1
|
Wei C, Kesner B, Yin H, Lee JT. Imprinted X chromosome inactivation at the gamete-to-embryo transition. Mol Cell 2024; 84:1442-1459.e7. [PMID: 38458200 PMCID: PMC11031340 DOI: 10.1016/j.molcel.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/23/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
In mammals, dosage compensation involves two parallel processes: (1) X inactivation, which equalizes X chromosome dosage between males and females, and (2) X hyperactivation, which upregulates the active X for X-autosome balance. The field currently favors models whereby dosage compensation initiates "de novo" during mouse development. Here, we develop "So-Smart-seq" to revisit the question and interrogate a comprehensive transcriptome including noncoding genes and repeats in mice. Intriguingly, de novo silencing pertains only to a subset of Xp genes. Evolutionarily older genes and repetitive elements demonstrate constitutive Xp silencing, adopt distinct signatures, and do not require Xist to initiate silencing. We trace Xp silencing backward in developmental time to meiotic sex chromosome inactivation in the male germ line and observe that Xm hyperactivation is timed to Xp silencing on a gene-by-gene basis. Thus, during the gamete-to-embryo transition, older Xp genes are transmitted in a "pre-inactivated" state. These findings have implications for the evolution of imprinting.
Collapse
Affiliation(s)
- Chunyao Wei
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hao Yin
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Mattimoe T, Payer B. The compleX balancing act of controlling X-chromosome dosage and how it impacts mammalian germline development. Biochem J 2023; 480:521-537. [PMID: 37096944 PMCID: PMC10212525 DOI: 10.1042/bcj20220450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 04/26/2023]
Abstract
In female mammals, the two X chromosomes are subject to epigenetic gene regulation in order to balance X-linked gene dosage with autosomes and in relation to males, which have one X and one Y chromosome. This is achieved by an intricate interplay of several processes; X-chromosome inactivation and reactivation elicit global epigenetic regulation of expression from one X chromosome in a stage-specific manner, whilst the process of X-chromosome upregulation responds to this by fine-tuning transcription levels of the second X. The germline is unique in its function of transmitting both the genetic and epigenetic information from one generation to the next, and remodelling of the X chromosome is one of the key steps in setting the stage for successful development. Here, we provide an overview of the complex dynamics of X-chromosome dosage control during embryonic and germ cell development, and aim to decipher its potential role for normal germline competency.
Collapse
Affiliation(s)
- Tom Mattimoe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
3
|
Liu J, Yang LZ, Chen LL. Understanding lncRNA-protein assemblies with imaging and single-molecule approaches. Curr Opin Genet Dev 2021; 72:128-137. [PMID: 34933201 DOI: 10.1016/j.gde.2021.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) associate with RNA-binding proteins (RBPs) to form lncRNA-protein complexes that act in a wide range of biological processes. Understanding the molecular mechanism of how a lncRNA-protein complex is assembled and regulated is key for their cellular functions. In this mini-review, we outline molecular methods used to identify lncRNA-protein interactions from large-scale to individual levels using bulk cells as well as those recently developed imaging and single-molecule approaches that are capable of visualizing RNA-protein assemblies in single cells and in real-time. Focusing on the latter group of approaches, we discuss their applications and limitations, which nevertheless have enabled quantification and comprehensive dissection of RNA-protein interactions possible.
Collapse
Affiliation(s)
- Jiaquan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
4
|
Naciri I, Lin B, Webb CH, Jiang S, Carmona S, Liu W, Mortazavi A, Sun S. Linking Chromosomal Silencing With Xist Expression From Autosomal Integrated Transgenes. Front Cell Dev Biol 2021; 9:693154. [PMID: 34222260 PMCID: PMC8250153 DOI: 10.3389/fcell.2021.693154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Xist is the master regulator of X-Chromosome Inactivation (XCI), the mammalian dosage compensation mechanism that silences one of the two X chromosomes in a female cell. XCI is established during early embryonic development. Xist transgene (Tg) integrated into an autosome can induce transcriptional silencing of flanking genes; however, the effect and mechanism of Xist RNA on autosomal sequence silencing remain elusive. In this study, we investigate an autosomal integration of Xist Tg that is compatible with mouse viability but causes male sterility in homozygous transgenic mice. We observed ectopic Xist expression in the transgenic male cells along with a transcriptional reduction of genes clustered in four segments on the mouse chromosome 1 (Chr 1). RNA/DNA Fluorescent in situ Hybridization (FISH) and chromosome painting confirmed that Xist Tg is associated with chromosome 1. To determine the spreading mechanism of autosomal silencing induced by Xist Tg on Chr 1, we analyzed the positions of the transcriptionally repressed chromosomal sequences relative to the Xist Tg location inside the cell nucleus. Our results show that the transcriptionally repressed chromosomal segments are closely proximal to Xist Tg in the three-dimensional nucleus space. Our findings therefore support a model that Xist directs and maintains long-range transcriptional silencing facilitated by the three-dimensional chromosome organization.
Collapse
Affiliation(s)
- Ikrame Naciri
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Benjamin Lin
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Chiu-Ho Webb
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Shan Jiang
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Sarah Carmona
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Wenzhu Liu
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Sha Sun
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Humphrey J, Birsa N, Milioto C, McLaughlin M, Ule AM, Robaldo D, Eberle AB, Kräuchi R, Bentham M, Brown AL, Jarvis S, Bodo C, Garone M, Devoy A, Soraru G, Rosa A, Bozzoni I, Fisher EMC, Mühlemann O, Schiavo G, Ruepp MD, Isaacs AM, Plagnol V, Fratta P. FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention. Nucleic Acids Res 2020; 48:6889-6905. [PMID: 32479602 PMCID: PMC7337901 DOI: 10.1093/nar/gkaa410] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/21/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease. FUS plays a role in numerous aspects of RNA metabolism, including mRNA splicing. However, the impact of ALS-causative mutations on splicing has not been fully characterized, as most disease models have been based on overexpressing mutant FUS, which will alter RNA processing due to FUS autoregulation. We and others have recently created knockin models that overcome the overexpression problem, and have generated high depth RNA-sequencing on FUS mutants in parallel to FUS knockout, allowing us to compare mutation-induced changes to genuine loss of function. We find that FUS-ALS mutations induce a widespread loss of function on expression and splicing. Specifically, we find that mutant FUS directly alters intron retention levels in RNA-binding proteins. Moreover, we identify an intron retention event in FUS itself that is associated with its autoregulation. Altered FUS levels have been linked to disease, and we show here that this novel autoregulation mechanism is altered by FUS mutations. Crucially, we also observe this phenomenon in other genetic forms of ALS, including those caused by TDP-43, VCP and SOD1 mutations, supporting the concept that multiple ALS genes interact in a regulatory network.
Collapse
Affiliation(s)
- Jack Humphrey
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Nicol Birsa
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute
| | - Carmelo Milioto
- UK Dementia Research Institute
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Martha McLaughlin
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Agnieszka M Ule
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Robaldo
- UK Dementia Research Institute
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Andrea B Eberle
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Rahel Kräuchi
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Matthew Bentham
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Seth Jarvis
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Cristian Bodo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | - Anny Devoy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London SE5 9RT, UK
| | - Gianni Soraru
- Department of Neurosciences, Università degli Studi di Padova, Padova 35121, Italy
| | - Alessandro Rosa
- Sapienza University of Rome, Rome 00185, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Irene Bozzoni
- Sapienza University of Rome, Rome 00185, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London WC1N 3BG, UK
| | - Marc-David Ruepp
- UK Dementia Research Institute
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London SE5 9RT, UK
| | - Adrian M Isaacs
- UK Dementia Research Institute
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Vincent Plagnol
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
6
|
Carmona S, Lin B, Chou T, Arroyo K, Sun S. LncRNA Jpx induces Xist expression in mice using both trans and cis mechanisms. PLoS Genet 2018; 14:e1007378. [PMID: 29734339 PMCID: PMC5957434 DOI: 10.1371/journal.pgen.1007378] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/17/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022] Open
Abstract
Mammalian X chromosome dosage compensation balances X-linked gene products between sexes and is coordinated by the long noncoding RNA (lncRNA) Xist. Multiple cis and trans-acting factors modulate Xist expression; however, the primary competence factor responsible for activating Xist remains a subject of dispute. The lncRNA Jpx is a proposed competence factor, yet it remains unknown if Jpx is sufficient to activate Xist expression in mice. Here, we utilize a novel transgenic mouse system to demonstrate a dose-dependent relationship between Jpx copy number and ensuing Jpx and Xist expression. By localizing transcripts of Jpx and Xist using RNA Fluorescence in situ Hybridization (FISH) in mouse embryonic cells, we provide evidence of Jpx acting in both trans and cis to activate Xist. Our data contribute functional and mechanistic insight for lncRNA activity in mice, and argue that Jpx is a competence factor for Xist activation in vivo. Long noncoding RNA (lncRNA) have been identified in all eukaryotes but mechanisms of lncRNA function remain challenging to study in vivo. A classic model of lncRNA function and mechanism is X-Chromosome Inactivation (XCI): an essential process which balances X-linked gene expression between male and female mammals. The “master regulator” of XCI is lncRNA Xist, which is responsible for silencing one of the two X chromosomes in females. Another lncRNA, Jpx, has been proposed to activate Xist gene expression in mouse embryonic stem cells; however, no mouse models exist to address Jpx function in vivo. In this study, we developed a novel transgenic mouse system to demonstrate the regulatory mechanisms of lncRNA Jpx. We observed a dose-dependent relationship between Jpx copy number and Xist expression in transgenic mice, suggesting that Jpx is sufficient to activate Xist expression in vivo. In addition, we analyzed Jpx’s allelic origin and have provided evidence for Jpx inducing Xist transcription using both trans and cis mechanisms. Our work provides a framework for lncRNA functional studies in mice, which will help us understand how lncRNA regulate eukaryotic gene expression.
Collapse
Affiliation(s)
- Sarah Carmona
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, Irvine, CA, United States of America
| | - Benjamin Lin
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, Irvine, CA, United States of America
| | - Tristan Chou
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, Irvine, CA, United States of America
| | - Katti Arroyo
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, Irvine, CA, United States of America
| | - Sha Sun
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, Irvine, CA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Clark BS, Blackshaw S. Understanding the Role of lncRNAs in Nervous System Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:253-282. [PMID: 28815543 DOI: 10.1007/978-981-10-5203-3_9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diversity of lncRNAs has expanded within mammals in tandem with the evolution of increased brain complexity, suggesting that lncRNAs play an integral role in this process. In this chapter, we will highlight the identification and characterization of lncRNAs in nervous system development. We discuss the potential role of lncRNAs in nervous system and brain evolution, along with efforts to create comprehensive catalogues that analyze spatial and temporal changes in lncRNA expression during nervous system development. Additionally, we focus on recent endeavors that attempt to assign function to lncRNAs during nervous system development. We highlight discrepancies that have been observed between in vitro and in vivo studies of lncRNA function and the challenges facing researchers in conducting mechanistic analyses of lncRNAs in the developing nervous system. Altogether, this chapter highlights the emerging role of lncRNAs in the developing brain and sheds light on novel, RNA-mediated mechanisms by which nervous system development is controlled.
Collapse
Affiliation(s)
- Brian S Clark
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seth Blackshaw
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Laguna-Barraza R, Sánchez-Calabuig MJ, Gutiérrez-Adán A, Rizos D, Pérez-Cerezales S. Effects of the HDAC inhibitor scriptaid on the in vitro development of bovine embryos and on imprinting gene expression levels. Theriogenology 2018; 110:79-85. [PMID: 29353144 DOI: 10.1016/j.theriogenology.2017.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/11/2017] [Accepted: 12/29/2017] [Indexed: 01/12/2023]
Abstract
This study examines the effects of the histone deacetylation inhibitor scriptaid (SCR) on preimplantation embryo development in vitro and on imprinting gene expression. We hypothesized that SCR would increase histone acetylation levels, enhance embryonic genome activation, and regulate imprinting and X-chromosome inactivation (XCI) in in vitro produced bovine embryos. Zygotes were cultured in vitro in presence or absence of SCR added at different time points. We assessed cleavage and blastocyst rates as well as the quality of blastocysts through: (i) differential cell counts; (ii) survival after vitrification/thawing and (iii) gene expression analysis -including imprinted genes. Blastocyst yields were not different in the control and experimental groups. While no significant differences were observed between groups in total cell or trophectoderm cell numbers, SCR treatment reduced the number of inner cell mass cells and improved the survival of vitrified embryos. Further, genes involved in the mechanism of paternal imprinting (GRB10, GNAS, XIST) were downregulated in presence of SCR compared with controls. These observations suggest SCR prevents deacetylation of paternally imprinting control regions and/or their up-regulation, as these events took place in controls. Whether or not such reductions in XIST and imprinting gene expression are beneficial for post implantation development remains to be clarified.
Collapse
Affiliation(s)
| | - M J Sánchez-Calabuig
- Dpto de Reproducción Animal, INIA, Madrid, Spain; Dpto de Medicina y Cirugía Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| | | | - D Rizos
- Dpto de Reproducción Animal, INIA, Madrid, Spain
| | | |
Collapse
|
9
|
Choosing the Active X: The Human Version of X Inactivation. Trends Genet 2017; 33:899-909. [PMID: 28988701 DOI: 10.1016/j.tig.2017.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 01/30/2023]
Abstract
Humans and rodents differ in how they carry out X inactivation (XI), the mammalian method to compensate for the different number of X chromosomes in males and females. Evolutionary changes in staging embryogenesis and in mutations within the XI center alter the process among mammals. The mouse model of XI is predicated on X counting and subsequently choosing the X to 'inactivate'. However, new evidence suggests that humans initiate XI by protecting one X in both sexes from inactivation by XIST, the noncoding RNA that silences the inactive X. This opinion article explores the question of how the active X is protected from silencing by its own Xist locus, and the possibility of different solutions for mouse and human.
Collapse
|
10
|
Yang Y, Wu D, Liu D, Shi J, Zhou R, He X, Quan J, Cai G, Zheng E, Wu Z, Li Z. Mutation of the XIST
gene upregulates expression of X-linked genes but decreases the developmental rates of cloned male porcine embryos. Mol Reprod Dev 2017; 84:525-534. [DOI: 10.1002/mrd.22808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/31/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Yang Yang
- National Engineering Research Center for Breeding Swine Industry; College of Animal Science; South China Agricultural University; Guangzhou China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding; College of Animal Science; South China Agricultural University; Guangzhou China
| | - Dan Wu
- National Engineering Research Center for Breeding Swine Industry; College of Animal Science; South China Agricultural University; Guangzhou China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding; College of Animal Science; South China Agricultural University; Guangzhou China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry; College of Animal Science; South China Agricultural University; Guangzhou China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding; College of Animal Science; South China Agricultural University; Guangzhou China
| | - Junsong Shi
- Guangdong Wen's Foodstuff Group Ltd.; Yunfu Guangdong China
| | - Rong Zhou
- Guangdong Wen's Foodstuff Group Ltd.; Yunfu Guangdong China
| | - Xiaoyan He
- Guangdong Wen's Foodstuff Group Ltd.; Yunfu Guangdong China
| | - Jianping Quan
- National Engineering Research Center for Breeding Swine Industry; College of Animal Science; South China Agricultural University; Guangzhou China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding; College of Animal Science; South China Agricultural University; Guangzhou China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry; College of Animal Science; South China Agricultural University; Guangzhou China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding; College of Animal Science; South China Agricultural University; Guangzhou China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry; College of Animal Science; South China Agricultural University; Guangzhou China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding; College of Animal Science; South China Agricultural University; Guangzhou China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry; College of Animal Science; South China Agricultural University; Guangzhou China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding; College of Animal Science; South China Agricultural University; Guangzhou China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry; College of Animal Science; South China Agricultural University; Guangzhou China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding; College of Animal Science; South China Agricultural University; Guangzhou China
| |
Collapse
|
11
|
Federici F, Magaraki A, Wassenaar E, van Veen-Buurman CJH, van de Werken C, Baart EB, Laven JSE, Grootegoed JA, Gribnau J, Baarends WM. Round Spermatid Injection Rescues Female Lethality of a Paternally Inherited Xist Deletion in Mouse. PLoS Genet 2016; 12:e1006358. [PMID: 27716834 PMCID: PMC5065126 DOI: 10.1371/journal.pgen.1006358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/09/2016] [Indexed: 01/03/2023] Open
Abstract
In mouse female preimplantation embryos, the paternal X chromosome (Xp) is silenced by imprinted X chromosome inactivation (iXCI). This requires production of the noncoding Xist RNA in cis, from the Xp. The Xist locus on the maternally inherited X chromosome (Xm) is refractory to activation due to the presence of an imprint. Paternal inheritance of an Xist deletion (XpΔXist) is embryonic lethal to female embryos, due to iXCI abolishment. Here, we circumvented the histone-to-protamine and protamine-to-histone transitions of the paternal genome, by fertilization of oocytes via injection of round spermatids (ROSI). This did not affect initiation of XCI in wild type female embryos. Surprisingly, ROSI using ΔXist round spermatids allowed survival of female embryos. This was accompanied by activation of the intact maternal Xist gene, initiated with delayed kinetics, around the morula stage, resulting in Xm silencing. Maternal Xist gene activation was not observed in ROSI-derived males. In addition, no Xist expression was detected in male and female morulas that developed from oocytes fertilized with mature ΔXist sperm. Finally, the expression of the X-encoded XCI-activator RNF12 was enhanced in both male (wild type) and female (wild type as well as XpΔXist) ROSI derived embryos, compared to in vivo fertilized embryos. Thus, high RNF12 levels may contribute to the specific activation of maternal Xist in XpΔXist female ROSI embryos, but upregulation of additional Xp derived factors and/or the specific epigenetic constitution of the round spermatid-derived Xp are expected to be more critical. These results illustrate the profound impact of a dysregulated paternal epigenome on embryo development, and we propose that mouse ROSI can be used as a model to study the effects of intergenerational inheritance of epigenetic marks.
Collapse
Affiliation(s)
- Federica Federici
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Aristea Magaraki
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Evelyne Wassenaar
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Catherina J. H. van Veen-Buurman
- Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Christine van de Werken
- Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Esther B Baart
- Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joop S. E. Laven
- Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - J Anton Grootegoed
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
12
|
Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias. Proc Natl Acad Sci U S A 2016; 113:E5425-33. [PMID: 27582469 DOI: 10.1073/pnas.1604773113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Testicular tumors, the most common cancer in young men, arise from abnormalities in germ cells during fetal development. Unconventional inheritance for testicular germ cell tumor (TGCT) risk both in humans and mice implicates epigenetic mechanisms. Apolipoprotein B mRNA-editing enzyme complex 1 (APOBEC1) cytidine deaminase and Deadend-1, which are involved in C-to-U RNA editing and microRNA-dependent mRNA silencing, respectively, are potent epigenetic modifiers of TGCT susceptibility in the genetically predisposed 129/Sv inbred mouse strain. Here, we show that partial loss of either APOBEC1 complementation factor (A1CF), the RNA-binding cofactor of APOBEC1 in RNA editing, or Argonaute 2 (AGO2), a key factor in the biogenesis of certain noncoding RNAs, modulates risk for TGCTs and testicular abnormalities in both parent-of-origin and conventional genetic manners. In addition, non-Mendelian inheritance was found among progeny of A1cf and Ago2 mutant intercrosses but not in backcrosses and without fetal loss. Together these findings suggest nonrandom union of gametes rather than meiotic drive or preferential lethality. Finally, this survey also suggested that A1CF contributes to long-term reproductive performance. These results directly implicate the RNA-binding proteins A1CF and AGO2 in the epigenetic control of germ-cell fate, urogenital development, and gamete functions.
Collapse
|
13
|
Brieño-Enríquez MA, Larriba E, Del Mazo J. Endocrine disrupters, microRNAs, and primordial germ cells: a dangerous cocktail. Fertil Steril 2016; 106:871-9. [PMID: 27521771 DOI: 10.1016/j.fertnstert.2016.07.1100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 12/23/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are environmental pollutants that may change the homeostasis of the endocrine system, altering the differentiation of germ cells with consequences for reproduction. In mammals, germ cell differentiation begins with primordial germ cells (PGCs) during embryogenesis. Primordial germ cell development and gametogenesis are genetically regulated processes, in which the posttranscriptional gene regulation could be mediated by small noncoding RNAs (sncRNAs) such as microRNAs (miRNAs). Here, we review the deleterious effects of exposure during fetal life to EDCs mediated by deregulation of ncRNAs, and specifically miRNAs on PGC differentiation. Moreover, the environmental stress induced by exposure to some EDCs during the embryonic window of development could trigger reproductive dysfunctions transgenerationally transmitted by epigenetic mechanisms with the involvement of miRNAs expressed in germ line cells.
Collapse
Affiliation(s)
| | - Eduardo Larriba
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Jesús Del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
14
|
Payer B. Developmental regulation of X-chromosome inactivation. Semin Cell Dev Biol 2016; 56:88-99. [PMID: 27112543 DOI: 10.1016/j.semcdb.2016.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 12/01/2022]
Abstract
With the emergence of sex-determination by sex chromosomes, which differ in composition and number between males and females, appeared the need to equalize X-chromosomal gene dosage between the sexes. Mammals have devised the strategy of X-chromosome inactivation (XCI), in which one of the two X-chromosomes is rendered transcriptionally silent in females. In the mouse, the best-studied model organism with respect to XCI, this inactivation process occurs in different forms, imprinted and random, interspersed by periods of X-chromosome reactivation (XCR), which is needed to switch between the different modes of XCI. In this review, I describe the recent advances with respect to the developmental control of XCI and XCR and in particular their link to differentiation and pluripotency. Furthermore, I review the mechanisms, which influence the timing and choice, with which one of the two X-chromosomes is chosen for inactivation during random XCI. This has an impact on how females are mosaics with regard to which X-chromosome is active in different cells, which has implications on the severity of diseases caused by X-linked mutations.
Collapse
Affiliation(s)
- Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology and Universitat Pompeu Fabra (UPF), Dr. Aiguader, 88, Barcelona 08003, Spain.
| |
Collapse
|
15
|
Joyce EF, Erceg J, Wu CT. Pairing and anti-pairing: a balancing act in the diploid genome. Curr Opin Genet Dev 2016; 37:119-128. [PMID: 27065367 DOI: 10.1016/j.gde.2016.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/02/2016] [Accepted: 03/05/2016] [Indexed: 12/22/2022]
Abstract
The presence of maternal and paternal homologs appears to be much more than just a doubling of genetic material. We know this because genomes have evolved elaborate mechanisms that permit homologous regions to sense and then respond to each other. One way in which homologs communicate is to come into contact and, in fact, Dipteran insects such as Drosophila excel at this task, aligning all pairs of maternal and paternal chromosomes, end-to-end, in essentially all somatic tissues throughout development. Here, we reexamine the widely held tenet that extensive somatic pairing of homologous sequences cannot occur in mammals and suggest, instead, that pairing may be a widespread and significant potential that has gone unnoticed in mammals because they expend considerable effort to prevent it. We then extend this discussion to interchromosomal interactions, in general, and speculate about the potential of nuclear organization and pairing to impact inheritance.
Collapse
Affiliation(s)
- Eric F Joyce
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| | - Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
| | - C-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
16
|
QnAs with Jeannie T. Lee. Proc Natl Acad Sci U S A 2015; 112:14745-6. [PMID: 26582793 DOI: 10.1073/pnas.1521185112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Imprinted X chromosome inactivation offers up a double dose of epigenetics. Proc Natl Acad Sci U S A 2015; 112:14408-9. [PMID: 26578809 DOI: 10.1073/pnas.1520097112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|