1
|
Jourdeuil K, Neilson KM, Tavares ALP, Moody SA. Zmym2 Alters Expression of Key Craniofacial Genes. Genesis 2025; 63:e70018. [PMID: 40448369 DOI: 10.1002/dvg.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/01/2025] [Accepted: 05/13/2025] [Indexed: 06/02/2025]
Abstract
To identify novel Six1-interacting proteins, we previously screened the fly interactome for Sine oculis-binding partners whose orthologues are also expressed in Xenopus embryos. We identified a zinc-finger MYM-containing protein-Zmym2-based on its sequence similarity in a few domains also found in the Drosophila and vertebrate Sine oculis-binding proteins (Sobp). Because recent studies established Zmym2 as a transcriptional repressor that interacts with Six4 during renal development, herein we assessed whether it interacts with Six1, can modify Six1's transcriptional activity, and is involved in cranial neural crest or placode gene expression. Although during early development Zmym2 is expressed in many of the same tissues as Six1 and contains several domains also found in Sobp, we did not detect any interaction by co-immunoprecipitation and did not detect any effect on Six1 + Eya1 transcriptional activity in cultured cells. Nonetheless, increasing the level of Zmym2 in embryos resulted in broader expression domains of neural border, neural tube and neural crest genes, and smaller placode gene domains. These results suggest that although Zmym2 is unlikely to be a bone fide Six1 interacting protein, it appears to indirectly antagonize Six1 function during cranial placode development, promoting neural plate and neural crest gene expression.
Collapse
Affiliation(s)
- Karyn Jourdeuil
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
2
|
Claessens LA, Verlaan–de Vries M, Broekman N, Luijsterburg MS, Vertegaal ACO. Interaction networks of SIM-binding groove mutants reveal alternate modes of SUMO binding and profound impact on SUMO conjugation. SCIENCE ADVANCES 2025; 11:eadp2643. [PMID: 40367183 PMCID: PMC12077520 DOI: 10.1126/sciadv.adp2643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
The best-characterized mode of noncovalent SUMO interaction involves binding of a SUMO-interaction motif (SIM) to a conserved binding groove in SUMO. Our knowledge on other types of SUMO interactions is still limited. Using SIM-binding groove SUMO2/3 mutants and mass spectrometry, we identified proteins that bind to SUMO in an alternate manner. Domain-enrichment analysis characterized a group of WD40 repeat domain-containing proteins as SIM-independent SUMO interactors, and we validated direct binding of SEC13 and SEH1L to SUMO in vitro. Using AlphaFold-3 modeling and in vitro mutational analysis, we identified residues in the WD40 domain of SEC13 and SUMO2/3's C terminus involved in the interaction. Furthermore, SIM-binding groove mutants failed to interact with SUMO E3 ligases belonging to the PIAS family, RANBP2, ZNF451, and TOPORS, leading to loss of covalent conjugation to most of SUMO target proteins. Together, our dataset serves as a unique resource and offers valuable insights on the intricacies of the SUMO interactome and SUMO targets.
Collapse
Affiliation(s)
- Laura A. Claessens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Matty Verlaan–de Vries
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Nienke Broekman
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
3
|
Tröster V, Wong RP, Börgel A, Cakilkaya B, Renz C, Möckel MM, Eifler-Olivi K, Marinho J, Reinberg T, Furler S, Schaefer JV, Plückthun A, Wolf E, Ulrich HD. Custom affinity probes reveal DNA-damage-induced, ssDNA-independent chromatin SUMOylation in budding yeast. Cell Rep 2025; 44:115353. [PMID: 40019834 DOI: 10.1016/j.celrep.2025.115353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/17/2024] [Accepted: 02/05/2025] [Indexed: 03/29/2025] Open
Abstract
The small ubiquitin-related modifier SUMO regulates cellular processes in eukaryotes either by modulating individual protein-protein interactions or with relaxed substrate selectivity by group modification. Here, we report the isolation and characterization of designed ankyrin repeat protein (DARPin)-based affinity probes directed against budding yeast SUMO (Smt3). We validate selected DARPins as compartment-specific inhibitors or neutral detection agents. Structural characterization reveals a recognition mode distinct from that of natural SUMO interactors. In vivo application pinpoints Smt3's essential function to the nucleus and demonstrates DARPin-mediated sensitization toward various stress conditions. A subset of selected clones is validated as SUMOylation reporters in cells. In this manner, we identify a DNA-damage-induced nuclear SUMOylation response that-in contrast to previously reported chromatin group SUMOylation-is independent of single-stranded DNA and the SUMO-E3 Siz2 but depends on Mms21 and likely reflects late intermediates of homologous recombination. Thus, Smt3-specific DARPins can provide insight into the dynamics of SUMOylation in defined subcellular structures.
Collapse
Affiliation(s)
- Vera Tröster
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Ronald P Wong
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Arne Börgel
- Institute of Molecular Physiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Baris Cakilkaya
- Institute of Molecular Physiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Christian Renz
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Martin M Möckel
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | | | - Joana Marinho
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Thomas Reinberg
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Sven Furler
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Eva Wolf
- Institute of Molecular Physiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany.
| |
Collapse
|
4
|
Liu JCY, Ackermann L, Hoffmann S, Gál Z, Hendriks IA, Jain C, Morlot L, Tatham MH, McLelland GL, Hay RT, Nielsen ML, Brummelkamp T, Haahr P, Mailand N. Concerted SUMO-targeted ubiquitin ligase activities of TOPORS and RNF4 are essential for stress management and cell proliferation. Nat Struct Mol Biol 2024; 31:1355-1367. [PMID: 38649616 PMCID: PMC11402782 DOI: 10.1038/s41594-024-01294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Protein SUMOylation provides a principal driving force for cellular stress responses, including DNA-protein crosslink (DPC) repair and arsenic-induced PML body degradation. In this study, using genome-scale screens, we identified the human E3 ligase TOPORS as a key effector of SUMO-dependent DPC resolution. We demonstrate that TOPORS promotes DPC repair by functioning as a SUMO-targeted ubiquitin ligase (STUbL), combining ubiquitin ligase activity through its RING domain with poly-SUMO binding via SUMO-interacting motifs, analogous to the STUbL RNF4. Mechanistically, TOPORS is a SUMO1-selective STUbL that complements RNF4 in generating complex ubiquitin landscapes on SUMOylated targets, including DPCs and PML, stimulating efficient p97/VCP unfoldase recruitment and proteasomal degradation. Combined loss of TOPORS and RNF4 is synthetic lethal even in unstressed cells, involving defective clearance of SUMOylated proteins from chromatin accompanied by cell cycle arrest and apoptosis. Our findings establish TOPORS as a STUbL whose parallel action with RNF4 defines a general mechanistic principle in crucial cellular processes governed by direct SUMO-ubiquitin crosstalk.
Collapse
Affiliation(s)
- Julio C Y Liu
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Leena Ackermann
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Saskia Hoffmann
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Zita Gál
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Charu Jain
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Louise Morlot
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gian-Luca McLelland
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael Lund Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thijn Brummelkamp
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Peter Haahr
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Cellular and Molecular Medicine, Center for Gene Expression, University of Copenhagen, Copenhagen, Denmark.
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Yang BZ, Liu MY, Chiu KL, Chien YL, Cheng CA, Chen YL, Tsui LY, Lin KR, Chu HPC, Wu CSP. DHX9 SUMOylation is required for the suppression of R-loop-associated genome instability. Nat Commun 2024; 15:6009. [PMID: 39019926 PMCID: PMC11255299 DOI: 10.1038/s41467-024-50428-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
RNA helicase DHX9 is essential for genome stability by resolving aberrant R-loops. However, its regulatory mechanisms remain unclear. Here we show that SUMOylation at lysine 120 (K120) is crucial for DHX9 function. Preventing SUMOylation at K120 leads to R-loop dysregulation, increased DNA damage, and cell death. Cells expressing DHX9 K120R mutant which cannot be SUMOylated are more sensitive to genotoxic agents and this sensitivity is mitigated by RNase H overexpression. Unlike the mutant, wild-type DHX9 interacts with R-loop-associated proteins such as PARP1 and DDX21 via SUMO-interacting motifs. Fusion of SUMO2 to the DHX9 K120R mutant enhances its association with these proteins, reduces R-loop accumulation, and alleviates survival defects of DHX9 K120R. Our findings highlight the critical role of DHX9 SUMOylation in maintaining genome stability by regulating protein interactions necessary for R-loop balance.
Collapse
Affiliation(s)
- Bing-Ze Yang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Mei-Yin Liu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Kuan-Lin Chiu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106319, Taiwan
| | - Yuh-Ling Chien
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Ching-An Cheng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Yu-Lin Chen
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Li-Yu Tsui
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Keng-Ru Lin
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | | | - Ching-Shyi Peter Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan.
| |
Collapse
|
6
|
Ng YK, Blazev R, McNamara JW, Dutt M, Molendijk J, Porrello ER, Elliott DA, Parker BL. Affinity Purification-Mass Spectrometry and Single Fiber Physiology/Proteomics Reveals Mechanistic Insights of C18ORF25. J Proteome Res 2024; 23:1285-1297. [PMID: 38480473 DOI: 10.1021/acs.jproteome.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
C18ORF25 was recently shown to be phosphorylated at S67 by AMP-activated protein kinase (AMPK) in the skeletal muscle, following acute exercise in humans. Phosphorylation was shown to improve the ex vivo skeletal muscle contractile function in mice, but our understanding of the molecular mechanisms is incomplete. Here, we profiled the interactome of C18ORF25 in mouse myotubes using affinity purification coupled to mass spectrometry. This analysis included an investigation of AMPK-dependent and S67-dependent protein/protein interactions. Several nucleocytoplasmic and contractile-associated proteins were identified, which revealed a subset of GTPases that associate with C18ORF25 in an AMPK- and S67 phosphorylation-dependent manner. We confirmed that C18ORF25 is localized to the nucleus and the contractile apparatus in the skeletal muscle. Mice lacking C18Orf25 display defects in calcium handling specifically in fast-twitch muscle fibers. To investigate these mechanisms, we developed an integrated single fiber physiology and single fiber proteomic platform. The approach enabled a detailed assessment of various steps in the excitation-contraction pathway including SR calcium handling and force generation, followed by paired single fiber proteomic analysis. This enabled us to identify >700 protein/phenotype associations and 36 fiber-type specific differences, following loss of C18Orf25. Taken together, our data provide unique insights into the function of C18ORF25 and its role in skeletal muscle physiology.
Collapse
Affiliation(s)
- Yaan-Kit Ng
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| | - Ronnie Blazev
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| | - James W McNamara
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
- Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, 3052 VIC, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, 3052 VIC, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052 VIC, Australia
| | - Mriga Dutt
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| | - Jeffrey Molendijk
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| | - Enzo R Porrello
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, 3052 VIC, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, 3052 VIC, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052 VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, 3010 VIC, Australia
| | - David A Elliott
- Murdoch Children's Research Institute and Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Parkville, 3052 VIC, Australia
- Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, 3052 VIC, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, 3052 VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, 3010 VIC, Australia
| | - Benjamin L Parker
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, 3052 VIC, Australia
- Centre for Muscle Research, The University of Melbourne, Parkville, 3052 VIC, Australia
| |
Collapse
|
7
|
Zhang H, Xiong Y, Sun Y, Park JM, Su D, Feng X, Keast S, Tang M, Huang M, Wang C, Srivastava M, Yang C, Zhu D, Chen Z, Li S, Yin L, Pommier Y, Chen J. RAD54L2-mediated DNA damage avoidance pathway specifically preserves genome integrity in response to topoisomerase 2 poisons. SCIENCE ADVANCES 2023; 9:eadi6681. [PMID: 38055811 PMCID: PMC10699775 DOI: 10.1126/sciadv.adi6681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Type II topoisomerases (TOP2) form transient TOP2 cleavage complexes (TOP2ccs) during their catalytic cycle to relieve topological stress. TOP2ccs are covalently linked TOP2-DNA intermediates that are reversible but can be trapped by TOP2 poisons. Trapped TOP2ccs block transactions on DNA and generate genotoxic stress, which are the mechanisms of action of TOP2 poisons. How cells avoid TOP2cc accumulation remains largely unknown. In this study, we uncovered RAD54 like 2 (RAD54L2) as a key factor that mediates a TOP2-specific DNA damage avoidance pathway. RAD54L2 deficiency conferred unique sensitivity to treatment with TOP2 poisons. RAD54L2 interacted with TOP2A/TOP2B and ZATT/ZNF451 and promoted the turnover of TOP2 from DNA with or without TOP2 poisons. Additionally, inhibition of proteasome activity enhanced the chromatin binding of RAD54L2, which in turn led to the removal of TOP2 from chromatin. In conclusion, we propose that RAD54L2-mediated TOP2 turnover is critically important for the avoidance of potential TOP2-linked DNA damage under physiological conditions and in response to TOP2 poisons.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Jeong-Min Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sarah Keast
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chang Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dandan Zhu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ling Yin
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Owen DJ, Aguilar-Martinez E, Ji Z, Li Y, Sharrocks AD. ZMYM2 controls human transposable element transcription through distinct co-regulatory complexes. eLife 2023; 12:RP86669. [PMID: 37934570 PMCID: PMC10629813 DOI: 10.7554/elife.86669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
ZMYM2 is a zinc finger transcriptional regulator that plays a key role in promoting and maintaining cell identity. It has been implicated in several diseases such as congenital anomalies of the kidney where its activity is diminished and cancer where it participates in oncogenic fusion protein events. ZMYM2 is thought to function through promoting transcriptional repression and here we provide more evidence to support this designation. Here we studied ZMYM2 function in human cells and demonstrate that ZMYM2 is part of distinct chromatin-bound complexes including the established LSD1-CoREST-HDAC1 corepressor complex. We also identify new functional and physical interactions with ADNP and TRIM28/KAP1. The ZMYM2-TRIM28 complex forms in a SUMO-dependent manner and is associated with repressive chromatin. ZMYM2 and TRIM28 show strong functional similarity and co-regulate a large number of genes. However, there are no strong links between ZMYM2-TRIM28 binding events and nearby individual gene regulation. Instead, ZMYM2-TRIM28 appears to regulate genes in a more regionally defined manner within TADs where it can directly regulate co-associated retrotransposon expression. We find that different types of ZMYM2 binding complex associate with and regulate distinct subclasses of retrotransposons, with ZMYM2-ADNP complexes at SINEs and ZMYM2-TRIM28 complexes at LTR elements. We propose a model whereby ZMYM2 acts directly through retrotransposon regulation, which may then potentially affect the local chromatin environment and associated coding gene expression.
Collapse
Affiliation(s)
- Danielle J Owen
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| | - Elisa Aguilar-Martinez
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| | - Zongling Ji
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| | - Yaoyong Li
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford RoadManchesterUnited Kingdom
| |
Collapse
|
9
|
Graham-Paquin AL, Saini D, Sirois J, Hossain I, Katz MS, Zhuang QKW, Kwon SY, Yamanaka Y, Bourque G, Bouchard M, Pastor WA. ZMYM2 is essential for methylation of germline genes and active transposons in embryonic development. Nucleic Acids Res 2023; 51:7314-7329. [PMID: 37395395 PMCID: PMC10415128 DOI: 10.1093/nar/gkad540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
ZMYM2 is a transcriptional repressor whose role in development is largely unexplored. We found that Zmym2-/- mice show embryonic lethality by E10.5. Molecular characterization of Zmym2-/- embryos revealed two distinct defects. First, they fail to undergo DNA methylation and silencing of germline gene promoters, resulting in widespread upregulation of germline genes. Second, they fail to methylate and silence the evolutionarily youngest and most active LINE element subclasses in mice. Zmym2-/- embryos show ubiquitous overexpression of LINE-1 protein as well as aberrant expression of transposon-gene fusion transcripts. ZMYM2 homes to sites of PRC1.6 and TRIM28 complex binding, mediating repression of germline genes and transposons respectively. In the absence of ZMYM2, hypermethylation of histone 3 lysine 4 occurs at target sites, creating a chromatin landscape unfavourable for establishment of DNA methylation. ZMYM2-/- human embryonic stem cells also show aberrant upregulation and demethylation of young LINE elements, indicating a conserved role in repression of active transposons. ZMYM2 is thus an important new factor in DNA methylation patterning in early embryonic development.
Collapse
Affiliation(s)
- Adda-Lee Graham-Paquin
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Deepak Saini
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Ishtiaque Hossain
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Megan S Katz
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Yojiro Yamanaka
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan
- Canadian Center for Computational Genomics,McGill University, Montreal, Quebec, Canada
| | - Maxime Bouchard
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Farsi Z, Sheng M. Molecular mechanisms of schizophrenia: Insights from human genetics. Curr Opin Neurobiol 2023; 81:102731. [PMID: 37245257 DOI: 10.1016/j.conb.2023.102731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder that affects millions of people worldwide; however, its etiology is poorly understood at the molecular and neurobiological levels. A particularly important advance in recent years is the discovery of rare genetic variants associated with a greatly increased risk of developing schizophrenia. These primarily loss-of-function variants are found in genes that overlap with those implicated by common variants and are involved in the regulation of glutamate signaling, synaptic function, DNA transcription, and chromatin remodeling. Animal models harboring mutations in these large-effect schizophrenia risk genes show promise in providing additional insights into the molecular mechanisms of the disease.
Collapse
Affiliation(s)
- Zohreh Farsi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Morgan Sheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Kötter A, Mootz HD, Heuer A. Conformational and Interface Variability in Multivalent SIM-SUMO Interaction. J Phys Chem B 2023; 127:3806-3815. [PMID: 37079893 DOI: 10.1021/acs.jpcb.2c08760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
SUMO targeted ubiqutin ligases (STUbLs) like RNF4 or Arkadia/RNF111 recognize SUMO chains through multiple SUMO interacting motifs (SIMs). Typically, these are contained in disordered regions of these enzymes and also the individual SUMO domains of SUMO chains move relatively freely. It is assumed that binding the SIM region significantly restricts the conformational freedom of SUMO chains. Here, we present the results of extensive molecular dynamics simulations on the complex formed by the SIM2-SIM3 region of RNF4 and diSUMO3. Though our simulations highlight the importance of typical SIM-SUMO interfaces also in the multivalent situation, we observe that frequently other regions of the peptide than the canonical SIMs establish this interface. This variability regarding the individual interfaces leads to a conformationally highly flexible complex. Comparison with previous experimental measurements clearly supports our findings and indicates that our observations can be extended to other multivalent SIM-SUMO complexes.
Collapse
Affiliation(s)
- Alex Kötter
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany
| | - Henning D Mootz
- Institut für Biochemie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 2, D-48149 Münster, Germany
| | - Andreas Heuer
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany
| |
Collapse
|
12
|
Lobanova Y, Filonova G, Kaplun D, Zhigalova N, Prokhortchouk E, Zhenilo S. TRIM28 regulates transcriptional activity of methyl-DNA binding protein Kaiso by SUMOylation. Biochimie 2023; 206:73-80. [PMID: 36252888 DOI: 10.1016/j.biochi.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Abstract
Kaiso is a methyl DNA binding transcriptional factor involved in cell cycle control, WNT signaling, colon inflammation, and cancer progression. Recently, it was shown that SUMOylation dynamically modulates the transcriptional activity of Kaiso. However, factors involved in SUMOylation of Kaiso are unknown. Here we show that TRIM28 enhances SUMOylation of Kaiso leading to a decreased methyl-dependent repression ability. TRIM28 is a scaffold protein that regulates transcription and posttranslational modifications of factors involved in cell cycle progression, DNA damage, and viral gene expression. It has SUMO and ubiquitin E3 ligase activity. Here, we defined the domains involved in Kaiso-TRIM28 interaction. The RBCC domain of TRIM28 interacts with the BTB/POZ domain and the zinc fingers of Kaiso. The PHD-bromodomain of TRIM28 is sufficient for the interaction with zinc fingers of Kaiso. Additionally, we found that Kaiso enhances SUMOylation of TRIM28. Altogether our data suggest self-enhancement of SUMOylation of both Kaiso and TRIM28 that affects transcriptional activity of Kaiso.
Collapse
Affiliation(s)
- Y Lobanova
- Sckryabin Institute of Bioengineering, Federal Research Centre «Fundamentals of Biotechnology» RAS, pr. 60 let Oktyabrya, 7-1, 117312, Moscow, Russia
| | - G Filonova
- Sckryabin Institute of Bioengineering, Federal Research Centre «Fundamentals of Biotechnology» RAS, pr. 60 let Oktyabrya, 7-1, 117312, Moscow, Russia
| | - D Kaplun
- Sckryabin Institute of Bioengineering, Federal Research Centre «Fundamentals of Biotechnology» RAS, pr. 60 let Oktyabrya, 7-1, 117312, Moscow, Russia; Institute of Gene Biology RAS, 34/5 Vavilova Street, 119334 Moscow, Russia
| | - N Zhigalova
- Sckryabin Institute of Bioengineering, Federal Research Centre «Fundamentals of Biotechnology» RAS, pr. 60 let Oktyabrya, 7-1, 117312, Moscow, Russia
| | - E Prokhortchouk
- Sckryabin Institute of Bioengineering, Federal Research Centre «Fundamentals of Biotechnology» RAS, pr. 60 let Oktyabrya, 7-1, 117312, Moscow, Russia; Institute of Gene Biology RAS, 34/5 Vavilova Street, 119334 Moscow, Russia
| | - S Zhenilo
- Sckryabin Institute of Bioengineering, Federal Research Centre «Fundamentals of Biotechnology» RAS, pr. 60 let Oktyabrya, 7-1, 117312, Moscow, Russia; Institute of Gene Biology RAS, 34/5 Vavilova Street, 119334 Moscow, Russia.
| |
Collapse
|
13
|
Smalley S, Hellmann H. Review: Exploring possible approaches using ubiquitylation and sumoylation pathways in modifying plant stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111275. [PMID: 35487671 DOI: 10.1016/j.plantsci.2022.111275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin and similar proteins, such as SUMO, are utilized by plants to modify target proteins to rapidly change their stability and activity in cells. This review will provide an overview of these crucial protein interactions with a focus on ubiquitylation and sumoylation in plants and how they contribute to stress tolerance. The work will also explore possibilities to use these highly conserved pathways for novel approaches to generate more robust crop plants better fit to cope with abiotic and biotic stress situations.
Collapse
Affiliation(s)
- Samuel Smalley
- Washington State University, Pullman, WA 99164, United States
| | - Hanjo Hellmann
- Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
14
|
Brüninghoff K, Wulff S, Dörner W, Geiss-Friedlander R, Mootz HD. A Photo-Crosslinking Approach to Identify Class II SUMO-1 Binders. Front Chem 2022; 10:900989. [PMID: 35707458 PMCID: PMC9191277 DOI: 10.3389/fchem.2022.900989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) is involved in various cellular processes and mediates known non-covalent protein-protein interactions by three distinct binding surfaces, whose interactions are termed class I to class III. While interactors for the class I interaction, which involves binding of a SUMO-interacting motif (SIM) to a hydrophobic groove in SUMO-1 and SUMO-2/3, are widely abundant, only a couple of examples have been reported for the other two types of interactions. Class II binding is conveyed by the E67 loop region on SUMO-1. Many previous studies to identify SUMO binders using pull-down or microarray approaches did not strategize on the SUMO binding mode. Identification of SUMO binding partners is further complicated due to the typically transient and low affinity interactions with the modifier. Here we aimed to identify SUMO-1 binders selectively enriched for class II binding. Using a genetically encoded photo-crosslinker approach, we have designed SUMO-1 probes to covalently capture class II SUMO-1 interactors by strategically positioning the photo-crosslinking moiety on the SUMO-1 surface. The probes were validated using known class II and class I binding partners. We utilized the probe with p-benzoyl-phenylalanine (BzF, also termed BpF or Bpa) at the position of Gln69 to identify binding proteins from mammalian cell extracts using mass spectrometry. By comparison with results obtained with a similarly designed SUMO-1 probe to target SIM-mediated binders of the class I type, we identified 192 and 96 proteins specifically enriched by either probe, respectively. The implicated preferential class I or class II binding modes of these proteins will further contribute to unveiling the complex interplay of SUMO-1-mediated interactions.
Collapse
Affiliation(s)
- Kira Brüninghoff
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Stephanie Wulff
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Wolfgang Dörner
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Ruth Geiss-Friedlander
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Henning D. Mootz
- Institute of Biochemistry, University of Münster, Münster, Germany
- *Correspondence: Henning D. Mootz,
| |
Collapse
|
15
|
Cabello-Lobato MJ, Jenner M, Cisneros-Aguirre M, Brüninghoff K, Sandy Z, da Costa I, Jowitt T, Loch C, Jackson S, Wu Q, Mootz H, Stark J, Cliff M, Schmidt C. Microarray screening reveals two non-conventional SUMO-binding modules linked to DNA repair by non-homologous end-joining. Nucleic Acids Res 2022; 50:4732-4754. [PMID: 35420136 PMCID: PMC9071424 DOI: 10.1093/nar/gkac237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
SUMOylation is critical for numerous cellular signalling pathways, including the maintenance of genome integrity via the repair of DNA double-strand breaks (DSBs). If misrepaired, DSBs can lead to cancer, neurodegeneration, immunodeficiency and premature ageing. Using systematic human proteome microarray screening combined with widely applicable carbene footprinting, genetic code expansion and high-resolution structural profiling, we define two non-conventional and topology-selective SUMO2-binding regions on XRCC4, a DNA repair protein important for DSB repair by non-homologous end-joining (NHEJ). Mechanistically, the interaction of SUMO2 and XRCC4 is incompatible with XRCC4 binding to three other proteins important for NHEJ-mediated DSB repair. These findings are consistent with SUMO2 forming a redundant NHEJ layer with the potential to regulate different NHEJ complexes at distinct levels including, but not limited to, XRCC4 interactions with XLF, LIG4 and IFFO1. Regulation of NHEJ is not only relevant for carcinogenesis, but also for the design of precision anti-cancer medicines and the optimisation of CRISPR/Cas9-based gene editing. In addition to providing molecular insights into NHEJ, this work uncovers a conserved SUMO-binding module and provides a rich resource on direct SUMO binders exploitable towards uncovering SUMOylation pathways in a wide array of cellular processes.
Collapse
Affiliation(s)
- Maria Jose Cabello-Lobato
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Matthew Jenner
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
- Warwick Integrative Synthetic Biology (WISB) Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Kira Brüninghoff
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149 Muenster, Germany
| | - Zac Sandy
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Isabelle C da Costa
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Thomas A Jowitt
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | - Stephen P Jackson
- Wellcome/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Qian Wu
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149 Muenster, Germany
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences Beckman Research Institute of the City of Hope, 1500 E Duarte Rd, Duarte, CA 91010, USA
| | - Matthew J Cliff
- Manchester Institute of Biotechnology (MIB) and School of Chemistry, University of Manchester, Manchester M1 7DN, UK
| | - Christine K Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| |
Collapse
|
16
|
Lee D, Apelt K, Lee SO, Chan HR, Luijsterburg MS, Leung JWC, Miller K. ZMYM2 restricts 53BP1 at DNA double-strand breaks to favor BRCA1 loading and homologous recombination. Nucleic Acids Res 2022; 50:3922-3943. [PMID: 35253893 PMCID: PMC9023290 DOI: 10.1093/nar/gkac160] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
An inability to repair DNA double-strand breaks (DSBs) threatens genome integrity and can contribute to human diseases, including cancer. Mammalian cells repair DSBs mainly through homologous recombination (HR) and nonhomologous end-joining (NHEJ). The choice between these pathways is regulated by the interplay between 53BP1 and BRCA1, whereby BRCA1 excludes 53BP1 to promote HR and 53BP1 limits BRCA1 to facilitate NHEJ. Here, we identify the zinc-finger proteins (ZnF), ZMYM2 and ZMYM3, as antagonizers of 53BP1 recruitment that facilitate HR protein recruitment and function at DNA breaks. Mechanistically, we show that ZMYM2 recruitment to DSBs and suppression of break-associated 53BP1 requires the SUMO E3 ligase PIAS4, as well as SUMO binding by ZMYM2. Cells deficient for ZMYM2/3 display genome instability, PARP inhibitor and ionizing radiation sensitivity and reduced HR repair. Importantly, depletion of 53BP1 in ZMYM2/3-deficient cells rescues BRCA1 recruitment to and HR repair of DSBs, suggesting that ZMYM2 and ZMYM3 primarily function to restrict 53BP1 engagement at breaks to favor BRCA1 loading that functions to channel breaks to HR repair. Identification of DNA repair functions for these poorly characterized ZnF proteins may shed light on their unknown contributions to human diseases, where they have been reported to be highly dysregulated, including in several cancers.
Collapse
Affiliation(s)
- Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Seong-Ok Lee
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Hsin-Ru Chan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Justin W C Leung
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
17
|
Beauchamp EM, Leventhal M, Bernard E, Hoppe ER, Todisco G, Creignou M, Gallì A, Castellano CA, McConkey M, Tarun A, Wong W, Schenone M, Stanclift C, Tanenbaum B, Malolepsza E, Nilsson B, Bick AG, Weinstock JS, Miller M, Niroula A, Dunford A, Taylor-Weiner A, Wood T, Barbera A, Anand S, Psaty BM, Desai P, Cho MH, Johnson AD, Loos R, MacArthur DG, Lek M, Neuberg DS, Lage K, Carr SA, Hellstrom-Lindberg E, Malcovati L, Papaemmanuil E, Stewart C, Getz G, Bradley RK, Jaiswal S, Ebert BL. ZBTB33 is mutated in clonal hematopoiesis and myelodysplastic syndromes and impacts RNA splicing. Blood Cancer Discov 2021; 2:500-517. [PMID: 34568833 PMCID: PMC8462124 DOI: 10.1158/2643-3230.bcd-20-0224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
Clonal hematopoiesis results from somatic mutations in cancer driver genes in hematopoietic stem cells. We sought to identify novel drivers of clonal expansion using an unbiased analysis of sequencing data from 84,683 persons and identified common mutations in the 5-methylcytosine reader, ZBTB33, as well as in YLPM1, SRCAP, and ZNF318. We also identified these mutations at low frequency in myelodysplastic syndrome patients. Zbtb33 edited mouse hematopoietic stem and progenitor cells exhibited a competitive advantage in vivo and increased genome-wide intron retention. ZBTB33 mutations potentially link DNA methylation and RNA splicing, the two most commonly mutated pathways in clonal hematopoiesis and MDS.
Collapse
Affiliation(s)
- Ellen M Beauchamp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Matthew Leventhal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emma R Hoppe
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Gabriele Todisco
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Creignou
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Gallì
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cecilia A Castellano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Marie McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Akansha Tarun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Waihay Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Monica Schenone
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Caroline Stanclift
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Benjamin Tanenbaum
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Edyta Malolepsza
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Björn Nilsson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alexander G Bick
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Joshua S Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Mendy Miller
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Abhishek Niroula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Andrew Dunford
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Amaro Taylor-Weiner
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Timothy Wood
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Alex Barbera
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, Washington
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Pinkal Desai
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, New York
| | - Michael H Cho
- Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute Center for Population Studies, the Framingham Heart Study, Framingham, Massachusetts
| | - Ruth Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel G MacArthur
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Monkol Lek
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kasper Lage
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Eva Hellstrom-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chip Stewart
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
18
|
Yang F, Huang X, Zang R, Chen J, Fidalgo M, Sanchez-Priego C, Yang J, Caichen A, Ma F, Macfarlan T, Wang H, Gao S, Zhou H, Wang J. DUX-miR-344-ZMYM2-Mediated Activation of MERVL LTRs Induces a Totipotent 2C-like State. Cell Stem Cell 2021; 26:234-250.e7. [PMID: 32032525 DOI: 10.1016/j.stem.2020.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 07/31/2019] [Accepted: 12/09/2019] [Indexed: 01/13/2023]
Abstract
Mouse embryonic stem cells (ESCs) sporadically express preimplantation two-cell-stage (2C) transcripts, including MERVL endogenous retrovirus and Zscan4 cluster genes. Such 2C-like cells (2CLCs) can contribute to both embryonic and extraembryonic tissues when reintroduced into early embryos, although the molecular mechanism underlying such an expanded 2CLC potency remains elusive. We examine global nucleosome occupancy and gene expression in 2CLCs and identified miR-344 as the noncoding molecule that positively controls 2CLC potency. We find that activation of endogenous MERVL or miR-344-2 alone is sufficient to induce 2CLCs with activation of 2C genes and an expanded potency. Mechanistically, miR-344 is activated by DUX and post-transcriptionally represses ZMYM2 and its partner LSD1, and ZMYM2 recruits LSD1/HDAC corepressor complex to MERVL LTR for transcriptional repression. Consistently, zygotic depletion of Zmym2 compromises the totipotency-to-pluripotency transition during early development. Our studies establish the previously unappreciated DUX-miR-344-Zmym2/Lsd1 axis that controls MERVL for expanded stem cell potency.
Collapse
Affiliation(s)
- Fan Yang
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Huang
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruge Zang
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Frontier Science Center for Stem Cell Research, Ministry of Education of China, Tongji University, Shanghai 200092, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Frontier Science Center for Stem Cell Research, Ministry of Education of China, Tongji University, Shanghai 200092, China
| | - Miguel Fidalgo
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; CiMUS, Universidade de Santiago de Compostela-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain
| | - Carlos Sanchez-Priego
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jihong Yang
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Caichen
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fanglin Ma
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Todd Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Frontier Science Center for Stem Cell Research, Ministry of Education of China, Tongji University, Shanghai 200092, China.
| | - Hongwei Zhou
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianlong Wang
- The Black Family Stem Cell Institute and Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
19
|
Spatiotemporal 7q11.23 protein network analysis implicates the role of DNA repair pathway during human brain development. Sci Rep 2021; 11:8246. [PMID: 33859276 PMCID: PMC8050238 DOI: 10.1038/s41598-021-87632-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/25/2021] [Indexed: 01/10/2023] Open
Abstract
Recurrent deletions and duplications of chromosome 7q11.23 copy number variants (CNVs) are associated with several psychiatric disorders. Although phenotypic abnormalities have been observed in patients, causal genes responsible for CNV-associated diagnoses and traits are still poorly understood. Furthermore, the targeted human brain regions, developmental stages, protein networks, and signaling pathways, influenced by this CNV remain unclear. Previous works showed GTF2I involved in Williams-Beuren syndrome, but pathways affected by GTF2I are indistinct. We first constructed dynamic spatiotemporal networks of 7q11.23 genes by combining data from the brain developmental transcriptome with physical interactions of 7q11.23 proteins. Topological changes were observed in protein-protein interaction (PPI) networks throughout different stages of brain development. Early and late fetal periods of development in the cortex, striatum, hippocampus, and amygdale were observed as the vital periods and regions for 7q11.23 CNV proteins. CNV proteins and their partners are significantly enriched in DNA repair pathway. As a driver gene, GTF2I interacted with PRKDC and BRCA1 to involve in DNA repair pathway. The physical interaction between GTF2I with PRKDC was confirmed experimentally by the liquid chromatography-tandem mass spectrometry (LC-MS/MS). We identified that early and late fetal periods are crucial for 7q11.23 genes to affect brain development. Our results implicate that 7q11.23 CNV genes converge on the DNA repair pathway to contribute to the pathogenesis of psychiatric diseases.
Collapse
|
20
|
Srivastava M, Sadanandom A, Srivastava AK. Towards understanding the multifaceted role of SUMOylation in plant growth and development. PHYSIOLOGIA PLANTARUM 2021; 171:77-85. [PMID: 32880960 DOI: 10.1111/ppl.13204] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Post-translational modifications (PTMs) play a critical role in regulating plant growth and development through the modulation of protein functionality and its interaction with its partners. Analysis of the functional implication of PTMs on plant cellular signalling presents grand challenges in understanding their significance. Proteins decorated or modified with another chemical group or polypeptide play a significant role in regulating physiological processes as compared with non-decorated or non-modified proteins. In the past decade, SUMOylation has been emerging as a potent PTM influencing the adaptability of plants to growth, in response to various environmental cues. Deciphering the SUMO-mediated regulation of plant stress responses and its consequences is required to understand the mechanism underneath. Here, we will discuss the recent advances in the role and significance of SUMOylation in plant growth, development and stress response.
Collapse
Affiliation(s)
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | | |
Collapse
|
21
|
González-Prieto R, Eifler-Olivi K, Claessens LA, Willemstein E, Xiao Z, Talavera Ormeno CMP, Ovaa H, Ulrich HD, Vertegaal ACO. Global non-covalent SUMO interaction networks reveal SUMO-dependent stabilization of the non-homologous end joining complex. Cell Rep 2021; 34:108691. [PMID: 33503430 DOI: 10.1016/j.celrep.2021.108691] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
In contrast to our extensive knowledge on covalent small ubiquitin-like modifier (SUMO) target proteins, we are limited in our understanding of non-covalent SUMO-binding proteins. We identify interactors of different SUMO isoforms-monomeric SUMO1, monomeric SUMO2, or linear trimeric SUMO2 chains-using a mass spectrometry-based proteomics approach. We identify 379 proteins that bind to different SUMO isoforms, mainly in a preferential manner. Interestingly, XRCC4 is the only DNA repair protein in our screen with a preference for SUMO2 trimers over mono-SUMO2, as well as the only protein in our screen that belongs to the non-homologous end joining (NHEJ) DNA double-strand break repair pathway. A SUMO interaction motif (SIM) in XRCC4 regulates its recruitment to sites of DNA damage and phosphorylation of S320 by DNA-PKcs. Our data highlight the importance of non-covalent and covalent sumoylation for DNA double-strand break repair via the NHEJ pathway and provide a resource of SUMO isoform interactors.
Collapse
Affiliation(s)
- Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| | - Karolin Eifler-Olivi
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands; Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Laura A Claessens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Edwin Willemstein
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Zhenyu Xiao
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Cami M P Talavera Ormeno
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands; Oncode Institute, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands; Oncode Institute, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
22
|
Connaughton DM, Dai R, Owen DJ, Marquez J, Mann N, Graham-Paquin AL, Nakayama M, Coyaud E, Laurent EMN, St-Germain JR, Blok LS, Vino A, Klämbt V, Deutsch K, Wu CHW, Kolvenbach CM, Kause F, Ottlewski I, Schneider R, Kitzler TM, Majmundar AJ, Buerger F, Onuchic-Whitford AC, Youying M, Kolb A, Salmanullah D, Chen E, van der Ven AT, Rao J, Ityel H, Seltzsam S, Rieke JM, Chen J, Vivante A, Hwang DY, Kohl S, Dworschak GC, Hermle T, Alders M, Bartolomaeus T, Bauer SB, Baum MA, Brilstra EH, Challman TD, Zyskind J, Costin CE, Dipple KM, Duijkers FA, Ferguson M, Fitzpatrick DR, Fick R, Glass IA, Hulick PJ, Kline AD, Krey I, Kumar S, Lu W, Marco EJ, Wentzensen IM, Mefford HC, Platzer K, Povolotskaya IS, Savatt JM, Shcherbakova NV, Senguttuvan P, Squire AE, Stein DR, Thiffault I, Voinova VY, Somers MJG, Ferguson MA, Traum AZ, Daouk GH, Daga A, Rodig NM, Terhal PA, van Binsbergen E, Eid LA, Tasic V, Rasouly HM, Lim TY, Ahram DF, Gharavi AG, Reutter HM, Rehm HL, MacArthur DG, Lek M, Laricchia KM, Lifton RP, Xu H, Mane SM, Sanna-Cherchi S, Sharrocks AD, Raught B, Fisher SE, Bouchard M, Khokha MK, Shril S, Hildebrandt F. Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations. Am J Hum Genet 2020; 107:727-742. [PMID: 32891193 PMCID: PMC7536580 DOI: 10.1016/j.ajhg.2020.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.
Collapse
Affiliation(s)
- Dervla M Connaughton
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Nephrology, Department of Medicine, University Hospital - London Health Sciences Centre, Schulich School of Medicine & Dentistry, Western University, 339 Windermere Road, London, ON N6A 5A5, Canada
| | - Rufeng Dai
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Nephrology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Danielle J Owen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nina Mann
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Adda L Graham-Paquin
- Rosalind & Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Makiko Nakayama
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network & Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network & Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Univ. Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, 59000 Lille, France
| | - Jonathan R St-Germain
- Princess Margaret Cancer Centre, University Health Network & Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Lot Snijders Blok
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500HE Nijmegen, the Netherlands; Human Genetics Department, Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Arianna Vino
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands
| | - Verena Klämbt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Konstantin Deutsch
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chen-Han Wilfred Wu
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline M Kolvenbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Franziska Kause
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Isabel Ottlewski
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ronen Schneider
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas M Kitzler
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amar J Majmundar
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Florian Buerger
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ana C Onuchic-Whitford
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mao Youying
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amy Kolb
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daanya Salmanullah
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Evan Chen
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amelie T van der Ven
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Hadas Ityel
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Steve Seltzsam
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Johanna M Rieke
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Chen
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Asaf Vivante
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Tel Aviv University, Faculty of Medicine, Tel Aviv-Yafo 6997801, Israel
| | - Daw-Yang Hwang
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan Kohl
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel C Dworschak
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Hermle
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mariëlle Alders
- Amsterdam UMC, University of Amsterdam, Department of Clinical Genetics, Meibergdreef 9, 1105 Amsterdam, Netherlands
| | - Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal- Straße 55, 04103 Leipzig, Germany
| | - Stuart B Bauer
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle A Baum
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eva H Brilstra
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Thomas D Challman
- Geisinger, Autism & Developmental Medicine Institute, 100 N Academy Avenue, Danville, PA 17822, USA
| | - Jacob Zyskind
- Department of Clinical Genomics, GeneDx, 207 Perry Pkwy, Gaithersburg, MD 20877, USA
| | - Carrie E Costin
- Department of Clinical Genetics, Akron Children's Hospital, One Perkins Square, Akron, OH 44308, USA
| | - Katrina M Dipple
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Floor A Duijkers
- Department of Clinical Genetics, University of Amsterdam, 1012 WX Amsterdam, the Netherlands
| | - Marcia Ferguson
- Department of Clinical Genetics, Harvey Institute for Human Genetics, 6701 Charles St, Towson, MD 21204, USA
| | - David R Fitzpatrick
- MRC Institute of Genetics & Molecular Medicine, Royal Hospital for Sick Children, The University of Edinburgh, 2XU, Crewe Rd S, Edinburgh EH4 2XU, UK
| | - Roger Fick
- Mary Bridge Childrens Hospital, 316 Martin Luther King JR Way, Tacoma, WA 98405, USA
| | - Ian A Glass
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Peter J Hulick
- Center for Medical Genetics, NorthShore University HealthSystem, 1000 Central Street, Suite 610, Evanston, IL 60201, USA
| | - Antonie D Kline
- Department of Clinical Genetics, Harvey Institute for Human Genetics, 6701 Charles St, Towson, MD 21204, USA
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal- Straße 55, 04103 Leipzig, Germany; Swiss Epilepsy Center, Klinik Lengg, Bleulerstrasse 60, 8000 Zürich, Switzerland
| | - Selvin Kumar
- Department of Pediatric Nephrology, Institute of Child Health and Hospital for Children, Tamil Salai, Egmore, Chennai, Tamil Nadu 600008, India
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, 650 Albany Street, Boston, MA 02118, USA
| | - Elysa J Marco
- Cortica Healthcare, 4000 Civic Center Drive, Ste 100, San Rafael, CA 94939, USA
| | - Ingrid M Wentzensen
- Department of Clinical Genomics, GeneDx, 207 Perry Pkwy, Gaithersburg, MD 20877, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Philipp-Rosenthal- Straße 55, 04103 Leipzig, Germany
| | - Inna S Povolotskaya
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow 117997, Russia
| | - Juliann M Savatt
- Geisinger, Autism & Developmental Medicine Institute, 100 N Academy Avenue, Danville, PA 17822, USA
| | - Natalia V Shcherbakova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow 117997, Russia
| | - Prabha Senguttuvan
- Department of Pediatric Nephrology, Dr. Mehta's Multi-Specialty Hospital, No.2, Mc Nichols Rd, Chetpet, Chennai, Tamil Nadu 600031, India
| | - Audrey E Squire
- Seattle Children's Hospital, Department of Genetic Medicine, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | - Deborah R Stein
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital, 2401 Gillham Rd, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO 64108, USA; University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, 5000 Holmes St, Kansas City, MO 64110, USA
| | - Victoria Y Voinova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow 117997, Russia
| | - Michael J G Somers
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Ferguson
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Avram Z Traum
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ghaleb H Daouk
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ankana Daga
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nancy M Rodig
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Loai A Eid
- Pediatric Nephrology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Velibor Tasic
- Medical Faculty Skopje, University Children's Hospital, Skopje 1000, North Macedonia
| | - Hila Milo Rasouly
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Tze Y Lim
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Dina F Ahram
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Ali G Gharavi
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Heiko M Reutter
- Institute of Human Genetics, University Hospital Bonn, 53127 Bonn, Germany; Section of Neonatology and Pediatric Intensive Care, Clinic for Pediatrics, University Hospital Bonn, Adenauerallee 119, 53313 Bonn, Germany
| | - Heidi L Rehm
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Kristen M Laricchia
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Richard P Lifton
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Shrikant M Mane
- Department of Genetics, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06510, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Columbia University, 630 W 168th St, New York, NY 10032, USA
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network & Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500HE Nijmegen, the Netherlands
| | - Maxime Bouchard
- Rosalind & Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shirlee Shril
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Brüninghoff K, Aust A, Taupitz KF, Wulff S, Dörner W, Mootz HD. Identification of SUMO Binding Proteins Enriched after Covalent Photo-Cross-Linking. ACS Chem Biol 2020; 15:2406-2414. [PMID: 32786267 DOI: 10.1021/acschembio.0c00609] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Post-translational modification with the small ubiquitin-like modifier (SUMO) affects thousands of proteins in the human proteome and is implicated in numerous cellular processes. The main outcome of SUMO conjugation is a rewiring of protein-protein interactions through recognition of the modifier's surface by SUMO binding proteins. The SUMO-interacting motif (SIM) mediates binding to a groove on SUMO; however, the low affinity of this interaction and the poor conservation of SIM sequences complicates the isolation and identification of SIM proteins. To address these challenges, we have designed and biochemically characterized monomeric and multimeric SUMO-2 probes with a genetically encoded photo-cross-linker positioned next to the SIM binding groove. Following photoinduced covalent capture, even weak SUMO binders are not washed away during the enrichment procedure, and very stringent washing conditions can be applied to remove nonspecifically binding proteins. A total of 329 proteins were isolated from nuclear HeLa cell extracts and identified using mass spectrometry. We found the molecular design of our probes was corroborated by the presence of many established SUMO interacting proteins and the high percentage (>90%) of hits containing a potential SIM sequence, as predicted by bioinformatic analyses. Notably, 266 of the 329 proteins have not been previously reported as SUMO binders using traditional noncovalent enrichment procedures. We confirmed SUMO binding with purified proteins and mapped the position of the covalent cross-links for selected cases. We postulate a new SIM in MRE11, involved in DNA repair. The identified SUMO binding candidates will help to reveal the complex SUMO-mediated protein network.
Collapse
|
24
|
Cibis H, Biyanee A, Dörner W, Mootz HD, Klempnauer KH. Characterization of the zinc finger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins. Sci Rep 2020; 10:8390. [PMID: 32439918 PMCID: PMC7242444 DOI: 10.1038/s41598-020-65443-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/28/2020] [Indexed: 11/09/2022] Open
Abstract
B-MYB, a highly conserved member of the MYB transcription factor family, is expressed ubiquitously in proliferating cells and plays key roles in important cell cycle-related processes, such as control of G2/M-phase transcription, cytokinesis, G1/S-phase progression and DNA-damage reponse. Deregulation of B-MYB function is characteristic of several types of tumor cells, underlining its oncogenic potential. To gain a better understanding of the functions of B-MYB we have employed affinity purification coupled to mass spectrometry to discover novel B-MYB interacting proteins. Here we have identified the zinc-finger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins. ZMYM4 is a poorly studied protein whose initial characterization reported here shows that it is highly SUMOylated and that its interaction with B-MYB is stimulated upon induction of DNA damage. Unlike knockdown of B-MYB, which causes G2/M arrest and defective cytokinesis in HEK293 cells, knockdown of ZMYM2 or ZMYM4 have no obvious effects on the cell cycle of these cells. By contrast, knockdown of ZMYM2 strongly impaired the G1/S-phase progression of HepG2 cells, suggesting that ZMYM2, like B-MYB, is required for entry into S-phase in these cells. Overall, our work identifies two novel B-MYB binding partners with possible functions in the DNA-damage response and the G1/S-transition.
Collapse
Affiliation(s)
- Hannah Cibis
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Abhiruchi Biyanee
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Wolfgang Dörner
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Henning D Mootz
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany.
| |
Collapse
|
25
|
Wang Y, Xiao H, Zhao F, Li H, Gao R, Yan B, Ren J, Yang J. Decrypting the crosstalk of noncoding RNAs in the progression of IPF. Mol Biol Rep 2020; 47:3169-3179. [PMID: 32180083 DOI: 10.1007/s11033-020-05368-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/29/2020] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an agnogenic, rare, and lethal disease, with high mortality and poor prognosis and a median survival time as short as 3 to 5 years after diagnosis. No effective therapeutic drugs are still not available not only in clinical practice, but also in preclinical phases. To better and deeper understand pulmonary fibrosis will provide more effective strategies for therapy. Mounting evidence suggests that noncoding RNAs (ncRNAs) and their interactions may contribute to lung fibrosis; however, the mechanisms underlying their roles are largely unknown. In this review, we systematically summarized the recent advances regarding the crucial roles of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) and crosstalk among them in the development of IPF. The perspective for related genes was well highlighted. In summary, ncRNA and their interactions play a key regulatory part in the progression of IPF and are bound to provide us with new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yujuan Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Han Xiao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Fenglian Zhao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Han Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rong Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Bingdi Yan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Jin Ren
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
26
|
Li Y, Aguilar-Martinez E, Sharrocks AD. Geno2proteo, a Tool for Batch Retrieval of DNA and Protein Sequences from Any Genomic or Protein Regions. J Integr Bioinform 2019; 16:/j/jib.ahead-of-print/jib-2018-0090/jib-2018-0090.xml. [PMID: 31301672 PMCID: PMC6798850 DOI: 10.1515/jib-2018-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/21/2019] [Indexed: 11/16/2022] Open
Abstract
The interconversion of sequences that constitute the genome and the proteome is becoming increasingly important due to the generation of large amounts of DNA sequence data. Following mapping of DNA segments to the genome, one fundamentally important task is to find the amino acid sequences which are coded within a list of genomic sections. Conversely, given a series of protein segments, an important task is to find the genomic loci which code for a list of protein regions. To perform these tasks on a region by region basis is extremely laborious when a large number of regions are being studied. We have therefore implemented an R package geno2proteo which performs the two mapping tasks and subsequent sequence retrieval in a batch fashion. In order to make the tool more accessible to users, we have created a web interface of the R package which allows the users to perform the mapping tasks by going to the web page http://sharrocksresources.manchester.ac.uk/tofigaps and using the web service.
Collapse
Affiliation(s)
- Yaoyong Li
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Elisa Aguilar-Martinez
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Andrew D Sharrocks
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
27
|
Welch MA, Forster LA, Atlas SI, Baro DJ. SUMOylating Two Distinct Sites on the A-type Potassium Channel, Kv4.2, Increases Surface Expression and Decreases Current Amplitude. Front Mol Neurosci 2019; 12:144. [PMID: 31213982 PMCID: PMC6554448 DOI: 10.3389/fnmol.2019.00144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Post-translational conjugation of Small Ubiquitin-like Modifier (SUMO) peptides to lysine (K) residues on target proteins alters their interactions. SUMOylation of a target protein can either promote its interaction with other proteins that possess SUMO binding domains, or it can prevent target protein interactions that normally occur in the absence of SUMOylation. One subclass of voltage-gated potassium channels that mediates an A-type current, IA, exists as a ternary complex comprising Kv4 pore-forming subunits, Kv channel interacting proteins (KChIP) and transmembrane dipeptidyl peptidase like proteins (DPPL). SUMOylation could potentially regulate intra- and/or intermolecular interactions within the complex. This study began to test this hypothesis and showed that Kv4.2 channels were SUMOylated in the rat brain and in human embryonic kidney (HEK) cells expressing a GFP-tagged mouse Kv4.2 channel (Kv4.2g). Prediction software identified two putative SUMOylation sites in the Kv4.2 C-terminus at K437 and K579. These sites were conserved across mouse, rat, and human Kv4.2 channels and across mouse Kv4 isoforms. Increasing Kv4.2g SUMOylation at each site by ~30% produced a significant ~22%–50% decrease in IA Gmax, and a ~70%–95% increase in channel surface expression. Site-directed mutagenesis of Kv4.2g showed that K437 SUMOylation regulated channel surface expression, while K579 SUMOylation controlled IA Gmax. The K579R mutation mimicked and occluded the SUMOylation-mediated decrease in IA Gmax, suggesting that SUMOylation at K579 blocked an intra- or inter-protein interaction involving K579. The K437R mutation did not obviously alter channel surface expression or biophysical properties, but it did block the SUMOylation-mediated increase in channel surface expression. Interestingly, enhancing K437 SUMOylation in the K579R mutant roughly doubled channel surface expression, but produced no change in IA Gmax, suggesting that the newly inserted channels were electrically silent. This is the first report that Kv4.2 channels are SUMOylated and that SUMOylation can independently regulate Kv4.2 surface expression and IA Gmax in opposing directions. The next step will be to determine if/how SUMOylation affects Kv4 interactions within the ternary complex.
Collapse
Affiliation(s)
- Meghyn A Welch
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Lori A Forster
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Selin I Atlas
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Deborah J Baro
- Department of Biology, Georgia State University, Atlanta, GA, United States.,Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
28
|
Zucchelli C, Tamburri S, Filosa G, Ghitti M, Quilici G, Bachi A, Musco G. Sp140 is a multi-SUMO-1 target and its PHD finger promotes SUMOylation of the adjacent Bromodomain. Biochim Biophys Acta Gen Subj 2018; 1863:456-465. [PMID: 30465816 DOI: 10.1016/j.bbagen.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/25/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Human Sp140 protein is a leukocyte-specific member of the speckled protein (Sp) family (Sp100, Sp110, Sp140, Sp140L), a class of multi-domain nuclear proteins involved in intrinsic immunity and transcriptional regulation. Sp140 regulates macrophage transcriptional program and is implicated in several haematologic malignancies. Little is known about Sp140 structural domains and its post-translational modifications. METHODS We used mass spectrometry and biochemical experiments to investigate endogenous Sp140 SUMOylation in Burkitt's Lymphoma cells and Sp140 SUMOylation sites in HEK293T cells, FLAG-Sp140 transfected and His6-SUMO-1T95K infected. NMR spectroscopy and in vitro SUMOylation reactions were applied to investigate the role of Sp140 PHD finger in the SUMOylation of the adjacent BRD. RESULTS Endogenous Sp140 is a SUMO-1 target, whereby FLAG-Sp140 harbors at least 13 SUMOylation sites distributed along the protein sequence, including the BRD. NMR experiments prove direct binding of the SUMO E2 ligase Ubc9 and SUMO-1 to PHD-BRDSp140. In vitro SUMOylation reactions show that the PHDSp140 behaves as SUMO E3 ligase, assisting intramolecular SUMOylation of the adjacent BRD. CONCLUSIONS Sp140 is multi-SUMOylated and its PHD finger works as versatile protein-protein interaction platform promoting intramolecular SUMOylation of the adjacent BRD. Thus, combinatorial association of Sp140 chromatin binding domains generates a multifaceted interaction scaffold, whose function goes beyond the canonical histone recognition. GENERAL SIGNIFICANCE The addition of Sp140 to the increasing lists of multi-SUMOylated proteins opens new perspectives for molecular studies on Sp140 transcriptional activity, where SUMOylation could represent a regulatory route and a docking surface for the recruitment and assembly of leukocyte-specific transcription regulators.
Collapse
Affiliation(s)
- Chiara Zucchelli
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Simone Tamburri
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy; San Raffaele Vita-Salute University, Via Olgettina 60, 20132 Milano, Italy
| | - Giuseppe Filosa
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Michela Ghitti
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Giacomo Quilici
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| | - Giovanna Musco
- Biomolecular NMR Unit c/o IRCCS S. Raffaele, Via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
29
|
Li R, Wang Y, Song X, Sun W, Zhang J, Liu Y, Li H, Meng C, Zhang J, Zheng Q, Lv C. Potential regulatory role of circular RNA in idiopathic pulmonary fibrosis. Int J Mol Med 2018; 42:3256-3268. [PMID: 30272257 PMCID: PMC6202105 DOI: 10.3892/ijmm.2018.3892] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive type of interstitial pneumonia with unknown causes, poor prognosis and no effective therapy available. Circular RNAs (circRNAs), which serve as potential therapeutic targets and diagnostic biomarkers for certain diseases, represent a recent hotspot in the field of RNA research. In the present study, a total of 67 significantly dysregulated circRNAs were identified in the plasma of IPF patients by using a circRNA microarray. Among these circRNAs, 38 were upregulated, whereas 29 were downregulated. Further validation of the results by polymerase chain reaction analysis indicated that Homo sapiens (hsa)_circRNA_100906, hsa_circRNA_102100 and hsa_circRNA_102348 were significantly upregulated, whereas hsa_circRNA_101225, hsa_circRNA_104780 and hsa_circRNA_101242 were downregulated in plasma samples of IPF patients compared with those in samples from healthy controls. The majority of differentially expressed circRNAs were generated from exonic regions. The host genes of the differentially expressed circRNAs were involved in the regulation of the cell cycle, adherens junctions and RNA transport. The competing endogenous RNA (ceRNA) network of the circRNAs/micro(mi)RNAs/mRNAs indicated that circRNA-protected mRNA participated in transforming growth factor-β1, hypoxia-inducible factor-1, Wnt, Janus kinase, Rho-associated protein kinase, vascular endothelial growth factor, mitogen-activated protein kinase, Hedgehog and nuclear factor κB signalling pathways or functioned as biomarkers for pulmonary fibrosis. Furthermore, luciferase reporter assays confirmed that hsa_circRNA_100906 and hsa_circRNA_102348 directly interact with miR-324-5p and miR-630, respectively, which were downregulated in IPF patients. The present study provided a novel avenue for exploring the underlying molecular mechanisms of IPF disease.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| | - Youlei Wang
- School of Special Education, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaodong Song
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wenjing Sun
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, P.R. China
| | - Jinjin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yuxia Liu
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| | - Hongbo Li
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| | - Chao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Jie Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Qingyin Zheng
- School of Special Education, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Changjun Lv
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| |
Collapse
|
30
|
Rytz TC, Miller MJ, McLoughlin F, Augustine RC, Marshall RS, Juan YT, Charng YY, Scalf M, Smith LM, Vierstra RD. SUMOylome Profiling Reveals a Diverse Array of Nuclear Targets Modified by the SUMO Ligase SIZ1 during Heat Stress. THE PLANT CELL 2018; 30:1077-1099. [PMID: 29588388 PMCID: PMC6002191 DOI: 10.1105/tpc.17.00993] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/15/2018] [Accepted: 03/26/2018] [Indexed: 05/20/2023]
Abstract
The posttranslational addition of small ubiquitin-like modifier (SUMO) is an essential protein modification in plants that provides protection against numerous environmental challenges. Ligation is accomplished by a small set of SUMO ligases, with the SAP-MIZ domain-containing SIZ1 and METHYL METHANESULFONATE-SENSITIVE21 (MMS21) ligases having critical roles in stress protection and DNA endoreduplication/repair, respectively. To help identify their corresponding targets in Arabidopsis thaliana, we used siz1 and mms21 mutants for proteomic analyses of SUMOylated proteins enriched via an engineered SUMO1 isoform suitable for mass spectrometric studies. Through multiple data sets from seedlings grown at normal temperatures or exposed to heat stress, we identified over 1000 SUMO targets, most of which are nuclear localized. Whereas no targets could be assigned to MMS21, suggesting that it modifies only a few low abundance proteins, numerous targets could be assigned to SIZ1, including major transcription factors, coactivators/repressors, and chromatin modifiers connected to abiotic and biotic stress defense, some of which associate into multisubunit regulatory complexes. SIZ1 itself is also a target, but studies with mutants protected from SUMOylation failed to uncover a regulatory role. The catalog of SIZ1 substrates indicates that SUMOylation by this ligase provides stress protection by modifying a large array of key nuclear regulators.
Collapse
Affiliation(s)
- Thérèse C Rytz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Marcus J Miller
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Robert C Augustine
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Yu-Ting Juan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
31
|
DiSUMO-LIKE Interacts with RNA-Binding Proteins and Affects Cell-Cycle Progression during Maize Embryogenesis. Curr Biol 2018; 28:1548-1560.e5. [DOI: 10.1016/j.cub.2018.03.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 03/01/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022]
|
32
|
Han ZJ, Feng YH, Gu BH, Li YM, Chen H. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol 2018; 52:1081-1094. [PMID: 29484374 PMCID: PMC5843405 DOI: 10.3892/ijo.2018.4280] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/14/2018] [Indexed: 02/07/2023] Open
Abstract
SUMOylation is a reversible post-translational modification which has emerged as a crucial molecular regulatory mechanism, involved in the regulation of DNA damage repair, immune responses, carcinogenesis, cell cycle progression and apoptosis. Four SUMO isoforms have been identified, which are SUMO1, SUMO2/3 and SUMO4. The small ubiquitin-like modifier (SUMO) pathway is conserved in all eukaryotes and plays pivotal roles in the regulation of gene expression, cellular signaling and the maintenance of genomic integrity. The SUMO catalytic cycle includes maturation, activation, conjugation, ligation and de-modification. The dysregulation of the SUMO system is associated with a number of diseases, particularly cancer. SUMOylation is widely involved in carcinogenesis, DNA damage response, cancer cell proliferation, metastasis and apoptosis. SUMO can be used as a potential therapeutic target for cancer. In this review, we briefly outline the basic concepts of the SUMO system and summarize the involvement of SUMO proteins in cancer cells in order to better understand the role of SUMO in human disease.
Collapse
Affiliation(s)
- Zhi-Jian Han
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yan-Hu Feng
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Bao-Hong Gu
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yu-Min Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Hao Chen
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
33
|
Kost LJ, Mootz HD. A FRET Sensor to Monitor Bivalent SUMO-SIM Interactions in SUMO Chain Binding. Chembiochem 2017; 19:177-184. [DOI: 10.1002/cbic.201700507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Lisa J. Kost
- Department of Chemistry and Pharmacy; Institute of Biochemistry; Westfälische Wilhelms-Universität Münster; Wilhelm-Klemm-Strasse 2 48149 Münster Germany
| | - Henning D. Mootz
- Department of Chemistry and Pharmacy; Institute of Biochemistry; Westfälische Wilhelms-Universität Münster; Wilhelm-Klemm-Strasse 2 48149 Münster Germany
| |
Collapse
|
34
|
Morris JR, Garvin AJ. SUMO in the DNA Double-Stranded Break Response: Similarities, Differences, and Cooperation with Ubiquitin. J Mol Biol 2017; 429:3376-3387. [PMID: 28527786 DOI: 10.1016/j.jmb.2017.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
In recent years, our knowledge of the varied role that ubiquitination plays in promoting signal amplification, novel protein interactions, and protein turnover has progressed rapidly. This is particularly remarkable in the examination of how DNA double-stranded breaks (DSBs) are repaired, with many components of the ubiquitin (Ub) conjugation, de-conjugation, and recognition machinery now identified as key factors in DSB repair. In addition, a member of the Ub-like family, small Ub-like modifier (SUMO), has also been recognised as integral for efficient repair. Here, we summarise our emerging understanding of SUMOylation both as a distinct modification and as a cooperative modification with Ub, using the cellular response to DNA DSBs as the primary setting to compare these modifications.
Collapse
Affiliation(s)
- Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomics, Medical and Dental School, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomics, Medical and Dental School, University of Birmingham, Edgbaston, B15 2TT, UK
| |
Collapse
|
35
|
Garvin AJ, Morris JR. SUMO, a small, but powerful, regulator of double-strand break repair. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160281. [PMID: 28847818 PMCID: PMC5577459 DOI: 10.1098/rstb.2016.0281] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
The response to a DNA double-stranded break in mammalian cells is a process of sensing and signalling the lesion. It results in halting the cell cycle and local transcription and in the mediation of the DNA repair process itself. The response is launched through a series of post-translational modification signalling events coordinated by phosphorylation and ubiquitination. More recently modifications of proteins by Small Ubiquitin-like MOdifier (SUMO) isoforms have also been found to be key to coordination of the response (Morris et al. 2009 Nature462, 886-890 (doi:10.1038/nature08593); Galanty et al. 2009 Nature462, 935-939 (doi:10.1038/nature08657)). However our understanding of the role of SUMOylation is slight compared with our growing knowledge of how ubiquitin drives signal amplification and key chromatin interactions. In this review we consider our current knowledge of how SUMO isoforms, SUMO conjugation machinery, SUMO proteases and SUMO-interacting proteins contribute to directing altered chromatin states and to repair-protein kinetics at a double-stranded DNA lesion in mammalian cells. We also consider the gaps in our understanding.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
36
|
Cox E, Hwang W, Uzoma I, Hu J, Guzzo CM, Jeong J, Matunis MJ, Qian J, Zhu H, Blackshaw S. Global Analysis of SUMO-Binding Proteins Identifies SUMOylation as a Key Regulator of the INO80 Chromatin Remodeling Complex. Mol Cell Proteomics 2017; 16:812-823. [PMID: 28254775 PMCID: PMC5417823 DOI: 10.1074/mcp.m116.063719] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/14/2017] [Indexed: 12/23/2022] Open
Abstract
SUMOylation is a critical regulator of a broad range of cellular processes, and is thought to do so in part by modulation of protein interaction. To comprehensively identify human proteins whose interaction is modulated by SUMOylation, we developed an in vitro binding assay using human proteome microarrays to identify targets of SUMO1 and SUMO2. We then integrated these results with protein SUMOylation and protein-protein interaction data to perform network motif analysis. We focused on a single network motif we termed a SUMOmodPPI (SUMO-modulated Protein-Protein Interaction) that included the INO80 chromatin remodeling complex subunits TFPT and INO80E. We validated the SUMO-binding activity of INO80E, and showed that TFPT is a SUMO substrate both in vitro and in vivo We then demonstrated a key role for SUMOylation in mediating the interaction between these two proteins, both in vitro and in vivo By demonstrating a key role for SUMOylation in regulating the INO80 chromatin remodeling complex, this work illustrates the power of bioinformatics analysis of large data sets in predicting novel biological phenomena.
Collapse
Affiliation(s)
- Eric Cox
- From the ‡Biochemistry, Cellular and Molecular Biology Graduate Program
- §Solomon H. Snyder Department of Neuroscience
- ¶Department of Pharmacology and Molecular Sciences
| | | | - Ijeoma Uzoma
- ¶Department of Pharmacology and Molecular Sciences
| | | | - Catherine M Guzzo
- **Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Junseop Jeong
- ¶Department of Pharmacology and Molecular Sciences
- ‡‡Center for High-Throughput Biology
| | - Michael J Matunis
- **Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | | | - Heng Zhu
- ¶Department of Pharmacology and Molecular Sciences
- ‡‡Center for High-Throughput Biology
| | - Seth Blackshaw
- §Solomon H. Snyder Department of Neuroscience,
- ‡‡Center for High-Throughput Biology
- §§Institute for Cell Engineering
- ¶¶Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
37
|
Abstract
Ubiquitin-like proteins (Ubl's) are conjugated to target proteins or lipids to regulate their activity, stability, subcellular localization, or macromolecular interactions. Similar to ubiquitin, conjugation is achieved through a cascade of activities that are catalyzed by E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. In this review, we will summarize structural and mechanistic details of enzymes and protein cofactors that participate in Ubl conjugation cascades. Precisely, we will focus on conjugation machinery in the SUMO, NEDD8, ATG8, ATG12, URM1, UFM1, FAT10, and ISG15 pathways while referring to the ubiquitin pathway to highlight common or contrasting themes. We will also review various strategies used to trap intermediates during Ubl activation and conjugation.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States.,Howard Hughes Medical Institute, Sloan Kettering Institute , New York, New York 10021, United States
| |
Collapse
|
38
|
Abstract
Protein SUMOylation represents an important regulatory event that changes the activities of numerous proteins. Recent evidence demonstrates that polySUMO chains can act as a trigger to direct the ubiquitin ligase RNF4 to substrates to cause their turnover through the ubiquitin pathway. RNF4 uses multiple SUMO interaction motifs (SIMs) to bind to these chains. However, in addition to polySUMO chains, a multimeric binding surface created by the simultaneous SUMOylation of multiple residues on a protein or complex could also provide a platform for the recruitment of multi-SIM proteins like RNF4. Here we demonstrate that multiSUMOylated ETV4 can bind to RNF4 and that a unique combination of SIMs is required for RNF4 to interact with this multiSUMOylated platform. Thus RNF4 can bind to proteins that are either polySUMOylated through a single site or multiSUMOylated on several sites and raises the possibility that such multiSIM-multiSUMO interactions might be more widespread.
Collapse
Affiliation(s)
- Elisa Aguilar-Martinez
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Baoqiang Guo
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
39
|
Li Y, Wang G, Xu Z, Li J, Sun M, Guo J, Ji W. Organization and Regulation of Soybean SUMOylation System under Abiotic Stress Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:1458. [PMID: 28878795 PMCID: PMC5573446 DOI: 10.3389/fpls.2017.01458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/04/2017] [Indexed: 05/21/2023]
Abstract
Covalent attachment of the small ubiquitin-related modifier, SUMO, to substrate proteins plays a significant role in plants under stress conditions, which can alter target proteins' function, location, and protein-protein interactions. Despite this importance, information about SUMOylation in the major legume crop, soybean, remains obscure. In this study, we performed a bioinformatics analysis of the entire soybean genome and identified 40 genes belonged to six families involved in a cascade of enzymatic reactions in soybean SUMOylation system. The cis-acting elements analysis revealed that promoters of SUMO pathway genes contained different combinations of stress and development-related cis-regulatory elements. RNA-seq data analysis showed that SUMO pathway components exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. qRT-PCR analysis of 13 SUMO pathway members indicated that majority of the SUMO pathway members were transcriptionally up-regulated by NaCl, heat and ABA stimuli during the 24 h period of treatment. Furthermore, SUMOylation dynamics in soybean roots under abiotic stress treatment were analyzed by western blot, which were characterized by regulation of SUMOylated proteins. Collectively, this study defined the organization of the soybean SUMOylation system and implied an essential function for SUMOylation in soybean abiotic stress responses.
Collapse
|
40
|
Abstract
Protein SUMOylation represents an important regulatory event that changes the activities of numerous proteins. Recent evidence demonstrates that polySUMO chains can act as a trigger to direct the ubiquitin ligase RNF4 to substrates to cause their turnover through the ubiquitin pathway. RNF4 uses multiple SUMO interaction motifs (SIMs) to bind to these chains. However, in addition to polySUMO chains, a multimeric binding surface created by the simultaneous SUMOylation of multiple residues on a protein or complex could also provide a platform for the recruitment of multi-SIM proteins like RNF4. Here we demonstrate that multiSUMOylated ETV4 can bind to RNF4 and that a unique combination of SIMs is required for RNF4 to interact with this multiSUMOylated platform. Thus RNF4 can bind to proteins that are either polySUMOylated through a single site or multiSUMOylated on several sites and raises the possibility that such multiSIM-multiSUMO interactions might be more widespread.
Collapse
|
41
|
Augustine RC, York SL, Rytz TC, Vierstra RD. Defining the SUMO System in Maize: SUMOylation Is Up-Regulated during Endosperm Development and Rapidly Induced by Stress. PLANT PHYSIOLOGY 2016; 171:2191-210. [PMID: 27208252 PMCID: PMC4936565 DOI: 10.1104/pp.16.00353] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/12/2016] [Indexed: 05/03/2023]
Abstract
In response to abiotic and biotic challenges, plants rapidly attach small ubiquitin-related modifier (SUMO) to a large collection of nuclear proteins, with studies in Arabidopsis (Arabidopsis thaliana) linking SUMOylation to stress tolerance via its modification of factors involved in chromatin and RNA dynamics. Despite this importance, little is known about SUMOylation in crop species. Here, we describe the plant SUMO system at the phylogenetic, biochemical, and transcriptional levels with a focus on maize (Zea mays). In addition to canonical SUMOs, land plants encode a loosely constrained noncanonical isoform and a variant containing a long extension upstream of the signature β-grasp fold, with cereals also expressing a novel diSUMO polypeptide bearing two SUMO β-grasp domains in tandem. Maize and other cereals also synthesize a unique SUMO-conjugating enzyme variant with more restricted expression patterns that is enzymatically active despite a distinct electrostatic surface. Maize SUMOylation primarily impacts nuclear substrates, is strongly induced by high temperatures, and displays a memory that suppresses subsequent conjugation. Both in-depth transcript and conjugate profiles in various maize organs point to tissue/cell-specific functions for SUMOylation, with potentially significant roles during embryo and endosperm maturation. Collectively, these studies define the organization of the maize SUMO system and imply important functions during seed development and stress defense.
Collapse
Affiliation(s)
- Robert C Augustine
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706; andDepartment of Biology, Washington University, St. Louis, Missouri 63130
| | - Samuel L York
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706; andDepartment of Biology, Washington University, St. Louis, Missouri 63130
| | - Thérèse C Rytz
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706; andDepartment of Biology, Washington University, St. Louis, Missouri 63130
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706; andDepartment of Biology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
42
|
Abstract
The use of in vitro assays, such as glutathione S-transferase (GST) pull-downs, enables the study of complex cellular processes in a simplified form. Pull-down assays facilitate the discovery and detailed study of protein-protein interactions, which can then be extrapolated to the cellular environment. Here, we describe the expression, purification and use of a multi-SUMO platform to identify SUMO-interacting proteins. This SUMO-platform can be easily expressed and purified from bacterial cells for use as baits in pull-down assays. This methodology facilitates the discovery of novel SUMO-binding proteins or further characterization of SUMO with known binding partners.
Collapse
|