1
|
Baños‐Jaime B, Uceda‐Mayo AB, Rivero‐Rodríguez F, Casado‐Combreras MÁ, Velázquez‐Cruz A, Velázquez‐Campoy A, Corrales‐Guerrero L, De la Rosa MA, Díaz‐Moreno I. Evolutionary Pro-To-Thr Mutation in the Intrinsically Disordered Domain of ANP32 Family Members Modulates Their Target Binding Modes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415566. [PMID: 39887951 PMCID: PMC11948038 DOI: 10.1002/advs.202415566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Indexed: 02/01/2025]
Abstract
Gene duplication has allowed protein evolution toward novel functions and mechanisms. The differences between paralogous genes frequently rely on the sequence of disordered regions. For instance, in mammals, the chaperones ANP32A and ANP32B share a common evolutionary line and have some exchangeable functions based on their similar N-terminal domains. Nevertheless, their C-terminal low-complexity-acidic-regions (LCARs) display substantial sequence differences, unveiling some degree of variability between them, in agreement with their different tissue-specific expression patterns. These structural and computational results indicate that a substitution in the vicinity of the nuclear localization signal (NLS), of Pro in ANP32A for Thr in ANP32B, determines the overall compactness of the C-terminal LCAR. The different structural properties of the disordered region affect the binding mode of ANP32 members to their targets. This type of divergent binding mode is exemplified with the extra-mitochondrial cytochrome c (Cc), a well-known ANP32B partner and which now determine also binds to ANP32A; and with the RNA binding protein HuR, whose export to the cytoplasm is mediated by ANP32 proteins under stress. Therefore, differential expression patterns of ANP32A or ANP32B may affect the regulation of Cc and HuR and can help to explain the distinct roles of these proteins in diseases.
Collapse
Grants
- FPU013/04373 Ministerio de Educación y Formación Profesional
- FPU18/06577 Ministerio de Educación y Formación Profesional
- FPU016/01513 Ministerio de Educación y Formación Profesional
- P18-FR-3487 Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
- BIO-198 Agencia de Innovación y Desarrollo de Andalucía
- PID2021-126663NB-100 Ministerio de Ciencia, Innovación y Universidades
- PAIDI-Doctor 2020 DOC_00796 Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía
- VI PPIT-US University of Seville
- US/JUNTA/FEDER European Regional Development Fund
- UE European Regional Development Fund
- PAIDI-Doctor 2020 DOC_00796 Fundación Ramón Areces
- European Social Fund
- Ministerio de Educación y Formación Profesional
- Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
- Agencia de Innovación y Desarrollo de Andalucía
- Ministerio de Ciencia, Innovación y Universidades
- Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía
- University of Seville
- European Regional Development Fund
- Fundación Ramón Areces
Collapse
Affiliation(s)
- Blanca Baños‐Jaime
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| | - Ana B. Uceda‐Mayo
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| | - Francisco Rivero‐Rodríguez
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| | - Alejandro Velázquez‐Cruz
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| | - Adrián Velázquez‐Campoy
- Institute for Biocomputation and Physic of Complex Systems (BIFI), Joint Unit GBsC‐CSIC‐BIFIUniversity of ZaragozaC. Mariano EsquillorZaragoza50018Spain
- Departament of Biochemistry and Molecular and Cellular BiologyUniversity of ZaragozaC. Miguel Servet 177Zaragoza50013Spain
- Institute for Health Research of Aragón (IIS Aragon)Avda. San Juan Bosco 13Zaragoza50009Spain
- Centre for Biomedical Research Network of Hepatic and Digestive Diseases (CIBERehd)Av. Monforte de Lemos 3–5Madrid28029Spain
| | - Laura Corrales‐Guerrero
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
- Present address:
Institute of Plant Biochemistry and Photosynthesis (IBVF)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville‐CSICAvda. Americo Vespucio 49Seville41092Spain
| |
Collapse
|
2
|
Tamargo‐Azpilicueta J, Casado‐Combreras MÁ, Giner‐Arroyo RL, Velázquez‐Campoy A, Márquez I, Olloqui‐Sariego JL, De la Rosa MA, Diaz‐Moreno I. Phosphorylation of cytochrome c at tyrosine 48 finely regulates its binding to the histone chaperone SET/TAF-Iβ in the nucleus. Protein Sci 2024; 33:e5213. [PMID: 39548742 PMCID: PMC11568366 DOI: 10.1002/pro.5213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
Post-translational modifications (PTMs) of proteins are ubiquitous processes present in all life kingdoms, involved in the regulation of protein stability, subcellular location and activity. In this context, cytochrome c (Cc) is an excellent case study to analyze the structural and functional changes induced by PTMS as Cc is a small, moonlighting protein playing different roles in different cell compartments at different cell-cycle stages. Cc is actually a key component of the mitochondrial electron transport chain (ETC) under homeostatic conditions but is translocated to the cytoplasm and even the nucleus under apoptotic conditions and/or DNA damage. Phosphorylation does specifically alter the Cc redox activity in the mitochondria and the Cc non-redox interaction with apoptosis-related targets in the cytoplasm. However, little is known on how phosphorylation alters the interaction of Cc with histone chaperones in the nucleus. Here, we report the effect of Cc Tyr48 phosphorylation by examining the protein interaction with SET/TAF-Iβ in the nuclear compartment using a combination of molecular dynamics simulations, biophysical and structural approaches such as isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR) and in cell proximity ligation assays. From these experiments, we infer that Tyr48 phosphorylation allows a fine-tuning of the Cc-mediated inhibition of SET/TAF-Iβ histone chaperone activity in vitro. Our findings likewise reveal that phosphorylation impacts the nuclear, stress-responsive functions of Cc, and provide an experimental framework to explore novel aspects of Cc post-translational regulation in the nucleus.
Collapse
Affiliation(s)
- Joaquin Tamargo‐Azpilicueta
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| | - Rafael L. Giner‐Arroyo
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| | - Adrián Velázquez‐Campoy
- Institute for Biocomputation and Physic of Complex Systems (BIFI), Joint Unit GBsC‐CSIC‐BIFIUniversity of ZaragozaZaragozaSpain
- Department of Biochemistry and Molecular and Cellular BiologyUniversity of ZaragozaZaragozaSpain
- Institute for Health Research Aragón (IIS Aragon)ZaragozaSpain
- Centre for Biomedical Research Network of Hepatic and Digestive Diseases (CIBERehd)MadridSpain
| | | | | | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| | - Irene Diaz‐Moreno
- Institute for Chemical Research (IIQ), Scientific Research Center “Isla de la Cartuja” (cicCartuja)University of Seville – CSICSevilleSpain
| |
Collapse
|
3
|
Yao H, Zhang M, Wang D. The next decade of SET: from an oncoprotein to beyond. J Mol Cell Biol 2024; 16:mjad082. [PMID: 38157418 PMCID: PMC11267991 DOI: 10.1093/jmcb/mjad082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/22/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024] Open
Abstract
This year marks the fourth decade of research into the protein SET, which was discovered in 1992. SET was initially identified as an oncoprotein but later shown to be a multifaceted protein involved in regulating numerous biological processes under both physiological and pathophysiological conditions. SET dysfunction is closely associated with diseases, such as cancer and Alzheimer's disease. With the increasing understanding of how SET works and how it is regulated in cells, targeting aberrant SET has emerged as a potential strategy for disease intervention. In this review, we present a comprehensive overview of the advancements in SET studies, encompassing its biological functions, regulatory networks, clinical implications, and pharmacological inhibitors. Furthermore, we provide insights into the future prospects of SET research, with a particular emphasis on its promising potential in the realm of immune modulation.
Collapse
Affiliation(s)
- Han Yao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
4
|
Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, Hüttemann M, Song X. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ 2024; 31:387-404. [PMID: 38521844 PMCID: PMC11043370 DOI: 10.1038/s41418-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong J Lee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Morse PT, Arroum T, Wan J, Pham L, Vaishnav A, Bell J, Pavelich L, Malek MH, Sanderson TH, Edwards BF, Hüttemann M. Phosphorylations and Acetylations of Cytochrome c Control Mitochondrial Respiration, Mitochondrial Membrane Potential, Energy, ROS, and Apoptosis. Cells 2024; 13:493. [PMID: 38534337 PMCID: PMC10969761 DOI: 10.3390/cells13060493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cytochrome c (Cytc) has both life-sustaining and cellular death-related functions, depending on subcellular localization. Within mitochondria, Cytc acts as a single electron carrier as part of the electron transport chain (ETC). When released into the cytosol after cellular insult, Cytc triggers the assembly of the apoptosome, committing the cell to intrinsic apoptosis. Due to these dual natures, Cytc requires strong regulation by the cell, including post-translational modifications, such as phosphorylation and acetylation. Six phosphorylation sites and three acetylation sites have been detected on Cytc in vivo. Phosphorylations at T28, S47, Y48, T49, T58, and Y97 tend to be present under basal conditions in a tissue-specific manner. In contrast, the acetylations at K8, K39, and K53 tend to be present in specific pathophysiological conditions. All of the phosphorylation sites and two of the three acetylation sites partially inhibit respiration, which we propose serves to maintain an optimal, intermediate mitochondrial membrane potential (ΔΨm) to minimize reactive oxygen species (ROS) production. Cytc phosphorylations are lost during ischemia, which drives ETC hyperactivity and ΔΨm hyperpolarization, resulting in exponential ROS production thus causing reperfusion injury following ischemia. One of the acetylation sites, K39, shows a unique behavior in that it is gained during ischemia, stimulating respiration while blocking apoptosis, demonstrating that skeletal muscle, which is particularly resilient to ischemia-reperfusion injury compared to other organs, possesses a different metabolic strategy to handle ischemic stress. The regulation of Cytc by these post-translational modifications underscores the importance of Cytc for the ETC, ΔΨm, ROS production, apoptosis, and the cell as a whole.
Collapse
Affiliation(s)
- Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
- Division of Pediatric Critical Care, Children’s Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Lauren Pavelich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Moh H. Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Thomas H. Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brian F.P. Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (P.T.M.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
6
|
Wang Y, Wang J, Tao SY, Liang Z, Xie R, Liu NN, Deng R, Zhang Y, Deng D, Jiang G. Mitochondrial damage-associated molecular patterns: A new insight into metabolic inflammation in type 2 diabetes mellitus. Diabetes Metab Res Rev 2024; 40:e3733. [PMID: 37823338 DOI: 10.1002/dmrr.3733] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
The pathogenesis of diabetes is accompanied by increased levels of inflammatory factors, also known as "metabolic inflammation", which runs through the whole process of the occurrence and development of the disease. Mitochondria, as the key site of glucose and lipid metabolism, is often accompanied by mitochondrial function damage in type 2 diabetes mellitus (T2DM). Damaged mitochondria release pro-inflammatory factors through damage-related molecular patterns that activate inflammation pathways and reactions to oxidative stress, further aggravate metabolic disorders, and form a vicious circle. Currently, the pathogenesis of diabetes is still unclear, and clinical treatment focuses primarily on symptomatic intervention of the internal environment of disorders of glucose and lipid metabolism with limited clinical efficacy. The proinflammatory effect of mitochondrial damage-associated molecular pattern (mtDAMP) in T2DM provides a new research direction for exploring the pathogenesis and intervention targets of T2DM. Therefore, this review covers the most recent findings on the molecular mechanism and related signalling cascades of inflammation caused by mtDAMP in T2DM and discusses its pathogenic role of it in the pathological process of T2DM to search potential intervention targets.
Collapse
Affiliation(s)
- Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jingwu Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Si-Yu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | - Rong Xie
- Xinjiang Medical University, Urumqi, China
| | - Nan-Nan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruxue Deng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Deqiang Deng
- Department of Endocrinology, Urumqi Hospital of Traditional Chinese Medicine, Urumqi, China
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Buzón P, Velázquez‐Cruz A, Corrales‐Guerrero L, Díaz‐Quintana A, Díaz‐Moreno I, Roos WH. The Histone Chaperones SET/TAF-1β and NPM1 Exhibit Conserved Functionality in Nucleosome Remodeling and Histone Eviction in a Cytochrome c-Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301859. [PMID: 37548614 PMCID: PMC10582448 DOI: 10.1002/advs.202301859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Chromatin homeostasis mediates essential processes in eukaryotes, where histone chaperones have emerged as major regulatory factors during DNA replication, repair, and transcription. The dynamic nature of these processes, however, has severely impeded their characterization at the molecular level. Here, fluorescence optical tweezers are applied to follow histone chaperone dynamics in real time. The molecular action of SET/template-activating factor-Iβ and nucleophosmin 1-representing the two most common histone chaperone folds-are examined using both nucleosomes and isolated histones. It is shown that these chaperones present binding specificity for fully dismantled nucleosomes and are able to recognize and disrupt non-native histone-DNA interactions. Furthermore, the histone eviction process and its modulation by cytochrome c are scrutinized. This approach shows that despite the different structures of these chaperones, they present conserved modes of action mediating nucleosome remodeling.
Collapse
Affiliation(s)
- Pedro Buzón
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenNijenborgh 4Groningen9747 AGThe Netherlands
- Present address:
Department of BiochemistryUniversity of ZurichZurich8057Switzerland
| | - Alejandro Velázquez‐Cruz
- Instituto de Investigaciones Químicas (IIQ)Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja)Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC)Avda. Américo Vespucio 49Sevilla41092Spain
| | - Laura Corrales‐Guerrero
- Instituto de Investigaciones Químicas (IIQ)Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja)Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC)Avda. Américo Vespucio 49Sevilla41092Spain
| | - Antonio Díaz‐Quintana
- Instituto de Investigaciones Químicas (IIQ)Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja)Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC)Avda. Américo Vespucio 49Sevilla41092Spain
| | - Irene Díaz‐Moreno
- Instituto de Investigaciones Químicas (IIQ)Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja)Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC)Avda. Américo Vespucio 49Sevilla41092Spain
| | - Wouter H. Roos
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
8
|
Chertkova RV, Oleynikov IP, Pakhomov AA, Sudakov RV, Orlov VN, Semenova MA, Arutyunyan AM, Ptushenko VV, Kirpichnikov MP, Dolgikh DA, Vygodina TV. Mutant Cytochrome C as a Potential Detector of Superoxide Generation: Effect of Mutations on the Function and Properties. Cells 2023; 12:2316. [PMID: 37759538 PMCID: PMC10528150 DOI: 10.3390/cells12182316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Cytochrome c (CytC) is a single-electron carrier between complex bc1 and cytochrome c-oxidase (CcO) in the electron transport chain (ETC). It is also known as a good radical scavenger but its participation in electron flow through the ETC makes it impossible to use CytC as a radical sensor. To solve this problem, a series of mutants were constructed with substitutions of Lys residues in the universal binding site (UBS) which interact electrostatically with negatively charged Asp and Glu residues at the binding sites of CytC partners, bc1 complex and CcO. The aim of this study was to select a mutant that had lost its function as an electron carrier in the ETC, retaining the structure and ability to quench radicals. It was shown that a mutant CytC with substitutions of five (8Mut) and four (5Mut) Lys residues in the UBS was almost inactive toward CcO. However, all mutant proteins kept their antioxidant activity sufficiently with respect to the superoxide radical. Mutations shifted the dipole moment of the CytC molecule due to seriously changed electrostatics on the surface of the protein. In addition, a decrease in the redox potential of the protein as revealed by the redox titrations of 8Mut was detected. Nevertheless, the CD spectrum and dynamic light scattering suggested no significant changes in the secondary structure or aggregation of the molecules of CytC 8Mut. Thus, a variant 8Mut with multiple mutations in the UBS which lost its ability to electron transfer and saved most of its physico-chemical properties can be effectively used as a detector of superoxide generation both in mitochondria and in other systems.
Collapse
Affiliation(s)
- Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Ilya P. Oleynikov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Alexey A. Pakhomov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Roman V. Sudakov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Victor N. Orlov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Marina A. Semenova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Alexander M. Arutyunyan
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| | - Vasily V. Ptushenko
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
- Biology Department, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.P.); (M.A.S.); (M.P.K.); (D.A.D.)
- Biology Department, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Tatiana V. Vygodina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie gory 1, Bld. 40, 119992 Moscow, Russia; (I.P.O.); (R.V.S.); (V.N.O.); (A.M.A.); (T.V.V.)
| |
Collapse
|
9
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
10
|
Zhao G, Zhang H, Zhang Y, Zhao N, Mao J, Shang P, Gao K, Meng Y, Tao Y, Wang A, Chen Z, Guo C. Oncoprotein SET dynamically regulates cellular stress response through nucleocytoplasmic transport in breast cancer. Cell Biol Toxicol 2023; 39:1795-1814. [PMID: 36534342 DOI: 10.1007/s10565-022-09784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
SETβ is the predominant isoform of oncoprotein SE translocation (SET) in various breast cancer cell lines. Interactome-transcriptome analysis has shown that SETβ is intimately associated with cellular stress response. Among various exogenous stimuli, formaldehyde (FA) causes distinct biological effects in a dose-dependent manner. In response to FA at different concentrations, SET dynamically shuttles between the nucleus and cytoplasm, performing diverse biofunctions to restore homeostasis. At a low concentration, FA acts as an epidermal growth factor (EGF) and activates the HER2 receptor and downstream signaling pathways in HER2+ breast cancer cells, resulting in enhanced cell proliferation. Nucleocytoplasmic transport of SETβ is controlled by the PI3K/PKCα/CK2α axis and depletion or blockade of the transport of SETβ suppresses EGF-induced activation of AKT and ERK. SETβ also inhibits not only stress-induced activation of p38 MAPK signaling pathway, but also assembly of stress granules by hindering formation of the G3BP1-RNA complex. Our findings suggest that SET functions as an important regulator which modulates cellular stress signaling pathways dynamically.
Collapse
Affiliation(s)
- Guomeng Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hongying Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanchao Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Na Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jinlei Mao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Pengzhao Shang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Kun Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yao Meng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuhang Tao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Anlei Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ziyi Chen
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
11
|
Tomasina F, Martínez J, Zeida A, Chiribao ML, Demicheli V, Correa A, Quijano C, Castro L, Carnahan RH, Vinson P, Goff M, Cooper T, McDonald WH, Castellana N, Hannibal L, Morse PT, Wan J, Hüttemann M, Jemmerson R, Piacenza L, Radi R. De novo sequencing and construction of a unique antibody for the recognition of alternative conformations of cytochrome c in cells. Proc Natl Acad Sci U S A 2022; 119:e2213432119. [PMID: 36378644 PMCID: PMC9704708 DOI: 10.1073/pnas.2213432119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cytochrome c (cyt c) can undergo reversible conformational changes under biologically relevant conditions. Revealing these alternative cyt c conformers at the cell and tissue level is challenging. A monoclonal antibody (mAb) identifying a key conformational change in cyt c was previously reported, but the hybridoma was rendered nonviable. To resurrect the mAb in a recombinant form, the amino-acid sequences of the heavy and light chains were determined by peptide mapping-mass spectrometry-bioinformatic analysis and used to construct plasmids encoding the full-length chains. The recombinant mAb (R1D3) was shown to perform similarly to the original mAb in antigen-binding assays. The mAb bound to a variety of oxidatively modified cyt c species (e.g., nitrated at Tyr74 or oxidized at Met80), which lose the sixth heme ligation (Fe-Met80); it did not bind to several cyt c phospho- and acetyl-mimetics. Peptide competition assays together with molecular dynamic studies support that R1D3 binds a neoepitope within the loop 40-57. R1D3 was employed to identify alternative conformations of cyt c in cells under oxidant- or senescence-induced challenge as confirmed by immunocytochemistry and immunoaffinity studies. Alternative conformers translocated to the nuclei without causing apoptosis, an observation that was further confirmed after pinocytic loading of oxidatively modified cyt c to B16-F1 cells. Thus, alternative cyt c conformers, known to gain peroxidatic function, may represent redox messengers at the cell nuclei. The availability and properties of R1D3 open avenues of interrogation regarding the presence and biological functions of alternative conformations of cyt c in mammalian cells and tissues.
Collapse
Affiliation(s)
- Florencia Tomasina
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Jennyfer Martínez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - María Laura Chiribao
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Unidad de Biología Molecular, Laboratorio de Interacción Hospedero Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Verónica Demicheli
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Celia Quijano
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Laura Castro
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
| | | | - Matt Goff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Tracy Cooper
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232
| | - W. Hayes McDonald
- Department of Biochemistry and the Proteomics Core of the Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37240
| | | | - Luciana Hannibal
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201
| | - Ronald Jemmerson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
12
|
Phosphorylation disrupts long-distance electron transport in cytochrome c. Nat Commun 2022; 13:7100. [PMID: 36402842 PMCID: PMC9675734 DOI: 10.1038/s41467-022-34809-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
It has been recently shown that electron transfer between mitochondrial cytochrome c and the cytochrome c1 subunit of the cytochrome bc1 can proceed at long-distance through the aqueous solution. Cytochrome c is thought to adjust its activity by changing the affinity for its partners via Tyr48 phosphorylation, but it is unknown how it impacts the nanoscopic environment, interaction forces, and long-range electron transfer. Here, we constrain the orientation and separation between cytochrome c1 and cytochrome c or the phosphomimetic Y48pCMF cytochrome c, and deploy an array of single-molecule, bulk, and computational methods to investigate the molecular mechanism of electron transfer regulation by cytochrome c phosphorylation. We demonstrate that phosphorylation impairs long-range electron transfer, shortens the long-distance charge conduit between the partners, strengthens their interaction, and departs it from equilibrium. These results unveil a nanoscopic view of the interaction between redox protein partners in electron transport chains and its mechanisms of regulation.
Collapse
|
13
|
Nucleus-translocated mitochondrial cytochrome c liberates nucleophosmin-sequestered ARF tumor suppressor by changing nucleolar liquid–liquid phase separation. Nat Struct Mol Biol 2022; 29:1024-1036. [DOI: 10.1038/s41594-022-00842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
|
14
|
Casado-Combreras MÁ, Rivero-Rodríguez F, Elena-Real CA, Molodenskiy D, Díaz-Quintana A, Martinho M, Gerbaud G, González-Arzola K, Velázquez-Campoy A, Svergun D, Belle V, De la Rosa MA, Díaz-Moreno I. PP2A is activated by cytochrome c upon formation of a diffuse encounter complex with SET/TAF-Iβ. Comput Struct Biotechnol J 2022; 20:3695-3707. [PMID: 35891793 PMCID: PMC9293736 DOI: 10.1016/j.csbj.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Intrinsic protein flexibility is of overwhelming relevance for intermolecular recognition and adaptability of highly dynamic ensemble of complexes, and the phenomenon is essential for the understanding of numerous biological processes. These conformational ensembles-encounter complexes-lack a unique organization, which prevents the determination of well-defined high resolution structures. This is the case for complexes involving the oncoprotein SET/template-activating factor-Iβ (SET/TAF-Iβ), a histone chaperone whose functions and interactions are significantly affected by its intrinsic structural plasticity. Besides its role in chromatin remodeling, SET/TAF-Iβ is an inhibitor of protein phosphatase 2A (PP2A), which is a key phosphatase counteracting transcription and signaling events controlling the activity of DNA damage response (DDR) mediators. During DDR, SET/TAF-Iβ is sequestered by cytochrome c (Cc) upon migration of the hemeprotein from mitochondria to the cell nucleus. Here, we report that the nuclear SET/TAF-Iβ:Cc polyconformational ensemble is able to activate PP2A. In particular, the N-end folded, globular region of SET/TAF-Iβ (a.k.a. SET/TAF-Iβ ΔC)-which exhibits an unexpected, intrinsically highly dynamic behavior-is sufficient to be recognized by Cc in a diffuse encounter manner. Cc-mediated blocking of PP2A inhibition is deciphered using an integrated structural and computational approach, combining small-angle X-ray scattering, electron paramagnetic resonance, nuclear magnetic resonance, calorimetry and molecular dynamics simulations.
Collapse
Key Words
- ANP32B, Acidic leucine-rich nuclear phosphoprotein family member B
- BTFA, 3-bromo-1,1,1-trifluoroacetone
- CD, Circular dichroism
- CDK9, Cyclin-dependent kinase 9
- CW, Continuous wave
- Cc, Cytochrome c
- Cytochrome c
- DDR, DNA damage response
- DEER, Double electron–electron resonance
- DLS, Dynamic light scattering
- DMEM, Dulbecco’s modified Eagle’s medium
- DNA, Deoxyribonucleic acid
- DTT, Dithiotreitol
- Dmax, Maximum dimension
- EDTA, Ethylenediamine tetraacetic acid
- EGTA, Ethyleneglycol tetraacetic acid
- EPR, Electron paramagnetic resonance
- Encounter complex
- FBS, Fetal bovine serum
- GUI, Graphical user interface
- HEK, Human embryonic kidney cells
- HRP, Horseradish peroxidase
- I2PP2A, Inhibitor 2 of the protein phosphatase 2A
- I3PP2A, Inhibitor 3 of the protein phosphatase 2A
- INTAC, Integrator-PP2A complex
- IPTG, Isopropyl-β-D-1-thiogalactopyranoside
- ITC, Isothermal titration calorimetry
- Ip/Id, Intensity ratio of NMR resonances between paramagnetic and diamagnetic samples
- LB, Luria-Bertani
- MD, Molecular dynamics
- MTS, (1-acetoxy-2,2,5,5-tetramethyl-δ-3-pyrroline-3-methyl) methanethiosulfonate
- MTSL, (1-oxyl-2,2,5,5-tetramethyl- δ −3-pyrroline-3-methyl) methanethiosulfonate
- MW, Molecular weight
- Molecular dynamics
- NAP1, Nucleosome assembly protein 1
- NAPL, Nucleosome assembly protein L
- NMA, Normal mode analysis
- NMR, Nuclear magnetic resonance
- NPT, Constant number, pressure and temperature
- NVT, Constant number, volume and temperature
- Nuclear magnetic resonance
- OD600, Optical density measured at 600 nm
- OPC, Optimal 3-charge, 4-point rigid water model
- PCR, Polymerase chain reaction
- PME, Particle mesh Ewald
- PMSF, Phenylmethylsulfonyl fluoride
- PP2A, Protein phosphatase 2A
- PRE, Paramagnetic relaxation enhancement
- PVDF, Polyvinylidene fluoride
- Protein phosphatase 2A
- RNA, Ribonucleic acid
- RNApol II, RNA polymerase II
- Rg, Radius of gyration
- SAXS, Small-angle X-ray scattering
- SC, Sample changer
- SDS-PAGE, Sodium dodecylsulfate-polyacrylamide gel electrophoresis
- SDSL, Site-directed spin labeling
- SEC, Size-exclusion chromatography
- SET/TAF-Iβ
- SET/TAF-Iβ ΔC, SET/template-activating factor-Iβ construct lacking its C-terminal domain
- SET/TAF-Iβ, SET/template-activating factor-Iβ
- SPRi, Surface plasmon resonance imaging
- TAF-Iα, Template-activating factor-Iα
- TPBS, Tween 20-phosphate buffered saline
- VPS75, Vacuolar protein sorting-associated protein 75
- WT, Wild type
- XRD, X-ray diffraction
Collapse
Affiliation(s)
- Miguel Á. Casado-Combreras
- Institute for Chemical Research (IIQ), Scientific Research Centre “Isla de la Cartuja” (cicCartuja), University of Seville and CSIC, Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Francisco Rivero-Rodríguez
- Institute for Chemical Research (IIQ), Scientific Research Centre “Isla de la Cartuja” (cicCartuja), University of Seville and CSIC, Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Carlos A. Elena-Real
- Institute for Chemical Research (IIQ), Scientific Research Centre “Isla de la Cartuja” (cicCartuja), University of Seville and CSIC, Avda. Américo Vespucio, 49, 41092 Seville, Spain
- Centre de Biologie Structurale (CBS), INSERM, Centre National de la Recherche Scientifique (CNRS) and Université de Montpellier. 29 rue de Navacelles, 34090 Montpellier, France
| | - Dmitry Molodenskiy
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Antonio Díaz-Quintana
- Institute for Chemical Research (IIQ), Scientific Research Centre “Isla de la Cartuja” (cicCartuja), University of Seville and CSIC, Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Marlène Martinho
- Aix Marseille Univ. Centre National de la Recherche Scientifique (CNRS), BIP UMR7281, Bioénergétique et Ingénierie des protéines, 13402 Marseille, France
| | - Guillaume Gerbaud
- Aix Marseille Univ. Centre National de la Recherche Scientifique (CNRS), BIP UMR7281, Bioénergétique et Ingénierie des protéines, 13402 Marseille, France
| | - Katiuska González-Arzola
- Institute for Chemical Research (IIQ), Scientific Research Centre “Isla de la Cartuja” (cicCartuja), University of Seville and CSIC, Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physic of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza. C. de Mariano Esquillor Gómez, Edificio I+D, 50018 Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, C. Pedro Cerbuna, 12, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Valérie Belle
- Aix Marseille Univ. Centre National de la Recherche Scientifique (CNRS), BIP UMR7281, Bioénergétique et Ingénierie des protéines, 13402 Marseille, France
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ), Scientific Research Centre “Isla de la Cartuja” (cicCartuja), University of Seville and CSIC, Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Scientific Research Centre “Isla de la Cartuja” (cicCartuja), University of Seville and CSIC, Avda. Américo Vespucio, 49, 41092 Seville, Spain
| |
Collapse
|
15
|
Martinez-Fabregas J, Tamargo-Azpilicueta J, Diaz-Moreno I. Lysosomes: Multifunctional compartments ruled by a complex regulatory network. FEBS Open Bio 2022; 12:758-774. [PMID: 35218162 PMCID: PMC8972048 DOI: 10.1002/2211-5463.13387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
More than 50 years have passed since Nobel laureate Cristian de Duve described for the first time the presence of tiny subcellular compartments filled with hydrolytic enzymes: the lysosome. For a long time, lysosomes were deemed simple waste bags exerting a plethora of hydrolytic activities involved in the recycling of biopolymers, and lysosomal genes were considered to just be simple housekeeping genes, transcribed in a constitutive fashion. However, lysosomes are emerging as multifunctional signalling hubs involved in multiple aspects of cell biology, both under homeostatic and pathological conditions. Lysosomes are involved in the regulation of cell metabolism through the mTOR/TFEB axis. They are also key players in the regulation and onset of the immune response. Furthermore, it is becoming clear that lysosomal hydrolases can regulate several biological processes outside of the lysosome. They are also implicated in a complex communication network among subcellular compartments that involves intimate organelle‐to‐organelle contacts. Furthermore, lysosomal dysfunction is nowadays accepted as the causative event behind several human pathologies: low frequency inherited diseases, cancer, or neurodegenerative, metabolic, inflammatory, and autoimmune diseases. Recent advances in our knowledge of the complex biology of lysosomes have established them as promising therapeutic targets for the treatment of different pathologies. Although recent discoveries have started to highlight that lysosomes are controlled by a complex web of regulatory networks, which in some cases seem to be cell‐ and stimuli‐dependent, to harness the full potential of lysosomes as therapeutic targets, we need a deeper understanding of the little‐known signalling pathways regulating this subcellular compartment and its functions.
Collapse
Affiliation(s)
- Jonathan Martinez-Fabregas
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Joaquin Tamargo-Azpilicueta
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Irene Diaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - CSIC, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
16
|
Pérez-Mejías G, Díaz-Quintana A, Guerra-Castellano A, Díaz-Moreno I, De la Rosa MA. Novel insights into the mechanism of electron transfer in mitochondrial cytochrome c. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Li JL, Lin TY, Chen PL, Guo TN, Huang SY, Chen CH, Lin CH, Chan CC. Mitochondrial Function and Parkinson's Disease: From the Perspective of the Electron Transport Chain. Front Mol Neurosci 2021; 14:797833. [PMID: 34955747 PMCID: PMC8695848 DOI: 10.3389/fnmol.2021.797833] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is known as a mitochondrial disease. Some even regarded it specifically as a disorder of the complex I of the electron transport chain (ETC). The ETC is fundamental for mitochondrial energy production which is essential for neuronal health. In the past two decades, more than 20 PD-associated genes have been identified. Some are directly involved in mitochondrial functions, such as PRKN, PINK1, and DJ-1. While other PD-associate genes, such as LRRK2, SNCA, and GBA1, regulate lysosomal functions, lipid metabolism, or protein aggregation, some have been shown to indirectly affect the electron transport chain. The recent identification of CHCHD2 and UQCRC1 that are critical for functions of complex IV and complex III, respectively, provide direct evidence that PD is more than just a complex I disorder. Like UQCRC1 in preventing cytochrome c from release, functions of ETC proteins beyond oxidative phosphorylation might also contribute to the pathogenesis of PD.
Collapse
Affiliation(s)
- Jeng-Lin Li
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Division of Neurology, Department of Internal Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan County, Taiwan
| | - Tai-Yi Lin
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Lin Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Ting-Ni Guo
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Márquez I, Pérez‐Mejías G, Guerra‐Castellano A, Olloqui‐Sariego JL, Andreu R, Calvente JJ, De la Rosa MA, Díaz‐Moreno I. Structural and functional insights into lysine acetylation of cytochrome c using mimetic point mutants. FEBS Open Bio 2021; 11:3304-3323. [PMID: 34455704 PMCID: PMC8634867 DOI: 10.1002/2211-5463.13284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Abstract
Post-translational modifications frequently modulate protein functions. Lysine acetylation in particular plays a key role in interactions between respiratory cytochrome c and its metabolic partners. To date, in vivo acetylation of lysines at positions 8 and 53 has specifically been identified in mammalian cytochrome c, but little is known about the structural basis of acetylation-induced functional changes. Here, we independently replaced these two residues in recombinant human cytochrome c with glutamine to mimic lysine acetylation and then characterized the structure and function of the resulting K8Q and K53Q mutants. We found that the physicochemical features were mostly unchanged in the two acetyl-mimetic mutants, but their thermal stability was significantly altered. NMR chemical shift perturbations of the backbone amide resonances revealed local structural changes, and the thermodynamics and kinetics of electron transfer in mutants immobilized on gold electrodes showed an increase in both protein dynamics and solvent involvement in the redox process. We also observed that the K8Q (but not the K53Q) mutation slightly increased the binding affinity of cytochrome c to its physiological electron donor, cytochrome c1 -which is a component of mitochondrial complex III, or cytochrome bc1 -thus suggesting that Lys8 (but not Lys53) is located in the interaction area. Finally, the K8Q and K53Q mutants exhibited reduced efficiency as electron donors to complex IV, or cytochrome c oxidase.
Collapse
Affiliation(s)
- Inmaculada Márquez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | | | - Rafael Andreu
- Departament of Physical ChemistryUniversity of SevilleSpain
| | | | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
19
|
Live-cell visualization of cytochrome c: a tool to explore apoptosis. Biochem Soc Trans 2021; 49:2903-2915. [PMID: 34747968 DOI: 10.1042/bst20211028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Apoptosis dysfunction is associated with several malignancies, including cancer and autoimmune diseases. Apoptosis restoration could be an attractive therapeutic approach to those diseases. Mitochondrial outer membrane permeabilization is regarded as the point of no return in the 'classical' apoptosis triggering pathway. Cytoplasmic release of cytochrome c (cyt c), a mitochondrial electron transporter, is a prominent indicator of such critical step. Therefore, visualizing cyt c efflux in living cells is a convenient approach to address apoptosis triggering and monitor performance of apoptosis restoration strategies. Recent years have been prolific in the development of biosensors to visualize cyt c mitochondrial efflux in living cells, by fluorescence microscopy. These biosensors specifically detect endogenous, untagged cyt c, while showing efficient cellular uptake and reduced cell toxicity. A common aspect is their fluorescence quenching in the absence or presence of bound cyt c, resulting in two main biosensor types: 'turn ON' and 'turn OFF'. In some of these systems, fluorescence intensity of fluorophore-bound aptamers is enhanced upon cyt c binding. In others, cyt c binding to quantum dots quenches their fluorescence. In the present minireview, I describe these biosensors and briefly introduce some hypotheses that could be addressed using these novel tools.
Collapse
|
20
|
González‐Arzola K, Guerra‐Castellano A, Rivero‐Rodríguez F, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MA. Mitochondrial cytochrome c shot towards histone chaperone condensates in the nucleus. FEBS Open Bio 2021; 11:2418-2440. [PMID: 33938164 PMCID: PMC8409293 DOI: 10.1002/2211-5463.13176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.
Collapse
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Francisco Rivero‐Rodríguez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
21
|
Decreased proteasomal cleavage at nitrotyrosine sites in proteins and peptides. Redox Biol 2021; 46:102106. [PMID: 34455147 PMCID: PMC8403764 DOI: 10.1016/j.redox.2021.102106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022] Open
Abstract
Removal of moderately oxidized proteins is mainly carried out by the proteasome, while highly modified proteins are no longer degradable. However, in the case of proteins modified by nitration of tyrosine residues to 3-nitrotyrosine (NO2Y), the role of the proteasome remains to be established. For this purpose, degradation assays and mass spectrometry analyses were performed using isolated proteasome and purified fractions of native cytochrome c (Cyt c) and tyrosine nitrated proteoforms (NO2Y74-Cyt c and NO2Y97-Cyt c). While Cyt c treated under mild conditions with hydrogen peroxide was preferentially degraded by the proteasome, NO2Y74- and NO2Y97-Cyt c species did not show an increased degradation rate with respect to native Cyt c. Peptide mapping analysis confirmed a decreased chymotrypsin-like cleavage at C-terminal of NO2Y sites within the protein, with respect to unmodified Y residues. Additionally, studies with the proteasome substrate suc-LLVY-AMC (Y-AMC) and its NO2Y-containing analog, suc-LLVNO2Y-AMC (NO2Y-AMC) were performed, both using isolated 20S-proteasome and astrocytoma cell lysates as the proteasomal source. Comparisons of both substrates showed a significantly decreased proteasome activity towards NO2Y-AMC. Moreover, NO2Y-AMC, but not Y-AMC degradation rates, were largely diminished by increasing the reaction pH, suggesting an inhibitory influence of the additional negative charge contained in NO2Y-AMC secondary to nitration. The mechanism of slowing of proteasome activity in NO2Y-contaning peptides was further substantiated in studies using the phenylalanine and nitro-phenylalanine peptide analog substrates. Finally, degradation rates of Y-AMC and NO2Y-AMC with proteinase K were the same, demonstrating the selective inability of the proteasome to readily cleave at nitrotyrosine sites. Altogether, data indicate that the proteasome has a decreased capability to cleave at C-terminal of NO2Y residues in proteins with respect to the unmodified residues, making this a possible factor that decreases the turnover of oxidized proteins, if they are not unfolded, and facilitating the accumulation of nitrated proteins.
Collapse
|
22
|
How to Turn an Electron Transfer Protein into a Redox Enzyme for Biosensing. Molecules 2021; 26:molecules26164950. [PMID: 34443538 PMCID: PMC8398203 DOI: 10.3390/molecules26164950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023] Open
Abstract
Cytochrome c is a small globular protein whose main physiological role is to shuttle electrons within the mitochondrial electron transport chain. This protein has been widely investigated, especially as a paradigmatic system for understanding the fundamental aspects of biological electron transfer and protein folding. Nevertheless, cytochrome c can also be endowed with a non-native catalytic activity and be immobilized on an electrode surface for the development of third generation biosensors. Here, an overview is offered of the most significant examples of such a functional transformation, carried out by either point mutation(s) or controlled unfolding. The latter can be induced chemically or upon protein immobilization on hydrophobic self-assembled monolayers. We critically discuss the potential held by these systems as core constituents of amperometric biosensors, along with the issues that need to be addressed to optimize their applicability and response.
Collapse
|
23
|
Rivero-Rodríguez F, Díaz-Quintana A, Velázquez-Cruz A, González-Arzola K, Gavilan MP, Velázquez-Campoy A, Ríos RM, De la Rosa MA, Díaz-Moreno I. Inhibition of the PP2A activity by the histone chaperone ANP32B is long-range allosterically regulated by respiratory cytochrome c. Redox Biol 2021; 43:101967. [PMID: 33882408 PMCID: PMC8082267 DOI: 10.1016/j.redox.2021.101967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 12/26/2022] Open
Abstract
Repair of injured DNA relies on nucleosome dismantling by histone chaperones and de-phosphorylation events carried out by Protein Phosphatase 2A (PP2A). Typical histone chaperones are the Acidic leucine-rich Nuclear Phosphoprotein 32 family (ANP32) members, e.g. ANP32A, which is also a well-known PP2A inhibitor (a.k.a. I1PP2A). Here we report the novel interaction between the endogenous family member B—so-called ANP32B—and endogenous cytochrome c in cells undergoing camptothecin-induced DNA damage. Soon after DNA lesions but prior to caspase cascade activation, the hemeprotein translocates to the nucleus to target the Low Complexity Acidic Region (LCAR) of ANP32B; in a similar way, our group recently reported that the hemeprotein targets the acidic domain of SET/Template Activating Factor-Iβ (SET/TAF-Iβ), which is another histone chaperone and PP2A inhibitor (a.k.a. I2PP2A). The nucleosome assembly activity of ANP32B is indeed unaffected by cytochrome c binding. Like ANP32A, ANP32B inhibits PP2A activity and is thus herein referred to as I3PP2A. Our data demonstrates that ANP32B-dependent inhibition of PP2A is regulated by respiratory cytochrome c, which induces long-distance allosteric changes in the structured N-terminal domain of ANP32B upon binding to the C-terminal LCAR. In agreement with the reported role of PP2A in the DNA damage response, we propose a model wherein cytochrome c is translocated from the mitochondria into the nucleus upon DNA damage to modulate PP2A activity via its interaction with ANP32B. Respiratory cytochrome c interacts with ANP32B under DNA damage in the nucleus. Cytochrome c binding to ANP32B LCAR restores ANP32B-mediated PP2A inhibition. Cytochrome c emerges as a DNA Damage Response regulator.
Collapse
Affiliation(s)
- Francisco Rivero-Rodríguez
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Antonio Díaz-Quintana
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Alejandro Velázquez-Cruz
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Katiuska González-Arzola
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Maria P Gavilan
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, University of Seville, CSIC, University Pablo de Olavide, Avda. Américo Vespucio 24, Seville, 41092, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSICBIFI,and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragon), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain; Fundación ARAID, Gobierno de Aragón, 50018, Zaragoza, Spain
| | - Rosa M Ríos
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, University of Seville, CSIC, University Pablo de Olavide, Avda. Américo Vespucio 24, Seville, 41092, Spain
| | - Miguel A De la Rosa
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain.
| |
Collapse
|
24
|
Elena-Real CA, González-Arzola K, Pérez-Mejías G, Díaz-Quintana A, Velázquez-Campoy A, Desvoyes B, Gutiérrez C, De la Rosa MA, Díaz-Moreno I. Proposed mechanism for regulation of H 2 O 2 -induced programmed cell death in plants by binding of cytochrome c to 14-3-3 proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:74-85. [PMID: 33354856 DOI: 10.1111/tpj.15146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 05/27/2023]
Abstract
Programmed cell death (PCD) is crucial for development and homeostasis of all multicellular organisms. In human cells, the double role of extra-mitochondrial cytochrome c in triggering apoptosis and inhibiting survival pathways is well reported. In plants, however, the specific role of cytochrome c upon release from the mitochondria remains in part veiled yet death stimuli do trigger cytochrome c translocation as well. Here, we identify an Arabidopsis thaliana 14-3-3ι isoform as a cytosolic cytochrome c target and inhibitor of caspase-like activity. This finding establishes the 14-3-3ι protein as a relevant factor at the onset of plant H2 O2 -induced PCD. The in vivo and in vitro studies herein reported reveal that the interaction between cytochrome c and 14-3-3ι exhibits noticeable similarities with the complex formed by their human orthologues. Further analysis of the heterologous complexes between human and plant cytochrome c with plant 14-3-3ι and human 14-3-3ε isoforms corroborated common features. These results suggest that cytochrome c blocks p14-3-3ι so as to inhibit caspase-like proteases, which in turn promote cell death upon H2 O2 treatment. Besides establishing common biochemical features between human and plant PCD, this work sheds light onto the signaling networks of plant cell death.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Katiuska González-Arzola
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain
- Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, 50009, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain
- Biomedical Research Networking Centre for Liver and Digestive Diseases (CIBERehd), Madrid, 28029, Spain
- Fundacion ARAID, Government of Aragon, Zaragoza, 50018, Spain
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Crisanto Gutiérrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| |
Collapse
|
25
|
Guerra-Castellano A, Márquez I, Pérez-Mejías G, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. Post-Translational Modifications of Cytochrome c in Cell Life and Disease. Int J Mol Sci 2020; 21:E8483. [PMID: 33187249 PMCID: PMC7697256 DOI: 10.3390/ijms21228483] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the powerhouses of the cell, whilst their malfunction is related to several human pathologies, including neurodegenerative diseases, cardiovascular diseases, and various types of cancer. In mitochondrial metabolism, cytochrome c is a small soluble heme protein that acts as an essential redox carrier in the respiratory electron transport chain. However, cytochrome c is likewise an essential protein in the cytoplasm acting as an activator of programmed cell death. Such a dual role of cytochrome c in cell life and death is indeed fine-regulated by a wide variety of protein post-translational modifications. In this work, we show how these modifications can alter cytochrome c structure and functionality, thus emerging as a control mechanism of cell metabolism but also as a key element in development and prevention of pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain; (A.G.-C.); (I.M.); (G.P.-M.); (A.D.-Q.); (M.A.D.l.R.)
| |
Collapse
|
26
|
Morse PT, Goebel DJ, Wan J, Tuck S, Hakim L, Hüttemann CL, Malek MH, Lee I, Sanderson TH, Hüttemann M. Cytochrome c oxidase-modulatory near-infrared light penetration into the human brain: Implications for the noninvasive treatment of ischemia/reperfusion injury. IUBMB Life 2020; 73:554-567. [PMID: 33166061 DOI: 10.1002/iub.2405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 11/10/2022]
Abstract
Near-infrared light (IRL) has been evaluated as a therapeutic for a variety of pathological conditions, including ischemia/reperfusion injury of the brain, which can be caused by an ischemic stroke or cardiac arrest. Strategies have focused on modulating the activity of mitochondrial electron transport chain (ETC) enzyme cytochrome c oxidase (COX), which has copper centers that broadly absorb IRL between 700 and 1,000 nm. We have recently identified specific COX-inhibitory IRL wavelengths that are profoundly neuroprotective in rodent models of brain ischemia/reperfusion through the following mechanism: COX inhibition by IRL limits mitochondrial membrane potential hyperpolarization during reperfusion, which otherwise causes reactive oxygen species (ROS) production and cell death. Prior to clinical application of IRL on humans, IRL penetration must be tested, which may be wavelength dependent. In the present study, four fresh (unfixed) cadavers and isolated cadaver tissues were used to examine the transmission of infrared light through human biological tissues. We conclude that the transmission of 750 and 940 nm IRL through 4 cm of cadaver head supports the viability of IRL to treat human brain ischemia/reperfusion injury and is similar for skin with different skin pigmentation. We discuss experimental difficulties of working with fresh cadavers and strategies to overcome them as a guide for future studies.
Collapse
Affiliation(s)
- Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Dennis J Goebel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, Michigan, USA
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Samuel Tuck
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA.,Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lara Hakim
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Charlotte L Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Moh H Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Republic of Korea
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
27
|
Adsorbing surface strongly influences the pseudoperoxidase and nitrite reductase activity of electrode-bound yeast cytochrome c. The effect of hydrophobic immobilization. Bioelectrochemistry 2020; 136:107628. [PMID: 32795942 DOI: 10.1016/j.bioelechem.2020.107628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/02/2023]
Abstract
The Met80Ala and Met80Ala/Tyr67Ala variants of S. cerevisiae iso-1 cytochrome c (ycc) and their adducts with cardiolipin immobilized onto a gold electrode coated with a hydrophobic self-assembled monolayer (SAM) of decane-1-thiol were studied through cyclic voltammetry and surface-enhanced resonance Raman spectroscopy (SERRS). The electroactive species - containing a six-coordinate His/His axially ligated heme and a five-coordinate His/- heme stable in the oxidized and reduced state, respectively - and the pseudoperoxidase activity match those found previously for the wt species and are only slightly affected by CL binding. Most importantly, the reduced His/- ligated form of these variants is able to catalytically reduce the nitrite ion, while electrode-immobilized wt ycc and other His/Met heme ligated variants under a variety of conditions are not. Besides the pseudoperoxidase and nitrite reductase functions, which are the most physiologically relevant abilities of these constructs, also axial heme ligation and the equilibria between conformers are strongly affected by the nature - hydrophobic vs. electrostatic - of the non-covalent interactions determining protein immobilization. Also affected are the catalytic activity changes induced by a given mutation as well as those due to partial unfolding due to CL binding. It follows that under the same solution conditions the structural and functional properties of immobilized ycc are surface-specific and therefore cannot be transferred from an immobilized system to another involving different interfacial protein-SAM interactions.
Collapse
|
28
|
Pérez-Mejías G, Velázquez-Cruz A, Guerra-Castellano A, Baños-Jaime B, Díaz-Quintana A, González-Arzola K, Ángel De la Rosa M, Díaz-Moreno I. Exploring protein phosphorylation by combining computational approaches and biochemical methods. Comput Struct Biotechnol J 2020; 18:1852-1863. [PMID: 32728408 PMCID: PMC7369424 DOI: 10.1016/j.csbj.2020.06.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications of proteins expand their functional diversity, regulating the response of cells to a variety of stimuli. Among these modifications, phosphorylation is the most ubiquitous and plays a prominent role in cell signaling. The addition of a phosphate often affects the function of a protein by altering its structure and dynamics. However, these alterations are often difficult to study and the functional and structural implications remain unresolved. New approaches are emerging to overcome common obstacles related to the production and manipulation of these samples. Here, we summarize the available methods for phosphoprotein purification and phosphomimetic engineering, highlighting the advantages and disadvantages of each. We propose a general workflow for protein phosphorylation analysis combining computational and biochemical approaches, building on recent advances that enable user-friendly and easy-to-access Molecular Dynamics simulations. We hope this innovative workflow will inform the best experimental approach to explore such post-translational modifications. We have applied this workflow to two different human protein models: the hemeprotein cytochrome c and the RNA binding protein HuR. Our results illustrate the usefulness of Molecular Dynamics as a decision-making tool to design the most appropriate phosphomimetic variant.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandra Guerra-Castellano
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Blanca Baños-Jaime
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Katiuska González-Arzola
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Miguel Ángel De la Rosa
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
29
|
Wheel and Deal in the Mitochondrial Inner Membranes: The Tale of Cytochrome c and Cardiolipin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6813405. [PMID: 32377304 PMCID: PMC7193304 DOI: 10.1155/2020/6813405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Cardiolipin oxidation and degradation by different factors under severe cell stress serve as a trigger for genetically encoded cell death programs. In this context, the interplay between cardiolipin and another mitochondrial factor—cytochrome c—is a key process in the early stages of apoptosis, and it is a matter of intense research. Cytochrome c interacts with lipid membranes by electrostatic interactions, hydrogen bonds, and hydrophobic effects. Experimental conditions (including pH, lipid composition, and post-translational modifications) determine which specific amino acid residues are involved in the interaction and influence the heme iron coordination state. In fact, up to four binding sites (A, C, N, and L), driven by different interactions, have been reported. Nevertheless, key aspects of the mechanism for cardiolipin oxidation by the hemeprotein are well established. First, cytochrome c acts as a pseudoperoxidase, a process orchestrated by tyrosine residues which are crucial for peroxygenase activity and sensitivity towards oxidation caused by protein self-degradation. Second, flexibility of two weakest folding units of the hemeprotein correlates with its peroxidase activity and the stability of the iron coordination sphere. Third, the diversity of the mode of interaction parallels a broad diversity in the specific reaction pathway. Thus, current knowledge has already enabled the design of novel drugs designed to successfully inhibit cardiolipin oxidation.
Collapse
|
30
|
Comparison of the structural dynamic and mitochondrial electron-transfer properties of the proapoptotic human cytochrome c variants, G41S, Y48H and A51V. J Inorg Biochem 2020; 203:110924. [DOI: 10.1016/j.jinorgbio.2019.110924] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 01/02/2023]
|
31
|
González‐Arzola K, Velázquez‐Cruz A, Guerra‐Castellano A, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MÁ. New moonlighting functions of mitochondrial cytochromecin the cytoplasm and nucleus. FEBS Lett 2019; 593:3101-3119. [DOI: 10.1002/1873-3468.13655] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Alejandro Velázquez‐Cruz
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Miguel Á. De la Rosa
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| |
Collapse
|
32
|
Kumar A, Kumar Singh A, Chandrakant Bobde R, Vasudevan D. Structural Characterization of Arabidopsis thaliana NAP1-Related Protein 2 (AtNRP2) and Comparison with its Homolog AtNRP1. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24122258. [PMID: 31213016 PMCID: PMC6630525 DOI: 10.3390/molecules24122258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 01/03/2023]
Abstract
Nucleosome Assembly Protein (NAP) is a highly conserved family of histone chaperones present in yeast, animals, and plants. Unlike other organisms, plants possess an additional class of proteins in its NAP family, known as the NAP1-related proteins or NRP. Arabidopsis thaliana possesses two NRP isoforms, namely AtNRP1 and AtNRP2, that share 87% sequence identity. Both AtNRP1 and AtNRP2 get expressed in all the plant tissues. Most works in the past, including structural studies, have focused on AtNRP1. We wanted to do a comparative study of the two proteins to find why the plant would have two very similar proteins and whether there is any difference between the two for their structure and function as histone chaperones. Here we report the crystal structure of AtNRP2 and a comparative analysis of its structural architecture with other NAP family proteins. The crystal structure of AtNRP2 shows it to be a homodimer, with its fold similar to that of other structurally characterized NAP family proteins. Although AtNRP1 and AtNRP2 have a similar fold, upon structural superposition, we find an offset in the dimerization helix of the two proteins. We evaluated the stability, oligomerization status, and histone chaperoning properties of the two proteins, for a comparison. The thermal melting experiments suggest that AtNRP2 is more stable than AtNRP1 at higher temperatures. In addition, electrophoretic mobility shift assay and isothermal titration calorimetry experiments suggest histone binding ability of AtNRP2 is higher than that of AtNRP1. Overall, these results provide insights about the specific function and relevance of AtNRP2 in plants through structural and biophysical studies.
Collapse
Affiliation(s)
- Ashish Kumar
- Institute of Life Sciences, Bhubaneswar 751023, Odisha, India.
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Ajit Kumar Singh
- Institute of Life Sciences, Bhubaneswar 751023, Odisha, India.
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Ruchir Chandrakant Bobde
- Institute of Life Sciences, Bhubaneswar 751023, Odisha, India.
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India.
| | | |
Collapse
|
33
|
Zhong J, Ren X, Chen Z, Zhang H, Zhou L, Yuan J, Li P, Chen X, Liu W, Wu D, Yang X, Liu J. miR-21-5p promotes lung adenocarcinoma progression partially through targeting SET/TAF-Iα. Life Sci 2019; 231:116539. [PMID: 31176779 DOI: 10.1016/j.lfs.2019.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Although SET(I2PP2A) and miRNAs are reported to play a pivotal role in lung cancer, the underlying mechanisms have remained obscure. To address this issue, we investigated how miRNAs and SET participate in the progression of lung cancer. METHODS miRNAs that target SET were predicted from multiple miRNA databases. Three human NSCLC cell lines and two normal lung cell lines were used to evaluate aberrant miRNA and SET expressions. A dual luciferase reporter assay system was employed to verify the interaction between miRNA and SET. Stable miRNA knockdown and SET overexpression in A549 cells were achieved through lentivirus transfection; the corresponding influences on lung cancer progression were also examined. RESULTS In this study, A549 was the sole cell line to lack SET/TAF-Iα expression, which was inversely correlated with the up-regulation of miR-21-5p. SET was subsequently revealed as the direct target site of miR-21-5p in A549 cells. The stable miR-21-5p knockdown and SET/TAF-Iα overexpression were shown to markedly enhance the expression of SET/TAF-Iα and to inhibit the migration, invasion, proliferation as well as the in vivo tumorigenicity of A549 cells. CONCLUSION We suggest that SET/TAF-Iα might be a tumor suppressing factor regulated by miR-21-5p in lung adenocarcinoma. This might provide a target for lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Jiacheng Zhong
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Xiaohu Ren
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Zhihong Chen
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Hang Zhang
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Li Zhou
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Jianhui Yuan
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Ping Li
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Xiao Chen
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Wei Liu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Desheng Wu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Xifei Yang
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Jianjun Liu
- Institute of Toxicology, Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
34
|
Pérez-Mejías G, Guerra-Castellano A, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. Cytochrome c: Surfing Off of the Mitochondrial Membrane on the Tops of Complexes III and IV. Comput Struct Biotechnol J 2019; 17:654-660. [PMID: 31193759 PMCID: PMC6542325 DOI: 10.1016/j.csbj.2019.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022] Open
Abstract
The proper arrangement of protein components within the respiratory electron transport chain is nowadays a matter of intense debate, since altering it leads to cell aging and other related pathologies. Here, we discuss three current views—the so-called solid, fluid and plasticity models—which describe the organization of the main membrane-embedded mitochondrial protein complexes and the key elements that regulate and/or facilitate supercomplex assembly. The soluble electron carrier cytochrome c has recently emerged as an essential factor in the assembly and function of respiratory supercomplexes. In fact, a ‘restricted diffusion pathway’ mechanism for electron transfer between complexes III and IV has been proposed based on the secondary, distal binding sites for cytochrome c at its two membrane partners recently discovered. This channeling pathway facilitates the surfing of cytochrome c on both respiratory complexes, thereby tuning the efficiency of oxidative phosphorylation and diminishing the production of reactive oxygen species. The well-documented post-translational modifications of cytochrome c could further contribute to the rapid adjustment of electron flow in response to changing cellular conditions.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandra Guerra-Castellano
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
35
|
Oviedo-Rouco S, Castro MA, Alvarez-Paggi D, Spedalieri C, Tortora V, Tomasina F, Radi R, Murgida DH. The alkaline transition of cytochrome c revisited: Effects of electrostatic interactions and tyrosine nitration on the reaction dynamics. Arch Biochem Biophys 2019; 665:96-106. [DOI: 10.1016/j.abb.2019.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/19/2022]
|
36
|
Kalpage HA, Bazylianska V, Recanati MA, Fite A, Liu J, Wan J, Mantena N, Malek MH, Podgorski I, Heath EI, Vaishnav A, Edwards BF, Grossman LI, Sanderson TH, Lee I, Hüttemann M. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. FASEB J 2019; 33:1540-1553. [PMID: 30222078 PMCID: PMC6338631 DOI: 10.1096/fj.201801417r] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/14/2018] [Indexed: 02/02/2023]
Abstract
Cytochrome c (Cyt c) plays a vital role in the mitochondrial electron transport chain (ETC). In addition, it is a key regulator of apoptosis. Cyt c has multiple other functions including ROS production and scavenging, cardiolipin peroxidation, and mitochondrial protein import. Cyt c is tightly regulated by allosteric mechanisms, tissue-specific isoforms, and post-translational modifications (PTMs). Distinct residues of Cyt c are modified by PTMs, primarily phosphorylations, in a highly tissue-specific manner. These modifications downregulate mitochondrial ETC flux and adjust the mitochondrial membrane potential (ΔΨm), to minimize reactive oxygen species (ROS) production under normal conditions. In pathologic and acute stress conditions, such as ischemia-reperfusion, phosphorylations are lost, leading to maximum ETC flux, ΔΨm hyperpolarization, excessive ROS generation, and the release of Cyt c. It is also the dephosphorylated form of the protein that leads to maximum caspase activation. We discuss the complex regulation of Cyt c and propose that it is a central regulatory step of the mammalian ETC that can be rate limiting in normal conditions. This regulation is important because it maintains optimal intermediate ΔΨm, limiting ROS generation. We examine the role of Cyt c PTMs, including phosphorylation, acetylation, methylation, nitration, nitrosylation, and sulfoxidation and consider their potential biological significance by evaluating their stoichiometry.-Kalpage, H. A., Bazylianska, V., Recanati, M. A., Fite, A., Liu, J., Wan, J., Mantena, N., Malek, M. H., Podgorski, I., Heath, E. I., Vaishnav, A., Edwards, B. F., Grossman, L. I., Sanderson, T. H., Lee, I., Hüttemann, M. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis.
Collapse
Affiliation(s)
- Hasini A. Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Viktoriia Bazylianska
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Maurice A. Recanati
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Alemu Fite
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Nikhil Mantena
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Moh H. Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Elizabeth I. Heath
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Brian F. Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Thomas H. Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Emergency Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, South Korea
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
37
|
Huang CY, Hung MH, Shih CT, Hsieh FS, Kuo CW, Tsai MH, Chang SS, Hsiao YJ, Chen LJ, Chao TI, Chen KF. Antagonizing SET Augments the Effects of Radiation Therapy in Hepatocellular Carcinoma through Reactivation of PP2A-Mediated Akt Downregulation. J Pharmacol Exp Ther 2018; 366:410-421. [PMID: 29914877 DOI: 10.1124/jpet.118.249102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/13/2018] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests that SET functions as an oncoprotein and promotes cancer survival and therapeutic resistance. However, whether SET affects radiation therapy (RT)-mediated anticancer effects has not yet been explored. We investigated the impact of SET on RT sensitivity in hepatocellular carcinoma (HCC). Using colony and hepatosphere formation assays, we found that RT-induced proliferative inhibition was critically associated with SET expression. We next tested a novel SET antagonist, N4-(3-ethynylphenyl)-6,7-dimethoxy-N2-(4-phenoxyphenyl) quinazoline-2,4-diamine (EMQA), in combination with RT. We showed that additive use of EMQA significantly enhanced the effects of RT against HCC in vitro and in vivo. Notably, compared with mice receiving either RT or EMQA alone, the growth of PLC5 xenografted tumor in mice receiving RT plus EMQA was significantly reduced without compromising treatment tolerability. Furthermore, we proved that antagonizing SET to restore protein phosphatase 2A-mediated phospho-Akt (p-AKT) downregulation was responsible for the synergism between EMQA and RT. Our data demonstrate a new oncogenic property of SET and provide preclinical evidence that combining a SET antagonist and RT may be effective for treatment of HCC. Further investigation is warranted to validate the clinical relevance of this approach.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Man-Hsin Hung
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Chi-Ting Shih
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Feng-Shu Hsieh
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Chiung-Wen Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Ming-Hsien Tsai
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Shih-Shin Chang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Yung-Jen Hsiao
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Li-Ju Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Tzu-I Chao
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| | - Kuen-Feng Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-Y.H.); Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (M.-H.H.); Institute of Biopharmaceutical Sciences (C.-T.S.) and School of Medicine (M.-H.H.), National Yang-Ming University, Taipei, Taiwan; Department of Medical Research (F.-S.H., M.-H.T., S.-S.C., Y.-J.H, L.-J.C., K.-F.C.) and National Center of Excellence for Clinical Trial and Research (K.-F.C.), National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan (C.-Y.H., C.-W.K.); and SupremeCure Pharma Inc., Taipei, Taiwan (T.-I.C.)
| |
Collapse
|
38
|
Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria. Proc Natl Acad Sci U S A 2018; 115:7955-7960. [PMID: 30018060 PMCID: PMC6077723 DOI: 10.1073/pnas.1806833115] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dysfunction of mitochondria, the powerhouses of living cells, favors the onset of human diseases, namely neurodegenerative diseases, cardiovascular pathologies, and cancer. Actually, respiratory cytochrome c has been found to be phosphorylated at tyrosine 97 during the insulin-induced neuroprotection response following a brain ischemic injury. Here, we report that the decrease in neuronal death could be directly ascribed to changes in mitochondrial metabolism—including lower production of reactive oxygen species—and cell homeostasis induced by cytochrome c phosphorylation. Our findings thus provide the basis for understanding the molecular mechanism and potential use of phosphomimetic species of cytochrome c, thereby yielding new opportunities to develop more efficient therapies against acute pathologies. Respiratory cytochrome c has been found to be phosphorylated at tyrosine 97 in the postischemic brain upon neuroprotective insulin treatment, but how such posttranslational modification affects mitochondrial metabolism is unclear. Here, we report the structural features and functional behavior of a phosphomimetic cytochrome c mutant, which was generated by site-specific incorporation at position 97 of p-carboxymethyl-l-phenylalanine using the evolved tRNA synthetase method. We found that the point mutation does not alter the overall folding and heme environment of cytochrome c, but significantly affects the entire oxidative phosphorylation process. In fact, the electron donation rate of the mutant heme protein to cytochrome c oxidase, or complex IV, within respiratory supercomplexes was higher than that of the wild-type species, in agreement with the observed decrease in reactive oxygen species production. Direct contact of cytochrome c with the respiratory supercomplex factor HIGD1A (hypoxia-inducible domain family member 1A) is reported here, with the mutant heme protein exhibiting a lower affinity than the wild-type species. Interestingly, phosphomimetic cytochrome c also exhibited a lower caspase-3 activation activity. Altogether, these findings yield a better understanding of the molecular basis for mitochondrial metabolism in acute diseases, such as brain ischemia, and thus could allow the use of phosphomimetic cytochrome c as a neuroprotector with therapeutic applications.
Collapse
|
39
|
Deacon OM, Svistunenko DA, Moore GR, Wilson MT, Worrall JA. Naturally Occurring Disease-Related Mutations in the 40–57 Ω-Loop of Human Cytochrome c Control Triggering of the Alkaline Isomerization. Biochemistry 2018; 57:4276-4288. [DOI: 10.1021/acs.biochem.8b00520] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Oliver M. Deacon
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Dimitri A. Svistunenko
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Geoffrey R. Moore
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Michael T. Wilson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Jonathan A.R. Worrall
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K
| |
Collapse
|
40
|
Bayarkhangai B, Noureldin S, Yu L, Zhao N, Gu Y, Xu H, Guo C. A comprehensive and perspective view of oncoprotein SET in cancer. Cancer Med 2018; 7:3084-3094. [PMID: 29749127 PMCID: PMC6051184 DOI: 10.1002/cam4.1526] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/25/2018] [Accepted: 04/05/2018] [Indexed: 12/16/2022] Open
Abstract
SET is a multifunctional oncoprotein which is ubiquitously expressed in all kinds of cells. The SET protein participates in many cellular processes including cell cycle, cell migration, apoptosis, transcription, and DNA repair. Accumulating evidence demonstrates that the expression and activity of SET correlate with cancer occurrence, metastasis, and prognosis. Therefore, the SET protein is regarded as a potential target for cancer therapy and several inhibitors are being developed for clinical use. Herein, we comprehensively review the physiological and pathological functions of SET as well as its structure-function relationship. Additionally, the regulatory mechanisms of SET at both transcriptional and posttranslational levels are also discussed.
Collapse
Affiliation(s)
- Buuvee Bayarkhangai
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Suzan Noureldin
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Liting Yu
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Na Zhao
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Yaru Gu
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Hanmei Xu
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Changying Guo
- State Key of Natural Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
41
|
Cytochrome c speeds up caspase cascade activation by blocking 14-3-3ε-dependent Apaf-1 inhibition. Cell Death Dis 2018; 9:365. [PMID: 29511177 PMCID: PMC5840378 DOI: 10.1038/s41419-018-0408-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
Apoptosis is a highly regulated form of programmed cell death, essential to the development and homeostasis of multicellular organisms. Cytochrome c is a central figure in the activation of the apoptotic intrinsic pathway, thereby activating the caspase cascade through its interaction with Apaf-1. Our recent studies have revealed 14-3-3ε (a direct inhibitor of Apaf-1) as a cytosolic cytochrome c target. Here we explore the cytochrome c / 14-3-3ε interaction and show the ability of cytochrome c to block 14-3-3ε-mediated Apaf-1 inhibition, thereby unveiling a novel function for cytochrome c as an indirect activator of caspase-9/3. We have used calorimetry, NMR spectroscopy, site mutagenesis and computational calculations to provide an insight into the structural features of the cytochrome c / 14-3-3ε complex. Overall, these findings suggest an additional cytochrome c-mediated mechanism to modulate apoptosome formation, shedding light onto the rigorous apoptotic regulation network.
Collapse
|
42
|
Díaz-Moreno I, Velázquez-Cruz A, Curran-French S, Díaz-Quintana A, De la Rosa MA. Nuclear cytochrome c - a mitochondrial visitor regulating damaged chromatin dynamics. FEBS Lett 2018; 592:172-178. [PMID: 29288494 DOI: 10.1002/1873-3468.12959] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/10/2022]
Abstract
Over the past decade, evidence has emerged suggesting a broader role for cytochrome c (Cyt c) in programmed cell death. Recently, we demonstrated the ability of Cyt c to inhibit the nucleosome assembly activity of histone chaperones SET/template-activating factor Iβ and NAP1-related protein during DNA damage in humans and plants respectively. Here, we hypothesise a dual concentration-dependent function for nuclear Cyt c in response to DNA damage. We propose that low levels of highly cytotoxic DNA lesions - such as double-strand breaks - induce nuclear translocation of Cyt c, leading to the attenuation of nucleosome assembly and, thereby, increasing the time available for DNA repair. If DNA damage persists or is exacerbated, the nuclear Cyt c concentration would exceed a given threshold, causing the haem protein to block DNA remodelling altogether.
Collapse
Affiliation(s)
- Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Seamus Curran-French
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| |
Collapse
|
43
|
Deacon OM, Karsisiotis AI, Moreno-Chicano T, Hough MA, Macdonald C, Blumenschein TMA, Wilson MT, Moore GR, Worrall JAR. Heightened Dynamics of the Oxidized Y48H Variant of Human Cytochrome c Increases Its Peroxidatic Activity. Biochemistry 2017; 56:6111-6124. [PMID: 29083920 DOI: 10.1021/acs.biochem.7b00890] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteins performing multiple biochemical functions are called "moonlighting proteins" or extreme multifunctional (EMF) proteins. Mitochondrial cytochrome c is an EMF protein that binds multiple partner proteins to act as a signaling molecule, transfers electrons in the respiratory chain, and acts as a peroxidase in apoptosis. Mutations in the cytochrome c gene lead to the disease thrombocytopenia, which is accompanied by enhanced apoptotic activity. The Y48H variant arises from one such mutation and is found in the 40-57 Ω-loop, the lowest-unfolding free energy substructure of the cytochrome c fold. A 1.36 Å resolution X-ray structure of the Y48H variant reveals minimal structural changes compared to the wild-type structure, with the axial Met80 ligand coordinated to the heme iron. Despite this, the intrinsic peroxidase activity is enhanced, implying that a pentacoordinate heme state is more prevalent in the Y48H variant, corroborated through determination of a Met80 "off rate" of >125 s-1 compared to a rate of ∼6 s-1 for the wild-type protein. Heteronuclear nuclear magnetic resonance measurements with the oxidized Y48H variant reveal heightened dynamics in the 40-57 Ω-loop and the Met80-containing 71-85 Ω-loop relative to the wild-type protein, illustrating communication between these substructures. Placed into context with the G41S cytochrome c variant, also implicated in thrombocytopenia, a dynamic picture associated with this disease relative to cytochrome c is emerging whereby increasing dynamics in substructures of the cytochrome c fold serve to facilitate an increased population of the peroxidatic pentacoordinate heme state in the following order: wild type < G41S < Y48H.
Collapse
Affiliation(s)
- Oliver M Deacon
- School of Biological Sciences, University of Essex , Wivenhoe Park, Colchester CO4 3SQ, U.K
| | | | - Tadeo Moreno-Chicano
- School of Biological Sciences, University of Essex , Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Michael A Hough
- School of Biological Sciences, University of Essex , Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Colin Macdonald
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Tharin M A Blumenschein
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Michael T Wilson
- School of Biological Sciences, University of Essex , Wivenhoe Park, Colchester CO4 3SQ, U.K
| | - Geoffrey R Moore
- School of Chemistry, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Jonathan A R Worrall
- School of Biological Sciences, University of Essex , Wivenhoe Park, Colchester CO4 3SQ, U.K
| |
Collapse
|
44
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
45
|
González-Arzola K, Díaz-Quintana A, Rivero-Rodríguez F, Velázquez-Campoy A, De la Rosa MA, Díaz-Moreno I. Histone chaperone activity of Arabidopsis thaliana NRP1 is blocked by cytochrome c. Nucleic Acids Res 2017; 45:2150-2165. [PMID: 27924001 PMCID: PMC5389710 DOI: 10.1093/nar/gkw1215] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Higher-order plants and mammals use similar mechanisms to repair and tolerate oxidative DNA damage. Most studies on the DNA repair process have focused on yeast and mammals, in which histone chaperone-mediated nucleosome disassembly/reassembly is essential for DNA to be accessible to repair machinery. However, little is known about the specific role and modulation of histone chaperones in the context of DNA damage in plants. Here, the histone chaperone NRP1, which is closely related to human SET/TAF-Iβ, was found to exhibit nucleosome assembly activity in vitro and to accumulate in the chromatin of Arabidopsis thaliana after DNA breaks. In addition, this work establishes that NRP1 binds to cytochrome c, thereby preventing the former from binding to histones. Since NRP1 interacts with cytochrome c at its earmuff domain, that is, its histone-binding domain, cytochrome c thus competes with core histones and hampers the activity of NRP1 as a histone chaperone. Altogether, the results obtained indicate that the underlying molecular mechanisms in nucleosome disassembly/reassembly are highly conserved throughout evolution, as inferred from the similar inhibition of plant NRP1 and human SET/TAF-Iβ by cytochrome c during DNA damage response.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Antonio Díaz-Quintana
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Rivero-Rodríguez
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit Institute of Physical Chemistry Rocasolano (IQFR)-BIFI-Spanish National Research Council (CSIC), University of Zaragoza, Mariano Esquillor s/n, 50018 Zaragoza, Spain.,Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); and Aragon Agency for Research and Development (ARAID), Regional Government of Aragon, Maria de Luna 11, 50018 Zaragoza, Spain
| | - Miguel A De la Rosa
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Isla de la Cartuja Scientific Research Centre (cicCartuja), University of Seville-Spanish National Research Council (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
46
|
Hung MH, Chen KF. Reprogramming the oncogenic response: SET protein as a potential therapeutic target in cancer. Expert Opin Ther Targets 2017; 21:685-694. [DOI: 10.1080/14728222.2017.1336226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Man-Hsin Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
47
|
Vergara Z, Gutierrez C. Emerging roles of chromatin in the maintenance of genome organization and function in plants. Genome Biol 2017; 18:96. [PMID: 28535770 PMCID: PMC5440935 DOI: 10.1186/s13059-017-1236-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chromatin is not a uniform macromolecular entity; it contains different domains characterized by complex signatures of DNA and histone modifications. Such domains are organized both at a linear scale along the genome and spatially within the nucleus. We discuss recent discoveries regarding mechanisms that establish boundaries between chromatin states and nuclear territories. Chromatin organization is crucial for genome replication, transcriptional silencing, and DNA repair and recombination. The replication machinery is relevant for the maintenance of chromatin states, influencing DNA replication origin specification and accessibility. Current studies reinforce the idea of intimate crosstalk between chromatin features and processes involving DNA transactions.
Collapse
Affiliation(s)
- Zaida Vergara
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
48
|
Structural basis of mitochondrial dysfunction in response to cytochrome c phosphorylation at tyrosine 48. Proc Natl Acad Sci U S A 2017; 114:E3041-E3050. [PMID: 28348229 DOI: 10.1073/pnas.1618008114] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of mitochondrial activity allows cells to adapt to changing conditions and to control oxidative stress, and its dysfunction can lead to hypoxia-dependent pathologies such as ischemia and cancer. Although cytochrome c phosphorylation-in particular, at tyrosine 48-is a key modulator of mitochondrial signaling, its action and molecular basis remain unknown. Here we mimic phosphorylation of cytochrome c by replacing tyrosine 48 with p-carboxy-methyl-l-phenylalanine (pCMF). The NMR structure of the resulting mutant reveals significant conformational shifts and enhanced dynamics around pCMF that could explain changes observed in its functionality: The phosphomimetic mutation impairs cytochrome c diffusion between respiratory complexes, enhances hemeprotein peroxidase and reactive oxygen species scavenging activities, and hinders caspase-dependent apoptosis. Our findings provide a framework to further investigate the modulation of mitochondrial activity by phosphorylated cytochrome c and to develop novel therapeutic approaches based on its prosurvival effects.
Collapse
|
49
|
Karsisiotis AI, Deacon OM, Wilson MT, Macdonald C, Blumenschein TMA, Moore GR, Worrall JAR. Increased dynamics in the 40-57 Ω-loop of the G41S variant of human cytochrome c promote its pro-apoptotic conformation. Sci Rep 2016; 6:30447. [PMID: 27461282 PMCID: PMC4962053 DOI: 10.1038/srep30447] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/05/2016] [Indexed: 12/26/2022] Open
Abstract
Thrombocytopenia 4 is an inherited autosomal dominant thrombocytopenia, which occurs due to mutations in the human gene for cytochrome c that results in enhanced mitochondrial apoptotic activity. The Gly41Ser mutation was the first to be reported. Here we report stopped-flow kinetic studies of azide binding to human ferricytochrome c and its Gly41Ser variant, together with backbone amide H/D exchange and 15N-relaxation dynamics using NMR spectroscopy, to show that alternative conformations are kinetically and thermodynamically more readily accessible for the Gly41Ser variant than for the wild-type protein. Our work reveals a direct conformational link between the 40–57 Ω-loop in which residue 41 resides and the dynamical properties of the axial ligand to the heme iron, Met80, such that the replacement of glycine by serine promotes the dissociation of the Met80 ligand, thereby increasing the population of a peroxidase active state, which is a key non-native conformational state in apoptosis.
Collapse
Affiliation(s)
| | - Oliver M Deacon
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Michael T Wilson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Colin Macdonald
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | | | - Geoffrey R Moore
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Jonathan A R Worrall
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
50
|
Structural and functional characterization of phosphomimetic mutants of cytochrome c at threonine 28 and serine 47. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:387-95. [PMID: 26806033 DOI: 10.1016/j.bbabio.2016.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 12/31/2022]
Abstract
Protein function is frequently modulated by post-translational modifications of specific residues. Cytochrome c, in particular, is phosphorylated in vivo at threonine 28 and serine 47. However, the effect of such modifications on the physiological functions of cytochrome c - namely, the transfer of electrons in the respiratory electron transport chain and the triggering of programmed cell death - is still unknown. Here we replace each of these two residues by aspartate, in order to mimic phosphorylation, and report the structural and functional changes in the resulting cytochrome c variants. We find that the T28D mutant causes a 30-mV decrease on the midpoint redox potential and lowers the affinity for the distal site of Arabidopsis thaliana cytochrome c1 in complex III. Both the T28D and S47D variants display a higher efficiency as electron donors for the cytochrome c oxidase activity of complex IV. In both protein mutants, the peroxidase activity is significantly higher, which is related to the ability of cytochrome c to leave the mitochondria and reach the cytoplasm. We also find that both mutations at serine 47 (S47D and S47A) impair the ability of cytoplasmic cytochrome c to activate the caspases cascade, which is essential for triggering programmed cell death.
Collapse
|