1
|
Xue VW, Wong SCC, Zhao H, Cho WCS. Proteomic characterization of extracellular vesicles in programmed cell death. Proteomics 2024; 24:e2300024. [PMID: 38491383 DOI: 10.1002/pmic.202300024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
Programmed cell death (PCD) is a fundamental biological process that plays a critical role in cell development, differentiation, and homeostasis. The secretion and uptake of extracellular vesicles (EVs) is one of the important regulatory mechanisms for PCD. EVs are natural membrane structures secreted by cells that contain a variety of proteins, lipids, nucleic acids, and other bioactive molecules. Due to their important roles in intercellular communication and disease progression, there is great interest in studying EVs and their cargo. Different protein components are sorted and packaged in EVs, allowing EVs to perform their functions. The study of EV proteomics helps us understand the role of PCD in the development of diseases. Meanwhile, proteomics is a powerful tool for studying the composition and function of EVs, which assists in the identification, quantification, and profiling of protein components of EVs, and provides insight into the molecular mechanisms involved in PCD and related diseases. In this review, we summarize the characteristics of EV proteomics in different types of PCD, compare different proteomic profiling strategies for EVs, and discuss the impact of EV proteomics on cell function and regulation during PCD, to understand its role in the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Huafu Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | | |
Collapse
|
2
|
Le T, Ferling I, Qiu L, Nabaile C, Assunção L, Roskelley CD, Grinstein S, Freeman SA. Redistribution of the glycocalyx exposes phagocytic determinants on apoptotic cells. Dev Cell 2024; 59:853-868.e7. [PMID: 38359833 DOI: 10.1016/j.devcel.2024.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Phagocytes remove dead and dying cells by engaging "eat-me" ligands such as phosphatidylserine (PtdSer) on the surface of apoptotic targets. However, PtdSer is obscured by the bulky exofacial glycocalyx, which also exposes ligands that activate "don't-eat-me" receptors such as Siglecs. Clearly, unshielding the juxtamembrane "eat-me" ligands is required for the successful engulfment of apoptotic cells, but the mechanisms underlying this process have not been described. Using human and murine cells, we find that apoptosis-induced retraction and weakening of the cytoskeleton that anchors transmembrane proteins cause an inhomogeneous redistribution of the glycocalyx: actin-depleted blebs emerge, lacking the glycocalyx, while the rest of the apoptotic cell body retains sufficient actin to tether the glycocalyx in place. Thus, apoptotic blebs can be engaged by phagocytes and are targeted for engulfment. Therefore, in cells with an elaborate glycocalyx, such as mucinous cancer cells, this "don't-come-close-to-me" barrier must be removed to enable clearance by phagocytosis.
Collapse
Affiliation(s)
- Trieu Le
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Iuliia Ferling
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Lanhui Qiu
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Clement Nabaile
- Department of Learning and Research in Biology, Ecole Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
| | - Leonardo Assunção
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Calvin D Roskelley
- Department of Cellular and Physiological Sciences, the Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
3
|
Fujii Y, Ikenouchi J. Cytoplasmic zoning in membrane blebs. J Biochem 2024; 175:133-140. [PMID: 37943501 DOI: 10.1093/jb/mvad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Blebs are membrane structures formed by the detachment of the plasma membrane from the underlying actin cytoskeleton. It is now clear that a wide variety of cells, including cancer cells, actively form blebs for cell migration and cell survival. The expansion of blebs has been regarded as the passive ballooning of the plasma membrane by an abrupt increase in intracellular pressure. However, recent studies revealed the importance of 'cytoplasmic zoning', i.e. local changes in the hydrodynamic properties and the ionic and protein content of the cytoplasm. In this review, we summarize the current understanding of the molecular mechanisms behind cytoplasmic zoning and its role in bleb expansion.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Chikina AS, Zholudeva AO, Lomakina ME, Kireev II, Dayal AA, Minin AA, Maurin M, Svitkina TM, Alexandrova AY. Plasma Membrane Blebbing Is Controlled by Subcellular Distribution of Vimentin Intermediate Filaments. Cells 2024; 13:105. [PMID: 38201309 PMCID: PMC10778383 DOI: 10.3390/cells13010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The formation of specific cellular protrusions, plasma membrane blebs, underlies the amoeboid mode of cell motility, which is characteristic for free-living amoebae and leukocytes, and can also be adopted by stem and tumor cells to bypass unfavorable migration conditions and thus facilitate their long-distance migration. Not all cells are equally prone to bleb formation. We have previously shown that membrane blebbing can be experimentally induced in a subset of HT1080 fibrosarcoma cells, whereas other cells in the same culture under the same conditions retain non-blebbing mesenchymal morphology. Here we show that this heterogeneity is associated with the distribution of vimentin intermediate filaments (VIFs). Using different approaches to alter the VIF organization, we show that blebbing activity is biased toward cell edges lacking abundant VIFs, whereas the VIF-rich regions of the cell periphery exhibit low blebbing activity. This pattern is observed both in interphase fibroblasts, with and without experimentally induced blebbing, and during mitosis-associated blebbing. Moreover, the downregulation of vimentin expression or displacement of VIFs away from the cell periphery promotes blebbing even in cells resistant to bleb-inducing treatments. Thus, we reveal a new important function of VIFs in cell physiology that involves the regulation of non-apoptotic blebbing essential for amoeboid cell migration and mitosis.
Collapse
Affiliation(s)
- Aleksandra S. Chikina
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
- Dynamics of Immune Responses Team, INSERM-U1223 Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Anna O. Zholudeva
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| | - Maria E. Lomakina
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| | - Igor I. Kireev
- Department of Biology and A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119992, Russia;
| | - Alexander A. Dayal
- Institute of Protein Research, Department of Cell Biology, Russian Academy of Sciences, Moscow 119988, Russia; (A.A.D.); (A.A.M.)
| | - Alexander A. Minin
- Institute of Protein Research, Department of Cell Biology, Russian Academy of Sciences, Moscow 119988, Russia; (A.A.D.); (A.A.M.)
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, 26 rue d’Ulm, 75248 Paris, France;
| | - Tatyana M. Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonina Y. Alexandrova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, Moscow 115478, Russia; (A.S.C.); (A.O.Z.); (M.E.L.)
| |
Collapse
|
5
|
Zheng X, Gao Z, Pan Y, Zhang S, Chen R. The exact phenomenon and early signaling events of the endothelial cytoskeleton response to ultrasound. Biochem Biophys Res Commun 2023; 681:144-151. [PMID: 37774572 DOI: 10.1016/j.bbrc.2023.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Low-intensity ultrasound can be applied for medical imaging and disease treatment in clinical and experimental studies. However, the biological effects of ultrasound on blood vessels, especially endothelial cells (ECs) are still unclear. In this study, the laws of endothelial cytoskeleton changes under ultrasound induction are investigated. ECs are exposed to low-intensity ultrasound, and the cytoskeletal morphology is analyzed by a filamentous (F)-actin staining technique. We further analyze the characteristics of cytoskeleton rupture using indirect immunofluorescence techniques and cytoskeleton electron microscopy. Finally, the biological effects induced by ultrasound at the tissue level are investigated in an ex vivo blood-vessel model. Significant changes in cytoskeletal structure are detected when induced by ultrasound, including cytoskeletal rupture, blebbing and apoptosis. Moreover, a temporal threshold of ECs injury under different ultrasonic intensities is established. This study illustrates a pattern of significant changes in the cytoskeletal structure of ECs induced by ultrasound. The finding serves as a guide for selecting a safe threshold for clinical ultrasound applications.
Collapse
Affiliation(s)
- Xiaobing Zheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Zujie Gao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yunfan Pan
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuguang Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ruiqing Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Yoo DH, Im YS, Oh JY, Gil D, Kim YO. DUSP6 is a memory retention feedback regulator of ERK signaling for cellular resilience of human pluripotent stem cells in response to dissociation. Sci Rep 2023; 13:5683. [PMID: 37029196 PMCID: PMC10082014 DOI: 10.1038/s41598-023-32567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Cultured human pluripotent stem cells (hPSCs) grow as colonies that require breakdown into small clumps for further propagation. Although cell death mechanism by single-cell dissociation of hPSCs has been well defined, how hPSCs respond to the deadly stimulus and recover the original status remains unclear. Here we show that dissociation of hPSCs immediately activates ERK, which subsequently activates RSK and induces DUSP6, an ERK-specific phosphatase. Although the activation is transient, DUSP6 expression persists days after passaging. DUSP6 depletion using the CRISPR/Cas9 system reveals that DUSP6 suppresses the ERK activity over the long term. Elevated ERK activity by DUSP6 depletion increases both viability of hPSCs after single-cell dissociation and differentiation propensity towards mesoderm and endoderm lineages. These findings provide new insights into how hPSCs respond to dissociation in order to maintain pluripotency.
Collapse
Affiliation(s)
- Dae Hoon Yoo
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Young Sam Im
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Ji Young Oh
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Dayeon Gil
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Yong-Ou Kim
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea.
- Center for National Stem Cell and Regenerative Medicine 202, Osongsaengmyung 2-Ro, Heundeok-Gu, Cheongju, Chungcheongbuk-Do, 28160, Republic of Korea.
| |
Collapse
|
7
|
Saito D, Tadokoro R, Nagasaka A, Yoshino D, Teramoto T, Mizumoto K, Funamoto K, Kidokoro H, Miyata T, Tamura K, Takahashi Y. Stiffness of primordial germ cells is required for their extravasation in avian embryos. iScience 2022; 25:105629. [PMID: 36465120 PMCID: PMC9713369 DOI: 10.1016/j.isci.2022.105629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Unlike mammals, primordial germ cells (PGCs) in avian early embryos exploit blood circulation to translocate to the somatic gonadal primordium, but how circulating PGCs undergo extravasation remains elusive. We demonstrate with single-cell level live-imaging analyses that the PGCs are arrested at a specific site in the capillary plexus, which is predominantly governed by occlusion at a narrow path in the vasculature. The occlusion is enabled by a heightened stiffness of the PGCs mediated by actin polymerization. Following the occlusion, PGCs reset their stiffness to soften in order to squeeze through the endothelial lining as they transmigrate. Our discovery also provides a model for the understanding of metastasizing cancer extravasation occurring mainly by occlusion.
Collapse
Affiliation(s)
- Daisuke Saito
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
| | - Ryosuke Tadokoro
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Kyoto 606-8502, Japan
- Department of Bioscience, Okayama University of Science, Okayama, Okayama 700-0005, Japan
| | - Arata Nagasaka
- Division of Histology, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Daisuke Yoshino
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Takayuki Teramoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
| | - Kanta Mizumoto
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Kenichi Funamoto
- Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hinako Kidokoro
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
- Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Yoshiko Takahashi
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Ikenouchi J, Aoki K. A Clockwork Bleb: cytoskeleton, calcium, and cytoplasmic fluidity. FEBS J 2022; 289:7907-7917. [PMID: 34614290 DOI: 10.1111/febs.16220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023]
Abstract
When the plasma membrane (PM) detaches from the underlying actin cortex, the PM expands according to intracellular pressure and a spherical membrane protrusion called a bleb is formed. This bleb retracts when the actin cortex is reassembled underneath the PM. Whereas this phenomenon seems simple at first glance, there are many interesting, unresolved cell biological questions in each process. For example, what is the membrane source to enlarge the surface area of the PM during rapid bleb expansion? What signals induce actin reassembly for bleb retraction, and how is cytoplasmic fluidity regulated to allow rapid membrane deformation during bleb expansion? Furthermore, emerging evidence indicates that cancer cells use blebs for invasion, but little is known about how molecules that are involved in bleb formation, expansion, and retraction are coordinated for directional amoeboid migration. In this review, we discuss the molecular mechanisms involved in the regulation of blebs, which have been revealed by various experimental systems.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Kana Aoki
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Kuo IY, Hsieh CH, Kuo WT, Chang CP, Wang YC. Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment. J Biomed Sci 2022; 29:56. [PMID: 35927755 PMCID: PMC9354273 DOI: 10.1186/s12929-022-00837-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
All cells in the changing tumor microenvironment (TME) need a class of checkpoints to regulate the balance among exocytosis, endocytosis, recycling and degradation. The vesicular trafficking and secretion pathways regulated by the small Rab GTPases and their effectors convey cell growth and migration signals and function as meditators of intercellular communication and molecular transfer. Recent advances suggest that Rab proteins govern conventional and unconventional vesicular secretion pathways by trafficking widely diverse cargoes and substrates in remodeling TME. The mechanisms underlying the regulation of conventional and unconventional vesicular secretion pathways, their action modes and impacts on the cancer and stromal cells have been the focus of much attention for the past two decades. In this review, we discuss the current understanding of vesicular secretion pathways in TME. We begin with an overview of the structure, regulation, substrate recognition and subcellular localization of vesicular secretion pathways. We then systematically discuss how the three fundamental vesicular secretion processes respond to extracellular cues in TME. These processes are the conventional protein secretion via the endoplasmic reticulum-Golgi apparatus route and two types of unconventional protein secretion via extracellular vesicles and secretory autophagy. The latest advances and future directions in vesicular secretion-involved interplays between tumor cells, stromal cell and host immunity are also described.
Collapse
Affiliation(s)
- I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsiung Hsieh
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Wan-Ting Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
10
|
Vishwakarma V, Le TP, Chung S. Multifunctional role of GPCR signaling in epithelial tube formation. Development 2022; 149:276083. [DOI: 10.1242/dev.200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Epithelial tube formation requires Rho1-dependent actomyosin contractility to generate the cellular forces that drive cell shape changes and rearrangement. Rho1 signaling is activated by G-protein-coupled receptor (GPCR) signaling at the cell surface. During Drosophila embryonic salivary gland (SG) invagination, the GPCR ligand Folded gastrulation (Fog) activates Rho1 signaling to drive apical constriction. The SG receptor that transduces the Fog signal into Rho1-dependent myosin activation has not been identified. Here, we reveal that the Smog GPCR transduces Fog signal to regulate Rho kinase accumulation and myosin activation in the medioapical region of cells to control apical constriction during SG invagination. We also report on unexpected Fog-independent roles for Smog in maintaining epithelial integrity and organizing cortical actin. Our data support a model wherein Smog regulates distinct myosin pools and actin cytoskeleton in a ligand-dependent manner during epithelial tube formation.
Collapse
Affiliation(s)
- Vishakha Vishwakarma
- Louisiana State University Department of Biological Sciences , , Baton Rouge, LA 70803 , USA
| | - Thao Phuong Le
- Louisiana State University Department of Biological Sciences , , Baton Rouge, LA 70803 , USA
| | - SeYeon Chung
- Louisiana State University Department of Biological Sciences , , Baton Rouge, LA 70803 , USA
| |
Collapse
|
11
|
O'Callaghan P, Engberg A, Eriksson O, Fatsis-Kavalopoulos N, Stelzl C, Sanchez G, Idevall-Hagren O, Kreuger J. Piezo1 activation attenuates thrombin-induced blebbing in breast cancer cells. J Cell Sci 2022; 135:274949. [PMID: 35274124 PMCID: PMC9016622 DOI: 10.1242/jcs.258809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer cells exploit a variety of migration modes to leave primary tumors and establish metastases, including amoeboid cell migration, which is typically reliant on bleb formation. Here we demonstrate that thrombin induces dynamic blebbing in the MDA-MB-231 breast cancer cell line and confirm that protease-activated receptor 1 (PAR1) activation is sufficient to induce this effect. Cell confinement has been implicated as a driving force in bleb-based migration. Unexpectedly, we found that gentle contact compression, exerted using a custom built ‘cell press’ to mechanically stimulate cells, reduced thrombin-induced blebbing. Thrombin-induced blebbing was similarly attenuated using the small molecule Yoda1, an agonist of the mechanosensitive Ca2+ channel Piezo1, and this attenuation was impaired in Piezo1-depleted cells. Additionally, Piezo1 activation suppressed thrombin-induced phosphorylation of ezrin, radixin and moesin (ERM) proteins, which are implicated in the blebbing process. Our results provide mechanistic insights into Piezo1 activation as a suppressor of dynamic blebbing, specifically that which is induced by thrombin. Summary: Thrombin and protease-activated receptor agonists induce dynamic blebbing in breast cancer cells, which can be attenuated by contact-mediated compression, and activation of the mechanosensitive ion channel Piezo1.
Collapse
Affiliation(s)
- Paul O'Callaghan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Adam Engberg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Olle Eriksson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Christina Stelzl
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Gonzalo Sanchez
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Fauser J, Brennan M, Tsygankov D, Karginov AV. Methods for assessment of membrane protrusion dynamics. CURRENT TOPICS IN MEMBRANES 2021; 88:205-234. [PMID: 34862027 DOI: 10.1016/bs.ctm.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Membrane protrusions are a critical facet of cell function. Mediating fundamental processes such as cell migration, cell-cell interactions, phagocytosis, as well as assessment and remodeling of the cell environment. Different protrusion types and morphologies can promote different cellular functions and occur downstream of distinct signaling pathways. As such, techniques to quantify and understand the inner workings of protrusion dynamics are critical for a comprehensive understanding of cell biology. In this chapter, we describe approaches to analyze cellular protrusions and correlate physical changes in cell morphology with biochemical signaling processes. We address methods to quantify and characterize protrusion types and velocity, mathematical approaches to predictive models of cytoskeletal changes, and implementation of protein engineering and biosensor design to dissect cell signaling driving protrusive activity. Combining these approaches allows cell biologists to develop a comprehensive understanding of the dynamics of membrane protrusions.
Collapse
Affiliation(s)
- Jordan Fauser
- University of Illinois at Chicago, Department of Cellular and Molecular Pharmacology and Regenerative Medicine, Chicago, IL, United States
| | - Martin Brennan
- University of Illinois at Chicago, Department of Cellular and Molecular Pharmacology and Regenerative Medicine, Chicago, IL, United States
| | - Denis Tsygankov
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, United States
| | - Andrei V Karginov
- University of Illinois at Chicago, Department of Cellular and Molecular Pharmacology and Regenerative Medicine, Chicago, IL, United States.
| |
Collapse
|
13
|
Actin Cytoskeletal Dynamics in Single-Cell Wound Repair. Int J Mol Sci 2021; 22:ijms221910886. [PMID: 34639226 PMCID: PMC8509258 DOI: 10.3390/ijms221910886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane protects the eukaryotic cell from its surroundings and is essential for cell viability; thus, it is crucial that membrane disruptions are repaired quickly to prevent immediate dyshomeostasis and cell death. Accordingly, cells have developed efficient repair mechanisms to rapidly reseal ruptures and reestablish membrane integrity. The cortical actin cytoskeleton plays an instrumental role in both plasma membrane resealing and restructuring in response to damage. Actin directly aids membrane repair or indirectly assists auxiliary repair mechanisms. Studies investigating single-cell wound repair have often focused on the recruitment and activation of specialized repair machinery, despite the undeniable need for rapid and dynamic cortical actin modulation; thus, the role of the cortical actin cytoskeleton during wound repair has received limited attention. This review aims to provide a comprehensive overview of membrane repair mechanisms directly or indirectly involving cortical actin cytoskeletal remodeling.
Collapse
|
14
|
Mertsch S, Neumann I, Rose C, Schargus M, Geerling G, Schrader S. The effect of Rho Kinase inhibition on corneal nerve regeneration in vitro and in vivo. Ocul Surf 2021; 22:213-223. [PMID: 34419637 DOI: 10.1016/j.jtos.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Impairment of corneal nerves can lead to neurotrophic keratopathy accompanied with severe ocular surface damage, which due to limited treatment options, can result in severe visual deterioration. This study evaluates a possible new treatment by enhancing the corneal nerve regeneration using a Rho Kinase inhibitor (Y27632). ROCK is known to play an important role in regulating cell morphology, adhesion and motility but little is known about its role in corneal nerve regeneration. METHODS Effects of ROCK inhibition on murine peripheral nerves was assessed in single cell- and wound healing assays as well as a 3D in vitro model. Furthermore, Sholl analysis evaluating neuronal branching and life-death assays evaluating toxicity of the inhibitor were performed. An in vivo mouse model was established, with monitoring weekly corneal nerve regrowth using confocal microscopy. Additionally, corneal nerve fiber length was evaluated by immunofluorescence staining. Underlying pathways were examined by qrtPCR. RESULTS ROCK inhibition leads to a significant enhancement of fiber growth in vitro. Sholl analysis revealed a higher degree of branching of treated fibers. Cytotoxicity assay showed no influence of Y27632 on cellular survival. In vivo measurement revealed significant enhanced regeneration after injury in the treated group. QrtPCR of trigeminal ganglia confirmed ROCK knock-down as well as altered pathways. CONCLUSION The inhibition of ROCK after corneal nerve injury resulted in an enhanced regrowth of fibers in vitro and in vivo. This might be a step towards a new therapeutic concept for the treatment of impaired corneal nerves in diseases such as neurotrophic keratopathy.
Collapse
Affiliation(s)
- Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany.
| | - Inga Neumann
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University, Germany
| | - Cosima Rose
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University, Germany
| | - Marc Schargus
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University, Germany; Department of Ophthalmology, Asklepios Hospital Nord-Heidberg, Hamburg, Germany
| | - Gerd Geerling
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| |
Collapse
|
15
|
Ikeuchi M, Yuki R, Saito Y, Nakayama Y. The tumor suppressor LATS2 reduces v-Src-induced membrane blebs in a kinase activity-independent manner. FASEB J 2021; 35:e21242. [PMID: 33368671 DOI: 10.1096/fj.202001909r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022]
Abstract
When cells with excess DNA, such as tetraploid cells, undergo cell division, it can contribute to cellular transformation via asymmetrical chromosome segregation-generated genetic diversity. Cell cycle progression of tetraploid cells is suppressed by large tumor suppressor 2 (LATS2) kinase-induced inhibitory phosphorylation of the transcriptional coactivator Yes-associated protein (YAP). We recently reported that the oncogene v-Src induces tetraploidy and promotes cell cycle progression of tetraploid cells by suppressing LATS2 activity. We explore here the mechanism by which v-Src suppresses LATS2 activity and the role of LATS2 in v-Src-expressing cells. LATS2 was directly phosphorylated by v-Src and the proto-oncogene c-Src, resulting in decreased LATS2 kinase activity. This kinase-deficient LATS2 accumulated in a YAP transcriptional activity-dependent manner, and knockdown of either LATS2 or the LATS2-binding partner moesin-ezrin-radixin-like protein (Merlin) accelerated v-Src-induced membrane bleb formation. Upon v-Src expression, the interaction of Merlin with LATS2 was increased possibly due to a decrease in Merlin phosphorylation at Ser518, the dephosphorylation of which is required for the open conformation of Merlin and interaction with LATS2. LATS2 was colocalized with Merlin at the plasma membrane in a manner that depends on the Merlin-binding region of LATS2. The bleb formation in v-Src-expressing and LATS2-knockdown cells was rescued by the reexpression of wild-type or kinase-dead LATS2 but not the LATS2 mutant lacking the Merlin-binding region. These results suggest that the kinase-deficient LATS2 plays a role with Merlin at the plasma membrane in the maintenance of cortical rigidity in v-Src-expressing cells, which may cause tumor suppression.
Collapse
Affiliation(s)
- Masayoshi Ikeuchi
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan.,DC1, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ryuzaburo Yuki
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
16
|
The roles of Cdc42 and Rac1 in the formation of plasma membrane protrusions in cancer epithelial HeLa cells. Mol Biol Rep 2021; 48:4285-4294. [PMID: 34110575 DOI: 10.1007/s11033-021-06443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The inducible model of clones generated from the cervical cancer epithelial HeLa cell line has shown the role of DOCK10 as a guanine-nucleotide exchange factor for Rho GTPases Cdc42 and Rac1 and as an inducer of filopodia and plasma membrane (PM) ruffles. In this model, constitutively active (CA) mutants of Cdc42 and Rac1 promote filopodia and ruffles, respectively, as in other models. DOCK9 also induces filopodia and ruffles, although ruffling activity is less prominent. By exploiting this model further, the aim of this work is to provide a more complete understanding of the role of Cdc42 and Rac1, and their interactions with DOCK10 and DOCK9, in regulation of PM protrusions. New clones have been generated from HeLa, including single clones expressing one form of wild-type (WT) or dominant negative (DN) Cdc42 or Rac1, and double clones co-expressing one of them together with either DOCK10 or DOCK9. Expression of WT- and DN-Cdc42 induced filopodia. WT-Cdc42 and, especially, DN-Cdc42 also gave rise to veil protrusions, which were neutralized by DOCK10. Moreover, DN-Cdc42 stimulated the emergence of ruffles, further increased by DOCK10, and WT-Cdc42 also augmented ruffles in presence of DOCK9 and DOCK10. WT-Rac1 greatly increased PM blebbing, as did DN-Rac1 more moderately. In both cases, blebs were enhanced by DOCK10. DN-Rac1 and CA-Rac1 moderately raised filopodia, and DOCK10 and DOCK9 had opposed effects on filopodia (up and down, respectively) in presence of WT-Rac1. As conclusions, we highlight that Cdc42 promotes filopodia regardless of its conformational state, and Rac1 induces blebs in conformations other than CA, especially WT-Rac1, in the inducible HeLa clones. The model could be useful to learn more about the mechanisms underlying PM protrusions.
Collapse
|
17
|
Molecular basis of functional exchangeability between ezrin and other actin-membrane associated proteins during cytokinesis. Exp Cell Res 2021; 403:112600. [PMID: 33862101 DOI: 10.1016/j.yexcr.2021.112600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 01/09/2023]
Abstract
The mechanism that mediates the interaction between the contractile ring and the plasma membrane during cytokinesis remains elusive. We previously found that ERM (Ezrin/Radixin/Moesin) proteins, which usually mediate cellular pole contraction, become over-accumulated at the cell equator and support furrow ingression upon the loss of other actin-membrane associated proteins, anillin and supervillin. In this study, we addressed the molecular basis of the exchangeability between ezrin and other actin-membrane associated proteins in mediating cortical contraction during cytokinesis. We found that depletion of anillin and supervillin caused over-accumulation of the membrane-associated FERM domain and actin-binding C-terminal domain (C-term) of ezrin at the cleavage furrow, respectively. This finding suggests that ezrin differentially shares its binding sites with these proteins on the actin cytoskeleton or inner membrane surface. Using chimeric mutants, we found that ezrin C-term, but not the FERM domain, can substitute for the corresponding anillin domains in cytokinesis and cell proliferation. On the other hand, either the membrane-associated or the actin/myosin-binding domains of anillin could not substitute for the corresponding ezrin domains in controlling cortical blebbing at the cell poles. Our results highlight specific designs of actin- or membrane-associated moieties of different actin-membrane associated proteins with limited exchangeability, which enables them to support diverse cortical activities on the shared actin-membrane interface during cytokinesis.
Collapse
|
18
|
Jia C, Shi J, Han T, Yu ACH, Qin P. Plasma Membrane Blebbing Dynamics Involved in the Reversibly Perforated Cell by Ultrasound-Driven Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:733-750. [PMID: 33358511 DOI: 10.1016/j.ultrasmedbio.2020.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The perforation of plasma membrane by ultrasound-driven microbubbles (i.e., sonoporation) provides a temporary window for transporting macromolecules into the cytoplasm that is promising with respect to drug delivery and gene therapy. To improve the efficacy of delivery while ensuring biosafety, membrane resealing and cell recovery are required to help sonoporated cells defy membrane injury and regain their normal function. Blebs are found to accompany the recovery of sonoporated cells. However, the spatiotemporal characteristics of blebs and the underlying mechanisms remain unclear. With a customized platform for ultrasound exposure and 2-D/3-D live single-cell imaging, localized membrane perforation was induced with ultrasound-driven microbubbles, and the cellular responses were monitored using multiple fluorescent probes. The results indicated that localized blebs undergoing four phases (nucleation, expansion, pausing and retraction) on a time scale of tens of seconds to minutes were specifically involved in the reversibly sonoporated cells. The blebs spatially correlated with the membrane perforation site and temporally lagged (about tens of seconds to minutes) the resealing of perforated membrane. Their diameter (about several microns) and lifetime (about tens of seconds to minutes) positively correlated with the degree of sonoporation. Further studies revealed that intracellular calcium transients might be an upstream signal for triggering blebbing nucleation; exocytotic lysosomes not only contributed to resealing of the perforated membrane, but also to the increasing bleb volume during expansion; and actin components accumulation facilitated bleb retraction. These results provide new insight into the short-term strategies that the sonoporated cell employs to recover on membrane perforation and to remodel membrane structure and a biophysical foundation for sonoporation-based therapy.
Collapse
Affiliation(s)
- Caixia Jia
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianmin Shi
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Han
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Hu J, Sun XM, Su JY, Zhao YF, Chen YX. Different phosphorylation and farnesylation patterns tune Rnd3-14-3-3 interaction in distinct mechanisms. Chem Sci 2021; 12:4432-4442. [PMID: 34163708 PMCID: PMC8179448 DOI: 10.1039/d0sc05838f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022] Open
Abstract
Protein posttranslational modifications (PTMs) are often involved in the mediation or inhibition of protein-protein interactions (PPIs) within many cellular signaling pathways. Uncovering the molecular mechanism of PTM-induced multivalent PPIs is vital to understand the regulatory factors to promote inhibitor development. Herein, Rnd3 peptides with different PTM patterns as the binding epitopes and 14-3-3ζ protein were used as models to elucidate the influences of phosphorylation and farnesylation on binding thermodynamics and kinetics and their molecular mechanism. The quantitative thermodynamic results indicate that phosphorylated residues S210 and S218 (pS210 and pS218) and farnesylated C241 (fC241) enhance Rnd3-14-3-3ζ interactions in the presence of the essential pS240. However, distinct PTM patterns greatly affect the binding process. Initial association of pS240 with the phosphate-binding pocket of one monomer of the 14-3-3ζ dimer triggers the binding of pS210 or pS218 to another monomer, whereas the binding of fC241 to the hydrophobic groove on one 14-3-3ζ monomer induces the subsequent binding of pS240 to the adjacent pocket on the same monomer. Based on the experimental and molecular simulation results, we estimate that pS210/pS218 and pS240 mediate the multivalent interaction through an additive mechanism, whereas fC241 and pS240 follow an induced fit mechanism, in which the cooperativity of these two adjacent PTMs is reflected by the index ε described in our established thermodynamic binding model. Besides, these proposed binding models have been further used for describing the interaction between 14-3-3ζ and other substrates containing adjacent phosphorylation and lipidation groups, indicating their potential in general applications. These mechanistic insights are significant for understanding the regulatory factors and the design of PPI modulators.
Collapse
Affiliation(s)
- Jun Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Xue-Meng Sun
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jing-Yun Su
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
20
|
STIM-Orai1 signaling regulates fluidity of cytoplasm during membrane blebbing. Nat Commun 2021; 12:480. [PMID: 33473127 PMCID: PMC7817837 DOI: 10.1038/s41467-020-20826-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
The cytoplasm in mammalian cells is considered homogeneous. In this study, we report that the cytoplasmic fluidity is regulated in the blebbing cells; the cytoplasm of rapidly expanding membrane blebs is more disordered than the cytoplasm of retracting blebs. The increase of cytoplasmic fluidity in the expanding bleb is caused by a sharp rise in the calcium concentration. The STIM-Orai1 pathway regulates this rapid and restricted increase of calcium in the expanding blebs. Conversely, activated ERM protein binds to Orai1 to inhibit the store-operated calcium entry in retracting blebs, which results in decreased in cytoplasmic calcium, rapid reassembly of the actin cortex. The cytoplasm in mammalian cells is considered homogeneous. Here authors report that the cytoplasmic fluidity is regulated in the blebbing cells, which is regulated by calcium concentration in the expanding blebs and involves the STIM-Orai1 pathway.
Collapse
|
21
|
Gao J, Wei B, de Assuncao TM, Liu Z, Hu X, Ibrahim S, Cooper SA, Cao S, Shah VH, Kostallari E. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol 2020; 73:1144-1154. [PMID: 32389810 PMCID: PMC7572579 DOI: 10.1016/j.jhep.2020.04.044] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Autophagy plays a crucial role in hepatic homeostasis and its deregulation has been associated with chronic liver disease. However, the effect of autophagy on the release of fibrogenic extracellular vesicles (EVs) by platelet-derived growth factor (PDGF)-stimulated hepatic stellate cells (HSCs) remains unknown. Herein, we aimed to elucidate the role of autophagy, specifically relating to fibrogenic EV release, in fibrosis. METHODS In vitro experiments were conducted in primary human and murine HSCs as well as LX2 cells. Small EVs were purified by differential ultracentrifugation. Carbon tetrachloride (CCl4) or bile duct ligation (BDL) were used to induce fibrosis in our mouse model. Liver lysates from patients with cirrhosis or healthy controls were compared by RNA sequencing. RESULTS In vitro, PDGF and its downstream molecule SHP2 (Src homology 2-containing protein tyrosine phosphatase 2) inhibited autophagy and increased HSC-derived EV release. We used this PDGF/SHP2 model to further investigate how autophagy affects fibrogenic EV release. RNA sequencing identified an mTOR (mammalian target of rapamycin) signaling molecule that was regulated by SHP2 and PDGF. Disruption of mTOR signaling abolished PDGF-dependent EV release. Activation of mTOR signaling induced the release of multivesicular body-derived exosomes (by inhibiting autophagy) and microvesicles (by activating ROCK1 signaling). These mTOR-dependent EVs promoted in vitro HSC migration. To assess the importance of this mechanism in vivo, SHP2 was selectively deleted in HSCs, which attenuated CCl4- or BDL-induced liver fibrosis. Furthermore, in the CCl4 model, mice receiving circulating EVs derived from mice with HSC-specific Shp2 deletion had less fibrosis than mice receiving EVs from control mice. Correspondingly, SHP2 was upregulated in patients with liver cirrhosis. CONCLUSION These results demonstrate that autophagy in HSCs attenuates liver fibrosis by inhibiting the release of fibrogenic EVs. LAY SUMMARY During liver fibrosis and cirrhosis, activated hepatic stellate cells (HSCs) are the key cell type responsible for fibrotic tissue deposition. Recently, we demonstrated that activated HSCs release nano-sized vesicles enriched with fibrogenic proteins. In the current study, we unveil the mechanism by which these fibrogenic vesicles are released, moving a step closer to the long-term goal of therapeutically targeting this process.
Collapse
Affiliation(s)
- Jinhang Gao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN,Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Bo Wei
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN,Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041 China
| | | | - Zhikui Liu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Xiao Hu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Samar Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Shawna A. Cooper
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN,Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
22
|
Identification and characterization of a new isoform of small GTPase RhoE. Commun Biol 2020; 3:572. [PMID: 33060740 PMCID: PMC7562701 DOI: 10.1038/s42003-020-01295-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/04/2020] [Indexed: 11/09/2022] Open
Abstract
The Rho family of GTPases consists of 20 members including RhoE. Here, we discover the existence of a short isoform of RhoE designated as RhoEα, the first Rho GTPase isoform generated from alternative translation. Translation of this new isoform is initiated from an alternative start site downstream of and in-frame with the coding region of the canonical RhoE. RhoEα exhibits a similar subcellular distribution while its protein stability is higher than RhoE. RhoEα contains binding capability to RhoE effectors ROCK1, p190RhoGAP and Syx. The distinct transcriptomes of cells with the expression of RhoE and RhoEα, respectively, are demonstrated. The data propose distinctive and overlapping biological functions of RhoEα compared to RhoE. In conclusion, this study reveals a new Rho GTPase isoform generated from alternative translation. The discovery provides a new scope of understanding the versatile functions of small GTPases and underlines the complexity and diverse roles of small GTPases. Dai et al. report the identification and characterization of a new isoform of RhoE (RhoEα), a member of the Rho GTPase family, which is generated from the same gene by alternative translation initiation at the downstream ATG codon 46. Compared to RhoE, RhoEα does not differ in the subcellular localization but has increased protein stability and distinct molecular signalling profile.
Collapse
|
23
|
Kelkar M, Bohec P, Charras G. Mechanics of the cellular actin cortex: From signalling to shape change. Curr Opin Cell Biol 2020; 66:69-78. [DOI: 10.1016/j.ceb.2020.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/30/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023]
|
24
|
Alexandrova AY, Chikina AS, Svitkina TM. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:197-256. [PMID: 33066874 DOI: 10.1016/bs.ircmb.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development of metastasis, tumor cells migrate through different tissues and encounter different extracellular matrices. An ability of cells to adapt mechanisms of their migration to these diverse environmental conditions, called migration plasticity, gives tumor cells an advantage over normal cells for long distant dissemination. Different modes of individual cell motility-mesenchymal and amoeboid-are driven by different molecular mechanisms, which largely depend on functions of the actin cytoskeleton that can be modulated in a wide range by cellular signaling mechanisms in response to environmental conditions. Various triggers can switch one motility mode to another, but regulations of these transitions are incompletely understood. However, understanding of the mechanisms driving migration plasticity is instrumental for finding anti-cancer treatment capable to stop cancer metastasis. In this review, we discuss cytoskeletal features, which allow the individually migrating cells to switch between mesenchymal and amoeboid migrating modes, called mesenchymal-to-amoeboid transition (MAT). We briefly describe main characteristics of different cell migration modes, and then discuss the triggering factors that initiate MAT with special attention to cytoskeletal features essential for migration plasticity.
Collapse
Affiliation(s)
- Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.
| | - Aleksandra S Chikina
- Cell Migration and Invasion and Spatio-Temporal Regulation of Antigen Presentation teams, UMR144/U932 Institut Curie, Paris, France
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
25
|
Zheng Y, Gong J, Zhen Y. Focal adhesion kinase is activated by microtubule-depolymerizing agents and regulates membrane blebbing in human endothelial cells. J Cell Mol Med 2020; 24:7228-7238. [PMID: 32452639 PMCID: PMC7339229 DOI: 10.1111/jcmm.15273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/01/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Microtubule-depolymerizing agents can selectively disrupt tumor vessels via inducing endothelial membrane blebbing. However, the mechanism regulating blebbing is largely unknown. IMB5046 is a newly discovered microtubule-depolymerizing agent. Here, the functions of focal adhesion kinase (FAK) during IMB5046-induced blebbing and the relevant mechanism are studied. We found that IMB5046 induced membrane blebbing and reassembly of focal adhesions in human vascular endothelial cells. Both FAK inhibitor and knock-down expression of FAK inhibited IMB5046-induced blebbing. Mechanism study revealed that IMB5046 induced the activation of FAK via GEF-H1/ Rho/ ROCK/ MLC2 pathway. cRGD peptide, a ligand of integrin, also blocked IMB5046-induced blebbing. After activation, FAK further promoted the phosphorylation of MLC2. This positive feedback loop caused more intensive actomyosin contraction and continuous membrane blebbing. FAK inhibitor blocked membrane blebbing via inhibiting actomyosin contraction, and stimulated stress fibre formation via promoting the phosphorylation of HSP27. Conclusively, these results demonstrate that FAK is a molecular switch controlling endothelial blebbing and stress fibre formation. Our study provides a new molecular mechanism for microtubule-depolymerizing agents to be used as vascular disrupting agents.
Collapse
Affiliation(s)
- Yan‐Bo Zheng
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jian‐Hua Gong
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yong‐Su Zhen
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
26
|
Vanderboor CMG, Thibeault PE, Nixon KCJ, Gros R, Kramer J, Ramachandran R. Proteinase-Activated Receptor 4 Activation Triggers Cell Membrane Blebbing through RhoA and β-Arrestin. Mol Pharmacol 2020; 97:365-376. [PMID: 32234808 DOI: 10.1124/mol.119.118232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
Proteinase-activated receptors (PARs) are a four-member family of G-protein-coupled receptors that are activated via proteolysis. PAR4 is a member of this family that is cleaved and activated by serine proteinases such as thrombin, trypsin, and cathepsin-G. PAR4 is expressed in a variety of tissues and cell types, including platelets, vascular smooth muscle cells, and neuronal cells. In studying PAR4 signaling and trafficking, we observed dynamic changes in the cell membrane, with spherical membrane protrusions that resemble plasma membrane blebbing. Since nonapoptotic membrane blebbing is now recognized as an important regulator of cell migration, cancer cell invasion, and vesicular content release, we sought to elucidate the signaling pathway downstream of PAR4 activation that leads to such events. Using a combination of pharmacological inhibition and CRISPR/CRISPR-associated protein 9 (Cas9)-mediated gene editing approaches, we establish that PAR4-dependent membrane blebbing occurs independently of the Gα q/11- and Gα i-signaling pathways and is dependent on signaling via the β-arrestin-1/2 and Ras homolog family member A (RhoA) signaling pathways. Together these studies provide further mechanistic insight into PAR4 regulation of cellular function. SIGNIFICANCE STATEMENT: We find that the thrombin receptor PAR4 triggers cell membrane blebbing in a RhoA-and β-arrestin-dependent manner. In addition to identifying novel cellular responses mediated by PAR4, these data provide further evidence for biased signaling in PAR4 since membrane blebbing was dependent on some, but not all, signaling pathways activated by PAR4.
Collapse
Affiliation(s)
- Christina M G Vanderboor
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Pierre E Thibeault
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kevin C J Nixon
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Robert Gros
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jamie Kramer
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
27
|
Guzman A, Avard RC, Devanny AJ, Kweon OS, Kaufman LJ. Delineating the role of membrane blebs in a hybrid mode of cancer cell invasion in three-dimensional environments. J Cell Sci 2020; 133:jcs236778. [PMID: 32193332 PMCID: PMC7197870 DOI: 10.1242/jcs.236778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
The study of cancer cell invasion in 3D environments in vitro has revealed a variety of invasive modes, including amoeboid migration, characterized by primarily round cells that invade in a protease- and adhesion-independent manner. Here, we delineate a contractility-dependent migratory mode of primarily round breast cancer cells that is associated with extensive integrin-mediated extracellular matrix (ECM) reorganization that occurs at membrane blebs, with bleb necks sites of integrin clustering and integrin-dependent ECM alignment. We show that the spatiotemporal distribution of blebs and their utilization for ECM reorganization is mediated by functional β1 integrin receptors and other components of focal adhesions. Taken together, the work presented here characterizes a migratory mode of primarily round cancer cells in complex 3D environments and reveals a fundamentally new function for membrane blebs in cancer cell invasion.
Collapse
Affiliation(s)
- Asja Guzman
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Rachel C Avard
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | - Oh Sang Kweon
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Laura J Kaufman
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
28
|
Saare M, Tserel L, Haljasmägi L, Taalberg E, Peet N, Eimre M, Vetik R, Kingo K, Saks K, Tamm R, Milani L, Kisand K, Peterson P. Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. Aging Cell 2020; 19:e13127. [PMID: 32107839 PMCID: PMC7189998 DOI: 10.1111/acel.13127] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
Age‐related changes at the cellular level include the dysregulation of metabolic and signaling pathways. Analyses of blood leukocytes have revealed a set of alterations that collectively lower their ability to fight infections and resolve inflammation later in life. We studied the transcriptomic, epigenetic, and metabolomic profiles of monocytes extracted from younger adults and individuals over the age of 65 years to map major age‐dependent changes in their cellular physiology. We found that the monocytes from older persons displayed a decrease in the expression of ribosomal and mitochondrial protein genes and exhibited hypomethylation at the HLA class I locus. Additionally, we found elevated gene expression associated with cell motility, including the CX3CR1 and ARID5B genes, which have been associated with the development of atherosclerosis. Furthermore, the downregulation of two genes, PLA2G4B and ALOX15B, which belong to the arachidonic acid metabolism pathway involved in phosphatidylcholine conversion to anti‐inflammatory lipoxins, correlated with increased phosphatidylcholine content in monocytes from older individuals. We found age‐related changes in monocyte metabolic fitness, including reduced mitochondrial function and increased glycose consumption without the capacity to upregulate it during increased metabolic needs, and signs of increased oxidative stress and DNA damage. In conclusion, our results complement existing findings and elucidate the metabolic alterations that occur in monocytes during aging.
Collapse
Affiliation(s)
- Mario Saare
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Liina Tserel
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Liis Haljasmägi
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Egon Taalberg
- Department of Biochemistry Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Nadežda Peet
- Department of Pathophysiology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Margus Eimre
- Department of Pathophysiology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Rait Vetik
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Külli Kingo
- Department of Dermatology and Venereology Institute of Clinical Medicine University of Tartu Tartu Estonia
- Clinic of Dermatology Tartu University Hospital Tartu Estonia
| | - Kai Saks
- Department of Internal Medicine Institute of Clinical Medicine University of Tartu Tartu Estonia
| | - Riin Tamm
- Laboratory of Immune Analysis, United Laboratories Tartu University Hospital Tartu Estonia
| | - Lili Milani
- Estonian Genome Center Institute of Genomics University of Tartu Tartu Estonia
| | - Kai Kisand
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Pärt Peterson
- Molecular Pathology Research Group Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| |
Collapse
|
29
|
Garg R, Koo CY, Infante E, Giacomini C, Ridley AJ, Morris JDH. Rnd3 interacts with TAO kinases and contributes to mitotic cell rounding and spindle positioning. J Cell Sci 2020; 133:jcs235895. [PMID: 32041905 DOI: 10.1242/jcs.235895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 01/22/2023] Open
Abstract
Rnd3 is an atypical Rho family protein that is constitutively GTP bound, and acts on membranes to induce loss of actin stress fibers and cell rounding. Phosphorylation of Rnd3 promotes 14-3-3 binding and its relocation to the cytosol. Here, we show that Rnd3 binds to the thousand-and-one amino acid kinases TAOK1 and TAOK2 in vitro and in cells. TAOK1 and TAOK2 can phosphorylate serine residues 210, 218 and 240 near the C-terminus of Rnd3, and induce Rnd3 translocation from the plasma membrane to the cytosol. TAOKs are activated catalytically during mitosis and Rnd3 phosphorylation on serine 210 increases in dividing cells. Rnd3 depletion by RNAi inhibits mitotic cell rounding and spindle centralization, and delays breakdown of the intercellular bridge between two daughter cells. Our results show that TAOKs bind, phosphorylate and relocate Rnd3 to the cytosol and that Rnd3 contributes to mitotic cell rounding, spindle positioning and cytokinesis. Rnd3 can therefore participate in the regulation of early and late mitosis and may also act downstream of TAOKs to affect the cytoskeleton.
Collapse
Affiliation(s)
- Ritu Garg
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Chuay-Yeng Koo
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Elvira Infante
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Caterina Giacomini
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jonathan D H Morris
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
30
|
Aoki K, Satoi S, Harada S, Uchida S, Iwasa Y, Ikenouchi J. Coordinated changes in cell membrane and cytoplasm during maturation of apoptotic bleb. Mol Biol Cell 2020; 31:833-844. [PMID: 32049595 PMCID: PMC7185959 DOI: 10.1091/mbc.e19-12-0691] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Apoptotic cells form membrane blebs, but little is known about how the formation and dynamics of membrane blebs are regulated. The size of blebs gradually increases during the progression of apoptosis, eventually forming large extracellular vesicles called apoptotic bodies that have immune-modulating activities. In this study, we investigated the molecular mechanism involved in the differentiation of blebs into apoptotic blebs by comparing the dynamics of the bleb formed during cell migration and the bleb formed during apoptosis. We revealed that the enhanced activity of ROCK1 is required for the formation of small blebs in the early phase of apoptosis, which leads to the physical disruption of nuclear membrane and the degradation of Lamin A. In the late phase of apoptosis, the loss of asymmetry in phospholipids distribution caused the enlargement of blebs, which enabled translocation of damage-associated molecular patterns to the bleb cytoplasm and maturation of functional apoptotic blebs. Thus, changes in cell membrane dynamics are closely linked to cytoplasmic changes during apoptotic bleb formation.
Collapse
Affiliation(s)
- Kana Aoki
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shinsuke Satoi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shota Harada
- Department of Advanced Information Technology, Kyushu University, Fukuoka 819-0395, Japan
| | - Seiichi Uchida
- Department of Advanced Information Technology, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoh Iwasa
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan.,Department of Biosciences, School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan.,Japan Science and Technology Agency, Saitama 332-0012, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
31
|
Wang GH, Ma KL, Zhang Y, Hu ZB, Liu L, Lu J, Chen PP, Lu CC, Ruan XZ, Liu BC. Caspase 3/ROCK1 pathway mediates high glucose-induced platelet microparticles shedding. Biochem Biophys Res Commun 2018; 509:596-602. [PMID: 30606480 DOI: 10.1016/j.bbrc.2018.12.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/26/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Platelet microparticles (PMPs) are closely associated with diabetic macrovascular complications. This study aimed to explore the underlying mechanisms of high glucose-induced PMPs generation. METHODS Washed platelets, obtained from the plasma of healthy male Sprague-Dawley rats, were incubated with high glucose. PMPs were isolated using gradient centrifugation and counted by flow cytometry. Expression and activity of ROCK1 and caspase3 were evaluated by real-time PCR, Western blotting, and activity assay kit. RESULTS High glucose enhanced PMPs shedding in the presence of collagen. The mRNA and protein levels of ROCK1, but not ROCK2, were increased in platelets incubated with high glucose. Y-27632, an inhibitor of ROCK, blocked the increased PMPs shedding induced by high glucose. Expression and activity of caspase3 were elevated in platelets under the high glucose conditions. Z-DVED-FMK, a caspase3 inhibitor, inhibited ROCK1 activity and decreased the PMPs generation under high glucose. CONCLUSION High glucose increased PMPs shedding via caspase3-ROCK1 signal pathway.
Collapse
Affiliation(s)
- Gui Hua Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kun Ling Ma
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Yang Zhang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ze Bo Hu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jian Lu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Pei Pei Chen
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chen Chen Lu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiong Zhong Ruan
- Centre for Nephrology, University College London (UCL) Medical School, Royal Free Campus, UK
| | - Bi Cheng Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
32
|
Chikina AS, Svitkina TM, Alexandrova AY. Time-resolved ultrastructure of the cortical actin cytoskeleton in dynamic membrane blebs. J Cell Biol 2018; 218:445-454. [PMID: 30541746 PMCID: PMC6363452 DOI: 10.1083/jcb.201806075] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/14/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
Membrane blebbing accompanies various cellular processes, including cytokinesis, apoptosis, and cell migration, especially invasive migration of cancer cells. Blebs are extruded by intracellular pressure and are initially cytoskeleton-free, but they subsequently assemble the cytoskeleton, which can drive bleb retraction. Despite increasing appreciation of physiological significance of blebbing, the molecular and, especially, structural mechanisms controlling bleb dynamics are incompletely understood. We induced membrane blebbing in human HT1080 fibrosarcoma cells by inhibiting the Arp2/3 complex. Using correlative platinum replica electron microscopy, we characterize cytoskeletal architecture of the actin cortex in cells during initiation of blebbing and in blebs at different stages of their expansion-retraction cycle. The transition to blebbing in these conditions occurred through an intermediate filopodial stage, whereas bleb initiation was biased toward filopodial bases, where the cytoskeleton exhibited local weaknesses. Different stages of the bleb life cycle (expansion, pausing, and retraction) are characterized by specific features of cytoskeleton organization that provide implications about mechanisms of cytoskeleton assembly and bleb retraction.
Collapse
Affiliation(s)
- Aleksandra S Chikina
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.,Department of Biology, University of Pennsylvania, Philadelphia, PA
| | | | - Antonina Y Alexandrova
- Laboratory of Mechanisms of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| |
Collapse
|
33
|
Gong X, Didan Y, Lock JG, Strömblad S. KIF13A-regulated RhoB plasma membrane localization governs membrane blebbing and blebby amoeboid cell migration. EMBO J 2018; 37:embj.201898994. [PMID: 30049714 PMCID: PMC6120662 DOI: 10.15252/embj.201898994] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022] Open
Abstract
Membrane blebbing‐dependent (blebby) amoeboid migration can be employed by lymphoid and cancer cells to invade 3D‐environments. Here, we reveal a mechanism by which the small GTPase RhoB controls membrane blebbing and blebby amoeboid migration. Interestingly, while all three Rho isoforms (RhoA, RhoB and RhoC) regulated amoeboid migration, each controlled motility in a distinct manner. In particular, RhoB depletion blocked membrane blebbing in ALL (acute lymphoblastic leukaemia), melanoma and lung cancer cells as well as ALL cell amoeboid migration in 3D‐collagen, while RhoB overexpression enhanced blebbing and 3D‐collagen migration in a manner dependent on its plasma membrane localization and down‐stream effectors ROCK and Myosin II. RhoB localization was controlled by endosomal trafficking, being internalized via Rab5 vesicles and then trafficked either to late endosomes/lysosomes or to Rab11‐positive recycling endosomes, as regulated by KIF13A. Importantly, KIF13A depletion not only inhibited RhoB plasma membrane localization, but also cell membrane blebbing and 3D‐migration of ALL cells. In conclusion, KIF13A‐mediated endosomal trafficking modulates RhoB plasma membrane localization to control membrane blebbing and blebby amoeboid migration.
Collapse
Affiliation(s)
- Xiaowei Gong
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Yuliia Didan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - John G Lock
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
34
|
Abstract
Precisely controlled cell deformations are key to cell migration, division and tissue morphogenesis, and have been implicated in cell differentiation during development, as well as cancer progression. In animal cells, shape changes are primarily driven by the cellular cortex, a thin actomyosin network that lies directly underneath the plasma membrane. Myosin-generated forces create tension in the cortical network, and gradients in tension lead to cellular deformations. Recent studies have provided important insight into the molecular control of cortical tension by progressively unveiling cortex composition and organization. In this Cell Science at a Glance article and the accompanying poster, we review our current understanding of cortex composition and architecture. We then discuss how the microscopic properties of the cortex control cortical tension. While many open questions remain, it is now clear that cortical tension can be modulated through both cortex composition and organization, providing multiple levels of regulation for this key cellular property during cell and tissue morphogenesis. Summary: A summary of the composition, architecture, mechanics and function of the cellular actin cortex, which determines the shape of animal cells, and, thus, provides the foundation for cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Priyamvada Chugh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
35
|
Tsuchiya M, Hara Y, Okuda M, Itoh K, Nishioka R, Shiomi A, Nagao K, Mori M, Mori Y, Ikenouchi J, Suzuki R, Tanaka M, Ohwada T, Aoki J, Kanagawa M, Toda T, Nagata Y, Matsuda R, Takayama Y, Tominaga M, Umeda M. Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nat Commun 2018; 9:2049. [PMID: 29799007 PMCID: PMC5967302 DOI: 10.1038/s41467-018-04436-w] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/26/2018] [Indexed: 11/23/2022] Open
Abstract
Myotube formation by fusion of myoblasts and subsequent elongation of the syncytia is essential for skeletal muscle formation. However, molecules that regulate myotube formation remain elusive. Here we identify PIEZO1, a mechanosensitive Ca2+ channel, as a key regulator of myotube formation. During myotube formation, phosphatidylserine, a phospholipid that resides in the inner leaflet of the plasma membrane, is transiently exposed to cell surface and promotes myoblast fusion. We show that cell surface phosphatidylserine inhibits PIEZO1 and that the inward translocation of phosphatidylserine, which is driven by the phospholipid flippase complex of ATP11A and CDC50A, is required for PIEZO1 activation. PIEZO1-mediated Ca2+ influx promotes RhoA/ROCK-mediated actomyosin assemblies at the lateral cortex of myotubes, thus preventing uncontrolled fusion of myotubes and leading to polarized elongation during myotube formation. These results suggest that cell surface flip-flop of phosphatidylserine acts as a molecular switch for PIEZO1 activation that governs proper morphogenesis during myotube formation. Myotube formation by fusion of myoblasts is essential for skeletal muscle formation, but which molecules regulate this process remains elusive. Here authors identify the mechanosensitive PIEZO1 channel as a key element, whose activity is regulated by phosphatidylserine during myotube formation.
Collapse
Affiliation(s)
- Masaki Tsuchiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan. .,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| | - Masaki Okuda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Karin Itoh
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Ryotaro Nishioka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Akifumi Shiomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Masayuki Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ryo Suzuki
- Institute for Integrated Cell-Material Sciences (WPI iCeMS), Kyoto University, Kyoto, 606-8501, Japan.,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Motomu Tanaka
- Institute for Integrated Cell-Material Sciences (WPI iCeMS), Kyoto University, Kyoto, 606-8501, Japan.,Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, Heidelberg, 69120, Germany.,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Tomohiko Ohwada
- Laboratory of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 115-0033, Japan
| | - Junken Aoki
- Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, 980-8578, Japan
| | - Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Hyogo, 650-0017, Japan
| | - Tatsushi Toda
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yosuke Nagata
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, 700-0005, Japan
| | - Ryoichi Matsuda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Yasunori Takayama
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, Aichi, 444-8787, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience, Aichi, 444-8787, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| |
Collapse
|
36
|
Shigetomi K, Ono Y, Inai T, Ikenouchi J. Adherens junctions influence tight junction formation via changes in membrane lipid composition. J Cell Biol 2018; 217:2373-2381. [PMID: 29720382 PMCID: PMC6028530 DOI: 10.1083/jcb.201711042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/23/2018] [Accepted: 04/25/2018] [Indexed: 02/05/2023] Open
Abstract
How adherens junctions (AJs) influence tight junction (TJ) formation in epithelial cells is unclear. Shigetomi et al. show that loss of AJs affects plasma membrane (PM) lipid composition and that cholesterol addition in α-catenin–knockouts rescues TJ formation. In total, their data suggest that AJs affect TJ formation by controlling PM lipid levels. Tight junctions (TJs) are essential cell adhesion structures that act as a barrier to separate the internal milieu from the external environment in multicellular organisms. Although their major constituents have been identified, it is unknown how the formation of TJs is regulated. TJ formation depends on the preceding formation of adherens junctions (AJs) in epithelial cells; however, the underlying mechanism remains to be elucidated. In this study, loss of AJs in α-catenin–knockout (KO) EpH4 epithelial cells altered the lipid composition of the plasma membrane (PM) and led to endocytosis of claudins, a major component of TJs. Sphingomyelin with long-chain fatty acids and cholesterol were enriched in the TJ-containing PM fraction. Depletion of cholesterol abolished the formation of TJs. Conversely, addition of cholesterol restored TJ formation in α-catenin–KO cells. Collectively, we propose that AJs mediate the formation of TJs by increasing the level of cholesterol in the PM.
Collapse
Affiliation(s)
- Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yumiko Ono
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuichiro Inai
- Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan .,Agency for Medical Research and Development-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
37
|
Nishimura K, Watanabe S, Kaku T, Sugishima S. Serum starvation induces abnormal spindle location, RhoA delocalization, and extension of intercellular bridge with the midbody. Biosci Biotechnol Biochem 2018; 82:1-6. [PMID: 29499630 DOI: 10.1080/09168451.2018.1443791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/10/2018] [Indexed: 10/17/2022]
Abstract
Serum starvation induces binucleation in HeLa cells, but the effects of serum starvation on mitosis and the significance of binucleation remain unknown. We investigated the effect of serum starvation on mitosis and analyzed the growth of binucleated cells. The frequency of binucleation caused by cytokinesis failure in DMEM without FBS (0% medium) was higher than that in DMEM with FBS (10% medium). In 0% medium, the metaphase spindle location was off-center, and RhoA localization significantly lacked symmetry. The frequency of the extension of intercellular bridge with the midbody in 0% medium was significantly higher than that in 10% medium. Moreover, all mononucleated mitotic cells caused bipolar mitosis and produced only mononucleated daughter cells, but binucleated cells produced various nucleated cells by multipolar mitosis in 0% medium. These results suggest that serum starvation may have various effects on mitosis, and binucleated cells may be related to formation of aneuploidy.
Collapse
Affiliation(s)
- Kazunori Nishimura
- a Department of Health Sciences, Graduate School of Medical Sciences , Kyushu University , Fukuoka City , Japan
| | - Sumiko Watanabe
- b Faculty of Medical Sciences, Department of Health Sciences , Kyushu University , Fukuoka City , Japan
| | - Tsunehisa Kaku
- b Faculty of Medical Sciences, Department of Health Sciences , Kyushu University , Fukuoka City , Japan
| | - Setsuo Sugishima
- b Faculty of Medical Sciences, Department of Health Sciences , Kyushu University , Fukuoka City , Japan
| |
Collapse
|
38
|
Jiao M, Wu D, Wei Q. Myosin II-interacting guanine nucleotide exchange factor promotes bleb retraction via stimulating cortex reassembly at the bleb membrane. Mol Biol Cell 2018; 29:643-656. [PMID: 29321250 PMCID: PMC6004584 DOI: 10.1091/mbc.e17-10-0579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/11/2017] [Accepted: 01/03/2018] [Indexed: 11/11/2022] Open
Abstract
Blebs are involved in various biological processes such as cell migration, cytokinesis, and apoptosis. While the expansion of blebs is largely an intracellular pressure-driven process, the retraction of blebs is believed to be driven by RhoA activation that leads to the reassembly of the actomyosin cortex at the bleb membrane. However, it is still poorly understood how RhoA is activated at the bleb membrane. Here, we provide evidence demonstrating that myosin II-interacting guanine nucleotide exchange factor (MYOGEF) is implicated in bleb retraction via stimulating RhoA activation and the reassembly of an actomyosin network at the bleb membrane during bleb retraction. Interaction of MYOGEF with ezrin, a well-known regulator of bleb retraction, is required for MYOGEF localization to retracting blebs. Notably, knockout of MYOGEF or ezrin not only disrupts RhoA activation at the bleb membrane, but also interferes with nonmuscle myosin II localization and activation, as well as actin polymerization in retracting blebs. Importantly, MYOGEF knockout slows down bleb retraction. We propose that ezrin interacts with MYOGEF and recruits it to retracting blebs, where MYOGEF activates RhoA and promotes the reassembly of the cortical actomyosin network at the bleb membrane, thus contributing to the regulation of bleb retraction.
Collapse
Affiliation(s)
- Meng Jiao
- Department of Biological Sciences, Fordham University, Bronx, NY 10458
| | - Di Wu
- Department of Biological Sciences, Fordham University, Bronx, NY 10458
| | - Qize Wei
- Department of Biological Sciences, Fordham University, Bronx, NY 10458
| |
Collapse
|
39
|
Kentala H, Koponen A, Kivelä AM, Andrews R, Li C, Zhou Y, Olkkonen VM. Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation. FASEB J 2018; 32:1281-1295. [PMID: 29092904 DOI: 10.1096/fj.201700604r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ORP2 is implicated in cholesterol transport, triglyceride metabolism, and adrenocortical steroid hormone production. We addressed ORP2 function in hepatocytes by generating ORP2-knockout (KO) HuH7 cells by CRISPR-Cas9 gene editing, followed by analyses of transcriptome, F-actin morphology, migration, adhesion, and proliferation. RNA sequencing of ORP2-KO cells revealed >2-fold changes in 579 mRNAs. The Ingenuity Pathway Analysis (IPA) uncovered alterations in the following functional categories: cellular movement, cell-cell signaling and interaction, cellular development, cellular function and maintenance, cellular growth and proliferation, and cell morphology. Many pathways in these categories involved actin cytoskeleton, cell migration, adhesion, or proliferation. Analysis of the ORP2 interactome uncovered 109 putative new partners. Their IPA analysis revealed Ras homolog A (RhoA) signaling as the most significant pathway. Interactions of ORP2 with SEPT9, MLC12, and ARHGAP12 were validated by independent assays. ORP2-KO resulted in abnormal F-actin morphology characterized by impaired capacity to form lamellipodia, migration defect, and impaired adhesion and proliferation. Rescue of the migration phenotype and generation of typical cell surface morphology required an intact ORP2 phosphoinositide binding site, suggesting that ORP2 function involves phosphoinositide binding and transport. The results point at a novel function of ORP2 as a lipid-sensing regulator of the actin cytoskeleton, with impacts on hepatocellular migration, adhesion, and proliferation.-Kentala, H., Koponen, A., Kivelä, A. M., Andrews, R., Li, C., Zhou, Y., Olkkonen, V. M. Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annika Koponen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annukka M Kivelä
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Robert Andrews
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - ChunHei Li
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - You Zhou
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
40
|
Abstract
Malignant carcinomas are often characterized by metastasis, the movement of carcinoma cells from a primary site to colonize distant organs. For metastasis to occur, carcinoma cells first must adopt a pro-migratory phenotype and move through the surrounding stroma towards a blood or lymphatic vessel. Currently, there are very limited possibilities to target these processes therapeutically. The family of Rho GTPases is an ubiquitously expressed division of GTP-binding proteins involved in the regulation of cytoskeletal dynamics and intracellular signaling. The best characterized members of the Rho family GTPases are RhoA, Rac1 and Cdc42. Abnormalities in Rho GTPase function have major consequences for cancer progression. Rho GTPase activation is driven by cell surface receptors that activate GTP exchange factors (GEFs) and GTPase-activating proteins (GAPs). In this review, we summarize our current knowledge on Rho GTPase function in the regulation of metastasis. We will focus on key discoveries in the regulation of epithelial-mesenchymal-transition (EMT), cell-cell junctions, formation of membrane protrusions, plasticity of cell migration and adaptation to a hypoxic environment. In addition, we will emphasize on crosstalk between Rho GTPase family members and other important oncogenic pathways, such as cyclic AMP-mediated signaling, canonical Wnt/β-catenin, Yes-associated protein (YAP) and hypoxia inducible factor 1α (Hif1α) and provide an overview of the advancements and challenges in developing pharmacological tools to target Rho GTPase and the aforementioned crosstalk in the context of cancer therapeutics.
Collapse
|
41
|
Boquet-Pujadas A, Lecomte T, Manich M, Thibeaux R, Labruyère E, Guillén N, Olivo-Marin JC, Dufour AC. BioFlow: a non-invasive, image-based method to measure speed, pressure and forces inside living cells. Sci Rep 2017; 7:9178. [PMID: 28835648 PMCID: PMC5569094 DOI: 10.1038/s41598-017-09240-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/19/2017] [Indexed: 12/23/2022] Open
Abstract
Cell motility is governed by a complex molecular machinery that converts physico-chemical cues into whole-cell movement. Understanding the underlying biophysical mechanisms requires the ability to measure physical quantities inside the cell in a simple, reproducible and preferably non-invasive manner. To this end, we developed BioFlow, a computational mechano-imaging method and associated software able to extract intracellular measurements including pressure, forces and velocity everywhere inside freely moving cells in two and three dimensions with high spatial resolution in a non-invasive manner. This is achieved by extracting the motion of intracellular material observed using fluorescence microscopy, while simultaneously inferring the parameters of a given theoretical model of the cell interior. We illustrate the power of BioFlow in the context of amoeboid cell migration, by modelling the intracellular actin bulk flow of the parasite Entamoeba histolytica using fluid dynamics, and report unique experimental measures that complement and extend both theoretical estimations and invasive experimental measures. Thanks to its flexibility, BioFlow is easily adaptable to other theoretical models of the cell, and alleviates the need for complex or invasive experimental conditions, thus constituting a powerful tool-kit for mechano-biology studies. BioFlow is open-source and freely available via the Icy software.
Collapse
Affiliation(s)
- Aleix Boquet-Pujadas
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,CNRS UMR3691, Paris, France
| | - Timothée Lecomte
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,CNRS UMR3691, Paris, France
| | - Maria Manich
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,CNRS UMR3691, Paris, France
| | - Roman Thibeaux
- Institut Pasteur, Cell Biology of Parasitism Unit, Paris, France.,INSERM U786, Paris, France.,Institut Pasteur, Leptospirosis Research Unit, New Caledonia
| | - Elisabeth Labruyère
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,CNRS UMR3691, Paris, France
| | - Nancy Guillén
- Institut Pasteur, Cell Biology of Parasitism Unit, Paris, France.,INSERM U786, Paris, France.,CNRS ERL9195, Paris, France
| | | | - Alexandre C Dufour
- Institut Pasteur, Bioimage Analysis Unit, Paris, France. .,CNRS UMR3691, Paris, France.
| |
Collapse
|
42
|
Rothschild PR, Salah S, Berdugo M, Gélizé E, Delaunay K, Naud MC, Klein C, Moulin A, Savoldelli M, Bergin C, Jeanny JC, Jonet L, Arsenijevic Y, Behar-Cohen F, Crisanti P. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: Contribution to diabetic retinopathy. Sci Rep 2017; 7:8834. [PMID: 28821742 PMCID: PMC5562711 DOI: 10.1038/s41598-017-07329-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022] Open
Abstract
In diabetic retinopathy, the exact mechanisms leading to retinal capillary closure and to retinal barriers breakdown remain imperfectly understood. Rho-associated kinase (ROCK), an effector of the small GTPase Rho, involved in cytoskeleton dynamic regulation and cell polarity is activated by hyperglycemia. In one year-old Goto Kakizaki (GK) type 2 diabetic rats retina, ROCK-1 activation was assessed by its cellular distribution and by phosphorylation of its substrates, MYPT1 and MLC. In both GK rat and in human type 2 diabetic retinas, ROCK-1 is activated and associated with non-apoptotic membrane blebbing in retinal vessels and in retinal pigment epithelium (RPE) that respectively form the inner and the outer barriers. Activation of ROCK-1 induces focal vascular constrictions, endoluminal blebbing and subsequent retinal hypoxia. In RPE cells, actin cytoskeleton remodeling and membrane blebs in RPE cells contributes to outer barrier breakdown. Intraocular injection of fasudil, significantly reduces both retinal hypoxia and RPE barrier breakdown. Diabetes-induced cell blebbing may contribute to ischemic maculopathy and represent an intervention target.
Collapse
Affiliation(s)
- Pierre-Raphaël Rothschild
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Sawsen Salah
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Marianne Berdugo
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Emmanuelle Gélizé
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Kimberley Delaunay
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Marie-Christine Naud
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Christophe Klein
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Alexandre Moulin
- Department of Ophthalmology of University of Lausanne 1000 Lausanne, Jules Gonin Hospital, Lausanne, Switzerland
| | - Michèle Savoldelli
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Ciara Bergin
- Department of Ophthalmology of University of Lausanne 1000 Lausanne, Jules Gonin Hospital, Lausanne, Switzerland
| | - Jean-Claude Jeanny
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Laurent Jonet
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Yvan Arsenijevic
- Department of Ophthalmology of University of Lausanne 1000 Lausanne, Jules Gonin Hospital, Lausanne, Switzerland
| | - Francine Behar-Cohen
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France. .,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France. .,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France. .,Department of Ophthalmology, Assistance Publique-Hopitaux de Paris, Hôtel-Dieu de Paris Hospital, 75004, Paris, France. .,INSERM U1138 Team 17, Le Centre de Recherches des Cordeliers (CRC), 75006, Paris, France. .,University of Lausanne, Lausanne, Switzerland.
| | - Patricia Crisanti
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
43
|
Bharadwaj R, Arya R, Shahid mansuri M, Bhattacharya S, Bhattacharya A. EhRho1 regulates plasma membrane blebbing through PI3 kinase inEntamoeba histolytica. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/03/2017] [Accepted: 04/16/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ravi Bharadwaj
- School of Biotechnology; Jawaharlal Nehru University; New Delhi India
| | - Ranjana Arya
- School of Biotechnology; Jawaharlal Nehru University; New Delhi India
| | | | - Sudha Bhattacharya
- School of environmental Sciences; Jawaharlal Nehru University; New Delhi India
| | - Alok Bhattacharya
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| |
Collapse
|
44
|
Weng NJH, Talbot P. The P2X7 receptor is an upstream regulator of dynamic blebbing and a pluripotency marker in human embryonic stem cells. Stem Cell Res 2017; 23:39-49. [PMID: 28672157 DOI: 10.1016/j.scr.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 11/18/2022] Open
Abstract
New methods are needed to reduce dynamic blebbing which inhibits cell attachment and survival during passaging of pluripotent stem cells. We tested the hypothesis that activation of the P2X7 receptor by extracellular ATP during passaging initiates dynamic blebbing. The P2X7 receptor was present in human embryonic stem cells (hESC), but not in differentiating cells. Extracellular ATP concentrations were 14× higher in medium during passaging. Addition of ATP to culture medium prolonged dynamic blebbing and inhibited attachment. Inhibition of P2X7 by specific drugs or by siRNA significantly reduced dynamic blebbing and improved cell attachment. When cells were incubated in calcium chelators (EGTA or BAPTA), blebbing decreased and attachment improved. Calcium influx was observed using Fura-4 when ATP was added to culture medium and inhibited in the presence of the P2X7 inhibitor. Over-expressing activated Rac in hESC reduced blebbing and promoted cell attachment, while a Rac inhibitor prolonged blebbing and reduced attachment. These data identify a pathway involving P2X7 that initiates and prolongs dynamic blebbing during hESC passaging. This pathway provides new insight into factors that increase dynamic blebbing and identifies new targets, such as P2X7, that can be used to improve the culture of cells with therapeutic potential.
Collapse
Affiliation(s)
- Nikki Jo-Hao Weng
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA; Cell, Molecular, and Developmental Biology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Prue Talbot
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA; Cell, Molecular, and Developmental Biology Graduate Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
45
|
Affiliation(s)
- Junichi Ikenouchi
- a Department of Biology , Faculty of Sciences, Kyushu University , Fukuoka , Japan.,b PRESTO, Japan Science and Technology Agency , Saitama , Japan.,c AMED-PRIME, Japan Agency for Medical Research and Development , Tokyo , Japan
| |
Collapse
|
46
|
Abstract
The plasma membrane is generally associated with underling actin cytoskeleton. When the plasma membrane detaches from actin filaments, it is expanded by the intracellular pressure and the spherical membrane protrusion which lacks underlying actin cortex, termed bleb, is formed. Bleb is widely used for migration across species; however, the molecular mechanism underlying membrane blebbing remains largely unknown. Our recent study revealed that 2 small GTPases, Rnd3 and RhoA, are important regulators of membrane blebbing. In the expanding blebs, Rnd3 is recruited to the plasma membrane and inhibits RhoA activity by activating RhoGAP. On the other hand, RhoA is activated at the retracting membrane and removes Rnd3 from plasma membrane by the activity of ROCK (Rho-associated protein kinase). ROCK is also important for the rapid reassembly of actin cortex and retraction of membrane blebs by activating Ezrin. We propose that a Rnd3 and RhoA cycle underlies the core machinery of continuous membrane blebbing.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- a Department of Biology, Faculty of Sciences , Kyushu University , Fukuoka , Japan.,b PRESTO, Japan Science and Technology Agency , Saitama , Japan.,c AMED-PRIME, Japan Agency for Medical Research and Development , Tokyo , Japan
| | - Kana Aoki
- a Department of Biology, Faculty of Sciences , Kyushu University , Fukuoka , Japan
| |
Collapse
|