1
|
Schwarz TM, Dumont M, Garcia-Giner V, Jung C, Porter AE, Gault B. Advancing atom probe tomography capabilities to understand bone microstructures at near-atomic scale. Acta Biomater 2025; 198:319-333. [PMID: 40157698 DOI: 10.1016/j.actbio.2025.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Bone structure is generally hierarchically organized into organic (collagen, proteins, ...), inorganic (hydroxyapatite (HAP)) components. However, many fundamental mechanisms of the biomineralization processes such as HAP formation, the influence of trace elements, the mineral-collagen arrangement, etc., are not clearly understood. This is partly due to the analytical challenge of simultaneously characterizing the three-dimensional (3D) structure and chemical composition of biominerals in general at the nanometer scale, which can, in principle be achieved by atom probe tomography (APT). Yet, the hierarchical structures of bone represent a critical hurdle for APT analysis in terms of sample yield and analytical resolution, particularly for trace elements, and organic components from the collagen appear to systematically get lost from the analysis. Here, we applied in-situ metallic coating of APT specimens within the focused ion beam (FIB) used for preparing specimens, and demonstrate that the sample yield and chemical sensitivity are tremendously improved, allowing the analysis of individual collagen fibrils and trace elements such as Mg and Na. We explored a range of measurement parameters with and without coating, in terms of analytical resolution performance and determined the best practice parameters for analyzing bone samples in APT. To decipher the complex mass spectra of the bone specimens, reference spectra from pure HAP and collagen were acquired to unambiguously identify the signals, allowing us to analyze entire collagen fibrils and interfaces at the near-atomic scale. Our results open new possibilities for understanding the hierarchical structure and chemical heterogeneity of bone structures at the near-atomic level and demonstrate the potential of this new method to provide new, unexplored insights into biomineralization processes in the future. STATEMENT OF SIGNIFICANCE: Atom probe tomography (APT) is a relatively new technique for the analysis of bones, teeth or biominerals in general. APT can characterize the microstructure of materials in 3D down to the near-atomic level, combined with a high elemental sensitivity, down to parts per million. APT application to study biomineralization phenomena is plagued by low sample yield and poorer analytical performance compared to metals. Here we have overcome these limitations by in-situ metal coating of APT specimens. This can unlock future APT analysis to gain insights into fundamental biomineralization processes, e.g. collagen/hydroxyapatite interaction, influence of trace elements and a better understanding of bone diseases or bone biomineralization in general.
Collapse
Affiliation(s)
- Tim M Schwarz
- Max-Planck-Institute for Sustainable Materials, Max-Planck-Str. 1, Düsseldorf 40237, Germany.
| | - Maïtena Dumont
- Max-Planck-Institute for Sustainable Materials, Max-Planck-Str. 1, Düsseldorf 40237, Germany; now at Groupe Physique des Matériaux, Université de Rouen, Saint Etienne du Rouvray, Normandie 76800, France
| | - Victoria Garcia-Giner
- Department of Materials, Imperial College London, London SW7 2AZ, UK; now at Rosalind Franklin Institute, Harwell Campus, Didcot, Oxfordshire OX11 0QX, England
| | - Chanwon Jung
- Max-Planck-Institute for Sustainable Materials, Max-Planck-Str. 1, Düsseldorf 40237, Germany; now at Department of Materials Science and Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, 48513 Busan, Republic of Korea
| | | | - Baptiste Gault
- Max-Planck-Institute for Sustainable Materials, Max-Planck-Str. 1, Düsseldorf 40237, Germany; Department of Materials, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
2
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
3
|
Tong T, Liu X, Li T, Park S, Anger B. A Tale of Two Foulants: The Coupling of Organic Fouling and Mineral Scaling in Membrane Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7129-7149. [PMID: 37104038 DOI: 10.1021/acs.est.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane desalination that enables the harvesting of purified water from unconventional sources such as seawater, brackish groundwater, and wastewater has become indispensable to ensure sustainable freshwater supply in the context of a changing climate. However, the efficiency of membrane desalination is greatly constrained by organic fouling and mineral scaling. Although extensive studies have focused on understanding membrane fouling or scaling separately, organic foulants commonly coexist with inorganic scalants in the feedwaters of membrane desalination. Compared to individual fouling or scaling, combined fouling and scaling often exhibits different behaviors and is governed by foulant-scalant interactions, resembling more complex but practical scenarios than using feedwaters containing only organic foulants or inorganic scalants. In this critical review, we first summarize the performance of membrane desalination under combined fouling and scaling, involving mineral scales formed via both crystallization and polymerization. We then provide the state-of-the-art knowledge and characterization techniques pertaining to the molecular interactions between organic foulants and inorganic scalants, which alter the kinetics and thermodynamics of mineral nucleation as well as the deposition of mineral scales onto membrane surfaces. We further review the current efforts of mitigating combined fouling and scaling via membrane materials development and pretreatment. Finally, we provide prospects for future research needs that guide the design of more effective control strategies for combined fouling and scaling to improve the efficiency and resilience of membrane desalination for the treatment of feedwaters with complex compositions.
Collapse
Affiliation(s)
- Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xitong Liu
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Tianshu Li
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bridget Anger
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| |
Collapse
|
4
|
Otter LM, Eder K, Kilburn MR, Yang L, O'Reilly P, Nowak DB, Cairney JM, Jacob DE. Growth dynamics and amorphous-to-crystalline phase transformation in natural nacre. Nat Commun 2023; 14:2254. [PMID: 37080977 PMCID: PMC10119311 DOI: 10.1038/s41467-023-37814-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Biominerals, such as nacreous bivalve shells, are important archives of environmental information. Most marine calcifiers form their shells from amorphous calcium carbonate, hypothesised to occur via particle attachment and stepwise crystallisation of metastable precursor phases. However, the mechanism of this transformation, including the incorporation of trace elements used for environmental reconstructions, are poorly constrained. Here, using shells of the Mediterranean mussel, we explore the formation of nacre from the meso- to the atomic scale. We use a combination of strontium pulse-chase labelling experiments in aquaculture and correlated micro- to sub-nanoscale analysis to show that nacre grows in a dynamic two-step process with extensional and space-filling growth components. Furthermore, we show that nacre crystallizes via localised dissolution and reprecipitation within nanogranules. Our findings elucidate how stepwise crystallization pathways affect trace element incorporation in natural biominerals, while preserving their intricate hierarchical ultrastructure.
Collapse
Affiliation(s)
- L M Otter
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia.
| | - K Eder
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - M R Kilburn
- Centre for Microscopy Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia
| | - L Yang
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Civil & Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - P O'Reilly
- Molecular Vista Inc., 6840 Via Del Oro, Suite 110, San Jose, CA, 95119, USA
| | - D B Nowak
- Molecular Vista Inc., 6840 Via Del Oro, Suite 110, San Jose, CA, 95119, USA
| | - J M Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - D E Jacob
- Research School of Earth Sciences, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
5
|
Lew AJ, Stifler CA, Tits A, Schmidt CA, Scholl A, Cantamessa A, Müller L, Delaunois Y, Compère P, Ruffoni D, Buehler MJ, Gilbert PUPA. A Molecular-Scale Understanding of Misorientation Toughening in Corals and Seashells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300373. [PMID: 36864010 DOI: 10.1002/adma.202300373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Biominerals are organic-mineral composites formed by living organisms. They are the hardest and toughest tissues in those organisms, are often polycrystalline, and their mesostructure (which includes nano- and microscale crystallite size, shape, arrangement, and orientation) can vary dramatically. Marine biominerals may be aragonite, vaterite, or calcite, all calcium carbonate (CaCO3 ) polymorphs, differing in crystal structure. Unexpectedly, diverse CaCO3 biominerals such as coral skeletons and nacre share a similar characteristic: Adjacent crystals are slightly misoriented. This observation is documented quantitatively at the micro- and nanoscales, using polarization-dependent imaging contrast mapping (PIC mapping), and the slight misorientations is consistently between 1° and 40°. Nanoindentation shows that both polycrystalline biominerals and abiotic synthetic spherulites are tougher than single-crystalline geologic aragonite, and molecular dynamics (MD) simulations of bicrystals at the molecular scale reveals that aragonite, vaterite, and calcite exhibit toughness maxima when the bicrystals are misoriented by 10°, 20°, and 30°, respectively, demonstrating that slight misorientation alone can increase fracture toughness. Slight-misorientation-toughening can be harnessed for synthesis of bioinspired materials that only require one material, are not limited to specific top-down architecture, and are easily achieved by self-assembly of organic molecules (e.g., aspirin, chocolate), polymers, metals, and ceramics well beyond biominerals.
Collapse
Affiliation(s)
- Andrew J Lew
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, B-4000, Belgium
| | - Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Astrid Cantamessa
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, B-4000, Belgium
| | - Laura Müller
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, B-4000, Belgium
| | - Yann Delaunois
- Laboratory of Functional and Evolutionary Morphology (FOCUS Research Unit) and Center for Applied Research and Education in Microscopy (CAREM), University of Liège, Liège, B-4000, Belgium
| | - Philippe Compère
- Laboratory of Functional and Evolutionary Morphology (FOCUS Research Unit) and Center for Applied Research and Education in Microscopy (CAREM), University of Liège, Liège, B-4000, Belgium
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, B-4000, Belgium
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
- Departments of Materials Science and Engineering, Geoscience, University of Wisconsin, Madison, WI, 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
6
|
Cárdenas A, Raina JB, Pogoreutz C, Rädecker N, Bougoure J, Guagliardo P, Pernice M, Voolstra CR. Greater functional diversity and redundancy of coral endolithic microbiomes align with lower coral bleaching susceptibility. THE ISME JOURNAL 2022; 16:2406-2420. [PMID: 35840731 PMCID: PMC9478130 DOI: 10.1038/s41396-022-01283-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 04/14/2023]
Abstract
The skeleton of reef-building coral harbors diverse microbial communities that could compensate for metabolic deficiencies caused by the loss of algal endosymbionts, i.e., coral bleaching. However, it is unknown to what extent endolith taxonomic diversity and functional potential might contribute to thermal resilience. Here we exposed Goniastrea edwardsi and Porites lutea, two common reef-building corals from the central Red Sea to a 17-day long heat stress. Using hyperspectral imaging, marker gene/metagenomic sequencing, and NanoSIMS, we characterized their endolithic microbiomes together with 15N and 13C assimilation of two skeletal compartments: the endolithic band directly below the coral tissue and the deep skeleton. The bleaching-resistant G. edwardsi was associated with endolithic microbiomes of greater functional diversity and redundancy that exhibited lower N and C assimilation than endoliths in the bleaching-sensitive P. lutea. We propose that the lower endolithic primary productivity in G. edwardsi can be attributed to the dominance of chemolithotrophs. Lower primary production within the skeleton may prevent unbalanced nutrient fluxes to coral tissues under heat stress, thereby preserving nutrient-limiting conditions characteristic of a stable coral-algal symbiosis. Our findings link coral endolithic microbiome structure and function to bleaching susceptibility, providing new avenues for understanding and eventually mitigating reef loss.
Collapse
Affiliation(s)
- Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany.
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Claudia Pogoreutz
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Nils Rädecker
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, 6009, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, 6009, Australia
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Christian R Voolstra
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany.
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
7
|
Grandfield K, Micheletti C, Deering J, Arcuri G, Tang T, Langelier B. Atom Probe Tomography for Biomaterials and Biomineralization. Acta Biomater 2022; 148:44-60. [DOI: 10.1016/j.actbio.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023]
|
8
|
Gilbert PUPA, Bergmann KD, Boekelheide N, Tambutté S, Mass T, Marin F, Adkins JF, Erez J, Gilbert B, Knutson V, Cantine M, Hernández JO, Knoll AH. Biomineralization: Integrating mechanism and evolutionary history. SCIENCE ADVANCES 2022; 8:eabl9653. [PMID: 35263127 PMCID: PMC8906573 DOI: 10.1126/sciadv.abl9653] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calcium carbonate (CaCO3) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change. Biomineralization evolved independently but convergently across phyla, suggesting a unity of mechanism that transcends biological differences. In this review, we combine CaCO3 skeleton formation mechanisms with constraints from evolutionary history, omics, and a meta-analysis of isotopic data to develop a plausible model for CaCO3 biomineralization applicable to all phyla. The model provides a framework for understanding the environmental sensitivity of marine calcifiers, past mass extinctions, and resilience in 21st century acidifying oceans. Thus, it frames questions about the past, present, and future of CaCO3 biomineralizing organisms.
Collapse
Affiliation(s)
- Pupa U. P. A. Gilbert
- Departments of Physics, Chemistry, Geoscience, and Materials Science, University of Wisconsin-Madison, Madison, WI 53706, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| | - Kristin D. Bergmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas Boekelheide
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Department of Marine Biology, 98000 Monaco, Principality of Monaco
| | - Tali Mass
- University of Haifa, Marine Biology Department, Mt. Carmel, Haifa 31905, Israel
| | - Frédéric Marin
- Université de Bourgogne–Franche-Comté (UBFC), Laboratoire Biogéosciences, UMR CNRS 6282, Bâtiment des Sciences Gabriel, 21000 Dijon, France
| | - Jess F. Adkins
- Geological and Planetary Sciences, California Institute of Technology, MS 100-23, Pasadena, CA 91125, USA
| | - Jonathan Erez
- The Hebrew University of Jerusalem, Institute of Earth Sciences, Jerusalem 91904, Israel
| | - Benjamin Gilbert
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vanessa Knutson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marjorie Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Javier Ortega Hernández
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author. (P.U.P.A.G.); (A.H.K.)
| |
Collapse
|
9
|
Cisneros-Lazaro D, Adams A, Guo J, Bernard S, Baumgartner LP, Daval D, Baronnet A, Grauby O, Vennemann T, Stolarski J, Escrig S, Meibom A. Fast and pervasive diagenetic isotope exchange in foraminifera tests is species-dependent. Nat Commun 2022; 13:113. [PMID: 35013292 PMCID: PMC8748890 DOI: 10.1038/s41467-021-27782-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
Oxygen isotope compositions of fossil foraminifera tests are commonly used proxies for ocean paleotemperatures, with reconstructions spanning the last 112 million years. However, the isotopic composition of these calcitic tests can be substantially altered during diagenesis without discernible textural changes. Here, we investigate fluid-mediated isotopic exchange in pristine tests of three modern benthic foraminifera species (Ammonia sp., Haynesina germanica, and Amphistegina lessonii) following immersion into an 18O-enriched artificial seawater at 90 °C for hours to days. Reacted tests remain texturally pristine but their bulk oxygen isotope compositions reveal rapid and species-dependent isotopic exchange with the water. NanoSIMS imaging reveals the 3-dimensional intra-test distributions of 18O-enrichment that correlates with test ultra-structure and associated organic matter. Image analysis is used to quantify species level differences in test ultrastructure, which explains the observed species-dependent rates of isotopic exchange. Consequently, even tests considered texturally pristine for paleo-climatic reconstruction purposes may have experienced substantial isotopic exchange; critical paleo-temperature record re-examination is warranted. Paleoclimate reconstructions commonly use oxygen isotope compositions from fossil foraminifera tests as proxies. Here, the authors show that these tests exchange O-isotopes with surrounding fluids, with implications for paleotemperature records.
Collapse
Affiliation(s)
- Deyanira Cisneros-Lazaro
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | - Arthur Adams
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Jinming Guo
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Sylvain Bernard
- Museum National d'Histoire Naturelle, Sorbonne Université, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Lukas P Baumgartner
- Center for Advanced Surface Analysis, Institute of Earth Science, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Damien Daval
- ISTerre, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, 38058, Grenoble, France
| | - Alain Baronnet
- CNRS, CINaM, Aix-Marseille Université, 13009, Marseille, France
| | - Olivier Grauby
- CNRS, CINaM, Aix-Marseille Université, 13009, Marseille, France
| | - Torsten Vennemann
- Institute of Earth Surface Dynamics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Jarosław Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, PL-00-818, Warsaw, Poland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland. .,Center for Advanced Surface Analysis, Institute of Earth Science, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
10
|
Rajasekar A, Moy CKS, Wilkinson S, Sekar R. Microbially induced calcite precipitation performance of multiple landfill indigenous bacteria compared to a commercially available bacteria in porous media. PLoS One 2021; 16:e0254676. [PMID: 34270610 PMCID: PMC8284826 DOI: 10.1371/journal.pone.0254676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022] Open
Abstract
Microbially Induced Carbonate Precipitation (MICP) is currently viewed as one of the potential prominent processes for field applications towards the prevention of soil erosion, healing cracks in bricks, and groundwater contamination. Typically, the bacteria involved in MICP manipulate their environment leading to calcite precipitation with an enzyme such as urease, causing calcite crystals to form on the surface of grains forming cementation bonds between particles that help in reducing soil permeability and increase overall compressive strength. In this paper, the main focus is to study the MICP performance of three indigenous landfill bacteria against a well-known commercially bought MICP bacteria (Bacillus megaterium) using sand columns. In order to check the viability of the method for potential field conditions, the tests were carried out at slightly less favourable environmental conditions, i.e., at temperatures between 15-17°C and without the addition of urease enzymes. Furthermore, the sand was loose without any compaction to imitate real ground conditions. The results showed that the indigenous bacteria yielded similar permeability reduction (4.79 E-05 to 5.65 E-05) and calcium carbonate formation (14.4–14.7%) to the control bacteria (Bacillus megaterium), which had permeability reduction of 4.56 E-5 and CaCO3 of 13.6%. Also, reasonably good unconfined compressive strengths (160–258 kPa) were noted for the indigenous bacteria samples (160 kPa). SEM and XRD showed the variation of biocrystals formation mainly detected as Calcite and Vaterite. Overall, all of the indigenous bacteria performed slightly better than the control bacteria in strength, permeability, and CaCO3 precipitation. In retrospect, this study provides clear evidence that the indigenous bacteria in such environments can provide similar calcite precipitation potential as well-documented bacteria from cell culture banks. Hence, the idea of MICP field application through biostimulation of indigenous bacteria rather than bioaugmentation can become a reality in the near future.
Collapse
Affiliation(s)
- Adharsh Rajasekar
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science &Technology, Nanjing, China
| | - Charles K. S. Moy
- Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
- * E-mail:
| | - Stephen Wilkinson
- Faculty of Engineering and Information Sciences, University of Wollongong in Dubai, Dubai, UAE
| | - Raju Sekar
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Compositional variability of Mg/Ca, Sr/Ca, and Na/Ca in the deep-sea bivalve Acesta excavata (Fabricius, 1779). PLoS One 2021; 16:e0245605. [PMID: 33930027 PMCID: PMC8087087 DOI: 10.1371/journal.pone.0245605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
Acesta excavata (Fabricius, 1779) is a slow growing bivalve from the Limidae family and is often found associated with cold-water coral reefs along the European continental margin. Here we present the compositional variability of frequently used proxy elemental ratios (Mg/Ca, Sr/Ca, Na/Ca) measured by laser-ablation mass spectrometry (LA-ICP-MS) and compare it to in-situ recorded instrumental seawater parameters such as temperature and salinity. Shell Mg/Ca measured in the fibrous calcitic shell section was overall not correlated with seawater temperature or salinity; however, some samples show significant correlations with temperature with a sensitivity that was found to be unusually high in comparison to other marine organisms. Mg/Ca and Sr/Ca measured in the fibrous calcitic shell section display significant negative correlations with the linear extension rate of the shell, which indicates strong vital effects in these bivalves. Multiple linear regression analysis indicates that up to 79% of elemental variability is explicable with temperature and salinity as independent predictor values. Yet, the overall results clearly show that the application of Element/Ca (E/Ca) ratios in these bivalves to reconstruct past changes in temperature and salinity is likely to be complicated due to strong vital effects and the effects of organic material embedded in the shell. Therefore, we suggest to apply additional techniques, such as clumped isotopes, in order to exactly determine and quantify the underlying vital effects and possibly account for these. We found differences in the chemical composition between the two calcitic shell layers that are possibly explainable through differences of the crystal morphology. Sr/Ca ratios also appear to be partly controlled by the amount of magnesium, because the small magnesium ions bend the crystal lattice which increases the space for strontium incorporation. Oxidative cleaning with H2O2 did not significantly change the Mg/Ca and Sr/Ca composition of the shell. Na/Ca ratios decreased after the oxidative cleaning, which is most likely a leaching effect and not caused by the removal of organic matter.
Collapse
|
12
|
Coccolith crystals: Pure calcite or organic-mineral composite structures? Acta Biomater 2021; 125:83-89. [PMID: 33631395 DOI: 10.1016/j.actbio.2021.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/20/2022]
Abstract
The localization of organic material within biominerals is central to developing biomineral formation mechanisms. Coccoliths, morphologically sophisticated calcite platelets of intracellularly calcifying coccolithophores, are not only eco-physiologically important, but also influence biogeochemical cycles through mass production. Despite their importance and over a century of research, the formation mechanism of coccoliths is still poorly understood. Crucial unsolved questions include the localization of organic material within coccoliths. In extracellular calcifiers the discovery of an organics-containing nano-structure within seemingly single crystals has led to the formulation of a two-step crystallization mechanism. Coccoliths are traditionally thought of as being formed by a different mechanism, but it is unclear whether coccolith crystals possess a nano-structure. Here we review the evidence for and against such a nano-structure. Current SXPD analyses suggest a nano-structure of some kind, while imaging methods (SEM, TEM, AFM) provide evidence against it. We suggest directions for future research which should help solve this puzzle. STATEMENT OF SIGNIFICANCE: Coccolithophores, unicellular calcifying algae, are important primary producers and contribute significantly to pelagic calcium carbonate export. Their calcite platelets, the coccoliths, are amongst the most sophisticated biomineral structures. Understanding the crystallization mechanism of coccolith crystals is not only central to coccolithophore cell biology but also lies at the heart of biomineralization research more generally. The crystallization mechanism of coccoliths has remained largely elusive, not least because it is still an open question whether the micron sized coccolith crystals are pure calcite, or contain organic material. Here we review the state of the art and suggest a way to solve this central problem.
Collapse
|
13
|
Gault B, Chiaramonti A, Cojocaru-Mirédin O, Stender P, Dubosq R, Freysoldt C, Makineni SK, Li T, Moody M, Cairney JM. Atom probe tomography. NATURE REVIEWS. METHODS PRIMERS 2021; 1:10.1038/s43586-021-00047-w. [PMID: 37719173 PMCID: PMC10502706 DOI: 10.1038/s43586-021-00047-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 09/19/2023]
Abstract
Atom probe tomography (APT) provides three-dimensional compositional mapping with sub-nanometre resolution. The sensitivity of APT is in the range of parts per million for all elements, including light elements such as hydrogen, carbon or lithium, enabling unique insights into the composition of performance-enhancing or lifetime-limiting microstructural features and making APT ideally suited to complement electron-based or X-ray-based microscopies and spectroscopies. Here, we provide an introductory overview of APT ranging from its inception as an evolution of field ion microscopy to the most recent developments in specimen preparation, including for nanomaterials. We touch on data reconstruction, analysis and various applications, including in the geosciences and the burgeoning biological sciences. We review the underpinnings of APT performance and discuss both strengths and limitations of APT, including how the community can improve on current shortcomings. Finally, we look forwards to true atomic-scale tomography with the ability to measure the isotopic identity and spatial coordinates of every atom in an ever wider range of materials through new specimen preparation routes, novel laser pulsing and detector technologies, and full interoperability with complementary microscopy techniques.
Collapse
Affiliation(s)
- Baptiste Gault
- Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany
- Department of Materials, Royal School of Mines, Imperial College, London, UK
| | - Ann Chiaramonti
- National Institute of Standards and Technology, Applied Chemicals and Materials Division, Boulder, CO, USA
| | | | - Patrick Stender
- Institute of Materials Science, University of Stuttgart, Stuttgart, Germany
| | - Renelle Dubosq
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | - Tong Li
- Institute for Materials, Ruhr-Universität Bochum, Bochum, Germany
| | - Michael Moody
- Department of Materials, University of Oxford, Oxford, UK
| | - Julie M. Cairney
- Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney, New South Wales, Australia
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
McCarroll I, Bagot P, Devaraj A, Perea D, Cairney J. New frontiers in atom probe tomography: a review of research enabled by cryo and/or vacuum transfer systems. MATERIALS TODAY. ADVANCES 2020; 7:100090. [PMID: 33103106 PMCID: PMC7581275 DOI: 10.1016/j.mtadv.2020.100090] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There has been a recent surge in the use of cryo and/or vacuum specimen preparation and transfer systems to broaden the scope of research enabled by the microscopy technique of atom probe tomography. This is driven by the fact that, as for many microscopes, the application of atom probes to air- and temperature-sensitive materials or wet biological specimens has previously been limited by transfer through air at room temperature. Here we provide an overview of areas of research that benefit from these new transfer and analysis protocols, as well as a review of current advances in transfer devices, environmental cells, and glove boxes for controlled specimen manipulation. This includes the study of catalysis and corrosion, biological samples, liquid-solid interfaces, natural aging, and the distribution of hydrogen in materials.
Collapse
Affiliation(s)
- I.E. McCarroll
- Australian Centre for Microscopy and Microanalysis, University of Sydney, Madsen Building F09, NSW 2006, Australia
| | - P.A.J. Bagot
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, United Kingdom
| | - A. Devaraj
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - D.E. Perea
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, P.O. Box 999 Richland, WA 99352, USA
| | - J.M. Cairney
- Australian Centre for Microscopy and Microanalysis, University of Sydney, Madsen Building F09, NSW 2006, Australia
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006, Australia
- Corresponding author. (J.M. Cairney)
| |
Collapse
|
15
|
Bonnin EA, Rizzoli SO. Novel Secondary Ion Mass Spectrometry Methods for the Examination of Metabolic Effects at the Cellular and Subcellular Levels. Front Behav Neurosci 2020; 14:124. [PMID: 32792922 PMCID: PMC7384447 DOI: 10.3389/fnbeh.2020.00124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
The behavior of an animal has substantial effects on its metabolism. Such effects, including changes in the lipid composition of different organs, or changes in the turnover of the proteins, have typically been observed using liquid mass spectrometry methods, averaging the effect of animal behavior across tissue samples containing multiple cells. These methods have provided the scientific community with valuable information, but have limited resolution, making it difficult if not impossible to examine metabolic effects at the cellular and subcellular levels. Recent advances in the field of secondary ion mass spectrometry (SIMS) have made it possible to examine the metabolic effects of animal behavior with high resolution at the nanoscale, enabling the analysis of the metabolic effects of behavior on individual cells. In this review we summarize and present these emerging methods, beginning with an overview of the SIMS technique. We then discuss the specific application of nanoscale SIMS (NanoSIMS) to examine cell behavior. This often requires the use of isotope labeling to highlight specific sections of the cell for analysis, an approach that is presented at length in this review article. We also present SIMS applications concerning animal and cell behavior, from development and aging to changes in the cellular activity programs. We conclude that the emerging group of SIMS technologies represents an exciting set of tools for the study of animal behavior and of its effects on internal metabolism at the smallest possible scales.
Collapse
Affiliation(s)
- Elisa A. Bonnin
- Department of Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Nanoscale trace metal imprinting of biocalcification of planktic foraminifers by Toba's super-eruption. Sci Rep 2020; 10:10974. [PMID: 32620909 PMCID: PMC7335162 DOI: 10.1038/s41598-020-67481-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/02/2020] [Indexed: 11/12/2022] Open
Abstract
Bioactive metal releases in ocean surface water, such as those by ash falls during volcanic super-eruptions, might have a potentially toxic impact on biocalcifier planktic microorganisms. Nano-XRF imaging with the cutting-edge synchrotron hard X-ray nano-analysis ID16B beamline (ESRF) revealed for the first time a specific Zn- and Mn-rich banding pattern in the test walls of Globorotalia menardii planktic foraminifers extracted from the Young Toba Tuff layer, and thus contemporaneous with Toba’s super-eruption, 74,000 years ago. The intra-test correlation of Zn and Mn patterns at the nanoscale with the layered calcareous microarchitecture, indicates that the incorporation of these metals is syngenetic to the wall growth. The preferential Mn and Zn sequestration within the incipient stages of chamber formation suggests a selective incorporation mechanism providing a resilience strategy to metal pollution in the test building of planktic foraminifers.
Collapse
|
17
|
Heterogeneous Nucleation and Growth of CaCO3 on Calcite (104) and Aragonite (110) Surfaces: Implications for the Formation of Abiogenic Carbonate Cements in the Ocean. MINERALS 2020. [DOI: 10.3390/min10040294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although near-surface seawater is supersaturated with CaCO3, only a minor part of it is abiogenic (e.g., carbonate cements). The possible reason for such a phenomenon has attracted much attention in the past decades. Substrate effects on the heterogeneous nucleation and growth of CaCO3 at various Mg2+/Ca2+ ratios may contribute to the understanding of the origin of abiogenic CaCO3 cements. Here, we used in situ atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy to study the heterogeneous nucleation and growth of CaCO3 on both calcite (104) and aragonite (110) surfaces. The results show that (1) calcite spiral growth occurs on calcite (104) surfaces by monomer-by-monomer addition; (2) the aggregative growth of aragonite appears on aragonite (110) surfaces through a substrate-controlled oriented attachment (OA) along the [001] direction, followed by the formation of elongated columnar aragonite; and (3) Mg2+ inhibits the crystallization of both calcite and aragonite without impacting on crystallization pathways. These findings disclose that calcite and aragonite substrates determine the crystallization pathways, while the Mg2+/Ca2+ ratios control the growth rate of CaCO3, indicating that both types of CaCO3 substrate in shallow sediments and aqueous Mg2+/Ca2+ ratios constrain the deposition of abiogenic CaCO3 cements in the ocean.
Collapse
|
18
|
Auer G, Piller WE. Nanocrystals as phenotypic expression of genotypes-An example in coralline red algae. SCIENCE ADVANCES 2020; 6:eaay2126. [PMID: 32095524 PMCID: PMC7015681 DOI: 10.1126/sciadv.aay2126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Coralline red algae (CRA) are important ecosystem engineers in the world's oceans. They play key roles as primary food source and carbonate producers in marine habitats. CRA are also vital for modern reef systems where they act as substrate for coral growth and stabilizers of reef frameworks. However, morphotaxonomic identification of these important marine organisms is hampered by the fact that morphological concepts used for their classification do not correspond to molecular data. We present the first analysis of nanoscale features in calcified cell walls of CRA in a globally distributed sample set. We use new morphological traits based on these cell wall ultrastructures to construct an independent morphological phyletic tree that shows a promising congruency with existing CRA molecular phylogenies. Our results highlight cellular ultrastructures as a tool to define the phenotypic expression of genotypic information showing their potential to unify morphology with molecular phylogeny.
Collapse
Affiliation(s)
- Gerald Auer
- Research Institute for Marine Resources Utilization (Biogeochemistry Program), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
- University of Graz, Institute of Earth Sciences (Geology and Paleontology), NAWI Graz Geocenter, Heinrichstraße 26, 8010 Graz, Austria
| | - Werner E. Piller
- University of Graz, Institute of Earth Sciences (Geology and Paleontology), NAWI Graz Geocenter, Heinrichstraße 26, 8010 Graz, Austria
| |
Collapse
|
19
|
Liu W, Huang L, Komorek R, Handakumbura PP, Zhou Y, Hu D, Engelhard MH, Jiang H, Yu XY, Jansson C, Zhu Z. Correlative surface imaging reveals chemical signatures for bacterial hotspots on plant roots. Analyst 2020; 145:393-401. [DOI: 10.1039/c9an01954e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A universal sample holder allows correlative imaging analysis of plant roots to reveal chemical signatures for bacterial hotspots.
Collapse
|
20
|
Organic-mineral interfacial chemistry drives heterogeneous nucleation of Sr-rich (Ba x , Sr 1-x )SO 4 from undersaturated solution. Proc Natl Acad Sci U S A 2019; 116:13221-13226. [PMID: 31113880 DOI: 10.1073/pnas.1821065116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sr-bearing marine barite [(Ba x , Sr1-x )SO4] cycling has been widely used to reconstruct geochemical evolutions of paleoenvironments. However, an understanding of barite precipitation in the ocean, which is globally undersaturated with respect to barite, is missing. Moreover, the reason for the occurrence of higher Sr content in marine barites than expected for classical crystal growth processes remains unknown. Field data analyses suggested that organic molecules may regulate the formation and composition of marine barites; however, the specific organic-mineral interactions are unclear. Using in situ grazing incidence small-angle X-ray scattering (GISAXS), size and total volume evolutions of barite precipitates on organic films were characterized. The results show that barite forms on organic films from undersaturated solutions. Moreover, from a single supersaturated solution with respect to barite, Sr-rich barite nanoparticles formed on organics, while micrometer-size Sr-poor barites formed in bulk solutions. Ion adsorption experiments showed that organic films can enrich cation concentrations in the adjacent solution, thus increasing the local supersaturation and promoting barite nucleation on organic films, even when the bulk solution was undersaturated. The Sr enrichment in barites formed on organic films was found to be controlled by solid-solution nucleation rates; instead, the Sr-poor barite formation in bulk solution was found to be controlled by solid-solution growth rates. This study provides a mechanistic explanation for Sr-rich marine barite formation and offers insights for understanding and controlling the compositions of solid solutions by separately tuning their nucleation and growth rates via the unique chemistry of solution-organic interfaces.
Collapse
|
21
|
Tyszka J, Bickmeyer U, Raitzsch M, Bijma J, Kaczmarek K, Mewes A, Topa P, Janse M. Form and function of F-actin during biomineralization revealed from live experiments on foraminifera. Proc Natl Acad Sci U S A 2019; 116:4111-4116. [PMID: 30782789 PMCID: PMC6410838 DOI: 10.1073/pnas.1810394116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although the emergence of complex biomineralized forms has been investigated for over a century, still little is known on how single cells control morphology of skeletal structures, such as frustules, shells, spicules, or scales. We have run experiments on the shell formation in foraminifera, unicellular, mainly marine organisms that can build shells by successive additions of chambers. We used live imaging to discover that all stages of chamber/shell formation are controlled by dedicated actin-driven pseudopodial structures. Successive reorganization of an F-actin meshwork, associated with microtubular structures, is actively involved in formation of protective envelope, followed by dynamic scaffolding of chamber morphology. Then lamellar dynamic templates create a confined space and control mineralization separated from seawater. These observations exclude extracellular calcification assumed in selected foraminiferal clades, and instead suggest a semiintracellular biomineralization pattern known from other unicellular calcifying and silicifying organisms. These results give a challenging prospect to decipher the vital effect on geochemical proxies applied to paleoceanographic reconstructions. They have further implications for understanding multiscale complexity of biomineralization and show a prospect for material science applications.
Collapse
Affiliation(s)
- Jarosław Tyszka
- Research Centre in Kraków, Institute of Geological Sciences, Polish Academy of Sciences, 31-002 Kraków, Poland;
| | - Ulf Bickmeyer
- Ecological Chemistry, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, D-27570 Bremerhaven, Germany
| | - Markus Raitzsch
- Marine Biogeosciences, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, D-27570 Bremerhaven, Germany
- Institut für Mineralogie, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Jelle Bijma
- Marine Biogeosciences, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, D-27570 Bremerhaven, Germany
| | - Karina Kaczmarek
- Marine Biogeosciences, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, D-27570 Bremerhaven, Germany
| | - Antje Mewes
- Marine Biogeosciences, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, D-27570 Bremerhaven, Germany
| | - Paweł Topa
- Department of Computer Science, AGH University of Science and Technology, 30-052, Kraków, Poland
| | - Max Janse
- Burgers' Ocean, Royal Burgers' Zoo, 6816 SH Arnhem, The Netherlands
| |
Collapse
|
22
|
Geerken E, de Nooijer LJ, Roepert A, Polerecky L, King HE, Reichart GJ. Element banding and organic linings within chamber walls of two benthic foraminifera. Sci Rep 2019; 9:3598. [PMID: 30837621 PMCID: PMC6400897 DOI: 10.1038/s41598-019-40298-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/04/2019] [Indexed: 11/09/2022] Open
Abstract
Trace and minor elements incorporated in foraminiferal shells are among the most used proxies for reconstructing past environmental conditions. A prominent issue concerning these proxies is that the inter-specimen variability in element composition is often considerably larger than the variability associated with the environmental conditions for which the proxy is used. Within a shell of an individual specimen the trace and minor elements are distributed in the form of bands of higher and lower concentrations. It has been hypothesized that differences in specimen-specific element banding patterns cause the inter-specimen and inter-species variability observed in average element composition, thereby reducing the reliability of proxies. To test this hypothesis, we compared spatial distributions of Mg, Na, Sr, K, S, P and N within chamber walls of two benthic foraminiferal species (Amphistegina lessonii and Ammonia tepida) with largely different average Mg content. For both species the selected specimens were grown at different temperatures and salinities to additionally assess how these parameters influence the element concentrations within the shell wall. Our results show that Mg, Na, Sr and K are co-located within shells, and occur in bands that coincide with organic linings but extend further into the calcite lamella. Changes in temperature or salinity modulate the element-banding pattern as a whole, with peak and trough heights co-varying rather than independently affected by these two environmental parameters. This means that independent changes in peak or trough height do not explain differences in average El/Ca between specimens. These results are used to evaluate and synthesize models of underlying mechanisms responsible for trace and minor element partitioning during calcification in foraminifera.
Collapse
Affiliation(s)
- E Geerken
- Department of Ocean Systems, NIOZ-Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, The Netherlands
| | - L J de Nooijer
- Department of Ocean Systems, NIOZ-Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, The Netherlands.
| | - A Roepert
- Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - L Polerecky
- Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - H E King
- Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - G J Reichart
- Department of Ocean Systems, NIOZ-Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, The Netherlands.,Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
23
|
A near atomic-scale view at the composition of amyloid-beta fibrils by atom probe tomography. Sci Rep 2018; 8:17615. [PMID: 30514971 PMCID: PMC6279744 DOI: 10.1038/s41598-018-36110-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/05/2018] [Indexed: 01/03/2023] Open
Abstract
Amyloid-beta (Ab) proteins play an important role in a number of neurodegenerative diseases. Ab is found in senile plaques in brains of Alzeimer’s disease patients. The 42 residues of the monomer form dimers which stack to fibrils gaining several micrometers in length. Using Ab fibrils with 13C and 15N marker substitution, we developed an innovative approach to obtain insights to structural and chemical information of the protein. We deposited the modified protein fibrils to pre-sharped aluminium needles with >100-nm apex diameters and, using the position-sensitive mass-to-charge spectrometry technique of atom probe tomography, we acquired the chemically-resolved three dimensional information for every detected ion evaporated in small fragments from the protein. We also discuss the influence of experimental parameters such as pulse energy and pulse frequency of the used Laser beam which lead to differences in the size of the gained fragments, developing the capability of localising metal atom within Ab plaques.
Collapse
|
24
|
Mor Khalifa G, Kahil K, Erez J, Kaplan Ashiri I, Shimoni E, Pinkas I, Addadi L, Weiner S. Characterization of unusual MgCa particles involved in the formation of foraminifera shells using a novel quantitative cryo SEM/EDS protocol. Acta Biomater 2018; 77:342-351. [PMID: 30026104 DOI: 10.1016/j.actbio.2018.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/08/2018] [Accepted: 07/15/2018] [Indexed: 02/07/2023]
Abstract
Quantifying ion concentrations and mapping their intracellular distributions at high resolution can provide much insight into the formation of biomaterials. The key to achieving this goal is cryo-fixation, where the biological materials, tissues and associated solutions are rapidly frozen and preserved in a vitreous state. We developed a correlative cryo-Scanning Electron Microscopy (SEM)/Energy Dispersive Spectroscopy (EDS) protocol that provides quantitative elemental analysis correlated with spatial imaging of cryo-immobilized specimens. We report the accuracy and sensitivity of the cryo-EDS method, as well as insights we derive on biomineralization pathways in a foraminifer. Foraminifera are marine protozoans that produce Mg-containing calcitic shells and are major calcifying organisms in the oceans. We use the cryo-SEM/EDS correlative method to characterize unusual Mg and Ca-rich particles in the cytoplasm of a benthic foraminifer. The Mg/Ca ratio of these particles is consistently lower than that of seawater, the source solution for these ions. We infer that these particles are involved in Ca ion supply to the shell. We document the internal structure of the MgCa particles, which in some cases include a separate Si rich core phase. This approach to mapping ion distribution in cryo-preserved specimens may have broad applications to other mineralized biomaterials. STATEMENT OF SIGNIFICANCE Ions are an integral part of life, and some ions play fundamental roles in cell metabolism. Determining the concentrations of ions in cells and between cells, as well as their distributions at high resolution can provide valuable insights into ion uptake, storage, functions and the formation of biomaterials. Here we present a new cryo-SEM/EDS protocol that allows the mapping of different ion distributions in solutions and biological samples that have been cryo-preserved. We demonstrate the value of this novel approach by characterizing a novel biogenic mineral phase rich in Mg found in foraminifera, single celled marine organisms. This method has wide applicability in biology, and especially in understanding the formation and function of mineral-containing hard tissues.
Collapse
Affiliation(s)
- Gal Mor Khalifa
- Department of Structural Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel.
| | - Keren Kahil
- Department of Structural Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel.
| | - Jonathan Erez
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ifat Kaplan Ashiri
- Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel.
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel.
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel.
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel.
| |
Collapse
|
25
|
Preliminary Data on the Nanoscale Chemical Characterization of the Inter-Crystalline Organic Matrix of a Calcium Carbonate Biomineral. MINERALS 2018. [DOI: 10.3390/min8060223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Planktic foraminifera form their shells via metastable carbonate phases. Nat Commun 2017; 8:1265. [PMID: 29097678 PMCID: PMC5668319 DOI: 10.1038/s41467-017-00955-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/08/2017] [Indexed: 11/08/2022] Open
Abstract
The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polymorph vaterite, implying a non-classical crystallisation pathway involving metastable phases that transform ultimately to calcite. The current understanding of how planktic foraminifer shells record climate, and how they will fare in a future high-CO2 world is underpinned by analogy to the precipitation and dissolution of inorganic calcite. Our findings require a re-evaluation of this paradigm to consider the formation and transformation of metastable phases, which could exert an influence on the geochemistry and solubility of the biomineral calcite.
Collapse
|
27
|
Fehrenbacher JS, Russell AD, Davis CV, Gagnon AC, Spero HJ, Cliff JB, Zhu Z, Martin P. Link between light-triggered Mg-banding and chamber formation in the planktic foraminifera Neogloboquadrina dutertrei. Nat Commun 2017; 8:15441. [PMID: 28504274 PMCID: PMC5440661 DOI: 10.1038/ncomms15441] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/30/2017] [Indexed: 11/24/2022] Open
Abstract
The relationship between seawater temperature and the average Mg/Ca ratios in planktic foraminifera is well established, providing an essential tool for reconstructing past ocean temperatures. However, many species display alternating high and low Mg-bands within their shell walls that cannot be explained by temperature alone. Recent experiments demonstrate that intrashell Mg variability in Orbulina universa, which forms a spherical terminal shell, is paced by the diurnal light/dark cycle. Whether Mg-heterogeneity is also diurnally paced in species with more complex shell morphologies is unknown. Here we show that high Mg/Ca-calcite forms at night in cultured specimens of the multi-chambered species Neogloboquadrina dutertrei. Our results demonstrate that N. dutertrei adds a significant amount of calcite, and nearly all Mg-bands, after the final chamber forms. These results have implications for interpreting patterns of calcification in N. dutertrei and suggest that diurnal Mg-banding is an intrinsic component of biomineralization in planktic foraminifera. The degree to which the diurnal light/dark cycle influences Mg-heterogeneity in foraminifera with complex shell morphologies remains unknown. Here, using highly spatially resolved analytical techniques, the authors investigate Mg-banding and calcification in isotope-labelled Neogloboquadrina dutertrei specimens.
Collapse
Affiliation(s)
- Jennifer S Fehrenbacher
- College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA.,Department of Earth and Planetary Sciences, University of California, Davis, California 95616, USA
| | - Ann D Russell
- Department of Earth and Planetary Sciences, University of California, Davis, California 95616, USA
| | - Catherine V Davis
- Department of Earth and Planetary Sciences, University of California, Davis, California 95616, USA
| | - Alexander C Gagnon
- School of Oceanography, University of Washington, Seattle, Washington 98105, USA
| | - Howard J Spero
- Department of Earth and Planetary Sciences, University of California, Davis, California 95616, USA
| | - John B Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | | |
Collapse
|