1
|
Sosnick TR, Baxa MC. Collapse and Protein Folding: Should We Be Surprised That Biothermodynamics Works So Well? Annu Rev Biophys 2025; 54:17-34. [PMID: 39689264 DOI: 10.1146/annurev-biophys-080124-123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A complete understanding of protein function and dynamics requires the characterization of the multiple thermodynamic states, including the denatured state ensemble (DSE). Whereas residual structure in the DSE (as well as in partially folded states) is pertinent in many biological contexts, here we are interested in how such structure affects protein thermodynamics. We examine issues related to chain collapse in light of new developments, focusing on potential complications arising from differences in the DSE's properties under various conditions. Despite some variability in the degree of collapse and structure in the DSE, stability measurements are remarkably consistent between two standard methods, calorimetry and chemical denaturation, as well as with hydrogen-deuterium exchange. This robustness is due in part to the DSEs obtained with different perturbations being thermodynamically equivalent and hence able to serve as a common reference state. An examination of the properties of the DSE points to it as being a highly expanded ensemble with minimal amounts of stable hydrogen bonded structure. These two features are likely to be critical in the broad and successful application of thermodynamics to protein folding. Our review concludes with a discussion of the impact of these findings on folding mechanisms and pathways.
Collapse
Affiliation(s)
- Tobin R Sosnick
- Institute for Biophysical Dynamics and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA; ,
| | - Michael C Baxa
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA; ,
| |
Collapse
|
2
|
Baxa MC, Lin X, Mukinay CD, Chakravarthy S, Sachleben JR, Antilla S, Hartrampf N, Riback JA, Gagnon IA, Pentelute BL, Clark PL, Sosnick TR. How hydrophobicity, side chains, and salt affect the dimensions of disordered proteins. Protein Sci 2024; 33:e4986. [PMID: 38607226 PMCID: PMC11010952 DOI: 10.1002/pro.4986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Despite the generally accepted role of the hydrophobic effect as the driving force for folding, many intrinsically disordered proteins (IDPs), including those with hydrophobic content typical of foldable proteins, behave nearly as self-avoiding random walks (SARWs) under physiological conditions. Here, we tested how temperature and ionic conditions influence the dimensions of the N-terminal domain of pertactin (PNt), an IDP with an amino acid composition typical of folded proteins. While PNt contracts somewhat with temperature, it nevertheless remains expanded over 10-58°C, with a Flory exponent, ν, >0.50. Both low and high ionic strength also produce contraction in PNt, but this contraction is mitigated by reducing charge segregation. With 46% glycine and low hydrophobicity, the reduced form of snow flea anti-freeze protein (red-sfAFP) is unaffected by temperature and ionic strength and persists as a near-SARW, ν ~ 0.54, arguing that the thermal contraction of PNt is due to stronger interactions between hydrophobic side chains. Additionally, red-sfAFP is a proxy for the polypeptide backbone, which has been thought to collapse in water. Increasing the glycine segregation in red-sfAFP had minimal effect on ν. Water remained a good solvent even with 21 consecutive glycine residues (ν > 0.5), and red-sfAFP variants lacked stable backbone hydrogen bonds according to hydrogen exchange. Similarly, changing glycine segregation has little impact on ν in other glycine-rich proteins. These findings underscore the generality that many disordered states can be expanded and unstructured, and that the hydrophobic effect alone is insufficient to drive significant chain collapse for typical protein sequences.
Collapse
Affiliation(s)
- Michael C. Baxa
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Xiaoxuan Lin
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Cedrick D. Mukinay
- Department of Chemistry & BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation and Department of Biological and Chemical SciencesIllinois Institute of TechnologyChicagoIllinoisUSA
- Present address:
Cytiva, Fast TrakMarlboroughMAUSA
| | | | - Sarah Antilla
- Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Nina Hartrampf
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Present address:
Department of ChemistryUniversity of ZurichSwitzerland
| | - Joshua A. Riback
- Graduate Program in Biophysical ScienceUniversity of ChicagoChicagoIllinoisUSA
- Present address:
Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Isabelle A. Gagnon
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Bradley L. Pentelute
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Patricia L. Clark
- Department of Chemistry & BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Tobin R. Sosnick
- Department of Biochemistry & Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
3
|
Baxa MC, Sosnick TR. Engineered Metal-Binding Sites to Probe Protein Folding Transition States: Psi Analysis. Methods Mol Biol 2022; 2376:31-63. [PMID: 34845602 DOI: 10.1007/978-1-0716-1716-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of the transition state ensemble (TSE) represents the rate-limiting step in protein folding. The TSE is the least populated state on the pathway, and its characterization remains a challenge. Properties of the TSE can be inferred from the effects on folding and unfolding rates for various perturbations. A difficulty remains on how to translate these kinetic effects to structural properties of the TSE. Several factors can obscure the translation of point mutations in the frequently used method, "mutational Phi analysis." We take a complementary approach in "Psi analysis," employing rationally inserted metal binding sites designed to probe pairwise contacts in the TSE. These contacts can be confidently identified and used to construct structural models of the TSE. The method has been applied to multiple proteins and consistently produces a considerably more structured and native-like TSE than Phi analysis. This difference has significant implications to our understanding of protein folding mechanisms. Here we describe the application of the method and discuss how it can be used to study other conformational transitions such as binding.
Collapse
Affiliation(s)
- Michael C Baxa
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Peng X, Baxa M, Faruk N, Sachleben JR, Pintscher S, Gagnon IA, Houliston S, Arrowsmith CH, Freed KF, Rocklin GJ, Sosnick TR. Prediction and Validation of a Protein's Free Energy Surface Using Hydrogen Exchange and (Importantly) Its Denaturant Dependence. J Chem Theory Comput 2021; 18:550-561. [PMID: 34936354 PMCID: PMC8757463 DOI: 10.1021/acs.jctc.1c00960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The denaturant dependence of hydrogen-deuterium exchange (HDX) is a powerful measurement to identify the breaking of individual H-bonds and map the free energy surface (FES) of a protein including the very rare states. Molecular dynamics (MD) can identify each partial unfolding event with atomic-level resolution. Hence, their combination provides a great opportunity to test the accuracy of simulations and to verify the interpretation of HDX data. For this comparison, we use Upside, our new and extremely fast MD package that is capable of folding proteins with an accuracy comparable to that of all-atom methods. The FESs of two naturally occurring and two designed proteins are so generated and compared to our NMR/HDX data. We find that Upside's accuracy is considerably improved upon modifying the energy function using a new machine-learning procedure that trains for proper protein behavior including realistic denatured states in addition to stable native states. The resulting increase in cooperativity is critical for replicating the HDX data and protein stability, indicating that we have properly encoded the underlying physiochemical interactions into an MD package. We did observe some mismatch, however, underscoring the ongoing challenges faced by simulations in calculating accurate FESs. Nevertheless, our ensembles can identify the properties of the fluctuations that lead to HDX, whether they be small-, medium-, or large-scale openings, and can speak to the breadth of the native ensemble that has been a matter of debate.
Collapse
Affiliation(s)
- Xiangda Peng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael Baxa
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Nabil Faruk
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph R Sachleben
- Division of Biological Sciences, University of Chicago, Chicago, Illinois 60637, United States
| | - Sebastian Pintscher
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States.,Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30387, Poland
| | - Isabelle A Gagnon
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Scott Houliston
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Karl F Freed
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Gabriel J Rocklin
- Department of Pharmacology & Center for Synthetic Biology, Northwestern University, Chicago, Illinois 60614, United States
| | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Clark PL, Plaxco KW, Sosnick TR. Water as a Good Solvent for Unfolded Proteins: Folding and Collapse are Fundamentally Different. J Mol Biol 2020; 432:2882-2889. [PMID: 32044346 DOI: 10.1016/j.jmb.2020.01.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022]
Abstract
The argument that the hydrophobic effect is the primary effect driving the folding of globular proteins is nearly universally accepted (including by the authors). But does this view also imply that water is a "poor" solvent for the unfolded states of these same proteins? Here we argue that the answer is "no," that is, folding to a well-packed, extensively hydrogen-bonded native structure differs fundamentally from the nonspecific chain collapse that defines a poor solvent. Thus, the observation that a protein folds in water does not necessitate that water is a poor solvent for its unfolded state. Indeed, chain-solvent interactions that are marginally more favorable than nonspecific intrachain interactions are beneficial to protein function because they destabilize deleterious misfolded conformations and inter-chain interactions.
Collapse
Affiliation(s)
- Patricia L Clark
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
| | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
6
|
Williams LJ, Schendt BJ, Fritz ZR, Attali Y, Lavroff RH, Yarmush ML. A protein interaction free energy model based on amino acid residue contributions: Assessment of point mutation stability of T4 lysozyme. TECHNOLOGY 2019; 7:12-39. [PMID: 32211456 PMCID: PMC7093156 DOI: 10.1142/s233954781950002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here we present a model to estimate the interaction free energy contribution of each amino acid residue of a given protein. Protein interaction energy is described in terms of per-residue interaction factors, μ. Multibody interactions are implicitly captured in μ through the combination of amino acid terms (γ) guided by local conformation indices (σ). The model enables construction of an interaction factor heat map for a protein in a given fold, allows prima facie assessment of the degree of residue-residue interaction, and facilitates a qualitative and quantitative evaluation of protein association properties. The model was used to compute thermal stability of T4 bacteriophage lysozyme mutants across seven sites. Qualitative assessment of mutational effects provides a straightforward rationale regarding whether a particular site primarily perturbs native or non-native states, or both. The presented model was found to be in good agreement with experimental mutational data (R 2 = 0.73) and suggests an approach by which to convert structure space into energy space.
Collapse
Affiliation(s)
- Lawrence J Williams
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ 08854, USA
| | - Brian J Schendt
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ 08854, USA
| | - Zachary R Fritz
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Yonatan Attali
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ 08854, USA
| | - Robert H Lavroff
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ 08854, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Zimmerman MI, Porter JR, Sun X, Silva RR, Bowman GR. Choice of Adaptive Sampling Strategy Impacts State Discovery, Transition Probabilities, and the Apparent Mechanism of Conformational Changes. J Chem Theory Comput 2018; 14:5459-5475. [PMID: 30240203 PMCID: PMC6571142 DOI: 10.1021/acs.jctc.8b00500] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interest in atomically detailed simulations has grown significantly with recent advances in computational hardware and Markov state modeling (MSM) methods, yet outstanding questions remain that hinder their widespread adoption. Namely, how do alternative sampling strategies explore conformational space and how might this influence predictions generated from the data? Here, we seek to answer these questions for four commonly used sampling methods: (1) a single long simulation, (2) many short simulations run in parallel, (3) adaptive sampling, and (4) our recently developed goal-oriented sampling algorithm, FAST. We first develop a theoretical framework for analytically calculating the probability of discovering select states on simple landscapes, where we uncover the drastic effects of varying the number and length of simulations. We then use kinetic Monte Carlo simulations on a variety of physically inspired landscapes to characterize the probability of discovering particular states and transition pathways for each of the four methods. Consistently, we find that FAST simulations discover each target state with the highest probability, while traversing realistic pathways. Furthermore, we uncover the potential pathology that short parallel simulations sometimes predict an incorrect transition pathway by crossing large energy barriers that long simulations would typically circumnavigate. We refer to this pathology as "pathway tunneling". To protect against this phenomenon when using adaptive-sampling and FAST simulations, we introduce the FAST-string method. This method enhances sampling along the highest-flux transition paths to refine an MSMs transition probabilities and discriminate between competing pathways. Additionally, we compare the performance of a variety of MSM estimators in describing accurate thermodynamics and kinetics. For adaptive sampling, we recommend simply normalizing the transition counts out of each state after adding small pseudocounts to avoid creating sources or sinks. Lastly, we evaluate whether our insights from simple landscapes hold for all-atom molecular dynamics simulations of the folding of the λ-repressor protein. Remarkably, we find that FAST-contacts predicts the same folding pathway as a set of long simulations but with orders of magnitude less simulation time.
Collapse
Affiliation(s)
- Maxwell I. Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Justin R. Porter
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Xianqiang Sun
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Roseane R. Silva
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gregory R. Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63110, United States
- Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, 63110, United States
| |
Collapse
|
8
|
Yue Z, Shen J. pH-Dependent cooperativity and existence of a dry molten globule in the folding of a miniprotein BBL. Phys Chem Chem Phys 2018; 20:3523-3530. [PMID: 29336449 DOI: 10.1039/c7cp08296g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Solution pH plays an important role in protein dynamics, stability, and folding; however, detailed mechanisms remain poorly understood. Here we use continuous constant pH molecular dynamics in explicit solvent with pH replica exchange to describe the pH profile of the folding cooperativity of a miniprotein BBL, which has drawn intense debate in the past. Our data reconciled the two opposing hypotheses (downhill vs. two-state) and uncovered a sparsely populated unfolding intermediate. As pH is lowered from 7 to 5, the folding barrier vanishes. As pH continues to decrease, the unfolding barrier lowers and denaturation is triggered by the protonation of Asp162, consistent with experimental evidence. Interestingly, unfolding proceeded via an intermediate, with intact secondary structure and a compact, unlocked hydrophobic core shielded from solvent, lending support to the recent hypothesis of a universal dry molten globule in protein folding. Our work demonstrates that constant pH molecular dynamics is a unique tool for testing this and other hypotheses to advance the knowledge in protein dynamics, stability, and folding.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201-1075, USA.
| | | |
Collapse
|