1
|
Kim Y, Knapp S, Krämer A. LOPAC library screening identifies suramin as a TRIM21 binder with a unique binding mode revealed by crystal structure. Acta Crystallogr F Struct Biol Commun 2025; 81:101-107. [PMID: 39955622 PMCID: PMC11866408 DOI: 10.1107/s2053230x25000913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
Differential scanning fluorimetry screening of the Library of Pharmacologically Active Compounds (LOPAC) identified four hits for the PRYSPRY domain of the human E3 ligase tripartite motif-containing protein 21 (TRIM21). Isothermal titration calorimetry subsequently confirmed suramin as a binder with micromolar affinity. To further investigate the binding mechanism, mouse TRIM21 was used as a structural surrogate due to its improved protein stability and high sequence similarity to the human counterpart. A crystal structure of the complex refined at 1.3 Å resolution revealed a unique binding mode, providing new avenues for targeting TRIM21 and for the development of proteolysis-targeting chimeras (PROTACs).
Collapse
Affiliation(s)
- Yeojin Kim
- Department of PharmacyGoethe University FrankfurtMax-von-Laue Strasse 9Frankfurt am Main60438HessenGermany
| | - Stefan Knapp
- Department of PharmacyGoethe University FrankfurtMax-von-Laue Strasse 9Frankfurt am Main60438HessenGermany
| | - Andreas Krämer
- Department of PharmacyGoethe University FrankfurtMax-von-Laue Strasse 9Frankfurt am Main60438HessenGermany
| |
Collapse
|
2
|
Battista S, Fedele M, Secco L, Ingo AMD, Sgarra R, Manfioletti G. Binding to the Other Side: The AT-Hook DNA-Binding Domain Allows Nuclear Factors to Exploit the DNA Minor Groove. Int J Mol Sci 2024; 25:8863. [PMID: 39201549 PMCID: PMC11354804 DOI: 10.3390/ijms25168863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The "AT-hook" is a peculiar DNA-binding domain that interacts with DNA in the minor groove in correspondence to AT-rich sequences. This domain has been first described in the HMGA protein family of architectural factors and later in various transcription factors and chromatin proteins, often in association with major groove DNA-binding domains. In this review, using a literature search, we identified about one hundred AT-hook-containing proteins, mainly chromatin proteins and transcription factors. After considering the prototypes of AT-hook-containing proteins, the HMGA family, we review those that have been studied in more detail and that have been involved in various pathologies with a particular focus on cancer. This review shows that the AT-hook is a domain that gives proteins not only the ability to interact with DNA but also with RNA and proteins. This domain can have enzymatic activity and can influence the activity of the major groove DNA-binding domain and chromatin docking modules when present, and its activity can be modulated by post-translational modifications. Future research on the function of AT-hook-containing proteins will allow us to better decipher their function and contribution to the different pathologies and to eventually uncover their mutual influences.
Collapse
Affiliation(s)
- Sabrina Battista
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.B.); (M.F.)
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.B.); (M.F.)
| | - Luca Secco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| | | | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| | - Guidalberto Manfioletti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| |
Collapse
|
3
|
Polge C, Cabantous S, Taillandier D. Tripartite Split-GFP for High Throughput Screening of Small Molecules: A Powerful Strategy for Targeting Transient/Labile Interactors like E2-E3 Ubiquitination Enzymes. Chembiochem 2024; 25:e202300723. [PMID: 38088048 DOI: 10.1002/cbic.202300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Indexed: 01/13/2024]
Abstract
The search for inhibitors of the Ubiquitin Proteasome System (UPS) is an expanding area, due to the crucial role of UPS enzymes in several diseases. The complexity of the UPS and the multiple protein-protein interactions (PPIs) involved, either between UPS proteins themselves or between UPS components and theirs targets, offer an incredibly wide field for the development of chemical compounds for specifically modulating or inhibiting metabolic pathways. However, numerous UPS PPIs are transient/labile, due the processivity of the system (Ubiquitin [Ub] chain elongation, Ub transfer, etc.). Among the different strategies that can be used either for deciphering UPS PPI or for identifying/characterizing small compounds inhibitors, the split-GFP approach offers several advantages notably for high throughput screening of drugs. Split-GFP is based on the principle of protein-fragment complementation assay (PCA). PCA allows addressing PPIs by coupling each protein of interest (POI) to fragments of a reporter protein whose reconstitution is linked to the interaction of the POI. Here, we review the evolution of the split-GFP approach from bipartite to tripartite Split-GFP and its recent applicability for screening chemical compounds targeting the UPS.
Collapse
Affiliation(s)
- Cécile Polge
- Université Clermont Auvergne INRAE, UNH, Unité de Nutrition Humaine, F-63000, Clermont-Ferrand, France
| | - Stéphanie Cabantous
- Cancer Research Center of Toulouse INSERM UMR 1037, Université de Toulouse, F-31037, Toulouse, France
| | - Daniel Taillandier
- Université Clermont Auvergne INRAE, UNH, Unité de Nutrition Humaine, F-63000, Clermont-Ferrand, France
| |
Collapse
|
4
|
Wu K, DeVita RJ, Pan ZQ. Modulation of Cullin-RING E3 ubiquitin ligase-dependent ubiquitination by small molecule compounds. J Biol Chem 2024; 300:105752. [PMID: 38354780 PMCID: PMC10950867 DOI: 10.1016/j.jbc.2024.105752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Cullin (CUL)-RING (Really Interesting New Gene) E3 ubiquitin (Ub) ligases (CRLs) are the largest E3 family. The E3 CRL core ligase is a subcomplex formed by the CUL C-terminal domain bound with the ROC1/RBX1 RING finger protein, which acts as a hub that mediates and organizes multiple interactions with E2, Ub, Nedd8, and the ARIH family protein, thereby resulting in Ub transfer to the E3-bound substrate. This report describes the modulation of CRL-dependent ubiquitination by small molecule compounds including KH-4-43, #33, and suramin, which target the CRL core ligases. We show that both KH-4-43 and #33 inhibit the ubiquitination of CK1α by CRL4CRBN. However, either compound's inhibitory effect on this reaction is significantly reduced when a neddylated form of CRL4CRBN is used. On the other hand, both #33 and KH-4-43 inhibit the ubiquitination of β-catenin by CRL1β-TrCP and Nedd8-CRL1β-TrCP almost equally. Thus, neddylation of CRL1β-TrCP does not negatively impact the sensitivity to inhibition by #33 and KH-4-43. These findings suggest that the effects of neddylation to alter the sensitivity of CRL inhibition by KH-4-43/#33 is dependent upon the specific CRL type. Suramin, a compound that targets CUL's basic canyon, can effectively inhibit CRL1/4-dependent ubiquitination regardless of neddylation status, in contrast to the results observed with KH-4-43/#33. This observed differential drug sensitivity of KH-4-43/#33 appears to echo CUL-specific Nedd8 effects on CRLs as revealed by recent high-resolution structural biology efforts. The highly diversified CRL core ligase structures may provide opportunities for specific targeting by small molecule modulators.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA; Drug Discovery Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
5
|
Vela-Rodríguez C, Scarpulla I, Ashok Y, Lehtiö L. Discovery of DTX3L inhibitors through a homogeneous FRET-based assay that monitors formation and removal of poly-ubiquitin chains. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:365-375. [PMID: 37579950 DOI: 10.1016/j.slasd.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Ubiquitination is a reversible protein post-translational modification in which consequent enzymatic activity results in the covalent linking of ubiquitin to a target protein. Once ubiquitinated, a protein can undergo multiple rounds of ubiquitination on multiple sites or form poly-ubiquitin chains. Ubiquitination regulates various cellular processes, and dysregulation of ubiquitination has been associated with more than one type of cancer. Therefore, efforts have been carried out to identify modulators of the ubiquitination cascade. Herein, we present the development of a FRET-based assay that allows us to monitor ubiquitination activity of DTX3L, a RING-type E3 ubiquitin ligase. Our method shows a good signal window with a robust average Z' factor of 0.76 on 384-well microplates, indicating a good assay for screening inhibitors in a high-throughput setting. From a validatory screening experiment, we have identified the first molecules that inhibit DTX3L with potencies in the low micromolar range. We also demonstrate that the method can be expanded to study deubiquitinases, such as USP28, that reduce FRET due to hydrolysis of fluorescent poly-ubiquitin chains.
Collapse
Affiliation(s)
- Carlos Vela-Rodríguez
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Ilaria Scarpulla
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Yashwanth Ashok
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.
| |
Collapse
|
6
|
Mehyar N. Coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase inhibitors: A systematic review of in vitro studies. J Virus Erad 2023:100327. [PMID: 37363132 PMCID: PMC10214743 DOI: 10.1016/j.jve.2023.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction The recent outbreak of SARS-CoV-2 significantly increased the need to find inhibitors that target the essential enzymes for virus replication in the host cells. This systematic review was conducted to identify potential inhibitors of SARS-CoV, MERS-CoV, and SARS-CoV-2 helicases that have been tested by in vitro methods. The inhibition mechanisms of these compounds were discussed in this review, in addition to their cytotoxic and viral infection protection properties. Methods The databases PUBMED/MEDLINE, EMBASE, SCOPUS, and Web of Science were searched using different combinations of the keywords "helicase", "nsp13", "inhibitors", "coronaviridae", "coronaviruses", "virus replication", "replication", and "antagonists and inhibitors". Results By the end of this search, a total of 6854 articles had been identified. Thirty-one articles were included in this review. These studies reported the inhibitory effects of 309 compounds on SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase activities measured by in vitro methods. Helicase inhibitors were categorized according to the type of coronavirus and the type of tested enzymatic activity, nature, approval, inhibition level, cytotoxicity, and viral infection protection effects. These inhibitors are classified according to the site of their interaction with the coronavirus helicases into four types: zinc-binding site inhibitors, nucleic acid binding site inhibitors, nucleotide-binding site inhibitors, and inhibitors with no clear interaction site. Conclusion Evidence from in vitro studies suggests that helicase inhibitors have a high potential as antiviral agents. Several helicase inhibitors tested in vitro showed good antiviral activities while maintaining moderate cytotoxicity. These inhibitors should be clinically investigated to determine their efficiency in treating different coronavirus infections, particularly COVID-19.
Collapse
Affiliation(s)
- Nimer Mehyar
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Naidu SAG, Mustafa G, Clemens RA, Naidu AS. Plant-Derived Natural Non-Nucleoside Analog Inhibitors (NNAIs) against RNA-Dependent RNA Polymerase Complex (nsp7/nsp8/nsp12) of SARS-CoV-2. J Diet Suppl 2023; 20:254-283. [PMID: 34850656 DOI: 10.1080/19390211.2021.2006387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence of fast-spreading SARS-CoV-2 mutants has sparked a new phase of COVID-19 pandemic. There is a dire necessity for antivirals targeting highly conserved genomic domains on SARS-CoV-2 that are less prone to mutation. The nsp12, also known as the RNA-dependent RNA-polymerase (RdRp), the core component of 'SARS-CoV-2 replication-transcription complex', is a potential well-conserved druggable antiviral target. Several FDA-approved RdRp 'nucleotide analog inhibitors (NAIs)' such as remdesivir, have been repurposed to treat COVID-19 infections. The NAIs target RdRp protein translation and competitively block the nucleotide insertion into the RNA chain, resulting in the inhibition of viral replication. However, the replication proofreading function of nsp14-ExoN could provide resistance to SARS-CoV-2 against many NAIs. Conversely, the 'non-nucleoside analog inhibitors (NNAIs)' bind to allosteric sites on viral polymerase surface, change the redox state; thereby, exert antiviral activity by altering interactions between the enzyme substrate and active core catalytic site of the RdRp. NNAIs neither require metabolic activation (unlike NAIs) nor compete with intracellular pool of nucleotide triphosphates (NTPs) for anti-RdRp activity. The NNAIs from phytonutrient origin are potential antiviral candidates compared to their synthetic counterparts. Several in-silico studies reported the antiviral spectrum of natural phytonutrient-NNAIs such as Suramin, Silibinin (flavonolignan), Theaflavin (tea polyphenol), Baicalein (5,6,7-trihydroxyflavone), Corilagin (gallotannin), Hesperidin (citrus bioflavonoid), Lycorine (pyrrolidine alkaloid), with superior redox characteristics (free binding energy, hydrogen-bonds, etc.) than antiviral drugs (i.e. remdesivir, favipiravir). These phytonutrient-NNAIs also exert anti-inflammatory, antioxidant, immunomodulatory and cardioprotective functions, with multifunctional therapeutic benefits in the clinical management of COVID-19.
Collapse
Affiliation(s)
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
8
|
Xu X, Chen Y, Lu X, Zhang W, Fang W, Yuan L, Wang X. An update on inhibitors targeting RNA-dependent RNA polymerase for COVID-19 treatment: Promises and challenges. Biochem Pharmacol 2022; 205:115279. [PMID: 36209840 PMCID: PMC9535928 DOI: 10.1016/j.bcp.2022.115279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 01/18/2023]
Abstract
The highly transmissible variants of SARS-CoV-2, the causative pathogen of the COVID-19 pandemic, bring new waves of infection worldwide. Identification of effective therapeutic drugs to combat the COVID-19 pandemic is an urgent global need. RNA-dependent RNA polymerase (RdRp), an essential enzyme for viral RNA replication, is the most promising target for antiviral drug research since it has no counterpart in human cells and shows the highest conservation across coronaviruses. This review summarizes recent progress in studies of RdRp inhibitors, focusing on interactions between these inhibitors and the enzyme complex, based on structural analysis, and their effectiveness. In addition, we propose new possible strategies to address the shortcomings of current inhibitors, which may guide the development of novel efficient inhibitors to combat COVID-19.
Collapse
Affiliation(s)
- Xiaoying Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yuheng Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinyu Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wanlin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Wenxiu Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Luping Yuan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xiaoyan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| |
Collapse
|
9
|
Minatel BC, Cohn DE, Pewarchuk ME, Barros-Filho MC, Sage AP, Stewart GL, Marshall EA, Telkar N, Martinez VD, Reis PP, Robinson WP, Lam WL. Genetic and Epigenetic Mechanisms Deregulate the CRL2pVHL Complex in Hepatocellular Carcinoma. Front Genet 2022; 13:910221. [PMID: 35664333 PMCID: PMC9159809 DOI: 10.3389/fgene.2022.910221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of ubiquitin-proteasome pathway genes through copy number alteration, promoter hypomethylation, and miRNA deregulation is involved in cancer development and progression. Further characterizing alterations in these genes may uncover novel drug targets across a range of diseases in which druggable alterations are uncommon, including hepatocellular carcinoma (HCC). We analyzed 377 HCC and 59 adjacent non-malignant liver tissue samples, focusing on alterations to component genes of the widely studied CRL2pVHL E3 ubiquitin ligase complex. mRNA upregulation of the component genes was common, and was correlated with DNA hypomethylation and copy number increase, but many tumours displayed overexpression that was not explained by either mechanism. Interestingly, we found 66 miRNAs, including 39 previously unannotated miRNAs, that were downregulated in HCC and predicted to target one or more CRL2pVHL components. Several miRNAs, including hsa-miR-101-3p and hsa-miR-139-5p, were negatively correlated with multiple component genes, suggesting that miRNA deregulation may contribute to CRL2pVHL overexpression. Combining miRNA and mRNA expression, DNA copy number, and methylation status into one multidimensional survival analysis, we found a significant association between greater numbers of alterations and poorer overall survival for multiple component genes. While the intricacies of CRL2pVHL complex gene regulation require additional research, it is evident that multiple causes for the deregulation of these genes must be considered in HCC, including non-traditional mechanisms.
Collapse
Affiliation(s)
- Brenda C. Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - David E. Cohn
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- *Correspondence: David E. Cohn,
| | - Michelle E. Pewarchuk
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Mateus C. Barros-Filho
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Oncology, Hospital Sírio-Libanes, São Paulo, Brazil
| | - Adam P. Sage
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Greg L. Stewart
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Erin A. Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Nikita Telkar
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Victor D. Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Patricia P. Reis
- Department of Surgery and Orthopedics and Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Wendy P. Robinson
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| |
Collapse
|
10
|
Discovery of a small molecule inhibitor of cullin neddylation that triggers ER stress to induce autophagy. Acta Pharm Sin B 2021; 11:3567-3584. [PMID: 34900537 PMCID: PMC8642603 DOI: 10.1016/j.apsb.2021.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 12/30/2022] Open
Abstract
Protein neddylation is catalyzed by a three-enzyme cascade, namely an E1 NEDD8-activating enzyme (NAE), one of two E2 NEDD8 conjugation enzymes and one of several E3 NEDD8 ligases. The physiological substrates of neddylation are the family members of cullin, the scaffold component of cullin RING ligases (CRLs). Currently, a potent E1 inhibitor, MLN4924, also known as pevonedistat, is in several clinical trials for anti-cancer therapy. Here we report the discovery, through virtual screening and structural modifications, of a small molecule compound HA-1141 that directly binds to NAE in both in vitro and in vivo assays and effectively inhibits neddylation of cullins 1–5. Surprisingly, unlike MLN4924, HA-1141 also triggers non-canonical endoplasmic reticulum (ER) stress and PKR-mediated terminal integrated stress response (ISR) to activate ATF4 at an early stage, and to inhibit protein synthesis and mTORC1 activity at a later stage, eventually leading to autophagy induction. Biologically, HA-1141 suppresses growth and survival of cultured lung cancer cells and tumor growth in in vivo xenograft lung cancer models at a well-tolerated dose. Taken together, our study has identified a small molecule compound with the dual activities of blocking neddylation and triggering ER stress, leading to growth suppression of cancer cells.
Collapse
|
11
|
Wu K, Hopkins BD, Sanchez R, DeVita RJ, Pan ZQ. Targeting Cullin-RING E3 Ubiquitin Ligase 4 by Small Molecule Modulators. JOURNAL OF CELLULAR SIGNALING 2021; 2:195-205. [PMID: 34604860 PMCID: PMC8486283 DOI: 10.33696/signaling.2.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cullin-RING E3 ubiquitin ligase 4 (CRL4) plays an essential role in cell cycle progression. Recent efforts using high throughput screening and follow up hit-to-lead studies have led to identification of small molecules 33-11 and KH-4-43 that inhibit E3 CRL4's core ligase complex and exhibit anticancer potential. This review provides: 1) an updated perspective of E3 CRL4, including structural organization, major substrate targets and role in cancer; 2) a discussion of the challenges and strategies for finding the CRL inhibitor; and 3) a summary of the properties of the identified CRL4 inhibitors as well as a perspective on their potential utility to probe CRL4 biology and act as therapeutic agents.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Benjamin D Hopkins
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA.,Genetics and Genomics, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Roberto Sanchez
- Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA.,Drug Discovery Institute, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA.,Drug Discovery Institute, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| |
Collapse
|
12
|
Taillandier D. [Metabolic pathways controlled by E3 ligases: an opportunity for therapeutic targeting]. Biol Aujourdhui 2021; 215:45-57. [PMID: 34397374 DOI: 10.1051/jbio/2021006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/14/2022]
Abstract
Since its discovery, the Ubiquitin Proteasome System (UPS) has been recognized for its major role in controlling most of the cell's metabolic pathways. In addition to its essential role in the degradation of proteins, it is also involved in the addressing, signaling or repair of DNA, which makes it a key player in cellular homeostasis. Although other control systems exist in the cell, the UPS is often referred to as the conductor. In view of its importance, any dysregulation of the UPS leads to more or less severe disorders for the cell and therefore the body, which accounts for UPS implication in many pathologies (cancer, Alzheimer's disease, Huntington's disease, etc.). UPS is made up of more than 1000 different proteins, the combinations of which allow the fine targeting of virtually all proteins in the body. UPS uses an enzymatic cascade (E1, 2 members; E2 > 35; E3 > 800) which allows the transfer of ubiquitin, a small protein of 8.5 kDa onto the protein to be targeted either for its degradation or to modify its activity. This ubiquitinylation signal is reversible and many deubiquitinylases (DUB, ∼ 80 isoforms) also have an important role. E3 enzymes are the most numerous and their function is to recognize the target protein, which makes them important players in the specific action of UPS. The very nature of E3 and the complexity of their interactions with different partners offer a very broad field of investigation and therefore significant potential for the development of therapeutic approaches. Without being exhaustive, this review illustrates the different strategies that have already been implemented to fight against different pathologies (excluding bacterial or viral infections).
Collapse
Affiliation(s)
- Daniel Taillandier
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, 63000 Clermont-Ferrand, France
| |
Collapse
|
13
|
Abstract
Cullin-RING (really intersting new gene) E3 ubiquitin ligases (CRLs) are the largest E3 family and direct numerous protein substrates for proteasomal degradation, thereby impacting a myriad of physiological and pathological processes including cancer. To date, there are no reported small-molecule inhibitors of the catalytic activity of CRLs. Here, we describe high-throughput screening and medicinal chemistry optimization efforts that led to the identification of two compounds, 33-11 and KH-4-43, which inhibit E3 CRL4 and exhibit antitumor potential. These compounds bind to CRL4's core catalytic complex, inhibit CRL4-mediated ubiquitination, and cause stabilization of CRL4's substrate CDT1 in cells. Treatment with 33-11 or KH-4-43 in a panel of 36 tumor cell lines revealed cytotoxicity. The antitumor activity was validated by the ability of the compounds to suppress the growth of human tumor xenografts in mice. Mechanistically, the compounds' cytotoxicity was linked to aberrant accumulation of CDT1 that is known to trigger apoptosis. Moreover, a subset of tumor cells was found to express cullin4 proteins at levels as much as 70-fold lower than those in other tumor lines. The low-cullin4-expressing tumor cells appeared to exhibit increased sensitivity to 33-11/KH-4-43, raising a provocative hypothesis for the role of low E3 abundance as a cancer vulnerability.
Collapse
|
14
|
Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp12/7/8 RNA-dependent RNA polymerase. Biochem J 2021; 478:2425-2443. [PMID: 34198323 PMCID: PMC8286815 DOI: 10.1042/bcj20210200] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 2019 (COVID-19) global pandemic has turned into the largest public health and economic crisis in recent history impacting virtually all sectors of society. There is a need for effective therapeutics to battle the ongoing pandemic. Repurposing existing drugs with known pharmacological safety profiles is a fast and cost-effective approach to identify novel treatments. The COVID-19 etiologic agent is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded positive-sense RNA virus. Coronaviruses rely on the enzymatic activity of the replication–transcription complex (RTC) to multiply inside host cells. The RTC core catalytic component is the RNA-dependent RNA polymerase (RdRp) holoenzyme. The RdRp is one of the key druggable targets for CoVs due to its essential role in viral replication, high degree of sequence and structural conservation and the lack of homologues in human cells. Here, we have expressed, purified and biochemically characterised active SARS-CoV-2 RdRp complexes. We developed a novel fluorescence resonance energy transfer-based strand displacement assay for monitoring SARS-CoV-2 RdRp activity suitable for a high-throughput format. As part of a larger research project to identify inhibitors for all the enzymatic activities encoded by SARS-CoV-2, we used this assay to screen a custom chemical library of over 5000 approved and investigational compounds for novel SARS-CoV-2 RdRp inhibitors. We identified three novel compounds (GSK-650394, C646 and BH3I-1) and confirmed suramin and suramin-like compounds as in vitro SARS-CoV-2 RdRp activity inhibitors. We also characterised the antiviral efficacy of these drugs in cell-based assays that we developed to monitor SARS-CoV-2 growth.
Collapse
|
15
|
Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp13 helicase. Biochem J 2021; 478:2405-2423. [PMID: 34198322 PMCID: PMC8286831 DOI: 10.1042/bcj20210201] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health challenge. While the efficacy of vaccines against emerging and future virus variants remains unclear, there is a need for therapeutics. Repurposing existing drugs represents a promising and potentially rapid opportunity to find novel antivirals against SARS-CoV-2. The virus encodes at least nine enzymatic activities that are potential drug targets. Here, we have expressed, purified and developed enzymatic assays for SARS-CoV-2 nsp13 helicase, a viral replication protein that is essential for the coronavirus life cycle. We screened a custom chemical library of over 5000 previously characterized pharmaceuticals for nsp13 inhibitors using a fluorescence resonance energy transfer-based high-throughput screening approach. From this, we have identified FPA-124 and several suramin-related compounds as novel inhibitors of nsp13 helicase activity in vitro. We describe the efficacy of these drugs using assays we developed to monitor SARS-CoV-2 growth in Vero E6 cells.
Collapse
|
16
|
A Novel Strategy to Track Lysine-48 Ubiquitination by Fluorescence Resonance Energy Transfer. Methods Mol Biol 2021. [PMID: 33786787 DOI: 10.1007/978-1-0716-1217-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Posttranslational modification of protein by lysine-48 (K48) linked ubiquitin (Ub) chains is the major cellular mechanism for selective protein degradation that critically impacts biological processes such as cell cycle checkpoints. In this chapter, we describe an in vitro biochemical approach to detect a K48-linked di-Ub chain by fluorescence resonance energy transfer (FRET). To this end, we detail methods for the preparation of the relevant enzymes and substrates, as well as for the execution of the reaction with high efficiency. Tracking K48 polyubiquitination using this sensitive and highly reproducible format provides an opportunity for high-throughput screening that leads to identification of small molecule modulators capable of changing ubiquitination for improving human health.
Collapse
|
17
|
Kim HS, Hammill JT, Scott DC, Chen Y, Rice AL, Pistel W, Singh B, Schulman BA, Guy RK. Improvement of Oral Bioavailability of Pyrazolo-Pyridone Inhibitors of the Interaction of DCN1/2 and UBE2M. J Med Chem 2021; 64:5850-5862. [PMID: 33945681 PMCID: PMC8159160 DOI: 10.1021/acs.jmedchem.1c00035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The cullin-RING ubiquitin ligases (CRLs) are ubiquitin E3 enzymes that play a key role
in controlling proteasomal degradation and are activated by neddylation. We previously
reported inhibitors that target CRL activation by disrupting the interaction of
defective in cullin neddylation 1 (DCN1), a CRL neddylation co-E3, and UBE2M, a
neddylation E2. Our first-generation inhibitors possessed poor oral bioavailability and
fairly rapid clearance that hindered the study of acute inhibition of DCN-controlled CRL
activity in vivo. Herein, we report studies to improve the pharmacokinetic performance
of the pyrazolo-pyridone inhibitors. The current best inhibitor, 40,
inhibits the interaction of DCN1 and UBE2M, blocks NEDD8 transfer in biochemical assays,
thermally stabilizes cellular DCN1, and inhibits anchorage-independent growth in a DCN1
amplified squamous cell carcinoma cell line. Additionally, we demonstrate that a single
oral 50 mg/kg dose sustains plasma exposures above the biochemical IC90 for
24 h in mice.
Collapse
Affiliation(s)
- Ho Shin Kim
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Jared T Hammill
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Daniel C Scott
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yizhe Chen
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Amy L Rice
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40508, United States
| | - William Pistel
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Bhuvanesh Singh
- Department of Surgery, Laboratory of Epithelial Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - R Kiplin Guy
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40508, United States
| |
Collapse
|
18
|
Yu Q, Sun Y. Targeting Protein Neddylation to Inactivate Cullin-RING Ligases by Gossypol: A Lucky Hit or a New Start? DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1-8. [PMID: 33442232 PMCID: PMC7797302 DOI: 10.2147/dddt.s286373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/16/2020] [Indexed: 01/26/2023]
Abstract
Cullin-RING E3 ligases (CRLs) are the largest family of E3 ubiquitin ligases, responsible for about 20% of the protein degradation by the ubiquitin-proteasome system (UPS). Given their vital roles in multiple cellular processes, and over-activation in many human cancers, CRLs are validated as promising targets for anti-cancer therapies. Activation of CRLs requires cullin neddylation, a process catalysed by three neddylation enzymes. Recently, our group established an AlphaScreen-based in vitro cullin neddylation assay and employed it for high-throughput screening to search for small-molecule inhibitors targeting cullin neddylation. During our pilot screen, gossypol, a natural product extracted from cottonseeds, was identified as one of the most potent neddylation inhibitors of cullin-1 and cullin-5. We further demonstrated that gossypol blocks cullin neddylation by binding to cullin-1/-5 to inactivate CRL1/5 ligase activity, leading to accumulation of MCL-1 and NOXA, the substrates of CRL1 and CRL5, respectively. The combination of gossypol and an MCL-1 inhibitor synergistically enhanced the anti-proliferative effect in multiple human cancer cell lines. Our study unveiled a rational combination of two previously known inhibitors of the Bcl-2 family for enhanced anti-cancer efficacy and identified a novel activity of gossypol as an inhibitor of CRL1 and CRL5 E3s, thus providing a new possibility in the development of novel CRL inhibitors for anti-cancer therapy.
Collapse
Affiliation(s)
- Qing Yu
- Department of Head and Neck Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.,Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
19
|
Wu K, Ching K, Chong RA, Pan ZQ. A new FRET-based platform to track substrate ubiquitination by fluorescence. J Biol Chem 2020; 296:100230. [PMID: 33361156 PMCID: PMC7948536 DOI: 10.1074/jbc.ra120.016858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/23/2020] [Indexed: 11/06/2022] Open
Abstract
Post-translational modification of protein by ubiquitin (Ub) alters the stability, subcellular location, or function of the target protein, thereby impacting numerous biological processes and directly contributing to myriad cellular defects or disease states, such as cancer. Tracking substrate ubiquitination by fluorescence provides opportunities for advanced reaction dynamics studies and for translational research including drug discovery. However, fluorescence-based techniques in ubiquitination studies remain underexplored at least partly because of challenges associated with Ub chain complexity and requirement for additional substrate modification. Here we describe a general strategy, FRET diubiquitination, to track substrate ubiquitination by fluorescence. This platform produces a uniform di-Ub product depending on specific interactions between a substrate and its cognate E3 Ub ligase. The diubiquitination creates proximity between the Ub-linked donor and acceptor fluorophores, respectively, enabling energy transfer to yield a distinct fluorescent signal. FRET diubiquitination relies on Ub-substrate fusion, which can be implemented using either one of the two validated strategies. Method 1 is the use of recombinant substrate-Ub fusion, applicable to all substrate peptides that can bind to E3. Method 2 is a chemoenzymatic ligation approach that employs synthetic chemistry to fuse Ub with a substrate peptide containing desired modification. Taken together, our new FRET-based diubiquitination system provides a timely technology of potential to advance both basic research and translation sciences.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin Ching
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert A Chong
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
20
|
Anger M, Scheufele F, Ramanujam D, Meyer K, Nakajima H, Field LJ, Engelhardt S, Sarikas A. Genetic ablation of Cullin-RING E3 ubiquitin ligase 7 restrains pressure overload-induced myocardial fibrosis. PLoS One 2020; 15:e0244096. [PMID: 33351822 PMCID: PMC7755222 DOI: 10.1371/journal.pone.0244096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/03/2020] [Indexed: 11/20/2022] Open
Abstract
Fibrosis is a pathognomonic feature of structural heart disease and counteracted by distinct cardioprotective mechanisms, e.g. activation of the phosphoinositide 3-kinase (PI3K) / AKT pro-survival pathway. The Cullin-RING E3 ubiquitin ligase 7 (CRL7) was identified as negative regulator of PI3K/AKT signalling in skeletal muscle, but its role in the heart remains to be elucidated. Here, we sought to determine whether CRL7 modulates to cardiac fibrosis following pressure overload and dissect its underlying mechanisms. For inactivation of CRL7, the Cullin 7 (Cul7) gene was deleted in cardiac myocytes (CM) by injection of adeno-associated virus subtype 9 (AAV9) vectors encoding codon improved Cre-recombinase (AAV9-CMV-iCre) in Cul7flox/flox mice. In addition, Myosin Heavy Chain 6 (Myh6; alpha-MHC)-MerCreMer transgenic mice with tamoxifen-induced CM-specific expression of iCre were used as alternate model. After transverse aortic constriction (TAC), causing chronic pressure overload and fibrosis, AAV9-CMV-iCre induced Cul7-/- mice displayed a ~50% reduction of interstitial cardiac fibrosis when compared to Cul7+/+ animals (6.7% vs. 3.4%, p<0.01). Similar results were obtained with Cul7flox/floxMyh6-Mer-Cre-MerTg(1/0) mice which displayed a ~30% reduction of cardiac fibrosis after TAC when compared to Cul7+/+Myh6-Mer-Cre-MerTg(1/0) controls after TAC surgery (12.4% vs. 8.7%, p<0.05). No hemodynamic alterations were observed. AKTSer473 phosphorylation was increased 3-fold (p<0.01) in Cul7-/- vs. control mice, together with a ~78% (p<0.001) reduction of TUNEL-positive apoptotic cells three weeks after TAC. In addition, CM-specific expression of a dominant-negative CUL71152stop mutant resulted in a 16.3-fold decrease (p<0.001) of in situ end-labelling (ISEL) positive apoptotic cells. Collectively, our data demonstrate that CM-specific ablation of Cul7 restrains myocardial fibrosis and apoptosis upon pressure overload, and introduce CRL7 as a potential target for anti-fibrotic therapeutic strategies of the heart.
Collapse
Affiliation(s)
- Melanie Anger
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Florian Scheufele
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Kathleen Meyer
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Hidehiro Nakajima
- Wells Center for Pediatric Research and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Loren J. Field
- Wells Center for Pediatric Research and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
- * E-mail:
| |
Collapse
|
21
|
Gossypol inhibits cullin neddylation by targeting SAG-CUL5 and RBX1-CUL1 complexes. Neoplasia 2020; 22:179-191. [PMID: 32145688 PMCID: PMC7076571 DOI: 10.1016/j.neo.2020.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Cullin-RING E3 ligase (CRL) is the largest family of E3 ubiquitin ligase, responsible for ubiquitylation of ∼20% of cellular proteins. CRL plays an important role in many biological processes, particularly in cancers due to abnormal activation. CRL activation requires neddylation, an enzymatic cascade transferring small ubiquitin-like protein NEDD8 to a conserved lysine residue on cullin proteins. Recent studies have validated that neddylation is an attractive anticancer target. In this study, we report the establishment of an Alpha-Screen-based high throughput screen (HTS) assay for in vitro CUL5 neddylation, and screened a library of 17,000 compounds including FDA approved drugs, natural products and synthetic drug-like small-molecule compounds. Gossypol, a natural compound derived from cotton seed, was identified as an inhibitor of cullin neddylation. Biochemical studies showed that gossypol blocked neddylation of both CUL5 and CUL1 through direct binding to SAG-CUL5 or RBX1-CUL1 complex, and CUL5-H572 plays a key role for gossypol binding. On cellular level, gossypol inhibited cullin neddylation in a variety of cancer cell lines and selectively caused accumulation of NOXA and MCL1, the substrates of CUL5 and CUL1, respectively, in multiple cancer cell lines. Combination of gossypol with specific MCL1 inhibitor synergistically suppress growth of human cancer cells. Our study revealed a previously unknown anti-cancer mechanism of gossypol with potential to develop a new class of neddylation inhibitors.
Collapse
|
22
|
Su L, Bryan N, Battista S, Freitas J, Garabedian A, D'Alessio F, Romano M, Falanga F, Fusco A, Kos L, Chambers J, Fernandez-Lima F, Chapagain PP, Vasile S, Smith L, Leng F. Identification of HMGA2 inhibitors by AlphaScreen-based ultra-high-throughput screening assays. Sci Rep 2020; 10:18850. [PMID: 33139812 PMCID: PMC7606612 DOI: 10.1038/s41598-020-75890-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
The mammalian high mobility group protein AT-hook 2 (HMGA2) is a multi-functional DNA-binding protein that plays important roles in tumorigenesis and adipogenesis. Previous results showed that HMGA2 is a potential therapeutic target of anticancer and anti-obesity drugs by inhibiting its DNA-binding activities. Here we report the development of a miniaturized, automated AlphaScreen ultra-high-throughput screening assay to identify inhibitors targeting HMGA2-DNA interactions. After screening the LOPAC1280 compound library, we identified several compounds that strongly inhibit HMGA2-DNA interactions including suramin, a century-old, negatively charged antiparasitic drug. Our results show that the inhibition is likely through suramin binding to the "AT-hook" DNA-binding motifs and therefore preventing HMGA2 from binding to the minor groove of AT-rich DNA sequences. Since HMGA1 proteins also carry multiple "AT-hook" DNA-binding motifs, suramin is expected to inhibit HMGA1-DNA interactions as well. Biochemical and biophysical studies show that charge-charge interactions and hydrogen bonding between the suramin sulfonated groups and Arg/Lys residues play critical roles in the binding of suramin to the "AT-hook" DNA-binding motifs. Furthermore, our results suggest that HMGA2 may be one of suramin's cellular targets.
Collapse
Affiliation(s)
- Linjia Su
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Nadezda Bryan
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, 32827, USA
| | - Sabrina Battista
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via Pansini 5, 80131, Naples, Italy
| | - Juliano Freitas
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Alyssa Garabedian
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Federica D'Alessio
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Miriam Romano
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Fabiana Falanga
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Alfredo Fusco
- Dipartimento Di Medicina Molecolare E Biotecnologie Mediche, Università Degli Studi "Federico II" Di Napoli, Naples, Italy
| | - Lidia Kos
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Jeremy Chambers
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Francisco Fernandez-Lima
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Prem P Chapagain
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
- Department of Physics, Florida International University, Miami, FL, 33199, USA
| | - Stefan Vasile
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, 32827, USA
| | - Layton Smith
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, 32827, USA
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
23
|
Celebi G, Kesim H, Ozer E, Kutlu O. The Effect of Dysfunctional Ubiquitin Enzymes in the Pathogenesis of Most Common Diseases. Int J Mol Sci 2020; 21:ijms21176335. [PMID: 32882786 PMCID: PMC7503467 DOI: 10.3390/ijms21176335] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination is a multi-step enzymatic process that involves the marking of a substrate protein by bonding a ubiquitin and protein for proteolytic degradation mainly via the ubiquitin–proteasome system (UPS). The process is regulated by three main types of enzymes, namely ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). Under physiological conditions, ubiquitination is highly reversible reaction, and deubiquitinases or deubiquitinating enzymes (DUBs) can reverse the effect of E3 ligases by the removal of ubiquitin from substrate proteins, thus maintaining the protein quality control and homeostasis in the cell. The dysfunction or dysregulation of these multi-step reactions is closely related to pathogenic conditions; therefore, understanding the role of ubiquitination in diseases is highly valuable for therapeutic approaches. In this review, we first provide an overview of the molecular mechanism of ubiquitination and UPS; then, we attempt to summarize the most common diseases affecting the dysfunction or dysregulation of these mechanisms.
Collapse
Affiliation(s)
- Gizem Celebi
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Hale Kesim
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Ebru Ozer
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Ozlem Kutlu
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
- Correspondence: ; Tel.: +90-216-483-9000 (ext. 2413)
| |
Collapse
|
24
|
Zhang X, Shi S, Su Y, Yang X, He S, Yang X, Wu J, Zhang J, Rao F. Suramin and NF449 are IP5K inhibitors that disrupt inositol hexakisphosphate-mediated regulation of cullin-RING ligase and sensitize cancer cells to MLN4924/pevonedistat. J Biol Chem 2020; 295:10281-10292. [PMID: 32493769 DOI: 10.1074/jbc.ra120.014375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/27/2020] [Indexed: 12/27/2022] Open
Abstract
Inositol hexakisphosphate (IP6) is an abundant metabolite synthesized from inositol 1,3,4,5,6-pentakisphosphate (IP5) by the single IP5 2-kinase (IP5K). Genetic and biochemical studies have shown that IP6 usually functions as a structural cofactor in protein(s) mediating mRNA export, DNA repair, necroptosis, 3D genome organization, HIV infection, and cullin-RING ligase (CRL) deneddylation. However, it remains unknown whether pharmacological perturbation of cellular IP6 levels affects any of these processes. Here, we performed screening for small molecules that regulate human IP5K activity, revealing that the antiparasitic drug and polysulfonic compound suramin efficiently inhibits IP5K in vitro and in vivo The results from docking experiments and biochemical validations suggested that the suramin targets IP5K in a distinct bidentate manner by concurrently binding to the ATP- and IP5-binding pockets, thereby inhibiting both IP5 phosphorylation and ATP hydrolysis. NF449, a suramin analog with additional sulfonate moieties, more potently inhibited IP5K. Both suramin and NF449 disrupted IP6-dependent sequestration of CRL by the deneddylase COP9 signalosome, thereby affecting CRL activity cycle and component dynamics in an IP5K-dependent manner. Finally, nontoxic doses of suramin, NF449, or NF110 exacerbate the loss of cell viability elicited by the neddylation inhibitor and clinical trial drug MLN4924/pevonedistat, suggesting synergistic ef-fects. Suramin and its analogs provide structural templates for designing potent and specific IP5K inhibitors, which could be used in combination therapy along with MLN4924/pevonedistat. IP5K is a potential mechanistic target of suramin, accounting for suramin's therapeutic effects.
Collapse
Affiliation(s)
- Xiaozhe Zhang
- College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shaodong Shi
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yang Su
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoli Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Sining He
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiuyan Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jing Wu
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis, Ministry of Education, Department of Pathophysiology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Feng Rao
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
25
|
YU Q, XIONG X, SUN Y. [Targeting Cullin-RING E3 ligases for anti-cancer therapy: efforts on drug discovery]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:1-19. [PMID: 32621419 PMCID: PMC8800688 DOI: 10.3785/j.issn.1008-9292.2020.02.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 06/11/2023]
Abstract
Cullin-RING E3 ligases (CRLs) are the major components of ubiquitin-proteasome system, responsible for ubiquitylation and subsequent degradation of thousands of cellular proteins. CRLs play vital roles in the regulation of multiple cellular processes, including cell cycle, cell apoptosis, DNA replication, signalling transduction among the others, and are frequently dysregulated in many human cancers. The discovery of specific neddylation inhibitors, represented by MLN4924, has validated CRLs as promising targets for anti-cancer therapies with a growing market. Recent studies have focused on the discovery of the CRLs inhibitors by a variety of approaches, including high through-put screen, virtual screen or structure-based drug design. The field is, however, still facing the major challenging, since CRLs are a large multi-unit protein family without typical active pockets to facilitate the drug design, and enzymatic activity is mainly dependent on undruggable protein-protein interactions and dynamic conformation changes. Up to now, most reported CRLs inhibitors are aiming at targeting the F-box family proteins (e.g., SKP2, β-TrCP and FBXW7), the substrate recognition subunit of SCF E3 ligases. Other studies reported few small molecule inhibitors targeting the UBE2M-DCN1 interaction, which specifically inhibits CRL3/CRL1 by blocking the cullin neddylation. On the other hand, several CRL activators have been reported, such as plant auxin and immunomodulatory imide drugs, thalidomide. Finally, proteolysis-targeting chimeras (PROTACs) has emerged as a new technology in the field of drug discovery, specifically targeting the undruggable protein-protein interaction. The technique connects the small molecule that selectively binds to a target protein to a CRL E3 via a chemical linker to trigger the degradation of target protein. The PROTAC has become a hotspot in the field of E3-ligase-based anti-cancer drug discovery.
Collapse
|
26
|
Yu Q, Jiang Y, Sun Y. Anticancer drug discovery by targeting cullin neddylation. Acta Pharm Sin B 2020; 10:746-765. [PMID: 32528826 PMCID: PMC7276695 DOI: 10.1016/j.apsb.2019.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/17/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Protein neddylation is a post-translational modification which transfers the ubiquitin-like protein NEDD8 to a lysine residue of the target substrate through a three-step enzymatic cascade. The best-known substrates of neddylation are cullin family proteins, which are the core component of Cullin–RING E3 ubiquitin ligases (CRLs). Given that cullin neddylation is required for CRL activity, and CRLs control the turn-over of a variety of key signal proteins and are often abnormally activated in cancers, targeting neddylation becomes a promising approach for discovery of novel anti-cancer therapeutics. In the past decade, we have witnessed significant progress in the field of protein neddylation from preclinical target validation, to drug screening, then to the clinical trials of neddylation inhibitors. In this review, we first briefly introduced the nature of protein neddylation and the regulation of neddylation cascade, followed by a summary of all reported chemical inhibitors of neddylation enzymes. We then discussed the structure-based targeting of protein–protein interaction in neddylation cascade, and finally the available approaches for the discovery of new neddylation inhibitors. This review will provide a focused, up-to-date and yet comprehensive overview on the discovery effort of neddylation inhibitors.
Collapse
Key Words
- AMP, adenosine 5′-monophosphate
- Anticancer
- BLI, biolayer interferometry
- CETSA, cellular thermal shift assay
- Drug discovery
- FH, frequent hitters
- HTS, high-throughput screen
- High-throughput screening
- IP, immunoprecipitation
- ITC, isothermal titration calorimetry
- NAE, NEDD8 activating enzyme
- Neddylation
- PAINS, pan-assay interference compounds
- SAR, structure–activity relationship
- Small molecule inhibitors
- UBL, ubiquitin-like protein
- Ubiquitin–proteasome system
- Virtual screen
Collapse
|
27
|
Zoltner M, Campagnaro GD, Taleva G, Burrell A, Cerone M, Leung KF, Achcar F, Horn D, Vaughan S, Gadelha C, Zíková A, Barrett MP, de Koning HP, Field MC. Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes. J Biol Chem 2020; 295:8331-8347. [PMID: 32354742 PMCID: PMC7294092 DOI: 10.1074/jbc.ra120.012355] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/21/2020] [Indexed: 12/27/2022] Open
Abstract
Introduced about a century ago, suramin remains a frontline drug for the management of early-stage East African trypanosomiasis (sleeping sickness). Cellular entry into the causative agent, the protozoan parasite Trypanosoma brucei, occurs through receptor-mediated endocytosis involving the parasite's invariant surface glycoprotein 75 (ISG75), followed by transport into the cytosol via a lysosomal transporter. The molecular basis of the trypanocidal activity of suramin remains unclear, but some evidence suggests broad, but specific, impacts on trypanosome metabolism (i.e. polypharmacology). Here we observed that suramin is rapidly accumulated in trypanosome cells proportionally to ISG75 abundance. Although we found little evidence that suramin disrupts glycolytic or glycosomal pathways, we noted increased mitochondrial ATP production, but a net decrease in cellular ATP levels. Metabolomics highlighted additional impacts on mitochondrial metabolism, including partial Krebs' cycle activation and significant accumulation of pyruvate, corroborated by increased expression of mitochondrial enzymes and transporters. Significantly, the vast majority of suramin-induced proteins were normally more abundant in the insect forms compared with the blood stage of the parasite, including several proteins associated with differentiation. We conclude that suramin has multiple and complex effects on trypanosomes, but unexpectedly partially activates mitochondrial ATP-generating activity. We propose that despite apparent compensatory mechanisms in drug-challenged cells, the suramin-induced collapse of cellular ATP ultimately leads to trypanosome cell death.
Collapse
Affiliation(s)
- Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Gustavo D Campagnaro
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gergana Taleva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alana Burrell
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Michela Cerone
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ka-Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology and Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology and Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom .,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
28
|
Zhang Z, Wang D, Wang P, Zhao Y, You F. OTUD1 Negatively Regulates Type I IFN Induction by Disrupting Noncanonical Ubiquitination of IRF3. THE JOURNAL OF IMMUNOLOGY 2020; 204:1904-1918. [DOI: 10.4049/jimmunol.1900305] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022]
|
29
|
Repurposing old drugs as new inhibitors of the ubiquitin-proteasome pathway for cancer treatment. Semin Cancer Biol 2019; 68:105-122. [PMID: 31883910 DOI: 10.1016/j.semcancer.2019.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/30/2019] [Accepted: 12/15/2019] [Indexed: 12/25/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a central role in the degradation of cellular proteins. Targeting protein degradation has been validated as an effective strategy for cancer therapy since 2003. Several components of the UPS have been validated as potential anticancer targets, including 20S proteasomes, 19S proteasome-associated deubiquitinases (DUBs) and ubiquitin ligases (E3s). 20S proteasome inhibitors (such as bortezomib/BTZ and carfilzomib/CFZ) have been approved by the U.S. Food and Drug Administration (FDA) for the treatment of multiple myeloma (MM) and some other liquid tumors. Although survival of MM patients has been improved by the introduction of BTZ-based therapies, these clinical 20S proteasome inhibitors have several limitations, including emergence of resistance in MM patients, neuro-toxicities, and little efficacy in solid tumors. One of strategies to improve the current status of cancer treatment is to repurpose old drugs with UPS-inhibitory properties as new anticancer agents. Old drug reposition represents an attractive drug discovery approach compared to the traditional de novo drug discovery process which is time-consuming and costly. In this review, we summarize status of repurposed inhibitors of various UPS components, including 20S proteasomes, 19S-associated DUBs, and ubiquitin ligase E3s. The original and new mechanisms of action, molecular targets, and potential anticancer activities of these repurposed UPS inhibitors are reviewed, and their new uses including combinational therapies for cancer treatment are discussed.
Collapse
|
30
|
Ni S, Chen X, Yu Q, Xu Y, Hu Z, Zhang J, Zhang W, Li B, Yang X, Mao F, Huang J, Sun Y, Li J, Jia L. Discovery of candesartan cilexetic as a novel neddylation inhibitor for suppressing tumor growth. Eur J Med Chem 2019; 185:111848. [PMID: 31732254 DOI: 10.1016/j.ejmech.2019.111848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022]
Abstract
Protein neddylation is a posttranslational modification of conjugating the neuronal precursor cell-expressed developmentally down-regulated protein 8 (Nedd8) to substrates. Our previous work revealed that neddylation pathway is overactivated in various human lung cancers and correlates with the disease progression, whereas pharmacologically targeting this pathway has emerged as an attractive therapeutic strategy. As a follow-up research, 1331 approved drugs were investigated the inhibitory activities of cullin1 neddylation for screening the hit compounds via an improved enzyme-based assay. An antihypertensive agent, candesartan cilexetic (CDC), was identified as a novel neddylation inhibitor that ATP-competitively suppressing Nedd8-activating enzyme (NAE, E1) in mechanism, which inhibited the cullins neddylation superior than two representative non-covalent NAE inhibitors, M22 and mitoxantrone. Following with the findings such as apoptotic induction and tumor growth suppression in human lung cancer A549 in vitro and in vivo, CDC represents a potential anticancer lead compound with promising neddylation inhibitory activity.
Collapse
Affiliation(s)
- Shuaishuai Ni
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qing Yu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 30029, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiguo Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Junqian Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenjuan Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Baoli Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xi Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Huang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 30029, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
31
|
Nuclear and cytoplasmic WDR-23 isoforms mediate differential effects on GEN-1 and SKN-1 substrates. Sci Rep 2019; 9:11783. [PMID: 31409866 PMCID: PMC6692315 DOI: 10.1038/s41598-019-48286-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/01/2019] [Indexed: 01/14/2023] Open
Abstract
Maintaining a healthy cellular environment requires the constant control of proteostasis. E3 ubiquitin ligase complexes facilitate the post-translational addition of ubiquitin, which based on the quantity and specific lysine linkages, results in different outcomes. Our studies reveal the CUL4-DDB1 substrate receptor, WDR23, as both a positive and a negative regulator in cellular stress responses. These opposing roles are mediated by two distinct isoforms: WDR-23A in the cytoplasm and WDR-23B in the nucleus. C. elegans expressing only WDR-23A display activation of SKN-1 and enhanced survival to oxidative stress, whereas animals with restricted WDR-23B expression do not. Additionally, we identify GEN-1, a Holliday junction resolvase, as an evolutionarily conserved WDR-23 substrate and find that the nuclear and cytoplasmic isoforms of WDR-23 differentially affect double-strand break repair. Our results suggest that through differential ubiquitination, nuclear WDR-23B inhibits the activity of substrates, most likely by promoting protein turnover, while cytoplasmic WDR-23A performs a proteasome-independent role. Together, our results establish a cooperative role between two spatially distinct isoforms of WDR-23 in ensuring proper regulation of WDR-23 substrates.
Collapse
|
32
|
Cui H, Wang Q, Lei Z, Feng M, Zhao Z, Wang Y, Wei G. DTL promotes cancer progression by PDCD4 ubiquitin-dependent degradation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:350. [PMID: 31409387 PMCID: PMC6693180 DOI: 10.1186/s13046-019-1358-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Background Ubiquitin E3 ligase CUL4A plays important oncogenic roles in the development of cancers. DTL, one of the CUL4-DDB1 associated factors (DCAFs), may involve in the process of cancer development. Programmed cell death 4 (PDCD4) is a tumor suppressor gene involved in cell apoptosis, transformation, invasion and tumor progression. Methods Affinity-purification mass spectrometry was used to identify potential DTL interaction proteins. Co-immunoprecipitation (Co-IP) was performed to verify protein interaction between DTL and PDCD4. mRNA levels in cancer cells and tissues were detected by Quantitative real-time PCR. Lentivirus was used to establish stable overexpression and knocking down cell lines for DTL and PDCD4. Transwell and wound healing assays were used to determine migration ability of cancer cells. Matrigel assay was used to determine invasion ability of cancer cells. MTT and colony formation assays were used to evaluate proliferation of cancer cells. Results In this study, programmed cell death 4 (PDCD4) was identified as a potential substrate of DTL. Co-IP and immunofluorescence assays further confirmed the interaction between DTL and PDCD4. Moreover, DTL overexpression decreased the protein level and accelerated the degradation rate of PDCD4. Through in vitro ubiquitination experiment, we proved that PDCD4 was degraded by DTL through ubiquitination. Clinically DTL was significantly up-regulated in cancer tissues than that in normal tissues. The survival curves showed that cancer patients with higher DTL expression owned lower survival rate. Functional experiments showed that DTL not only enhanced the proliferation and migration abilities of cancer cells, but also promoted the tumorigenesis in nude mice. Rescued experiment results demonstrated that silencing PDCD4 simultaneous with DTL recovered the phenotypes defect caused by DTL knocking down. Conclusions Our results elucidated that DTL enhanced the motility and proliferation of cancer cells through degrading PDCD4 to promote the development of cancers. Electronic supplementary material The online version of this article (10.1186/s13046-019-1358-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haoran Cui
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhenchuan Lei
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Maoxiao Feng
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Jinan, Shandong, China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China.
| | - Guangwei Wei
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, Jinan, Shandong, China.
| |
Collapse
|
33
|
Williams KM, Qie S, Atkison JH, Salazar-Arango S, Alan Diehl J, Olsen SK. Structural insights into E1 recognition and the ubiquitin-conjugating activity of the E2 enzyme Cdc34. Nat Commun 2019; 10:3296. [PMID: 31341161 PMCID: PMC6656757 DOI: 10.1038/s41467-019-11061-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin (Ub) signaling requires the sequential interactions and activities of three enzymes, E1, E2, and E3. Cdc34 is an E2 that plays a key role in regulating cell cycle progression and requires unique structural elements to function. The molecular basis by which Cdc34 engages its E1 and the structural mechanisms by which its unique C-terminal extension functions in Cdc34 activity are unknown. Here, we present crystal structures of Cdc34 alone and in complex with E1, and a Cdc34~Ub thioester mimetic that represents the product of Uba1-Cdc34 Ub transthiolation. These structures reveal conformational changes in Uba1 and Cdc34 and a unique binding mode that are required for transthiolation. The Cdc34~Ub structure reveals contacts between the Cdc34 C-terminal extension and Ub that stabilize Cdc34~Ub in a closed conformation and are critical for Ub discharge. Altogether, our structural, biochemical, and cell-based studies provide insights into the molecular mechanisms by which Cdc34 function in cells.
Collapse
Affiliation(s)
- Katelyn M Williams
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shuo Qie
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - James H Atkison
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sabrina Salazar-Arango
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - J Alan Diehl
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shaun K Olsen
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
34
|
Ullah K, Zubia E, Narayan M, Yang J, Xu G. Diverse roles of the E2/E3 hybrid enzyme
UBE
2O in the regulation of protein ubiquitination, cellular functions, and disease onset. FEBS J 2018; 286:2018-2034. [DOI: 10.1111/febs.14708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/18/2018] [Accepted: 11/19/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Kifayat Ullah
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Emmanuel Zubia
- Department of Chemistry and Biochemistry The University of Texas at El Paso TX USA
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry The University of Texas at El Paso TX USA
| | - Jing Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases Soochow University Suzhou Jiangsu China
| |
Collapse
|
35
|
Liu X, Zhang Y, Hu Z, Li Q, Yang L, Xu G. The Catalytically Inactive Mutation of the Ubiquitin-Conjugating Enzyme CDC34 Affects its Stability and Cell Proliferation. Protein J 2018; 37:132-143. [PMID: 29564676 DOI: 10.1007/s10930-018-9766-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ubiquitin proteasome system (UPS) plays important roles in the regulation of protein stability, localization, and activity. A myriad of studies have focused on the functions of ubiquitin ligases E3s and deubiquitinating enzymes DUBs due to their specificity in the recognition of downstream substrates. However, the roles of the most ubiquitin-conjugating enzymes E2s are not completely understood except that they transport the activated ubiquitin and form E2-E3 protein complexes. Ubiquitin-conjugating enzyme CDC34 can promote the degradation of downstream targets through the UPS whereas its non-catalytic functions are still elusive. Here, we find that mutation of the catalytically active cysteine to serine (C93S) results in the reduced ubiquitination, increased stability, and attenuated degradation rate of CDC34. Through semi-quantitative proteomics, we identify the CDC34-interacting proteins and discover that the wild-type and mutant proteins have many differentially interacted proteins. Detailed examination finds that some of them are involved in the regulation of gene expression, cell growth, and cell proliferation. Cell proliferation assay reveals that both the wild-type and C93S proteins affect the proliferation of a cancer cell line. Database analyses show that CDC34 mRNA is highly expressed in multiple cancers, which is correlated with the reduced patient survival rate. This work may help to elucidate the enzymatic and non-enzymatic functions of this protein and might provide additional insights for drug discovery targeting E2s.
Collapse
Affiliation(s)
- Xun Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Zhanhong Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Qian Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Lu Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
36
|
Cross Talk Networks of Mammalian Target of Rapamycin Signaling With the Ubiquitin Proteasome System and Their Clinical Implications in Multiple Myeloma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:219-297. [PMID: 30712673 DOI: 10.1016/bs.ircmb.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy and results from the clonal amplification of plasma cells. Despite recent advances in treatment, MM remains incurable with a median survival time of only 5-6years, thus necessitating further insights into MM biology and exploitation of novel therapeutic approaches. Both the ubiquitin proteasome system (UPS) and the PI3K/Akt/mTOR signaling pathways have been implicated in the pathogenesis, and treatment of MM and different lines of evidence suggest a close cross talk between these central cell-regulatory signaling networks. In this review, we outline the interplay between the UPS and mTOR pathways and discuss their implications for the pathophysiology and therapy of MM.
Collapse
|
37
|
Vigneshwari L, Balasubramaniam B, Sethupathy S, Pandian SK, Balamurugan K. O-GlcNAcylation confers protection against Staphylococcus aureus infection in Caenorhabditis elegans through ubiquitination. RSC Adv 2018; 8:23089-23100. [PMID: 35540126 PMCID: PMC9081618 DOI: 10.1039/c8ra00279g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022] Open
Abstract
Glycosylation is one of the most prevalent post-translational modifications in biological systems. In Caenorhabditis elegans, O-GlcNAcylation has been shown to be actively involved in the regulation of dauer formation and detoxification of toxins secreted by invading pathogens. On this backdrop, the present study is focused on understanding the role of O-GlcNAcylation in C. elegans during Staphylococcus aureus infection using a gel based proteomic approach. Results of time course killing assays with wild-type and mutants of glycosylation and comparison of results revealed an increase in the survival of the C. elegans oga-1 mutant when compared to wild-type N2 and the ogt-1 mutant. Increased survival of C. elegans N2 upon S. aureus infection in the presence of O-(2-acetamido-2-deoxy-d-glucopyranosylidenamino) N-phenylcarbamate (PUGNAc-an OGA inhibitor) further confirmed the involvement of O-GlcNAcylation in protecting C. elegans from infection. The two-dimensional gel-based proteomic analysis of the control and S. aureus infected C. elegans oga-1 mutant followed by mass spectrometric identification of differentially expressed proteins has been carried out. The results revealed that key proteins involved in ubiquitination such as Cullin-1 (CUL-1), Cullin-3 (CUL-3), BTB and MATH domain-containing protein 15 (BATH-15), ubiquitin-conjugating enzyme E2 variant 3 (UEV-3) and probable ubiquitin-conjugating enzyme E2 7 (UBC-7) are upregulated. Real-time PCR analysis further confirms the upregulation of genes encoding the above-mentioned proteins which are involved in the ubiquitin-mediated pathways in C. elegans. In addition, treatment of C. elegans wild-type N2 and the oga-1 mutant with PUGNAc + suramin and suramin (an ubiquitination inhibitor), respectively has resulted in increased sensitivity to S. aureus infection. Hence, it is presumed that upregulation of proteins involved in the ubiquitination pathway could be the key regulatory mechanism responsible for the enhanced survival of the oga-1 mutant during S. aureus infection.
Collapse
Affiliation(s)
- Loganathan Vigneshwari
- Department of Biotechnology, Science Campus, Alagappa University Karaikudi 630 003 Tamil Nadu India +91 4565 229334 +91 4565 225215
| | - Boopathi Balasubramaniam
- Department of Biotechnology, Science Campus, Alagappa University Karaikudi 630 003 Tamil Nadu India +91 4565 229334 +91 4565 225215
| | - Sivasamy Sethupathy
- Department of Biotechnology, Science Campus, Alagappa University Karaikudi 630 003 Tamil Nadu India +91 4565 229334 +91 4565 225215
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Science Campus, Alagappa University Karaikudi 630 003 Tamil Nadu India +91 4565 229334 +91 4565 225215
| | - Krishnaswamy Balamurugan
- Department of Biotechnology, Science Campus, Alagappa University Karaikudi 630 003 Tamil Nadu India +91 4565 229334 +91 4565 225215
| |
Collapse
|
38
|
Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels. Future Med Chem 2018; 10:1301-1317. [PMID: 29558821 DOI: 10.4155/fmc-2017-0322] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Persistent activation of STING pathway is the basis for several autoimmune diseases. STING is activated by cGAMP, which is produced by cGAS in the presence of DNA. Results/methodology: HPLC-based medium throughput screening for inhibitors of cGAS identified suramin as a potent inhibitor. Unlike other reported cGAS inhibitors, which bind to the ATP/GTP binding site, suramin displaced the bound DNA from cGAS. Addition of suramin to THP1 cells reduced the levels of IFN-β mRNA and protein. Suramin did not inhibit lipopolysaccharide- or Pam3CSK4-induced IL-6 mRNA expression. Conclusion: Suramin inhibits STING pathway via the inhibition of cGAS enzymatic activity. Suramin or analogs thereof that displace DNA from cGAS could be used as anti-inflammatory drugs.
Collapse
|
39
|
Kampmeyer C, Nielsen SV, Clausen L, Stein A, Gerdes AM, Lindorff-Larsen K, Hartmann-Petersen R. Blocking protein quality control to counter hereditary cancers. Genes Chromosomes Cancer 2017; 56:823-831. [PMID: 28779490 DOI: 10.1002/gcc.22487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022] Open
Abstract
Inhibitors of molecular chaperones and the ubiquitin-proteasome system have already been clinically implemented to counter certain cancers, including multiple myeloma and mantle cell lymphoma. The efficacy of this treatment relies on genomic alterations in cancer cells causing a proteostatic imbalance, which makes them more dependent on protein quality control (PQC) mechanisms than normal cells. Accordingly, blocking PQC, e.g. by proteasome inhibitors, may cause a lethal proteotoxic crisis in cancer cells, while leaving normal cells unaffected. Evidence, however, suggests that the PQC system operates by following a better-safe-than-sorry principle and is thus prone to target proteins that are only slightly structurally perturbed, but still functional. Accordingly, implementing PQC inhibitors may also, through an entirely different mechanism, hold potential for other cancers. Several inherited cancer susceptibility syndromes, such as Lynch syndrome and von Hippel-Lindau disease, are caused by missense mutations in tumor suppressor genes, and in some cases, the resulting amino acid substitutions in the encoded proteins cause the cellular PQC system to target them for degradation, although they may still retain function. As a consequence of this over-meticulous PQC mechanism, the cell may end up with an insufficient amount of the abnormal, but functional, protein, which in turn leads to a loss-of-function phenotype and manifestation of the disease. Increasing the amounts of such proteins by stabilizing with chemical chaperones, or by targeting molecular chaperones or the ubiquitin-proteasome system, may thus avert or delay the disease onset. Here, we review the potential of targeting the PQC system in hereditary cancer susceptibility syndromes.
Collapse
Affiliation(s)
- Caroline Kampmeyer
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, DK-2200, Denmark
| | - Sofie V Nielsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, DK-2200, Denmark
| | - Lene Clausen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, DK-2200, Denmark
| | - Amelie Stein
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, DK-2200, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, Copenhagen, DK-2100, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, DK-2200, Denmark
| | - Rasmus Hartmann-Petersen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, DK-2200, Denmark
| |
Collapse
|
40
|
Affiliation(s)
- George M. Burslem
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
41
|
Lange S, Hacker SM, Schmid P, Scheffner M, Marx A. Small-Molecule Inhibitors of the Tumor Suppressor Fhit. Chembiochem 2017. [PMID: 28643453 DOI: 10.1002/cbic.201700226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The tumor suppressor Fhit and its substrate diadenosine triphosphate (Ap3 A) are important factors in cancer development and progression. Fhit has Ap3 A hydrolase activity and cleaves Ap3 A into adenosine monophosphate (AMP) and adenosine diphosphate (ADP); this is believed to terminate Fhit-mediated signaling. How the catalytic activity of Fhit is regulated and how the Fhit⋅Ap3 A complex might exert its growth-suppressive function remain to be discovered. Small-molecule inhibitors of the enzymatic activity of Fhit would provide valuable tools for the elucidation of its tumor-suppressive functions. Here we describe the development of a high-throughput screen for the identification of such small-molecule inhibitors of Fhit. Two clusters of inhibitors that decreased the activity of Fhit by at least 90 % were identified. Several derivatives were synthesized and exhibited in vitro IC50 values in the nanomolar range.
Collapse
Affiliation(s)
- Sandra Lange
- Department of Chemistry, Konstanz Research School-Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Stephan M Hacker
- Department of Chemistry, Konstanz Research School-Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Philipp Schmid
- Department of Chemistry, Konstanz Research School-Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School-Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
42
|
Suisse A, He D, Legent K, Treisman JE. COP9 signalosome subunits protect Capicua from MAPK-dependent and -independent mechanisms of degradation. Development 2017; 144:2673-2682. [PMID: 28619822 DOI: 10.1242/dev.148767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/08/2017] [Indexed: 11/20/2022]
Abstract
The COP9 signalosome removes Nedd8 modifications from the Cullin subunits of ubiquitin ligase complexes, reducing their activity. Here, we show that mutations in the Drosophila COP9 signalosome subunit 1b (CSN1b) gene increase the activity of ubiquitin ligases that contain Cullin 1. Analysis of CSN1b mutant phenotypes revealed a requirement for the COP9 signalosome to prevent ectopic expression of Epidermal growth factor receptor (EGFR) target genes. It does so by protecting Capicua, a transcriptional repressor of EGFR target genes, from EGFR pathway-dependent ubiquitylation by a Cullin 1/SKP1-related A/Archipelago E3 ligase and subsequent proteasomal degradation. The CSN1b subunit also maintains basal Capicua levels by protecting it from a separate mechanism of degradation that is independent of EGFR signaling. As a suppressor of tumor growth and metastasis, Capicua may be an important target of the COP9 signalosome in cancer.
Collapse
Affiliation(s)
- Annabelle Suisse
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - DanQing He
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Kevin Legent
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jessica E Treisman
- Helen L. and Martin S. Kimmel Center at the Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
43
|
Lafreniere MA, Powdrill MH, Singaravelu R, Pezacki JP. 6-Hydroxydopamine Inhibits the Hepatitis C Virus through Alkylation of Host and Viral Proteins and the Induction of Oxidative Stress. ACS Infect Dis 2016; 2:863-871. [PMID: 27682680 DOI: 10.1021/acsinfecdis.6b00098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many viruses, including the hepatitis C virus (HCV), are dependent on the host RNA silencing pathway for replication. In this study, we screened small molecule probes, previously reported to disrupt loading of the RNA-induced silencing complex (RISC), including 6-hydroxydopamine (6-OHDA), suramin (SUR), and aurintricarboxylic acid (ATA), to examine their effects on viral replication. We found that 6-OHDA inhibited HCV replication; however, 6-OHDA was a less potent inhibitor of RISC than either SUR or ATA. By generating a novel chemical probe (6-OHDA-yne), we determined that 6-OHDA covalently modifies host and virus proteins. Moreover, 6-OHDA was shown to be an alkylating agent that is capable of generating adducts with a number of enzymes involved in the oxidative stress response. Furthermore, modification of viral enzymes with 6-OHDA and 6-OHDA-yne was found to inhibit their enzymatic activity. Our findings suggest that 6-OHDA is a probe for oxidative stress as well as protein alkylation, and these properties together contribute to the antiviral effects of this compound.
Collapse
Affiliation(s)
- Matthew A. Lafreniere
- Department of Chemistry
and Biomolecular Sciences, University of Ottawa, 10 Marie Curie
Private, Ottawa, ON, Canada K1N 6N5
| | - Megan H. Powdrill
- Department of Chemistry
and Biomolecular Sciences, University of Ottawa, 10 Marie Curie
Private, Ottawa, ON, Canada K1N 6N5
| | - Ragunath Singaravelu
- Department
of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| | - John Paul Pezacki
- Department of Chemistry
and Biomolecular Sciences, University of Ottawa, 10 Marie Curie
Private, Ottawa, ON, Canada K1N 6N5
- Department
of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada K1H 8M5
| |
Collapse
|
44
|
Zoltner M, Horn D, de Koning HP, Field MC. Exploiting the Achilles' heel of membrane trafficking in trypanosomes. Curr Opin Microbiol 2016; 34:97-103. [PMID: 27614711 PMCID: PMC5176092 DOI: 10.1016/j.mib.2016.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022]
Abstract
Pathogenic protozoa are evolutionarily highly divergent from their metazoan hosts, reflected in many aspects of their biology. One particularly important parasite taxon is the trypanosomatids. Multiple transmission modes, distinct life cycles and exploitation of many host species attests to great prowess as parasites, and adaptability for efficient, chronic infection. Genome sequencing has begun uncovering how trypanosomatids are well suited to parasitism, and recent genetic screening and cell biology are revealing new aspects of how to control these organisms and prevent disease. Importantly, several lines of evidence suggest that membrane transport processes are central for the sensitivity towards several frontline drugs.
Collapse
Affiliation(s)
- Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - David Horn
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, Scotland, UK
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|
45
|
Yang XD, Xiang DX, Yang YY. Role of E3 ubiquitin ligases in insulin resistance. Diabetes Obes Metab 2016; 18:747-754. [PMID: 27097743 DOI: 10.1111/dom.12677] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/09/2016] [Accepted: 04/17/2016] [Indexed: 12/19/2022]
Abstract
E3 ubiquitin ligases are a large family of proteins that catalyse the ubiquitination of many proteins for degradation by the 26S proteasome. E3 ubiquitin ligases play pivotal roles in the process of insulin resistance and diabetes. In this review, we summarize the currently available studies to analyse the potential role of E3 ubiquitin ligases in the development of insulin resistance. We propose two mechanisms by which E3 ubiquitin ligases can affect the process of insulin resistance. First, E3 ubiquitin ligases directly degrade the insulin receptor, insulin receptor substrate and other key insulin signalling molecules via the UPS. Second, E3 ubiquitin ligases indirectly regulate insulin signalling by regulating pro-inflammatory mediators that are involved in the regulation of insulin signalling molecules, such as tumour necrosis factor-α, interleukin (IL)-6, IL-4, IL-13, IL-1β, monocyte chemoattractant protein-1 and hypoxia-inducible factor 1α. Determining the mechanism by which E3 ubiquitin ligases affect the development of insulin resistance can identify a novel strategy to protect against insulin resistance and diabetes.
Collapse
Affiliation(s)
- X-D Yang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - D-X Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Y-Y Yang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Abstract
High-throughput screening (HTS) is a key technology platform for the discovery of chemical probes and identification of potential drug leads. Once mainly found in industry, HTS is now an integral component of a significant number of academic basic and translational research enterprises. Although the allure of large-scale diversity set-based HTS is substantive, the inherent costs associated with this type of screening strategy are steep and often yield suboptimal return on investment. Perhaps more appealing, and potentially more rewarding, are smaller scale screening strategies using targeted libraries coupled with assays with high-physiological relevance. These "high-physiocontextual"-targeted library screening paradigms, in turn, may have significant impact on the quality of chemical probes and ensuing drug discovery efforts.
Collapse
Affiliation(s)
- Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
47
|
Chakraborty S. DOCLASP - Docking ligands to target proteins using spatial and electrostatic congruence extracted from a known holoenzyme and applying simple geometrical transformations. F1000Res 2014; 3:262. [PMID: 27429737 DOI: 10.12688/f1000research.5145.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 02/04/2023] Open
Abstract
The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are significant matches, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. In the current work, the dipeptidyl peptidase-IV inhibitor vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. Also, corroboration of the docking of phenylthiourea to the modelled structure of polyphenol oxidase (JrPPO1) from walnut is provided based on the subsequently solved structure of JrPPO1 (PDBid:5CE9). Analysis of the binding of the antitrypanosomial drug suramin to nine non-homologous proteins in the PDB database shows a diverse set of binding motifs, and multiple binding sites in the phospholipase A2-likeproteins from the Bothrops genus of pitvipers. The conformational changes in the suramin molecule on binding highlights the challenges in docking flexible ligands into an already 'plastic' binding site. Thus, DOCLASP presents a method for 'soft docking' ligands to proteins with low computational requirements.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Plant Sciences Department, University of California, Davis, CA, 95616, USA; Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India; Celia Engineers, Navi Mumbai, India
| |
Collapse
|
48
|
Chakraborty S. DOCLASP - Docking ligands to target proteins using spatial and electrostatic congruence extracted from a known holoenzyme and applying simple geometrical transformations. F1000Res 2014; 3:262. [PMID: 27429737 PMCID: PMC4934513 DOI: 10.12688/f1000research.5145.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2016] [Indexed: 12/01/2022] Open
Abstract
The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are significant matches, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. In the current work, the dipeptidyl peptidase-IV inhibitor vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. Also, corroboration of the docking of phenylthiourea to the modelled structure of polyphenol oxidase (JrPPO1) from walnut is provided based on the subsequently solved structure of JrPPO1 (PDBid:5CE9). Analysis of the binding of the antitrypanosomial drug suramin to nine non-homologous proteins in the PDB database shows a diverse set of binding motifs, and multiple binding sites in the phospholipase A2-likeproteins from the Bothrops genus of pitvipers. The conformational changes in the suramin molecule on binding highlights the challenges in docking flexible ligands into an already ’plastic’ binding site. Thus, DOCLASP presents a method for ’soft docking’ ligands to proteins with low computational requirements.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Plant Sciences Department, University of California, Davis, CA, 95616, USA; Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India; Celia Engineers, Navi Mumbai, India
| |
Collapse
|
49
|
Chakraborty S. DOCLASP - Docking ligands to target proteins using spatial and electrostatic congruence extracted from a known holoenzyme and applying simple geometrical transformations. F1000Res 2014; 3:262. [PMID: 27429737 DOI: 10.12688/f1000research.5145.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are significant matches, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. In the current work, the dipeptidyl peptidase-IV inhibitor vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. Also, corroboration of the docking of phenylthiourea to the modelled structure of polyphenol oxidase (JrPPO1) from walnut is provided based on the subsequently solved structure of JrPPO1 (PDBid:5CE9). Analysis of the binding of the antitrypanosomial drug suramin to nine non-homologous proteins in the PDB database shows a diverse set of binding motifs, and multiple binding sites in the phospholipase A2-likeproteins from the Bothrops genus of pitvipers. The conformational changes in the suramin molecule on binding highlights the challenges in docking flexible ligands into an already 'plastic' binding site. Thus, DOCLASP presents a method for 'soft docking' ligands to proteins with low computational requirements.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Plant Sciences Department, University of California, Davis, CA, 95616, USA; Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India; Celia Engineers, Navi Mumbai, India
| |
Collapse
|