-425. [DOI: 10.1093/jb/mvaa063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/17/2020] [Indexed: 02/02/2023] Open
Abstract
AbstractHuman catechol-O-methyltransferase, a key enzyme related to neurotransmitter metabolism, catalyses a methyl transfer from S-adenosylmethionine to catechol. Although extensive studies aim to understand the enzyme mechanisms, the connection of protein dynamics and enzyme catalysis is still not clear. Here, W38in (Trp143Phe) and W38in/Y68A (Trp143Phe with Tyr68Ala) mutants were carried out to study the relationship of dynamics and catalysis in nano-second timescale using time-resolved fluorescence lifetimes and Stokes shifts in various solvents. The comprehensive data implied the mutant W38in/Y68A with lower activity is more rigid than the ‘WT’−W38in, suggesting the importance of flexibility at residue 38 to maintain the optimal catalysis.
Collapse
Affiliation(s)
- Fan Liu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jianyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
14
|
Lim D, Wen X, Seebeck FP. Selenoimidazolium Salts as Supramolecular Reagents for Protein Alkylation. Chembiochem 2020; 21:3515-3520. [DOI: 10.1002/cbic.202000557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/15/2022]
Affiliation(s)
- David Lim
- Department of Chemistry University of Basel Mattenstrasse 24a Basel 4002 Switzerland
| | - Xiaojin Wen
- Department of Chemistry University of Basel Mattenstrasse 24a Basel 4002 Switzerland
| | - Florian P. Seebeck
- Department of Chemistry University of Basel Mattenstrasse 24a Basel 4002 Switzerland
| |
Collapse
|
15
|
Roca M, Williams IH. Transition-State Vibrational Analysis and Isotope Effects for COMT-Catalyzed Methyl Transfer. J Am Chem Soc 2020; 142:15548-15559. [PMID: 32812761 PMCID: PMC7498148 DOI: 10.1021/jacs.0c07344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isotopic partition-function ratios (IPFRs) computed for transition structures (TSs) of the methyl-transfer reaction catalyzed by catechol O-methyltransferase and modeled by hybrid QM/MM methods are analyzed. The ability of smaller Hessians to reproduce trends in α-3H3 and 14Cα IPFRs as obtained using the much larger subset QM/MM Hessians from which they are extracted is investigated critically. A 6-atom-extracted Hessian reproduces perfectly the α-T3 IPFR values from the full-subset Hessians of all the TSs but not the α-14CIPFRs. Average AM1/OPLS-AA harmonic frequencies and mean-square amplitudes are presented for the 12 normal modes of the α-CH3 moiety within the active site of several enzymic transition structures, together with QM/MM potential energy scans along each of these modes to assess the degree of anharmonicity. A novel investigation of ponderal effects upon IPFRs suggests that the value for α-14C tends toward a limiting minimum whereas that for α-T3 tends toward a limiting maximum as the mass of the rest of the system increases. The transition vector is dominated by motions of atoms within the donor and acceptor moieties and is very well described as a simple combination of Walden-inversion "umbrella" bending and asymmetric stretching of the SCα and CαO bonds. The contribution of atoms of the protein residues Met40, Tyr68, and Asp141 to the transition vector is extremely small. Average valence force constants for the COMT TS show significant differences from early BEBOVIB estimates which were used in support of the compression hypothesis for catalysis. There is no correlation between TS IPFRs and the nonbonded distances for close contacts between the S atom of SAM and Tyr68 or between any of the H atoms of the transferring methyl group and either Met40 or Asp141.
Collapse
Affiliation(s)
- Maite Roca
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Ian H Williams
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
16
|
Zhang J, Balsbaugh JL, Gao S, Ahn NG, Klinman JP. Hydrogen deuterium exchange defines catalytically linked regions of protein flexibility in the catechol O-methyltransferase reaction. Proc Natl Acad Sci U S A 2020; 117:10797-10805. [PMID: 32371482 PMCID: PMC7245127 DOI: 10.1073/pnas.1917219117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human catechol O-methyltransferase (COMT) has emerged as a model for understanding enzyme-catalyzed methyl transfer from S-adenosylmethionine (AdoMet) to small-molecule catecholate acceptors. Mutation of a single residue (tyrosine 68) behind the methyl-bearing sulfonium of AdoMet was previously shown to impair COMT activity by interfering with methyl donor-acceptor compaction within the activated ground state of the wild type enzyme [J. Zhang, H. J. Kulik, T. J. Martinez, J. P. Klinman, Proc. Natl. Acad. Sci. U.S.A. 112, 7954-7959 (2015)]. This predicts the involvement of spatially defined protein dynamical effects that further tune the donor/acceptor distance and geometry as well as the electrostatics of the reactants. Here, we present a hydrogen/deuterium exchange (HDX)-mass spectrometric study of wild type and mutant COMT, comparing temperature dependences of HDX against corresponding kinetic and cofactor binding parameters. The data show that the impaired Tyr68Ala mutant displays similar breaks in Arrhenius plots of both kinetic and HDX properties that are absent in the wild type enzyme. The spatial resolution of HDX below a break point of 15-20 °C indicates changes in flexibility across ∼40% of the protein structure that is confined primarily to the periphery of the AdoMet binding site. Above 20 °C, Tyr68Ala behaves more like WT in HDX, but its rate and enthalpic barrier remain significantly altered. The impairment of catalysis by Tyr68Ala can be understood in the context of a mutationally induced alteration in protein motions that becomes manifest along and perpendicular to the primary group transfer coordinate.
Collapse
Affiliation(s)
- Jianyu Zhang
- Department of Chemistry, University of California, Berkeley, CA 94720
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Jeremy L Balsbaugh
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Shuaihua Gao
- Department of Chemistry, University of California, Berkeley, CA 94720
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Natalie G Ahn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309;
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Judith P Klinman
- Department of Chemistry, University of California, Berkeley, CA 94720;
- The California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
17
|
Theoretical O–CH3 bond dissociation enthalpies of selected aromatic and non-aromatic molecules. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02592-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Abstract
This first serious attempt at an autobiographical accounting has forced me to sit still long enough to compile my thoughts about a long personal and scientific journey. I especially hope that my trajectory will be of interest and perhaps beneficial to much younger women who are just getting started in their careers. To paraphrase from Virginia Woolf's writings in A Room of One's Own at the beginning of the 20th century, "for most of history Anonymous was a Woman." However, Ms. Woolf is also quoted as saying "nothing has really happened until it has been described," a harbinger of the enormous historical changes that were about to be enacted and recorded by women in the sciences and other disciplines. The progress in my chosen field of study-the chemical basis of enzyme action-has also been remarkable, from the first description of an enzyme's 3D structure to a growing and deep understanding of the origins of enzyme catalysis.
Collapse
Affiliation(s)
- Judith P Klinman
- Department of Chemistry, Department of Molecular and Cell Biology, and California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA;
| |
Collapse
|
19
|
Abstract
For decades, there has been debate regarding the origin of the catalytic power of enzymes. In this work, we use the approach of computational chemistry to study the enzyme catechol O-methyltransferase (COMT) and reveal that the two current views on the catalytic mechanism of enzymes, the rate-promoting vibrations and the electric field, may both be viewed as part of the chemical step catalyzed by COMT. However, we show that the rate-promoting vibrations cause the electrostatic effect. This work provides insight into the catalytic mechanism of COMT and resolves a longstanding controversy regarding this enzyme's mechanism.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Steven D. Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
20
|
Yang Z, Liu F, Steeves AH, Kulik HJ. Quantum Mechanical Description of Electrostatics Provides a Unified Picture of Catalytic Action Across Methyltransferases. J Phys Chem Lett 2019; 10:3779-3787. [PMID: 31244268 DOI: 10.1021/acs.jpclett.9b01555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Methyl transferases (MTases) are a well-studied class of enzymes for which competing enzymatic enhancement mechanisms have been suggested, ranging from structural methyl group CH···X hydrogen bonds (HBs) to electrostatic- and charge-transfer-driven stabilization of the transition state (TS). We identified all Class I MTases for which reasonable resolution (<2.0 Å) crystal structures could be used to form catalytically competent ternary complexes for multiscale (i.e., quantum-mechanical/molecular-mechanical or QM/MM) simulation of the SN2 methyl transfer reaction coordinate. The four Class I MTases studied have both distinct functions (e.g., protein repair or biosynthesis) and substrate nucleophiles (i.e., C, N, or O). While CH···X HBs stabilize all reactant complexes, no universal TS stabilization role is found for these interactions in MTases. A consistent picture is instead obtained through analysis of charge transfer and electrostatics, wherein much of cofactor-substrate charge separation is maintained in the TS region, and electrostatic potential is correlated with substrate nucleophilicity (i.e., intrinsic reactivity).
Collapse
Affiliation(s)
- Zhongyue Yang
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Fang Liu
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Adam H Steeves
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Heather J Kulik
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
21
|
Czarnota S, Johannissen LO, Baxter NJ, Rummel F, Wilson AL, Cliff MJ, Levy CW, Scrutton NS, Waltho JP, Hay S. Equatorial Active Site Compaction and Electrostatic Reorganization in Catechol- O-methyltransferase. ACS Catal 2019; 9:4394-4401. [PMID: 31080692 PMCID: PMC6503465 DOI: 10.1021/acscatal.9b00174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Catechol-O-methyltransferase (COMT) is a model S-adenosyl-l-methionine (SAM) dependent methyl transferase, which catalyzes the methylation of catecholamine neurotransmitters such as dopamine in the primary pathway of neurotransmitter deactivation in animals. Despite extensive study, there is no consensus view of the physical basis of catalysis in COMT. Further progress requires experimental data that directly probes active site geometry, protein dynamics and electrostatics, ideally in a range of positions along the reaction coordinate. Here we establish that sinefungin, a fungal-derived inhibitor of SAM-dependent enzymes that possess transition state-like charge on the transferring group, can be used as a transition state analog of COMT when combined with a catechol. X-ray crystal structures and NMR backbone assignments of the ternary complexes of the soluble form of human COMT containing dinitrocatechol, Mg2+ and SAM or sinefungin were determined. Comparison and further analysis with the aid of density functional theory calculations and molecular dynamics simulations provides evidence for active site "compaction", which is driven by electrostatic stabilization between the transferring methyl group and "equatorial" active site residues that are orthogonal to the donor-acceptor (pseudo reaction) coordinate. We propose that upon catecholamine binding and subsequent proton transfer to Lys 144, the enzyme becomes geometrically preorganized, with little further movement along the donor-acceptor coordinate required for methyl transfer. Catalysis is then largely facilitated through stabilization of the developing charge on the transferring methyl group via "equatorial" H-bonding and electrostatic interactions orthogonal to the donor-acceptor coordinate.
Collapse
Affiliation(s)
- Sylwia Czarnota
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nicola J. Baxter
- Krebs
Institute for Biomolecular Research, Department of Molecular Biology
and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Felix Rummel
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Alex L. Wilson
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Matthew J. Cliff
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Colin W. Levy
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Jonathan P. Waltho
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Krebs
Institute for Biomolecular Research, Department of Molecular Biology
and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
22
|
Mehmood R, Qi HW, Steeves AH, Kulik HJ. The Protein’s Role in Substrate Positioning and Reactivity for Biosynthetic Enzyme Complexes: The Case of SyrB2/SyrB1. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Qi HW, Kulik HJ. Evaluating Unexpectedly Short Non-covalent Distances in X-ray Crystal Structures of Proteins with Electronic Structure Analysis. J Chem Inf Model 2019; 59:2199-2211. [DOI: 10.1021/acs.jcim.9b00144] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Helena W. Qi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Yang Z, Mehmood R, Wang M, Qi HW, Steeves AH, Kulik HJ. Revealing quantum mechanical effects in enzyme catalysis with large-scale electronic structure simulation. REACT CHEM ENG 2019; 4:298-315. [PMID: 31572618 PMCID: PMC6768422 DOI: 10.1039/c8re00213d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymes have evolved to facilitate challenging reactions at ambient conditions with specificity seldom matched by other catalysts. Computational modeling provides valuable insight into catalytic mechanism, and the large size of enzymes mandates multi-scale, quantum mechanical-molecular mechanical (QM/MM) simulations. Although QM/MM plays an essential role in balancing simulation cost to enable sampling with full QM treatment needed to understand electronic structure in enzyme active sites, the relative importance of these two strategies for understanding enzyme mechanism is not well known. We explore challenges in QM/MM for studying the reactivity and stability of three diverse enzymes: i) Mg2+-dependent catechol O-methyltransferase (COMT), ii) radical enzyme choline trimethylamine lyase (CutC), and iii) DNA methyltransferase (DNMT1), which has structural Zn2+ binding sites. In COMT, strong non-covalent interactions lead to long range coupling of electronic structure properties across the active site, but the more isolated nature of the metallocofactor in DNMT1 leads to faster convergence of some properties. We quantify these effects in COMT by computing covariance matrices of by-residue electronic structure properties during dynamics and along the reaction coordinate. In CutC, we observe spontaneous bond cleavage following initiation events, highlighting the importance of sampling and dynamics. We use electronic structure analysis to quantify the relative importance of CHO and OHO non-covalent interactions in imparting reactivity. These three diverse cases enable us to provide some general recommendations regarding QM/MM simulation of enzymes.
Collapse
Affiliation(s)
- Zhongyue Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Rimsha Mehmood
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mengyi Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Helena W. Qi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Adam H. Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
25
|
Kulkarni Y, Kamerlin SCL. Computational physical organic chemistry using the empirical valence bond approach. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2019. [DOI: 10.1016/bs.apoc.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Crystallographic and Computational Characterization of Methyl Tetrel Bonding in S-Adenosylmethionine-Dependent Methyltransferases. Molecules 2018; 23:molecules23112965. [PMID: 30428636 PMCID: PMC6278250 DOI: 10.3390/molecules23112965] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 11/17/2022] Open
Abstract
Tetrel bonds represent a category of non-bonding interaction wherein an electronegative atom donates a lone pair of electrons into the sigma antibonding orbital of an atom in the carbon group of the periodic table. Prior computational studies have implicated tetrel bonding in the stabilization of a preliminary state that precedes the transition state in SN2 reactions, including methyl transfer. Notably, the angles between the tetrel bond donor and acceptor atoms coincide with the prerequisite geometry for the SN2 reaction. Prompted by these findings, we surveyed crystal structures of methyltransferases in the Protein Data Bank and discovered multiple instances of carbon tetrel bonding between the methyl group of the substrate S-adenosylmethionine (AdoMet) and electronegative atoms of small molecule inhibitors, ions, and solvent molecules. The majority of these interactions involve oxygen atoms as the Lewis base, with the exception of one structure in which a chlorine atom of an inhibitor functions as the electron donor. Quantum mechanical analyses of a representative subset of the methyltransferase structures from the survey revealed that the calculated interaction energies and spectral properties are consistent with the values for bona fide carbon tetrel bonds. The discovery of methyl tetrel bonding offers new insights into the mechanism underlying the SN2 reaction catalyzed by AdoMet-dependent methyltransferases. These findings highlight the potential of exploiting these interactions in developing new methyltransferase inhibitors.
Collapse
|
27
|
Saez DA, Zinovjev K, Tuñón I, Vöhringer-Martinez E. Catalytic Reaction Mechanism in Native and Mutant Catechol-O-methyltransferase from the Adaptive String Method and Mean Reaction Force Analysis. J Phys Chem B 2018; 122:8861-8871. [DOI: 10.1021/acs.jpcb.8b07339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- David Adrian Saez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, 4070371 Concepcion, Chile
| | - Kirill Zinovjev
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Esteban Vöhringer-Martinez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, 4070371 Concepcion, Chile
| |
Collapse
|
28
|
Kulik HJ. Large-scale QM/MM free energy simulations of enzyme catalysis reveal the influence of charge transfer. Phys Chem Chem Phys 2018; 20:20650-20660. [PMID: 30059109 PMCID: PMC6085747 DOI: 10.1039/c8cp03871f] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hybrid quantum mechanical-molecular mechanical (QM/MM) simulations provide key insights into enzyme structure-function relationships. Numerous studies have demonstrated that large QM regions are needed to systematically converge ground state, zero temperature properties with electrostatic embedding QM/MM. However, it is not well known if ab initio QM/MM free energy simulations have this same dependence, in part due to the hundreds of thousands of energy evaluations required for free energy estimations that in turn limit QM region size. Here, we leverage recent advances in electronic structure efficiency and accuracy to carry out range-separated hybrid density functional theory free energy simulations in a representative methyltransferase. By studying 200 ps of ab initio QM/MM dynamics for each of five QM regions from minimal (64 atoms) to one-sixth of the protein (544 atoms), we identify critical differences between large and small QM region QM/MM in charge transfer between substrates and active site residues as well as in geometric structure and dynamics that coincide with differences in predicted free energy barriers. Distinct geometric and electronic structure features in the largest QM region indicate that important aspects of enzymatic rate enhancement in methyltransferases are identified with large-scale electronic structure.
Collapse
Affiliation(s)
- Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
29
|
Catechol-O-Methyltransferase and UDP-Glucuronosyltransferases in the Metabolism of Baicalein in Different Species. Eur J Drug Metab Pharmacokinet 2018; 42:981-992. [PMID: 28536775 DOI: 10.1007/s13318-017-0419-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Baicalein is the major bioactive flavonoid in some herb medicines and dietary plants; however, the detailed metabolism pathway of its major metabolite oroxylin A-7-O-β-D-glucuronide in human was not clear. It was important to illustrate the major metabolic enzymes that participate in its elimination for the clinic use of baicalein. OBJECTIVES We first revealed a two-step metabolism profile for baicalein and illustrated the combination of catechol-O-methyltransferase (COMT) and uridine diphosphate-glucuronosyltransferases (UGTs) in drug metabolism, further evaluated its bioactivity variation during drug metabolism. METHODS The metabolism profiles were systematically characterized in different human biology preparations; after then, the anti-inflammatory activities of metabolites were evaluated in LPS-induced RAW264.7 cell. RESULTS The first-step metabolite of baicalein was isolated and identified as oroxylin A; soluble-bound COMT (S-COMT) was the major enzyme responsible for its biotransformation. Specially, position 108 mutation of S-COMT significantly decreases the elimination. Meantime, oroxylin A was rapidly metabolized by UGTs, UGT1A1, -1A3, -1A6, -1A7, -1A8, -1A9, and -1A10 which were involved in the glucuronidation. Considerable species differences were observed with 1060-fold K m (3.05 ± 1.86-3234 ± 475 μM) and 330-fold CLint (5.93-1973 μL/min/mg) variations for baicalein metabolism. Finally, the middle metabolite oroxylin A exhibited a potent anti-inflammatory activity with the IC50 value of 28 μM. CONCLUSION The detailed kinetic parameters indicated that COMT provide convenience for the next glucuronidation; monkey would be a preferred animal model for the preclinical investigation of baicalein. Importantly, oroxylin A should be reconsidered in evaluating baicalein efficacy against inflammatory diseases.
Collapse
|
30
|
Świderek K, Tuñón I, Williams IH, Moliner V. Insights on the Origin of Catalysis on Glycine N-Methyltransferase from Computational Modeling. J Am Chem Soc 2018; 140:4327-4334. [PMID: 29460630 PMCID: PMC6613375 DOI: 10.1021/jacs.7b13655] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The origin of enzyme catalysis remains a question of debate despite much intense study. We report a QM/MM theoretical study of the SN2 methyl transfer reaction catalyzed by a glycine N-methyltransferase (GNMT) and three mutants to test whether recent experimental observations of rate-constant reductions and variations in inverse secondary α-3H kinetic isotope effects (KIEs) should be attributed to changes in the methyl donor-acceptor distance (DAD): Is catalysis due to a compression effect? Semiempirical (AM1) and DFT (M06-2X) methods were used to describe the QM subset of atoms, while OPLS-AA and TIP3P classical force fields were used for the protein and water molecules, respectively. The computed activation free energies and KIEs are in good agreement with experimental data, but the mutations do not meaningfully affect the DAD: Compression cannot explain the experimental variations on KIEs. On the contrary, electrostatic properties in the active site correlate with the catalytic activity of wild type and mutants. The plasticity of the enzyme moderates the effects of the mutations, explaining the rather small degree of variation in KIEs and reactivities.
Collapse
Affiliation(s)
- Katarzyna Świderek
- Departament de Química Física i Analítica; Universitat Jaume I, 12071 Castellón (Spain)
- Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom)
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjasot (Spain)
| | - Ian H. Williams
- Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom)
| | - Vicent Moliner
- Departament de Química Física i Analítica; Universitat Jaume I, 12071 Castellón (Spain)
- Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom)
| |
Collapse
|
31
|
Boehr DD, D'Amico RN, O'Rourke KF. Engineered control of enzyme structural dynamics and function. Protein Sci 2018; 27:825-838. [PMID: 29380452 DOI: 10.1002/pro.3379] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
32
|
Das S, Nam K, Major DT. Rapid Convergence of Energy and Free Energy Profiles with Quantum Mechanical Size in Quantum Mechanical–Molecular Mechanical Simulations of Proton Transfer in DNA. J Chem Theory Comput 2018; 14:1695-1705. [DOI: 10.1021/acs.jctc.7b00964] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Susanta Das
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Kwangho Nam
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
33
|
Wilson PB, Williams IH. Computational Modeling of a Caged Methyl Cation: Structure, Energetics, and Vibrational Analysis. J Phys Chem A 2018; 122:1432-1438. [DOI: 10.1021/acs.jpca.7b11836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Philippe B. Wilson
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Leicester
School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, United Kingdom
| | - Ian H. Williams
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
34
|
Klinman JP, Offenbacher AR, Hu S. Origins of Enzyme Catalysis: Experimental Findings for C-H Activation, New Models, and Their Relevance to Prevailing Theoretical Constructs. J Am Chem Soc 2017; 139:18409-18427. [PMID: 29244501 PMCID: PMC5812730 DOI: 10.1021/jacs.7b08418] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C-H activating systems have provided considerable insight into the relationship between an enzyme's overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C-H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor-acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement.
Collapse
Affiliation(s)
- Judith P Klinman
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| | - Adam R Offenbacher
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| | - Shenshen Hu
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| |
Collapse
|
35
|
Gao H, Zhao Q, Song Z, Yang Z, Wu Y, Tang S, Alahdal M, Zhang Y, Jin L. PGLP‐1, a novel long‐acting dual‐function GLP‐1 analog, ameliorates streptozotocin‐induced hyperglycemia and inhibits body weight loss. FASEB J 2017; 31:3527-3539. [DOI: 10.1096/fj.201700002r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/11/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Huashan Gao
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningSchool of Life Science and TechnologyChina Pharmaceutical University Nanjing China
- College of Chemistry and Chemical EngineeringPingdingshan University Pingdingshan China
| | - Qian Zhao
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningSchool of Life Science and TechnologyChina Pharmaceutical University Nanjing China
| | - Ziwei Song
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningSchool of Life Science and TechnologyChina Pharmaceutical University Nanjing China
| | - Zhaocong Yang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningSchool of Life Science and TechnologyChina Pharmaceutical University Nanjing China
| | - You Wu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningSchool of Life Science and TechnologyChina Pharmaceutical University Nanjing China
| | - Shanshan Tang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningSchool of Life Science and TechnologyChina Pharmaceutical University Nanjing China
| | - Murad Alahdal
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningSchool of Life Science and TechnologyChina Pharmaceutical University Nanjing China
| | - Yanfeng Zhang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningSchool of Life Science and TechnologyChina Pharmaceutical University Nanjing China
| | - Liang Jin
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug ScreeningSchool of Life Science and TechnologyChina Pharmaceutical University Nanjing China
| |
Collapse
|
36
|
Erickson T, Morgan CP, Olt J, Hardy K, Busch-Nentwich E, Maeda R, Clemens R, Krey JF, Nechiporuk A, Barr-Gillespie PG, Marcotti W, Nicolson T. Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). eLife 2017; 6:e28474. [PMID: 28534737 PMCID: PMC5462536 DOI: 10.7554/elife.28474] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/20/2017] [Indexed: 01/18/2023] Open
Abstract
Transmembrane O-methyltransferase (TOMT/LRTOMT) is responsible for non-syndromic deafness DFNB63. However, the specific defects that lead to hearing loss have not been described. Using a zebrafish model of DFNB63, we show that the auditory and vestibular phenotypes are due to a lack of mechanotransduction (MET) in Tomt-deficient hair cells. GFP-tagged Tomt is enriched in the Golgi of hair cells, suggesting that Tomt might regulate the trafficking of other MET components to the hair bundle. We found that Tmc1/2 proteins are specifically excluded from the hair bundle in tomt mutants, whereas other MET complex proteins can still localize to the bundle. Furthermore, mouse TOMT and TMC1 can directly interact in HEK 293 cells, and this interaction is modulated by His183 in TOMT. Thus, we propose a model of MET complex assembly where Tomt and the Tmcs interact within the secretory pathway to traffic Tmc proteins to the hair bundle.
Collapse
Affiliation(s)
- Timothy Erickson
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Clive P Morgan
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | - Katherine Hardy
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | | | - Reo Maeda
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Rachel Clemens
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Jocelyn F Krey
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Alex Nechiporuk
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, United States
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, United States
| | - Teresa Nicolson
- Oregon Hearing Research Center and the Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
37
|
Warshel A, Bora RP. Perspective: Defining and quantifying the role of dynamics in enzyme catalysis. J Chem Phys 2017; 144:180901. [PMID: 27179464 DOI: 10.1063/1.4947037] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enzymes control chemical reactions that are key to life processes, and allow them to take place on the time scale needed for synchronization between the relevant reaction cycles. In addition to general interest in their biological roles, these proteins present a fundamental scientific puzzle, since the origin of their tremendous catalytic power is still unclear. While many different hypotheses have been put forward to rationalize this, one of the proposals that has become particularly popular in recent years is the idea that dynamical effects contribute to catalysis. Here, we present a critical review of the dynamical idea, considering all reasonable definitions of what does and does not qualify as a dynamical effect. We demonstrate that no dynamical effect (according to these definitions) has ever been experimentally shown to contribute to catalysis. Furthermore, the existence of non-negligible dynamical contributions to catalysis is not supported by consistent theoretical studies. Our review is aimed, in part, at readers with a background in chemical physics and biophysics, and illustrates that despite a substantial body of experimental effort, there has not yet been any study that consistently established a connection between an enzyme's conformational dynamics and a significant increase in the catalytic contribution of the chemical step. We also make the point that the dynamical proposal is not a semantic issue but a well-defined scientific hypothesis with well-defined conclusions.
Collapse
Affiliation(s)
- Arieh Warshel
- Department of Chemistry, University of Southern California, SGM 418, 3620 McClintock Avenue, Los Angeles, California 90089, USA
| | - Ram Prasad Bora
- Department of Chemistry, University of Southern California, SGM 418, 3620 McClintock Avenue, Los Angeles, California 90089, USA
| |
Collapse
|
38
|
Stratton CF, Poulin MB, Du Q, Schramm VL. Kinetic Isotope Effects and Transition State Structure for Human Phenylethanolamine N-Methyltransferase. ACS Chem Biol 2017; 12:342-346. [PMID: 27997103 PMCID: PMC5553282 DOI: 10.1021/acschembio.6b00922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenylethanolamine N-methyltransferase (PNMT) catalyzes the S-adenosyl-l-methionine (SAM)-dependent conversion of norepinephrine to epinephrine. Epinephrine has been associated with critical processes in humans including the control of respiration and blood pressure. Additionally, PNMT activity has been suggested to play a role in hypertension and Alzheimer's disease. In the current study, labeled SAM substrates were used to measure primary methyl-14C and 36S and secondary methyl-3H, 5'-3H, and 5'-14C intrinsic kinetic isotope effects for human PNMT. The transition state of human PNMT was modeled by matching kinetic isotope effects predicted via quantum chemical calculations to intrinsic values. The model provides information on the geometry and electrostatics of the human PNMT transition state structure and indicates that human PNMT catalyzes the formation of epinephrine through an early SN2 transition state in which methyl transfer is rate-limiting.
Collapse
Affiliation(s)
- Christopher F. Stratton
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | | | - Quan Du
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | | |
Collapse
|
39
|
Horitani M, Offenbacher AR, Carr CAM, Yu T, Hoeke V, Cutsail GE, Hammes-Schiffer S, Klinman JP, Hoffman BM. 13C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling. J Am Chem Soc 2017; 139:1984-1997. [PMID: 28121140 PMCID: PMC5322796 DOI: 10.1021/jacs.6b11856] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 12/20/2022]
Abstract
In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn2+ as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. 13C ENDOR then reveals the locations of 13C10 and reactive 13C11 of linoleic acid relative to the metal; 1H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.
Collapse
Affiliation(s)
- Masaki Horitani
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Cody A. Marcus Carr
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Tao Yu
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Veronika Hoeke
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George E. Cutsail
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sharon Hammes-Schiffer
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Judith P. Klinman
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Brian M. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
40
|
Abstract
Metabolism is a biotransformation process, where endogenous and exogenous compounds are converted to more polar products to facilitate their elimination from the body. The process of metabolism is divided into 3 phases. Phase I metabolism involves functionalization reactions. Phase II drug metabolism is a conjugation reaction. Phase III refers to transporter-mediated elimination of drug and/or metabolites from body normally via liver, gut, kidney, or lung. This review presents basic information on drug-metabolizing enzymes and potential factors that might affect the metabolic capacities of the enzyme or alter drug response or drug-mediated toxicities.
Collapse
Affiliation(s)
- Omar Abdulhameed Almazroo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 731 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | - Mohammad Kowser Miah
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 731 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 718 Salk Hall, 3501 Terrace Street, Pittsburgh, PA 15261, USA; Department of Pathology, University of Pittsburgh Medical Center, Thomas Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
41
|
Karelina M, Kulik HJ. Systematic Quantum Mechanical Region Determination in QM/MM Simulation. J Chem Theory Comput 2017; 13:563-576. [DOI: 10.1021/acs.jctc.6b01049] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maria Karelina
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Siegrist J, Netzer J, Mordhorst S, Karst L, Gerhardt S, Einsle O, Richter M, Andexer JN. Functional and structural characterisation of a bacterialO-methyltransferase and factors determining regioselectivity. FEBS Lett 2017; 591:312-321. [DOI: 10.1002/1873-3468.12530] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/24/2016] [Accepted: 12/12/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Jutta Siegrist
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Germany
| | - Julia Netzer
- Institute of Biochemistry; Albert-Ludwigs-University Freiburg; Germany
| | - Silja Mordhorst
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Germany
| | - Lukas Karst
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Germany
| | - Stefan Gerhardt
- Institute of Biochemistry; Albert-Ludwigs-University Freiburg; Germany
| | - Oliver Einsle
- Institute of Biochemistry; Albert-Ludwigs-University Freiburg; Germany
- BIOSS Centre for Biological Signalling Studies; Freiburg Germany
| | - Michael Richter
- Bio-, Electro- and Chemocatalysis BioCat, Straubing Branch; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Straubing Germany
| | - Jennifer N. Andexer
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-University Freiburg; Germany
| |
Collapse
|
43
|
|
44
|
Kulik H, Zhang J, Klinman J, Martínez TJ. How Large Should the QM Region Be in QM/MM Calculations? The Case of Catechol O-Methyltransferase. J Phys Chem B 2016; 120:11381-11394. [PMID: 27704827 PMCID: PMC5108028 DOI: 10.1021/acs.jpcb.6b07814] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/09/2016] [Indexed: 01/29/2023]
Abstract
Hybrid quantum mechanical-molecular mechanical (QM/MM) simulations are widely used in studies of enzymatic catalysis. Until recently, it has been cost prohibitive to determine the asymptotic limit of key energetic and structural properties with respect to increasingly large QM regions. Leveraging recent advances in electronic structure efficiency and accuracy, we investigate catalytic properties in catechol O-methyltransferase, a prototypical methyltransferase critical to human health. Using QM regions ranging in size from reactants-only (64 atoms) to nearly one-third of the entire protein (940 atoms), we show that properties such as the activation energy approach within chemical accuracy of the large-QM asymptotic limits rather slowly, requiring approximately 500-600 atoms if the QM residues are chosen simply by distance from the substrate. This slow approach to asymptotic limit is due to charge transfer from protein residues to the reacting substrates. Our large QM/MM calculations enable identification of charge separation for fragments in the transition state as a key component of enzymatic methyl transfer rate enhancement. We introduce charge shift analysis that reveals the minimum number of protein residues (approximately 11-16 residues or 200-300 atoms for COMT) needed for quantitative agreement with large-QM simulations. The identified residues are not those that would be typically selected using criteria such as chemical intuition or proximity. These results provide a recipe for a more careful determination of QM region sizes in future QM/MM studies of enzymes.
Collapse
Affiliation(s)
- Heather
J. Kulik
- Department
of Chemistry and PULSE Institute, Stanford
University, Stanford, California 94305, United States
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jianyu Zhang
- Departments
of Chemistry and of Molecular and Cell Biology, and California Institute
for Quantitative Biosciences, University
of California, Berkeley, California 94720, United States
| | - Judith
P. Klinman
- Departments
of Chemistry and of Molecular and Cell Biology, and California Institute
for Quantitative Biosciences, University
of California, Berkeley, California 94720, United States
| | - Todd J. Martínez
- Department
of Chemistry and PULSE Institute, Stanford
University, Stanford, California 94305, United States
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
45
|
Structural and functional aspects of decorsin and its analog as recognized by integrin αIIbβ3. J Mol Model 2016; 22:281. [PMID: 27796783 DOI: 10.1007/s00894-016-3147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
Abstract
Decorsin is an antagonist of platelet glycoprotein integrin αIIbβ3 on platelets; the protein is 39 amino acids long with three disulfide bridges in its tertiary structure. To demonstrate decorsin's mechanism of action, we applied the computational virtual technique and platelet aggregation inhibition assay, which showed that the flanking amino-acid residues of the Arg-Gly-Asp (RGD) motif play an important role in platelet aggregation. The computational simulations revealed that the RGD motif mainly contributes to the stability of the complex when decorsion interacts with integrin αIIbβ3. However, the C-terminal residues, such as 34A→W and 35D→R, was also found to possibly play a key role in their binding structures. Moreover, we produced a decorsin analog (A34W plus D35R decorsin), in which the 34A (alanine) and 35D (aspartic acid) residues were respectively substituted by W (tryptophan) and R (arginine). This isoform was then recombinantly expressed in Escherichia coli. Intriguingly, this mutant type showed higher anti-platelet aggregation activity than the wildtype. Our study may further contribute to finding decorsin mutants with higher anti-platelet aggregation activity.
Collapse
|
46
|
Lerner C, Jakob-Roetne R, Buettelmann B, Ehler A, Rudolph M, Rodríguez Sarmiento RM. Design of Potent and Druglike Nonphenolic Inhibitors for Catechol O-Methyltransferase Derived from a Fragment Screening Approach Targeting the S-Adenosyl-l-methionine Pocket. J Med Chem 2016; 59:10163-10175. [PMID: 27685665 DOI: 10.1021/acs.jmedchem.6b00927] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A fragment screening approach designed to target specifically the S-adenosyl-l-methionine pocket of catechol O-methyl transferase allowed the identification of structurally related fragments of high ligand efficiency and with activity on the described orthogonal assays. By use of a reliable enzymatic assay together with X-ray crystallography as guidance, a series of fragment modifications revealed an SAR and, after several expansions, potent lead compounds could be obtained. For the first time nonphenolic and small low nanomolar potent, SAM competitive COMT inhibitors are reported. These compounds represent a novel series of potent COMT inhibitors that might be further optimized to new drugs useful for the treatment of Parkinson's disease, as adjuncts in levodopa based therapy, or for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Christian Lerner
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Roland Jakob-Roetne
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Bernd Buettelmann
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andreas Ehler
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus Rudolph
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Rosa María Rodríguez Sarmiento
- Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
47
|
Huber TD, Wang F, Singh S, Johnson BR, Zhang J, Sunkara M, Van Lanen SG, Morris AJ, Phillips GN, Thorson JS. Functional AdoMet Isosteres Resistant to Classical AdoMet Degradation Pathways. ACS Chem Biol 2016; 11:2484-91. [PMID: 27351335 DOI: 10.1021/acschembio.6b00348] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
S-adenosyl-l-methionine (AdoMet) is an essential enzyme cosubstrate in fundamental biology with an expanding range of biocatalytic and therapeutic applications. We report the design, synthesis, and evaluation of stable, functional AdoMet isosteres that are resistant to the primary contributors to AdoMet degradation (depurination, intramolecular cyclization, and sulfonium epimerization). Corresponding biochemical and structural studies demonstrate the AdoMet surrogates to serve as competent enzyme cosubstrates and to bind a prototypical class I model methyltransferase (DnrK) in a manner nearly identical to AdoMet. Given this conservation in function and molecular recognition, the isosteres presented are anticipated to serve as useful surrogates in other AdoMet-dependent processes and may also be resistant to, and/or potentially even inhibit, other therapeutically relevant AdoMet-dependent metabolic transformations (such as the validated drug target AdoMet decarboxylase). This work also highlights the ability of the prototypical class I model methyltransferase DnrK to accept non-native surrogate acceptors as an enabling feature of a new high-throughput methyltransferase assay.
Collapse
Affiliation(s)
- Tyler D. Huber
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Fengbin Wang
- Department
of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77251-1892, United States
| | - Shanteri Singh
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Brooke R. Johnson
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Jianjun Zhang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Manjula Sunkara
- Division
of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, 1000 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Steven G. Van Lanen
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Andrew J. Morris
- Division
of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, 1000 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - George N. Phillips
- Department
of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77251-1892, United States
- Department
of Chemistry, Rice University, Space Science 201, Houston, Texas 77251-1892, United States
| | - Jon S. Thorson
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center
for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
48
|
Abstract
![]()
Although QM/MM calculations
are the primary current tool for modeling enzymatic reactions, the
reliability of such calculations can be limited by the size of the
QM region. Thus, we examine in this work the dependence of QM/MM calculations
on the size of the QM region, using the reaction of catechol-O-methyl transferase (COMT) as a test case. Our study focuses
on the effect of adding residues to the QM region on the activation
free energy, obtained with extensive QM/MM sampling. It is found that
the sensitivity of the activation barrier to the size of the QM is
rather limited, while the dependence of the reaction free energy is
somewhat larger. Of course, the results depend on the inclusion of
the first solvation shell in the QM regions. For example, the inclusion
of the Mg2+ ion can change the activation barrier due to
charge transfer effects. However, such effects can easily be included
in semiempirical approaches by proper parametrization. Overall, we
establish that QM/MM calculations of activation barriers of enzymatic
reactions are not highly sensitive to the size of the QM region, beyond
the immediate region that describes the reacting atoms.
Collapse
|
49
|
Patra N, Ioannidis EI, Kulik HJ. Computational Investigation of the Interplay of Substrate Positioning and Reactivity in Catechol O-Methyltransferase. PLoS One 2016; 11:e0161868. [PMID: 27564542 PMCID: PMC5001633 DOI: 10.1371/journal.pone.0161868] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/13/2016] [Indexed: 12/27/2022] Open
Abstract
Catechol O-methyltransferase (COMT) is a SAM- and Mg2+-dependent methyltransferase that regulates neurotransmitters through methylation. Simulations and experiments have identified divergent catecholamine substrate orientations in the COMT active site: molecular dynamics simulations have favored a monodentate coordination of catecholate substrates to the active site Mg2+, and crystal structures instead preserve bidentate coordination along with short (2.65 Å) methyl donor-acceptor distances. We carry out longer dynamics (up to 350 ns) to quantify interconversion between bidentate and monodentate binding poses. We provide a systematic determination of the relative free energy of the monodentate and bidentate structures in order to identify whether structural differences alter the nature of the methyl transfer mechanism and source of enzymatic rate enhancement. We demonstrate that the bidentate and monodentate binding modes are close in energy but separated by a 7 kcal/mol free energy barrier. Analysis of interactions in the two binding modes reveals that the driving force for monodentate catecholate orientations in classical molecular dynamics simulations is derived from stronger electrostatic stabilization afforded by alternate Mg2+ coordination with strongly charged active site carboxylates. Mixed semi-empirical-classical (SQM/MM) substrate C-O distances (2.7 Å) for the bidentate case are in excellent agreement with COMT X-ray crystal structures, as long as charge transfer between the substrates, Mg2+, and surrounding ligands is permitted. SQM/MM free energy barriers for methyl transfer from bidentate and monodentate catecholate configurations are comparable at around 21-22 kcal/mol, in good agreement with experiment (18-19 kcal/mol). Overall, the work suggests that both binding poses are viable for methyl transfer, and accurate descriptions of charge transfer and electrostatics are needed to provide balanced relative barriers when multiple binding poses are accessible, for example in other transferases.
Collapse
Affiliation(s)
- Niladri Patra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States of America
| | - Efthymios I. Ioannidis
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States of America
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States of America
| |
Collapse
|
50
|
Zhang J, Klinman JP. Convergent Mechanistic Features between the Structurally Diverse N- and O-Methyltransferases: Glycine N-Methyltransferase and Catechol O-Methyltransferase. J Am Chem Soc 2016; 138:9158-65. [PMID: 27355841 PMCID: PMC5270642 DOI: 10.1021/jacs.6b03462] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Although an enormous and still growing
number of biologically diverse
methyltransferases have been reported and identified, a comprehensive
understanding of the enzymatic methyl transfer mechanism is still
lacking. Glycine N-methyltransferase (GNMT), a member
of the family that acts on small metabolites as the substrate, catalyzes
methyl transfer from S-adenosyl-l-methionine
(AdoMet) to glycine to form S-adenosyl-l-homocysteine and sarcosine. We report primary carbon (12C/14C) and secondary (1H3/3H3) kinetic isotope effects at the transferred methyl
group, together with 1H3/3H3 binding isotope effects for wild-type GNMT and a series of Tyr21
mutants. The data implicate a compaction effect in the methyl transfer
step that is conferred by the protein structure. Furthermore, a remarkable
similarity of properties is observed between GNMT and catechol O-methyltransferase, despite significant differences between
these enzymes with regard to their active site structures and catalyzed
reactions. We attribute these results to a catalytically relevant
reduction in the methyl donor–acceptor distance that is dependent
on a tyrosine side chain positioned behind the methyl-bearing sulfur
of AdoMet.
Collapse
Affiliation(s)
- Jianyu Zhang
- Department of Chemistry, ‡Department of Molecular and Cell Biology, and §California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| | - Judith P Klinman
- Department of Chemistry, ‡Department of Molecular and Cell Biology, and §California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| |
Collapse
|