1
|
Ford CA, Koludrovic D, Centeno PP, Foth M, Tsonou E, Vlahov N, Sphyris N, Gilroy K, Bull C, Nixon C, Serrels B, Munro AF, Dawson JC, Carragher NO, Pavet V, Hornigold DC, Dunne PD, Downward J, Welch HC, Barry ST, Sansom OJ, Campbell AD. Targeting the PREX2/RAC1/PI3Kβ Signaling Axis Confers Sensitivity to Clinically Relevant Therapeutic Approaches in Melanoma. Cancer Res 2025; 85:808-824. [PMID: 39636745 PMCID: PMC11831108 DOI: 10.1158/0008-5472.can-23-2814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Metastatic melanoma remains a major clinical challenge. Large-scale genomic sequencing of melanoma has identified bona fide activating mutations in RAC1, which are associated with resistance to BRAF-targeting therapies. Targeting the RAC1-GTPase pathway, including the upstream activator PREX2 and the downstream effector PI3Kβ, could be a potential strategy for overcoming therapeutic resistance, limiting melanoma recurrence, and suppressing metastatic progression. Here, we used genetically engineered mouse models and patient-derived BRAFV600E-driven melanoma cell lines to dissect the role of PREX2 in melanomagenesis and response to therapy. Although PREX2 was dispensable for the initiation and progression of melanoma, its loss conferred sensitivity to clinically relevant therapeutics targeting the MAPK pathway. Importantly, genetic and pharmacologic targeting of PI3Kβ phenocopied PREX2 deficiency, sensitizing model systems to therapy. These data reveal a druggable PREX2/RAC1/PI3Kβ signaling axis in BRAF-mutant melanoma that could be exploited clinically. Significance: Cotargeting the MAPK and the PREX2/RAC1/PI3Kβ pathways has remarkable efficacy and outperforms monotherapy MAPK inhibition in BRAF-mutant melanoma, supporting the potential of this combination therapy for treating metastatic melanoma.
Collapse
Affiliation(s)
| | - Dana Koludrovic
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | | | - Mona Foth
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Elpida Tsonou
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
- Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Nikola Vlahov
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | | | - Kathryn Gilroy
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Courtney Bull
- The Patrick G. Johnston Centre for Cancer Research, Queen’s University, Belfast, United Kingdom
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Bryan Serrels
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison F. Munro
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - John C. Dawson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil O. Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Valeria Pavet
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | | | - Philip D. Dunne
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- The Patrick G. Johnston Centre for Cancer Research, Queen’s University, Belfast, United Kingdom
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Heidi C.E. Welch
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Simon T. Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Owen J. Sansom
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, United Kingdom
| | | |
Collapse
|
2
|
Wen Y, Wang H, Yang X, Zhu Y, Li M, Ma X, Huang L, Wan R, Zhang C, Li S, Jia H, Guo Q, Lu X, Li Z, Shen X, Zhang Q, Si L, Yin C, Liu T. Pharmacological targeting of casein kinase 1δ suppresses oncogenic NRAS-driven melanoma. Nat Commun 2024; 15:10088. [PMID: 39572526 PMCID: PMC11582648 DOI: 10.1038/s41467-024-54140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/03/2024] [Indexed: 11/24/2024] Open
Abstract
Activating mutations in NRAS account for 15-20% of melanoma, yet effective anti-NRAS therapies are still lacking. In this study, we unveil the casein kinase 1δ (CK1δ) as an uncharacterized regulator of oncogenic NRAS mutations, specifically Q61R and Q61K, which are the most prevalent NRAS mutations in melanoma. The genetic ablation or pharmacological inhibition of CK1δ markedly destabilizes NRAS mutants and suppresses their oncogenic functions. Moreover, we identify USP46 as a bona fide deubiquitinase of NRAS mutants. Mechanistically, CK1δ directly phosphorylates USP46 and activates its deubiquitinase activity towards NRAS mutants, thus promoting oncogenic NRAS-driven melanocyte malignant transformation and melanoma progression in vitro and in vivo. Our findings underscore the significance of the CK1δ-USP46 axis in stabilizing oncogenic NRAS mutants and provide preclinical evidence that targeting this axis holds promise as a therapeutic strategy for human melanoma harboring NRAS mutations.
Collapse
Grants
- This study was supported by National Natural Science Foundation of China (82473109 TL), Guangdong Basic and Applied Basic Research Foundation (2024A1515013266 TL, 2024B1515040007 TL), Guangdong Major Project of Basic and Applied Basic Research (2023B0303000026 TL), Major Talent Program of Guangdong Provincial (2019QN01Y933 TL), the project of State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medicinal University (QJJ[2022]420 TL), Fundamental Research Funds for the Central Universities (21622102 TL), Medical Joint Fund of Jinan University (YXJC2022006 TL).
- This study was supported by National Natural Science Foundation of China (82404654 YW), China Postdoctoral Science Foundation (2024M750581 YW), Guangdong Provincial Second People's Hospital Ph.D./Postdoctoral Workstation Program (2023BSGZ009 YW).
- This study was supported by National Natural Science Foundation of China (81603133 YZ), Guangdong Basic and Applied Basic Research Foundation (2022A1515012371 YZ),Guangzhou Basic Research Program Basic and Applied Basic Research Project (2023A04J0645 YZ).
- The "San Jia Si Qing" fund of the Affiliated Guangdong Second Provincial General Hospital of Jinan University (2024C002 QZ).
- This study was supported by National Natural Science Foundation of China (82425047 LS), Beijing Municipal Administration of Hospitals’ Ascent Plan (DFL20220901 LS), the National Key Research and Development Program (2023YFC2506404 LS), Beijing Natural Science Foundation (7242021 LS).
- This study was supported by National Natural Science Foundation of China (32100579 CY, 82341011 CY), Guangdong Basic and Applied Basic Research Foundation (2020A1515110857 CY),National Key R&D Program of China (2022YFA0912600 CY),Shenzhen Medical Research Fund (B2302018 CY), Major Program (S201101004 CY) and Open Fund (SZBL2021080601004 CY) of Shenzhen Bay Laboratory.
Collapse
Affiliation(s)
- Yalei Wen
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University, Guangzhou, 510632, China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Hui Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, 518107, Guangdong, China
| | - Xiao Yang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Yingjie Zhu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Mei Li
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Xiuqing Ma
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Lei Huang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Rui Wan
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Caishi Zhang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Shengrong Li
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Hongling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Qin Guo
- Department of Pathology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Xiaoyun Lu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zhengqiu Li
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Qiushi Zhang
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, 100142, China.
| | - Chengqian Yin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, 518107, Guangdong, China.
| | - Tongzheng Liu
- Research Institute for Maternal and Child Health, The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University, Guangzhou, 510632, China.
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Jones GD, Ellisdon AM. Understanding P-Rex regulation: structural breakthroughs and emerging perspectives. Biochem Soc Trans 2024; 52:1849-1860. [PMID: 39023851 PMCID: PMC11668296 DOI: 10.1042/bst20231546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Rho GTPases are a family of highly conserved G proteins that regulate numerous cellular processes, including cytoskeleton organisation, migration, and proliferation. The 20 canonical Rho GTPases are regulated by ∼85 guanine nucleotide exchange factors (GEFs), with the largest family being the 71 Diffuse B-cell Lymphoma (Dbl) GEFs. Dbl GEFs promote GTPase activity through the highly conserved Dbl homology domain. The specificity of GEF activity, and consequently GTPase activity, lies in the regulation and structures of the GEFs themselves. Dbl GEFs contain various accessory domains that regulate GEF activity by controlling subcellular localisation, protein interactions, and often autoinhibition. This review focuses on the two phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3)-dependent Rac exchangers (P-Rex), particularly the structural basis of P-Rex1 autoinhibition and synergistic activation. First, we discuss structures that highlight the conservation of P-Rex catalytic and phosphoinositide binding activities. We then explore recent breakthroughs in uncovering the structural basis for P-Rex1 autoinhibition and detail the proposed minimal two-step model of how PI(3,4,5)P3 and Gβγ synergistically activate P-Rex1 at the membrane. Additionally, we discuss the further layers of P-Rex regulation provided by phosphorylation and P-Rex2-PTEN coinhibitory complex formation, although these mechanisms remain incompletely understood. Finally, we leverage the available data to infer how cancer-associated mutations in P-Rex2 destabilise autoinhibition and evade PTEN coinhibitory complex formation, leading to increased P-Rex2 GEF activity and driving cancer progression and metastasis.
Collapse
Affiliation(s)
- Gareth D. Jones
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Andrew M. Ellisdon
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
4
|
Gadal S, Boyer JA, Roy SF, Outmezguine NA, Sharma M, Li H, Fan N, Chan E, Romin Y, Barlas A, Chang Q, Pancholi P, Timaul NM, Overholtzer M, Yaeger R, Manova-Todorova K, de Stanchina E, Bosenberg M, Rosen N. Tumorigenesis driven by the BRAF V600E oncoprotein requires secondary mutations that overcome its feedback inhibition of migration and invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.568071. [PMID: 38659913 PMCID: PMC11042182 DOI: 10.1101/2023.11.21.568071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
BRAFV600E mutation occurs in 46% of melanomas and drives high levels of ERK activity and ERK-dependent proliferation. However, BRAFV600E is insufficient to drive melanoma in GEMM models, and 82% of human benign nevi harbor BRAFV600E mutations. We show here that BRAFV600E inhibits mesenchymal migration by causing feedback inhibition of RAC1 activity. ERK pathway inhibition induces RAC1 activation and restores migration and invasion. In cells with BRAFV600E, mutant RAC1, overexpression of PREX1, PREX2, or PTEN inactivation restore RAC1 activity and cell motility. Together, these lesions occur in 48% of BRAFV600E melanomas. Thus, although BRAFV600E activation of ERK deregulates cell proliferation, it prevents full malignant transformation by causing feedback inhibition of cell migration. Secondary mutations are, therefore, required for tumorigenesis. One mechanism underlying tumor evolution may be the selection of lesions that rescue the deleterious effects of oncogenic drivers.
Collapse
Affiliation(s)
- Sunyana Gadal
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Jacob A. Boyer
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA
| | - Simon F. Roy
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Noah A. Outmezguine
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Malvika Sharma
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Hongyan Li
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, MSKCC, New York, NY 10065, USA
| | - Ning Fan
- Molecular Cytology Core, MSKCC, New York, NY 10065, USA
| | - Eric Chan
- Molecular Cytology Core, MSKCC, New York, NY 10065, USA
| | | | - Afsar Barlas
- Molecular Cytology Core, MSKCC, New York, NY 10065, USA
| | - Qing Chang
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, MSKCC, New York, NY 10065, USA
| | - Priya Pancholi
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Neilawattie. Merna Timaul
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | | | - Rona Yaeger
- Department of Medicine, MSKCC, New York, NY 10065, USA
| | | | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, MSKCC, New York, NY 10065, USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
- Department of Medicine, MSKCC, New York, NY 10065, USA
- Lead Contact
| |
Collapse
|
5
|
Li M, Xiao J, Song S, Han F, Liu H, Lin Y, Ni Y, Zeng S, Zou X, Wu J, Wang F, Xu S, Liang Y, Xu P, Hong H, Qiu J, Cao J, Zhu Q, Liang L. PREX2 contributes to radiation resistance by inhibiting radiotherapy-induced tumor immunogenicity via cGAS/STING/IFNs pathway in colorectal cancer. BMC Med 2024; 22:154. [PMID: 38609982 PMCID: PMC11015576 DOI: 10.1186/s12916-024-03375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) lacks established biomarkers or molecular targets for predicting or enhancing radiation response. Phosphatidylinositol-3,4,5-triphosphate-dependent Rac exchange factor 2 (PREX2) exhibits intricate implications in tumorigenesis and progression. Nevertheless, the precise role and underlying mechanisms of PREX2 in CRC radioresistance remain unclear. METHODS RNA-seq was employed to identify differentially expressed genes between radioresistant CRC cell lines and their parental counterparts. PREX2 expression was scrutinized using Western blotting, real-time PCR, and immunohistochemistry. The radioresistant role of PREX2 was assessed through in vitro colony formation assay, apoptosis assay, comet assay, and in vivo xenograft tumor models. The mechanism of PREX2 was elucidated using RNA-seq and Western blotting. Finally, a PREX2 small-molecule inhibitor, designated PREX-in1, was utilized to enhance the efficacy of ionizing radiation (IR) therapy in CRC mouse models. RESULTS PREX2 emerged as the most significantly upregulated gene in radioresistant CRC cells. It augmented the radioresistant capacity of CRC cells and demonstrated potential as a marker for predicting radioresistance efficacy. Mechanistically, PREX2 facilitated DNA repair by upregulating DNA-PKcs, suppressing radiation-induced immunogenic cell death, and impeding CD8+ T cell infiltration through the cGAS/STING/IFNs pathway. In vivo, the blockade of PREX2 heightened the efficacy of IR therapy. CONCLUSIONS PREX2 assumes a pivotal role in CRC radiation resistance by inhibiting the cGAS/STING/IFNs pathway, presenting itself as a potential radioresistant biomarker and therapeutic target for effectively overcoming radioresistance in CRC.
Collapse
Affiliation(s)
- Mingzhou Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China
| | - Jianbiao Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China
| | - Shasha Song
- Department of Pathology, Yantai Fushan People's Hospital, Yantai, 265500, Shandong, People's Republic of China
| | - Fangyi Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Hongling Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Yang Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Yunfei Ni
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Sisi Zeng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China
| | - Xin Zou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Jieqiong Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Feifei Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Shaowan Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - You Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Peishuang Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Huirong Hong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Junfeng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Jianing Cao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Qin Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, People's Republic of China.
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China.
| |
Collapse
|
6
|
Powis G, Meuillet EJ, Indarte M, Booher G, Kirkpatrick L. Pleckstrin Homology [PH] domain, structure, mechanism, and contribution to human disease. Biomed Pharmacother 2023; 165:115024. [PMID: 37399719 DOI: 10.1016/j.biopha.2023.115024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
The pleckstrin homology [PH] domain is a structural fold found in more than 250 proteins making it the 11th most common domain in the human proteome. 25% of family members have more than one PH domain and some PH domains are split by one, or several other, protein domains although still folding to give functioning PH domains. We review mechanisms of PH domain activity, the role PH domain mutation plays in human disease including cancer, hyperproliferation, neurodegeneration, inflammation, and infection, and discuss pharmacotherapeutic approaches to regulate PH domain activity for the treatment of human disease. Almost half PH domain family members bind phosphatidylinositols [PIs] that attach the host protein to cell membranes where they interact with other membrane proteins to give signaling complexes or cytoskeleton scaffold platforms. A PH domain in its native state may fold over other protein domains thereby preventing substrate access to a catalytic site or binding with other proteins. The resulting autoinhibition can be released by PI binding to the PH domain, or by protein phosphorylation thus providing fine tuning of the cellular control of PH domain protein activity. For many years the PH domain was thought to be undruggable until high-resolution structures of human PH domains allowed structure-based design of novel inhibitors that selectively bind the PH domain. Allosteric inhibitors of the Akt1 PH domain have already been tested in cancer patients and for proteus syndrome, with several other PH domain inhibitors in preclinical development for treatment of other human diseases.
Collapse
Affiliation(s)
- Garth Powis
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA.
| | | | - Martin Indarte
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Garrett Booher
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| | - Lynn Kirkpatrick
- PHusis Therapeutics Inc., 6019 Folsom Drive, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
8
|
Lawson CD, Hornigold K, Pan D, Niewczas I, Andrews S, Clark J, Welch HCE. Small-molecule inhibitors of P-Rex guanine-nucleotide exchange factors. Small GTPases 2022; 13:307-326. [PMID: 36342857 PMCID: PMC9645260 DOI: 10.1080/21541248.2022.2131313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
P-Rex1 and P-Rex2 are guanine-nucleotide exchange factors (GEFs) that activate Rac small GTPases in response to the stimulation of G protein-coupled receptors and phosphoinositide 3-kinase. P-Rex Rac-GEFs regulate the morphology, adhesion and migration of various cell types, as well as reactive oxygen species production and cell cycle progression. P-Rex Rac-GEFs also have pathogenic roles in the initiation, progression or metastasis of several types of cancer. With one exception, all P-Rex functions are known or assumed to be mediated through their catalytic Rac-GEF activity. Thus, inhibitors of P-Rex Rac-GEF activity would be valuable research tools. We have generated a panel of small-molecule P-Rex inhibitors that target the interface between the catalytic DH domain of P-Rex Rac-GEFs and Rac. Our best-characterized compound, P-Rex inhibitor 1 (PREX-in1), blocks the Rac-GEF activity of full-length P-Rex1 and P-Rex2, and of their isolated catalytic domains, in vitro at low-micromolar concentration, without affecting the activities of several other Rho-GEFs. PREX-in1 blocks the P-Rex1 dependent spreading of PDGF-stimulated endothelial cells and the production of reactive oxygen species in fMLP-stimulated mouse neutrophils. Structure-function analysis revealed critical structural elements of PREX-in1, allowing us to develop derivatives with increased efficacy, the best with an IC50 of 2 µM. In summary, we have developed PREX-in1 and derivative small-molecule compounds that will be useful laboratory research tools for the study of P-Rex function. These compounds may also be a good starting point for the future development of more sophisticated drug-like inhibitors aimed at targeting P-Rex Rac-GEFs in cancer.
Collapse
Affiliation(s)
- CD Lawson
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - K Hornigold
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - D Pan
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - I Niewczas
- Biological Chemistry Facility, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - S Andrews
- Bioinformatics Facility, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - J Clark
- Biological Chemistry Facility, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - HCE Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK,CONTACT HCE Welch Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3ATUK
| |
Collapse
|
9
|
D'Andrea L, Lucato CM, Marquez EA, Chang YG, Civciristov S, Mastos C, Lupton CJ, Huang C, Elmlund H, Schittenhelm RB, Mitchell CA, Whisstock JC, Halls ML, Ellisdon AM. Structural analysis of the PTEN:P-Rex2 signaling complex reveals how cancer-associated mutations coordinate to hyperactivate Rac1. Sci Signal 2021; 14:14/681/eabc4078. [PMID: 33947796 DOI: 10.1126/scisignal.abc4078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The dual-specificity phosphatase PTEN functions as a tumor suppressor by hydrolyzing PI(3,4,5)P3 to PI(4,5)P2 to inhibit PI3K-AKT signaling and cellular proliferation. P-Rex2 is a guanine nucleotide exchange factor for Rho GTPases and can be activated by Gβγ subunits downstream of G protein-coupled receptor signaling and by PI(3,4,5)P3 downstream of receptor tyrosine kinases. The PTEN:P-Rex2 complex is a commonly mutated signaling node in metastatic cancer. Assembly of the PTEN:P-Rex2 complex inhibits the activity of both proteins, and its dysregulation can drive PI3K-AKT signaling and cellular proliferation. Here, using cross-linking mass spectrometry and functional studies, we gained mechanistic insights into PTEN:P-Rex2 complex assembly and coinhibition. We found that PTEN was anchored to P-Rex2 by interactions between the PDZ-interacting motif in the PTEN C-terminal tail and the second PDZ domain of P-Rex2. This interaction bridged PTEN across the P-Rex2 surface, preventing PI(3,4,5)P3 hydrolysis. Conversely, PTEN both allosterically promoted an autoinhibited conformation of P-Rex2 and blocked its binding to Gβγ. In addition, we observed that the PTEN-deactivating mutations and P-Rex2 truncations combined to drive Rac1 activation to a greater extent than did either single variant alone. These insights enabled us to propose a class of gain-of-function, cancer-associated mutations within the PTEN:P-Rex2 interface that uncouple PTEN from the inhibition of Rac1 signaling.
Collapse
Affiliation(s)
- Laura D'Andrea
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Christina M Lucato
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Elsa A Marquez
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Yong-Gang Chang
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 Victoria, Australia
| | - Chantel Mastos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 Victoria, Australia
| | - Christopher J Lupton
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Cheng Huang
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia.,Monash Proteomics & Metabolomics Facility, Monash University, Clayton, 3800 Victoria, Australia
| | - Hans Elmlund
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Ralf B Schittenhelm
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia.,Monash Proteomics & Metabolomics Facility, Monash University, Clayton, 3800 Victoria, Australia
| | - Christina A Mitchell
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - James C Whisstock
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, 3800 Victoria, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 Victoria, Australia.
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia.
| |
Collapse
|
10
|
|
11
|
Vanni I, Tanda ET, Dalmasso B, Pastorino L, Andreotti V, Bruno W, Boutros A, Spagnolo F, Ghiorzo P. Non-BRAF Mutant Melanoma: Molecular Features and Therapeutical Implications. Front Mol Biosci 2020; 7:172. [PMID: 32850962 PMCID: PMC7396525 DOI: 10.3389/fmolb.2020.00172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is one of the most aggressive tumors of the skin, and its incidence is growing worldwide. Historically considered a drug resistant disease, since 2011 the therapeutic landscape of melanoma has radically changed. Indeed, the improved knowledge of the immune system and its interactions with the tumor, and the ever more thorough molecular characterization of the disease, has allowed the development of immunotherapy on the one hand, and molecular target therapies on the other. The increased availability of more performing technologies like Next-Generation Sequencing (NGS), and the availability of increasingly large genetic panels, allows the identification of several potential therapeutic targets. In light of this, numerous clinical and preclinical trials are ongoing, to identify new molecular targets. Here, we review the landscape of mutated non-BRAF skin melanoma, in light of recent data deriving from Whole-Exome Sequencing (WES) or Whole-Genome Sequencing (WGS) studies on melanoma cohorts for which information on the mutation rate of each gene was available, for a total of 10 NGS studies and 992 samples, focusing on available, or in experimentation, targeted therapies beyond those targeting mutated BRAF. Namely, we describe 33 established and candidate driver genes altered with frequency greater than 1.5%, and the current status of targeted therapy for each gene. Only 1.1% of the samples showed no coding mutations, whereas 30% showed at least one mutation in the RAS genes (mostly NRAS) and 70% showed mutations outside of the RAS genes, suggesting potential new roads for targeted therapy. Ongoing clinical trials are available for 33.3% of the most frequently altered genes.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | | | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| | - Andrea Boutros
- Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
| |
Collapse
|
12
|
Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in Metastatic Cancer. Front Cell Dev Biol 2020; 8:201. [PMID: 32322580 PMCID: PMC7156542 DOI: 10.3389/fcell.2020.00201] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
The Rho family GTPases Rho, Rac, and Cdc42 have emerged as key players in cancer metastasis, due to their essential roles in regulating cell division and actin cytoskeletal rearrangements; and thus, cell growth, migration/invasion, polarity, and adhesion. This review will focus on the close homologs Rac and Cdc42, which have been established as drivers of metastasis and therapy resistance in multiple cancer types. Rac and Cdc42 are often dysregulated in cancer due to hyperactivation by guanine nucleotide exchange factors (GEFs), belonging to both the diffuse B-cell lymphoma (Dbl) and dedicator of cytokinesis (DOCK) families. Rac/Cdc42 GEFs are activated by a myriad of oncogenic cell surface receptors, such as growth factor receptors, G-protein coupled receptors, cytokine receptors, and integrins; consequently, a number of Rac/Cdc42 GEFs have been implicated in metastatic cancer. Hence, inhibiting GEF-mediated Rac/Cdc42 activation represents a promising strategy for targeted metastatic cancer therapy. Herein, we focus on the role of oncogenic Rac/Cdc42 GEFs and discuss the recent advancements in the development of Rac and Cdc42 GEF-interacting inhibitors as targeted therapy for metastatic cancer, as well as their potential for overcoming cancer therapy resistance.
Collapse
Affiliation(s)
- Maria Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julia Isabel Medina
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Luis Velazquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
13
|
RAC1 as a Therapeutic Target in Malignant Melanoma. Trends Cancer 2020; 6:478-488. [PMID: 32460002 DOI: 10.1016/j.trecan.2020.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Small GTPases of the RAS and RHO families are related signaling proteins that, when activated by growth factors or by mutation, drive oncogenic processes. While activating mutations in KRAS, NRAS, and HRAS genes have long been recognized and occur in many types of cancer, similar mutations in RHO family genes, such as RAC1 and RHOA, have only recently been detected as the result of extensive cancer genome-sequencing efforts and are linked to a restricted set of malignancies. In this review, we focus on the role of RAC1 signaling in malignant melanoma, emphasizing recent advances that describe how this oncoprotein alters melanocyte proliferation and motility and how these findings might lead to new therapeutics in RAC1-mutant tumors.
Collapse
|
14
|
Cooke M, Baker MJ, Kazanietz MG. Rac-GEF/Rac Signaling and Metastatic Dissemination in Lung Cancer. Front Cell Dev Biol 2020; 8:118. [PMID: 32158759 PMCID: PMC7051914 DOI: 10.3389/fcell.2020.00118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, with non-small cell lung cancer (NSCLC) representing ∼85% of new diagnoses. The disease is often detected in an advanced metastatic stage, with poor prognosis and clinical outcome. In order to escape from the primary tumor, cancer cells acquire highly motile and invasive phenotypes that involve the dynamic reorganization of the actin cytoskeleton. These processes are tightly regulated by Rac1, a small G-protein that participates in the formation of actin-rich membrane protrusions required for cancer cell motility and for the secretion of extracellular matrix (ECM)-degrading proteases. In this perspective article we focus on the mechanisms leading to aberrant Rac1 signaling in NSCLC progression and metastasis, highlighting the role of Rac Guanine nucleotide Exchange Factors (GEFs). A plausible scenario is that specific Rac-GEFs activate discrete intracellular pools of Rac1, leading to unique functional responses in the context of specific oncogenic drivers, such as mutant EGFR or mutant KRAS. The identification of dysregulated Rac signaling regulators may serve to predict critical biomarkers for metastatic disease in lung cancer patients, ultimately aiding in refining patient prognosis and decision-making in the clinical setting.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Marcelo G. Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
15
|
Kim J, Novak D, Sachpekidis C, Utikal J, Larribère L. STAT3 Relays a Differential Response to Melanoma-Associated NRAS Mutations. Cancers (Basel) 2020; 12:E119. [PMID: 31906480 PMCID: PMC7016650 DOI: 10.3390/cancers12010119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022] Open
Abstract
Melanoma patients carrying an oncogenic NRAS mutation represent 20% of all cases and present worse survival, relapse rate and therapy response than patients with wild type NRAS or with BRAF mutations. Nevertheless, no efficient targeted therapy has emerged so far for this group of patients in comparison with the classical combination of BRAF and MEK inhibitors for the patient group carrying a BRAF mutation. NRAS key downstream actors should therefore be identified for drug targeting, possibly in combination with MEK inhibitors. Here, we investigated the influence of different melanoma-associated NRAS mutations (codon 12, 13 or 61) on several parameters such as oncogene-induced senescence, cell proliferation, migration or colony formation in immortalized melanocytes and in melanoma cell lines. We identified AXL/STAT3 axis as a main regulator of NRASQ61-induced oncogene-induced senescence (OIS) and observed that NRASQ61 mutations are not only more tumorigenic than NRASG12/13 mutations but also associated to STAT3 activation. In conclusion, these data bring new evidence of the potential tumorigenic role of STAT3 in NRAS-mutant melanomas and will help improving current therapy strategies for this particular patient group.
Collapse
Affiliation(s)
- James Kim
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.K.); (D.N.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.K.); (D.N.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.K.); (D.N.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (J.K.); (D.N.); (J.U.)
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
16
|
Xu Y, Wang H, Li F, Heindl LM, He X, Yu J, Yang J, Ge S, Ruan J, Jia R, Fan X. Long Non-coding RNA LINC-PINT Suppresses Cell Proliferation and Migration of Melanoma via Recruiting EZH2. Front Cell Dev Biol 2019; 7:350. [PMID: 31921860 PMCID: PMC6934058 DOI: 10.3389/fcell.2019.00350] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been identified as crucial regulators in many human cancers. Many lncRNAs show aberrant expression in cancer, and some of them play critical roles in tumor proliferation, invasion, and metastasis. However, the regulatory functions of lncRNAs in melanoma progression remain to be elucidated. We utilized the Real-time PCR methodology to determine the expression of LINC-PINT in melanoma cell lines. To evaluate the effect of LINC-PINT on tumorigenesis of melanoma, we used Cell Counting Kit-8 (CCK8) and colony formation assay. Flow cytometry assay was used to detect the function of LINC-PINT on cell cycle status. PINT-interacting proteins were identified by chromatin isolation using RNA purification (ChIRP). Microarray assay and bioinformatics analysis were used to find the potential target genes of LINC-PINT and the status of LINC-PINT target gene candidate was verified using chromatin immunoprecipitation assay (ChIP). LINC-PINT plays a role in suppressing the tumorigenicity of melanoma, which was further determined by xenograft model assay. LINC-PINT was significantly downregulated in melanoma tissues and cell lines. The overexpression of LINC-PINT in tumor cells resulted in significant tumor growth reduction and migration inhibition in A375, Mum2B and CRMM1 cells. Results based on the in vivo xenograft model were further consistent with the in vitro findings that LINC-PINT impeded growth and metastasis of melanoma cells. Microarray assay and bioinformatics analysis indicated that CDK1, CCNA2, AURKA, and PCNA were potential targets of LINC-PINT. In conclusion, LINC-PINT inhibits the tumorigenicity of melanoma through recruiting EZH2 to the promoter of its target genes, leading to H3K27 trimethylation and epigenetic silencing of target genes. LINC-PINT may serve as a novel diagnostic and therapeutic target for melanoma.
Collapse
Affiliation(s)
- Yangfan Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huixue Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Fang Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ludwig M Heindl
- Zentrum für Augenheilkunde, Universität zu Köln, Köln, Germany
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
17
|
Lionarons DA, Hancock DC, Rana S, East P, Moore C, Murillo MM, Carvalho J, Spencer-Dene B, Herbert E, Stamp G, Damry D, Calado DP, Rosewell I, Fritsch R, Neubig RR, Molina-Arcas M, Downward J. RAC1 P29S Induces a Mesenchymal Phenotypic Switch via Serum Response Factor to Promote Melanoma Development and Therapy Resistance. Cancer Cell 2019; 36:68-83.e9. [PMID: 31257073 PMCID: PMC6617390 DOI: 10.1016/j.ccell.2019.05.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/25/2019] [Accepted: 05/24/2019] [Indexed: 01/14/2023]
Abstract
RAC1 P29 is the third most commonly mutated codon in human cutaneous melanoma, after BRAF V600 and NRAS Q61. Here, we study the role of RAC1P29S in melanoma development and reveal that RAC1P29S activates PAK, AKT, and a gene expression program initiated by the SRF/MRTF transcriptional pathway, which results in a melanocytic to mesenchymal phenotypic switch. Mice with ubiquitous expression of RAC1P29S from the endogenous locus develop lymphoma. When expressed only in melanocytes, RAC1P29S cooperates with oncogenic BRAF or with NF1-loss to promote tumorigenesis. RAC1P29S also drives resistance to BRAF inhibitors, which is reversed by SRF/MRTF inhibitors. These findings establish RAC1P29S as a promoter of melanoma initiation and mediator of therapy resistance, while identifying SRF/MRTF as a potential therapeutic target.
Collapse
Affiliation(s)
- Daniël A Lionarons
- Oncogene Biology, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David C Hancock
- Oncogene Biology, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sareena Rana
- Oncogene Biology, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Philip East
- Bioinformatics & Biostatistics, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher Moore
- Oncogene Biology, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Miguel M Murillo
- Oncogene Biology, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Joana Carvalho
- Experimental Histopathology, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bradley Spencer-Dene
- Experimental Histopathology, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eleanor Herbert
- Experimental Histopathology, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Gordon Stamp
- Experimental Histopathology, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Djamil Damry
- Immunity & Cancer Laboratories, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dinis P Calado
- Immunity & Cancer Laboratories, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ian Rosewell
- Genetic Manipulation Service, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ralph Fritsch
- Oncogene Biology, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Universitätsklinikum Freiburg, Freiburg 79106, Germany
| | | | - Miriam Molina-Arcas
- Oncogene Biology, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Julian Downward
- Oncogene Biology, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
18
|
Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis. Cell 2019; 176:1113-1127.e16. [DOI: 10.1016/j.cell.2019.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/23/2018] [Accepted: 12/31/2018] [Indexed: 12/19/2022]
|
19
|
Cash JN, Sharma PV, Tesmer JJ. Structural and biochemical characterization of the pleckstrin homology domain of the RhoGEF P-Rex2 and its regulation by PIP 3. J Struct Biol X 2018; 1:100001. [PMID: 34958187 PMCID: PMC7337056 DOI: 10.1016/j.yjsbx.2018.100001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023] Open
Abstract
P-Rex family Rho guanine-nucleotide exchange factors are important regulators of cell motility through their activation of a subset of small GTPases. Both P-Rex1 and P-Rex2 have also been implicated in the progression of certain cancers, including breast cancer and melanoma. Although these molecules display a high level of homology, differences exist in tissue distribution, physiological function, and regulation at the molecular level. Here, we sought to compare the P-Rex2 pleckstrin homology (PH) domain structure and ability to interact with PIP3 with those of P-Rex1. The 1.9 Å crystal structure of the P-Rex2 PH domain reveals conformational differences in the loop regions, yet biochemical studies indicate that the interaction of the P-Rex2 PH domain with PIP3 is very similar to that of P-Rex1. Binding of the PH domain to PIP3 is critical for P-Rex2 activity but not membrane localization, as previously demonstrated for P-Rex1. These studies serve as a starting point in the identification of P-Rex structural features that are divergent between isoforms and could be exploited for the design of P-Rex selective compounds.
Collapse
Key Words
- DEP, dishevelled, Egl-10, and pleckstrin
- DH, Dbl homology
- DSF, differential scanning fluorimetry
- DTT, dithiothreitol
- EDTA, ethylenediaminetetraacetic
- Gβγ, G protein β and γ subunits
- IP4P, inositol polyphosphate 4-phosphatase
- Ins(1,3,4,5)P4, inositol-1,3,4,5-tetrakisphosphate
- MBP, maltose binding protein
- P-Rex
- P-Rex, phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger
- PDZ, post-synaptic density protein, Drosophila disc large tumor suppressor, and zonula occludens-1 protein
- PH, pleckstrin homology
- PIP3, phosphatidylinositol 3,4,5-trisphosphate
- PMSF, phenylmethylsulfonyl fluoride
- PTEN, phosphatase and tensin homolog
- Phosphatidylinositol 3,4,5-trisphosphate
- Pleckstrin homology domain
- Rho guanine nucleotide exchange factor
- RhoGEF, Rho guanine-nucleotide exchange factor
Collapse
Affiliation(s)
- Jennifer N. Cash
- Department of Pharmacology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA,Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Prateek V. Sharma
- Department of Pharmacology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA,Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - John J.G. Tesmer
- Department of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47904, USA,Corresponding author.
| |
Collapse
|
20
|
Hudson LG, Gillette JM, Kang H, Rivera MR, Wandinger-Ness A. Ovarian Tumor Microenvironment Signaling: Convergence on the Rac1 GTPase. Cancers (Basel) 2018; 10:cancers10100358. [PMID: 30261690 PMCID: PMC6211091 DOI: 10.3390/cancers10100358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment for epithelial ovarian cancer is complex and rich in bioactive molecules that modulate cell-cell interactions and stimulate numerous signal transduction cascades. These signals ultimately modulate all aspects of tumor behavior including progression, metastasis and therapeutic response. Many of the signaling pathways converge on the small GTPase Ras-related C3 botulinum toxin substrate (Rac)1. In addition to regulating actin cytoskeleton remodeling necessary for tumor cell adhesion, migration and invasion, Rac1 through its downstream effectors, regulates cancer cell survival, tumor angiogenesis, phenotypic plasticity, quiescence, and resistance to therapeutics. In this review we discuss evidence for Rac1 activation within the ovarian tumor microenvironment, mechanisms of Rac1 dysregulation as they apply to ovarian cancer, and the potential benefits of targeting aberrant Rac1 activity in this disease. The potential for Rac1 contribution to extraperitoneal dissemination of ovarian cancer is addressed.
Collapse
Affiliation(s)
- Laurie G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Jennifer M Gillette
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Huining Kang
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Melanie R Rivera
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Angela Wandinger-Ness
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
21
|
Palmieri G, Colombino M, Casula M, Manca A, Mandalà M, Cossu A. Molecular Pathways in Melanomagenesis: What We Learned from Next-Generation Sequencing Approaches. Curr Oncol Rep 2018; 20:86. [PMID: 30218391 PMCID: PMC6153571 DOI: 10.1007/s11912-018-0733-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Conventional clinico-pathological features in melanoma patients should be integrated with new molecular diagnostic, predictive, and prognostic factors coming from the expanding genomic profiles. Cutaneous melanoma (CM), even differing in biological behavior according to sun-exposure levels on the skin areas where it arises, is molecularly heterogeneous. The next-generation sequencing (NGS) approaches are providing data on mutation landscapes in driver genes that may account for distinct pathogenetic mechanisms and pathways. The purpose was to group and classify all somatic driver mutations observed in the main NGS-based studies. RECENT FINDINGS Whole exome and whole genome sequencing approaches have provided data on spectrum and distribution of genetic and genomic alterations as well as allowed to discover new cancer genes underlying CM pathogenesis. After evaluating the mutational status in a cohort of 686 CM cases from the most representative NGS studies, three molecular CM subtypes were proposed: BRAFmut, RASmut, and non-BRAFmut/non-RASmut.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Unit of Cancer Genetics, National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Traversa La Crucca 3, Baldinca Li Punti, 07100 Sassari, Italy
| | - Maria Colombino
- Unit of Cancer Genetics, National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Traversa La Crucca 3, Baldinca Li Punti, 07100 Sassari, Italy
| | - Milena Casula
- Unit of Cancer Genetics, National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Traversa La Crucca 3, Baldinca Li Punti, 07100 Sassari, Italy
| | - Antonella Manca
- Unit of Cancer Genetics, National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Traversa La Crucca 3, Baldinca Li Punti, 07100 Sassari, Italy
| | - Mario Mandalà
- PAPA GIOVANNI XXIII Cancer Center Hospital, Bergamo, Italy
| | - Antonio Cossu
- Institute of Pathology, Azienda Ospedaliero Universitaria (AOU), Sassari, Italy
| | - for the Italian Melanoma Intergroup (IMI)
- Unit of Cancer Genetics, National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), Traversa La Crucca 3, Baldinca Li Punti, 07100 Sassari, Italy
- PAPA GIOVANNI XXIII Cancer Center Hospital, Bergamo, Italy
- Institute of Pathology, Azienda Ospedaliero Universitaria (AOU), Sassari, Italy
| |
Collapse
|
22
|
The role of Rac in tumor susceptibility and disease progression: from biochemistry to the clinic. Biochem Soc Trans 2018; 46:1003-1012. [PMID: 30065108 DOI: 10.1042/bst20170519] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/16/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
The family of Rho GTPases are involved in the dynamic control of cytoskeleton reorganization and other fundamental cellular functions, including growth, motility, and survival. Rac1, one of the best characterized Rho GTPases, is an established effector of receptors and an important node in signaling networks crucial for tumorigenesis and metastasis. Rac1 hyperactivation is common in human cancer and could be the consequence of overexpression, abnormal upstream inputs, deregulated degradation, and/or anomalous intracellular localization. More recently, cancer-associated gain-of-function mutations in Rac1 have been identified which contribute to tumor phenotypes and confer resistance to targeted therapies. Deregulated expression/activity of Rac guanine nucleotide exchange factors responsible for Rac activation has been largely associated with a metastatic phenotype and drug resistance. Translating our extensive knowledge in Rac pathway biochemistry into a clinical setting still remains a major challenge; nonetheless, remarkable opportunities for cancer therapeutics arise from promising lead compounds targeting Rac and its effectors.
Collapse
|
23
|
Bustelo XR. RHO GTPases in cancer: known facts, open questions, and therapeutic challenges. Biochem Soc Trans 2018; 46:741-760. [PMID: 29871878 PMCID: PMC7615761 DOI: 10.1042/bst20170531] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
RHO GTPases have been traditionally associated with protumorigenic functions. While this paradigm is still valid in many cases, recent data have unexpectedly revealed that RHO proteins can also play tumor suppressor roles. RHO signaling elements can also promote both pro- and antitumorigenic effects using GTPase-independent mechanisms, thus giving an extra layer of complexity to the role of these proteins in cancer. Consistent with these variegated roles, both gain- and loss-of-function mutations in RHO pathway genes have been found in cancer patients. Collectively, these observations challenge long-held functional archetypes for RHO proteins in both normal and cancer cells. In this review, I will summarize these data and discuss new questions arising from them such as the functional and clinical relevance of the mutations found in patients, the mechanistic orchestration of those antagonistic functions in tumors, and the pros and cons that these results represent for the development of RHO-based anticancer drugs.
Collapse
Affiliation(s)
- Xosé R Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
24
|
Kazanietz MG, Caloca MJ. The Rac GTPase in Cancer: From Old Concepts to New Paradigms. Cancer Res 2017; 77:5445-5451. [PMID: 28807941 DOI: 10.1158/0008-5472.can-17-1456] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/29/2017] [Accepted: 08/01/2017] [Indexed: 01/24/2023]
Abstract
Rho family GTPases are critical regulators of cellular functions that play important roles in cancer progression. Aberrant activity of Rho small G-proteins, particularly Rac1 and their regulators, is a hallmark of cancer and contributes to the tumorigenic and metastatic phenotypes of cancer cells. This review examines the multiple mechanisms leading to Rac1 hyperactivation, particularly focusing on emerging paradigms that involve gain-of-function mutations in Rac and guanine nucleotide exchange factors, defects in Rac1 degradation, and mislocalization of Rac signaling components. The unexpected pro-oncogenic functions of Rac GTPase-activating proteins also challenged the dogma that these negative Rac regulators solely act as tumor suppressors. The potential contribution of Rac hyperactivation to resistance to anticancer agents, including targeted therapies, as well as to the suppression of antitumor immune response, highlights the critical need to develop therapeutic strategies to target the Rac pathway in a clinical setting. Cancer Res; 77(20); 5445-51. ©2017 AACR.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Maria J Caloca
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain.
| |
Collapse
|
25
|
P-Rex1 and P-Rex2 RacGEFs and cancer. Biochem Soc Trans 2017; 45:963-77. [PMID: 28710285 DOI: 10.1042/bst20160269] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/15/2022]
Abstract
Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger (P-Rex) proteins are RacGEFs that are synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and Gβγ subunits of G-protein-coupled receptors. P-Rex1 and P-Rex2 share similar amino acid sequence homology, domain structure, and catalytic function. Recent evidence suggests that both P-Rex proteins may play oncogenic roles in human cancers. P-Rex1 and P-Rex2 are altered predominantly via overexpression and mutation, respectively, in various cancer types, including breast cancer, prostate cancer, and melanoma. This review compares the similarities and differences between P-Rex1 and P-Rex2 functions in human cancers in terms of cellular effects and signalling mechanisms. Emerging clinical data predict that changes in expression or mutation of P-Rex1 and P-Rex2 may lead to changes in tumour outcome, particularly in breast cancer and melanoma.
Collapse
|
26
|
Arozarena I, Wellbrock C. Targeting invasive properties of melanoma cells. FEBS J 2017; 284:2148-2162. [PMID: 28196297 DOI: 10.1111/febs.14040] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/10/2017] [Indexed: 02/11/2024]
Abstract
Melanoma is a skin cancer notorious for its metastatic potential. As an initial step of the metastatic cascade, melanoma cells part from the primary tumour and invade the surrounding tissue, which is crucial for their dissemination and the formation of distant secondary tumours. Over the last two decades, our understanding of both, general and melanoma specific mechanisms of invasion has significantly improved, but to date no efficient therapeutic strategy tackling the invasive properties of melanoma cells has reached the clinic. In this review, we assess the major contributions towards the understanding of the molecular biology of melanoma cell invasion with a focus on melanoma specific traits. These traits are based on the neural crest origin of melanoma cells and explain their intrinsic invasive nature. A particular emphasis is given not only to lineage specific signalling mediated by TGFβ, and noncanonical and canonical WNT signalling, but also to the role of PDE5A and RHO-GTPases in modulating modes of melanoma cell invasion. We discuss existing caveats in the current understanding of the metastatic properties of melanoma cells, as well as the relevance of the 'phenotype switch' model and 'co-operativity' between different phenotypes in heterogeneous tumours. At the centre of these phenotypes is the lineage commitment factor microphthalmia-associated transcription factor, one of the most crucial regulators of the balance between de-differentiation (neural crest specific gene expression) and differentiation (melanocyte specific gene expression) that defines invasive and noninvasive melanoma cell phenotypes. Finally, we provide insight into the current evidence linking resistance to targeted therapies to invasive properties of melanoma cells.
Collapse
Affiliation(s)
- Imanol Arozarena
- Cancer Signalling Group, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| |
Collapse
|
27
|
Meyer KF, Krauss-Etschmann S, Kooistra W, Reinders-Luinge M, Timens W, Kobzik L, Plösch T, Hylkema MN. Prenatal exposure to tobacco smoke sex dependently influences methylation and mRNA levels of the Igf axis in lungs of mouse offspring. Am J Physiol Lung Cell Mol Physiol 2017; 312:L542-L555. [PMID: 28130259 DOI: 10.1152/ajplung.00271.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
Prenatal smoke exposure is a risk factor for abnormal lung development and increased sex-dependent susceptibility for asthma and chronic obstructive pulmonary disease (COPD). Birth cohort studies show genome-wide DNA methylation changes in children from smoking mothers, but evidence for sex-dependent smoke-induced effects is limited. The insulin-like growth factor (IGF) system plays an important role in lung development. We hypothesized that prenatal exposure to smoke induces lasting changes in promoter methylation patterns of Igf1 and Igf1r, thus influencing transcriptional activity and contributing to abnormal lung development. We measured and compared mRNA levels along with promoter methylation of Igf1 and Igf1r and their protein concentrations in lung tissue of 30-day-old mice that had been prenatally exposed to cigarette smoke (PSE) or filtered air (control). Body weight at 30 days after birth was measured as global indicator of normal development. Female PSE mice showed lower mRNA levels of Igf1 and its receptor (Igf1: P = 0.05; Igf1r: P = 0.03). Furthermore, CpG-site-specific methylation changes were detected in Igf1r in a sex-dependent manner and the body weight of female offspring was reduced after prenatal exposure to smoke, while protein concentrations were unaffected. Prenatal exposure to smoke induces a CpG-site-specific loss of Igf1r promoter methylation, which can be associated with body weight. These findings highlight the sex-dependent and potentially detrimental effects of in utero smoke exposure on DNA methylation and Igf1 and Igf1r mRNA levels. The observations support a role for Igf1 and Igf1r in abnormal development.
Collapse
Affiliation(s)
- K F Meyer
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, The Netherlands
| | - S Krauss-Etschmann
- Priority Area Asthma and Allergy, Leibnitz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel, Germany
| | - W Kooistra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, The Netherlands
| | - M Reinders-Luinge
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, The Netherlands
| | - W Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, The Netherlands
| | - L Kobzik
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and
| | - T Plösch
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands;
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
28
|
Lien EC, Dibble CC, Toker A. PI3K signaling in cancer: beyond AKT. Curr Opin Cell Biol 2017; 45:62-71. [PMID: 28343126 DOI: 10.1016/j.ceb.2017.02.007] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/13/2017] [Accepted: 02/08/2017] [Indexed: 12/27/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) signaling pathway is one of the most frequently altered pathways in human cancer and has a critical role in driving tumor initiation and progression. Although PI3K and its lipid product phosphatidylinositol-3,4,5-trisphosphate (PIP3) have been shown to activate multiple downstream signaling proteins, the vast majority of studies have focused on the protein kinase AKT as the dominant effector of PI3K signaling. However, recent studies have demonstrated many contexts under which other PIP3-dependent signaling proteins critically contribute to cancer progression, illustrating the importance of understanding AKT-independent signaling downstream of PI3K. Here, we highlight three PI3K-dependent, but AKT-independent, signaling branches that have recently been shown to have important roles in promoting phenotypes associated with malignancy. First, the PDK1-mTORC2-SGK axis can substitute for AKT in survival, migration, and growth signaling and has emerged as a major mechanism of resistance to PI3K and AKT inhibitors. Second, Rac signaling mediates the reorganization of the actin cytoskeleton to regulate cancer cell migration, invasion, and metabolism. Finally, the TEC family kinase BTK has a critical role in B cell function and malignancy and represents a recent example of an effective therapeutic target in cancer. These mechanisms highlight how understanding PI3K-dependent, but AKT-independent, signaling mechanisms that drive cancer progression will be crucial for the development of novel and more effective approaches for targeting the PI3K pathway for therapeutic benefit in cancer.
Collapse
Affiliation(s)
- Evan C Lien
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christian C Dibble
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
29
|
Abstract
Biological variability has confounded efforts to confirm the role of PREX2 mutations in melanoma.
Collapse
Affiliation(s)
- Roger J Davis
- Howard Hughes Medical Institute and the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
30
|
Horrigan SK, Courville P, Sampey D, Zhou F, Cai S. Replication Study: Melanoma genome sequencing reveals frequent PREX2 mutations. eLife 2017; 6. [PMID: 28100394 PMCID: PMC5245968 DOI: 10.7554/elife.21634] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022] Open
Abstract
In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Chroscinski et al., 2014) that described how we intended to replicate selected experiments from the paper "Melanoma genome sequencing reveals frequent PREX2 mutations" (Berger et al., 2012). Here we report the results of those experiments. We regenerated cells stably expressing ectopic wild-type and mutant phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2 (PREX2) using the same immortalized human NRASG12D melanocytes as the original study. Evaluation of PREX2 expression in these newly generated stable cells revealed varying levels of expression among the PREX2 isoforms, which was also observed in the stable cells made in the original study (Figure S6A; Berger et al., 2012). Additionally, ectopically expressed PREX2 was found to be at least 5 times above endogenous PREX2 expression. The monitoring of tumor formation of these stable cells in vivo resulted in no statistically significant difference in tumor-free survival driven by PREX2 variants, whereas the original study reported that these PREX2 mutations increased the rate of tumor incidence compared to controls (Figure 3B and S6B; Berger et al., 2012). Surprisingly, the median tumor-free survival was 1 week in this replication attempt, while 70% of the control mice were reported to be tumor-free after 9 weeks in the original study. The rapid tumor onset observed in this replication attempt, compared to the original study, makes the detection of accelerated tumor growth in PREX2 expressing NRASG12D melanocytes extremely difficult. Finally, we report meta-analyses for each result.
Collapse
|
31
|
Identification of DEP domain-containing proteins by a machine learning method and experimental analysis of their expression in human HCC tissues. Sci Rep 2016; 6:39655. [PMID: 28000796 PMCID: PMC5175133 DOI: 10.1038/srep39655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/24/2016] [Indexed: 12/23/2022] Open
Abstract
The Dishevelled/EGL-10/Pleckstrin (DEP) domain-containing (DEPDC) proteins have seven members. However, whether this superfamily can be distinguished from other proteins based only on the amino acid sequences, remains unknown. Here, we describe a computational method to segregate DEPDCs and non-DEPDCs. First, we examined the Pfam numbers of the known DEPDCs and used the longest sequences for each Pfam to construct a phylogenetic tree. Subsequently, we extracted 188-dimensional (188D) and 20D features of DEPDCs and non-DEPDCs and classified them with random forest classifier. We also mined the motifs of human DEPDCs to find the related domains. Finally, we designed experimental verification methods of human DEPDC expression at the mRNA level in hepatocellular carcinoma (HCC) and adjacent normal tissues. The phylogenetic analysis showed that the DEPDCs superfamily can be divided into three clusters. Moreover, the 188D and 20D features can both be used to effectively distinguish the two protein types. Motif analysis revealed that the DEP and RhoGAP domain was common in human DEPDCs, human HCC and the adjacent tissues that widely expressed DEPDCs. However, their regulation was not identical. In conclusion, we successfully constructed a binary classifier for DEPDCs and experimentally verified their expression in human HCC tissues.
Collapse
|
32
|
Zandvakili I, Lin Y, Morris JC, Zheng Y. Rho GTPases: Anti- or pro-neoplastic targets? Oncogene 2016; 36:3213-3222. [PMID: 27991930 PMCID: PMC5464989 DOI: 10.1038/onc.2016.473] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
Rho GTPases are critical signal transducers of multiple pathways. They have been proposed to be useful anti-neoplastic targets for over two decades, especially in Ras-driven cancers. Until recently, however, few in vivo studies had been carried out to test this premise. Several recent mouse model studies have verified that Rac1, RhoA, and some of their effector proteins such as PAK and ROCK, are likely anti-cancer targets for treating K-Ras-driven tumors. Other seemingly contradictory studies have suggested that at least in certain instances inhibition of individual Rho GTPases may paradoxically result in pro-neoplastic effects. Significantly, both RhoA GTPase gain- and loss-of-function mutations have been discovered in primary leukemia/lymphoma and gastric cancer by human cancer genome sequencing efforts, suggesting both pro- and anti-neoplastic roles. In this review we summarize and integrate these unexpected findings and discuss the mechanistic implications in the design and application of Rho GTPase targeting strategies in future cancer therapies.
Collapse
Affiliation(s)
- I Zandvakili
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical-Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Y Lin
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - J C Morris
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio USA
| | - Y Zheng
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical-Scientist Training Program, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
33
|
Vázquez-Prado J, Bracho-Valdés I, Cervantes-Villagrana RD, Reyes-Cruz G. Gβγ Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Mol Pharmacol 2016; 90:573-586. [PMID: 27638873 DOI: 10.1124/mol.116.105338] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 02/14/2025] Open
Abstract
Cancer cells and stroma cells in tumors secrete chemotactic agonists that exacerbate invasive behavior, promote tumor-induced angiogenesis, and recruit protumoral bone marrow-derived cells. In response to shallow gradients of chemotactic stimuli recognized by G protein-coupled receptors (GPCRs), Gβγ-dependent signaling cascades contribute to specifying the spatiotemporal assembly of cytoskeletal structures that can dynamically alter cell morphology. This sophisticated process is intrinsically linked to the activation of Rho GTPases and their cytoskeletal-remodeling effectors. Thus, Rho guanine nucleotide exchange factors, the activators of these molecular switches, and their upstream signaling partners are considered participants of tumor progression. Specifically, phosphoinositide-3 kinases (class I PI3Ks, β and γ) and P-Rex1, a Rac-specific guanine nucleotide exchange factor, are fundamental Gβγ effectors in the pathways controlling directionally persistent motility. In addition, GPCR-dependent chemotactic responses often involve endosomal trafficking of signaling proteins; coincidently, endosomes serve as signaling platforms for Gβγ In preclinical murine models of cancer, inhibition of Gβγ attenuates tumor growth, whereas in cancer patients, aberrant overexpression of chemotactic Gβγ effectors and recently identified mutations in Gβ correlate with poor clinical outcome. Here we discuss emerging paradigms of Gβγ signaling in cancer, which are essential for chemotactic cell migration and represent novel opportunities to develop pathway-specific pharmacologic treatments.
Collapse
Affiliation(s)
- José Vázquez-Prado
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Ismael Bracho-Valdés
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Rodolfo Daniel Cervantes-Villagrana
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Guadalupe Reyes-Cruz
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| |
Collapse
|
34
|
Barrows D, He JZ, Parsons R. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs). J Biol Chem 2016; 291:20042-54. [PMID: 27481946 DOI: 10.1074/jbc.m116.723882] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 12/15/2022] Open
Abstract
Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gβγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer.
Collapse
Affiliation(s)
- Douglas Barrows
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and the Department of Pharmacology, Columbia University, New York, New York 10032
| | - John Z He
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Ramon Parsons
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| |
Collapse
|
35
|
Ryan MB, Finn AJ, Pedone KH, Thomas NE, Der CJ, Cox AD. ERK/MAPK Signaling Drives Overexpression of the Rac-GEF, PREX1, in BRAF- and NRAS-Mutant Melanoma. Mol Cancer Res 2016; 14:1009-1018. [PMID: 27418645 DOI: 10.1158/1541-7786.mcr-16-0184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/01/2016] [Indexed: 12/14/2022]
Abstract
Recently, we identified that PREX1 overexpression is critical for metastatic but not tumorigenic growth in a mouse model of NRAS-driven melanoma. In addition, a PREX1 gene signature correlated with and was dependent on ERK MAPK activation in human melanoma cell lines. In the current study, the underlying mechanism of PREX1 overexpression in human melanoma was assessed. PREX1 protein levels were increased in melanoma tumor tissues and cell lines compared with benign nevi and normal melanocytes, respectively. Suppression of PREX1 by siRNA impaired invasion but not proliferation in vitro PREX1-dependent invasion was attributable to PREX1-mediated activation of the small GTPase RAC1 but not the related small GTPase CDC42. Pharmacologic inhibition of ERK signaling reduced PREX1 gene transcription and additionally regulated PREX1 protein stability. This ERK-dependent upregulation of PREX1 in melanoma, due to both increased gene transcription and protein stability, contrasts with the mechanisms identified in breast and prostate cancers, in which PREX1 overexpression was driven by gene amplification and HDAC-mediated gene transcription, respectively. Thus, although PREX1 expression is aberrantly upregulated and regulates RAC1 activity and invasion in these three different tumor types, the mechanisms of its upregulation are distinct and context dependent. IMPLICATIONS This study identifies an ERK-dependent mechanism that drives PREX1 upregulation and subsequent RAC1-dependent invasion in BRAF- and NRAS-mutant melanoma. Mol Cancer Res; 14(10); 1009-18. ©2016 AACR.
Collapse
Affiliation(s)
- Meagan B Ryan
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alexander J Finn
- Department of Dermatology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Katherine H Pedone
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nancy E Thomas
- Department of Dermatology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J Der
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Adrienne D Cox
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
36
|
Porter AP, Papaioannou A, Malliri A. Deregulation of Rho GTPases in cancer. Small GTPases 2016; 7:123-38. [PMID: 27104658 PMCID: PMC5003542 DOI: 10.1080/21541248.2016.1173767] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/18/2016] [Accepted: 03/28/2016] [Indexed: 12/28/2022] Open
Abstract
In vitro and in vivo studies and evidence from human tumors have long implicated Rho GTPase signaling in the formation and dissemination of a range of cancers. Recently next generation sequencing has identified direct mutations of Rho GTPases in human cancers. Moreover, the effects of ablating genes encoding Rho GTPases and their regulators in mouse models, or through pharmacological inhibition, strongly suggests that targeting Rho GTPase signaling could constitute an effective treatment. In this review we will explore the various ways in which Rho signaling can be deregulated in human cancers.
Collapse
Affiliation(s)
- Andrew P. Porter
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Alexandra Papaioannou
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
- “Cellular and Genetic Etiology, Diagnosis and Treatment of Human Disease” Graduate Program, Medical School, University of Crete, Heraklion, Greece
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
37
|
Lissanu Deribe Y. Interplay between PREX2 mutations and the PI3K pathway and its effect on epigenetic regulation of gene expression in NRAS-mutant melanoma. Small GTPases 2016; 7:178-85. [PMID: 27111337 DOI: 10.1080/21541248.2016.1178366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PREX2 is a PTEN interacting protein that is significantly mutated in melanoma and pancreatic ductal adenocarcinoma. Recently, we reported the mechanistic basis of melanomagenesis by PREX2 mutations. Truncating PREX2 mutations activate its guanine nucleotide exchange factor activity for its substrate RAC1. This leads to increased PI3K/AKT signaling associated with reduced DNA methylation and increased cell proliferation in NRAS-mutant melanoma. Here, we provide additional data that indicates a reciprocal regulation of PREX2 by PTEN whereby loss of PTEN results in a dramatic increase in expression of PREX2 at the protein level. Pharmacologic studies revealed destabilization of PREX2 by inhibition of PI3K/AKT signaling. Additionally, we provide data to show a selective decrease in a particular histone mark, H4 Lys20 trimethylation, in cells expressing PREX2 (E824*) truncating mutation globally and at the imprint control region of CDKN1C (also known as p57) and IGF2. The decrease in H4K20 trimethylation coupled with DNA hypomethylation at this particular locus is associated with genomic imprinting and regulation of expression of p57 and IGF2. Taken together, these results demonstrate the complex signaling mechanisms that involve PREX2, PI3K/AKT/PTEN and downstream epigenetic machinery to deregulate expression of key cell cycle regulators.
Collapse
Affiliation(s)
- Yonathan Lissanu Deribe
- a Department of Genomic Medicine , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
38
|
Lissanu Deribe Y. Mechanistic insights into the role of truncating PREX2 mutations in melanoma. Mol Cell Oncol 2016; 3:e1160174. [PMID: 27314100 DOI: 10.1080/23723556.2016.1160174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/11/2022]
Abstract
PREX2 is a PTEN binding protein that is significantly mutated in melanoma and pancreatic ductal adenocarcinoma. We recently reported the molecular mechanism of tumorigenesis associated with PREX2 mutations: truncating PREX2 mutations activate its RAC1 guanine nucleotide exchanger activity leading to increased PI3K/AKT signaling and enhanced cell proliferation.
Collapse
Affiliation(s)
- Yonathan Lissanu Deribe
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center , Houston, Texas, USA
| |
Collapse
|