1
|
Robinson CD, Hale MD, Cox CL, John-Alder HB, Cox RM. Effects of Testosterone on Gene Expression Are Concordant between Sexes but Divergent across Species of Sceloporus Lizards. Am Nat 2024; 204:517-532. [PMID: 39486031 DOI: 10.1086/732200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractHormones mediate sexual dimorphism by regulating sex-specific patterns of gene expression, but it is unclear how much of this regulation involves sex-specific hormone levels versus sex-specific transcriptomic responses to the same hormonal signal. Moreover, transcriptomic responses to hormones can evolve, but the extent to which hormonal pleiotropy in gene regulation is conserved across closely related species is not well understood. We addressed these issues by elevating testosterone levels in juvenile females and males of three Sceloporus lizard species before sexual divergence in circulating testosterone and then characterizing transcriptomic responses in the liver. In each species, more genes were responsive to testosterone in males than in females, suggesting that early developmental processes prime sex-specific transcriptomic responses to testosterone later in life. However, overall transcriptomic responses to testosterone were concordant between sexes, with no genes exhibiting sex-by-treatment interactions. By contrast, hundreds of genes exhibited species-by-treatment interactions, particularly when comparing distantly related species with different patterns of sexual dimorphism, suggesting evolutionary lability in gene regulation by testosterone. Collectively, our results indicate that early organizational effects may lead to sex-specific differences in the magnitude, but not the direction, of transcriptomic responses to testosterone and that the hormone-genome interface accrues regulatory changes over evolutionary time.
Collapse
|
2
|
Sestrick K, Moczek AP. Eye development influences horn size but not patterning in horned beetles. Evol Dev 2024; 26:e12479. [PMID: 38733133 DOI: 10.1111/ede.12479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Understanding the origin of novel morphological traits is a long-standing objective in evolutionary developmental biology. We explored the developmental genetic mechanisms that underpin the formation of a textbook example of evolutionary novelties, the cephalic horns of beetles. Previous work has implicated the gene regulatory networks associated with compound eye and ocellar development in horn formation and suggested that horns and compound eyes may influence each other's sizes. Therefore, we investigated the functional significance of genes central to visual system formation in the initiation, patterning, and size determination of head horns across three horned beetle species. We find that while the downregulation of canonical eye patterning genes reliably reduces or eliminates compound eye formation, it does not alter the position or shape of head horns yet does result in an increase in relative horn length. We discuss the implications of our results for our understanding of the genesis of cephalic horns in particular and evolutionary novelties in general.
Collapse
Affiliation(s)
- Kat Sestrick
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
3
|
Hu Y, Crabtree JR, Macagno ALM, Moczek AP. Histone deacetylases regulate organ-specific growth in a horned beetle. EvoDevo 2024; 15:4. [PMID: 38575982 PMCID: PMC10996171 DOI: 10.1186/s13227-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Nutrient availability is among the most widespread means by which environmental variability affects developmental outcomes. Because almost all cells within an individual organism share the same genome, structure-specific growth responses must result from changes in gene regulation. Earlier work suggested that histone deacetylases (HDACs) may serve as epigenetic regulators linking nutritional conditions to trait-specific development. Here we expand on this work by assessing the function of diverse HDACs in the structure-specific growth of both sex-shared and sex-specific traits including evolutionarily novel structures in the horned dung beetle Onthophagus taurus. RESULTS We identified five HDAC members whose downregulation yielded highly variable mortality depending on which HDAC member was targeted. We then show that HDAC1, 3, and 4 operate in both a gene- and trait-specific manner in the regulation of nutrition-responsiveness of appendage size and shape. Specifically, HDAC 1, 3, or 4 knockdown diminished wing size similarly while leg development was differentially affected by RNAi targeting HDAC3 and HDAC4. In addition, depletion of HDAC3 transcript resulted in a more rounded shape of genitalia at the pupal stage and decreased the length of adult aedeagus across all body sizes. Most importantly, we find that HDAC3 and HDAC4 pattern the morphology and regulate the scaling of evolutionarily novel head and thoracic horns as a function of nutritional variation. CONCLUSION Collectively, our results suggest that both functional overlap and division of labor among HDAC members contribute to morphological diversification of both conventional and recently evolved appendages. More generally, our work raises the possibility that HDAC-mediated scaling relationships and their evolution may underpin morphological diversification within and across insect species broadly.
Collapse
Affiliation(s)
- Yonggang Hu
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN, 47405, USA.
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| | - Jordan R Crabtree
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN, 47405, USA
| | - Anna L M Macagno
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN, 47405, USA
- Biostatistics Consulting Center, Department of Epidemiology and Biostatistics, School of Public Health Bloomington, Indiana University, 2719 E. 10th Street, Bloomington, IN, 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN, 47405, USA
| |
Collapse
|
4
|
Davidson PL, Moczek AP. Genome evolution and divergence in cis-regulatory architecture is associated with condition-responsive development in horned dung beetles. PLoS Genet 2024; 20:e1011165. [PMID: 38442113 PMCID: PMC10942260 DOI: 10.1371/journal.pgen.1011165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/15/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Phenotypic plasticity is thought to be an important driver of diversification and adaptation to environmental variation, yet the genomic mechanisms mediating plastic trait development and evolution remain poorly understood. The Scarabaeinae, or true dung beetles, are a species-rich clade of insects recognized for their highly diversified nutrition-responsive development including that of cephalic horns-evolutionarily novel, secondary sexual weapons that exhibit remarkable intra- and interspecific variation. Here, we investigate the evolutionary basis for horns as well as other key dung beetle traits via comparative genomic and developmental assays. We begin by presenting chromosome-level genome assemblies of three dung beetle species in the tribe Onthophagini (> 2500 extant species) including Onthophagus taurus, O. sagittarius, and Digitonthophagus gazella. Comparing these assemblies to those of seven other species across the order Coleoptera identifies evolutionary changes in coding sequence associated with metabolic regulation of plasticity and metamorphosis. We then contrast chromatin accessibility in developing head horn tissues of high- and low-nutrition O. taurus males and females and identify distinct cis-regulatory architectures underlying nutrition- compared to sex-responsive development, including a large proportion of recently evolved regulatory elements sensitive to horn morph determination. Binding motifs of known and new candidate transcription factors are enriched in these nutrition-responsive open chromatin regions. Our work highlights the importance of chromatin state regulation in mediating the development and evolution of plastic traits, demonstrates gene networks are highly evolvable transducers of environmental and genetic signals, and provides new reference-quality genomes for three species that will bolster future developmental, ecological, and evolutionary studies of this insect group.
Collapse
Affiliation(s)
- Phillip L. Davidson
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Armin P. Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
5
|
Davidson PL, Nadolski EM, Moczek AP. Gene regulatory networks underlying the development and evolution of plasticity in horned beetles. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101114. [PMID: 37709168 PMCID: PMC10866377 DOI: 10.1016/j.cois.2023.101114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Horned beetles have emerged as a powerful study system with which to investigate the developmental mechanisms underlying environment-responsive development and its evolution. We begin by reviewing key advances in our understanding of the diverse roles played by transcription factors, endocrine regulators, and signal transduction pathways in the regulation of horned beetle plasticity. We then explore recent efforts aimed at understanding how such condition-specific expression may be regulated in the first place, as well as how the differential expression of master regulators may instruct conditional expression of downstream target genes. Here, we focus on the significance of chromatin remodeling as a powerful but thus far understudied mechanism able to facilitate trait-, sex-, and species-specific responses to environmental conditions.
Collapse
Affiliation(s)
- Phillip L Davidson
- Department of Biology, Indiana University Bloomington, IN 47405-7107, United States
| | - Erica M Nadolski
- Department of Biology, Indiana University Bloomington, IN 47405-7107, United States
| | - Armin P Moczek
- Department of Biology, Indiana University Bloomington, IN 47405-7107, United States.
| |
Collapse
|
6
|
Rohner PT, Moczek AP. Vertically inherited microbiota and environment-modifying behaviors indirectly shape the exaggeration of secondary sexual traits in the gazelle dung beetle. Ecol Evol 2023; 13:e10666. [PMID: 37915805 PMCID: PMC10616735 DOI: 10.1002/ece3.10666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Many organisms actively manipulate the environment in ways that feed back on their own development, a process referred to as developmental niche construction. Yet, the role that constructed biotic and abiotic environments play in shaping phenotypic variation and its evolution is insufficiently understood. Here, we assess whether environmental modifications made by developing dung beetles impact the environment-sensitive expression of secondary sexual traits. Gazelle dung beetles both physically modify their ontogenetic environment and structure their biotic interactions through the vertical inheritance of microbial symbionts. By experimentally eliminating (i) physical environmental modifications and (ii) the vertical inheritance of microbes, we assess the degree to which (sym)biotic and physical environmental modifications shape the exaggeration of several traits varying in their degree and direction of sexual dimorphism. We expected the experimental reduction of a larva's ability to shape its environment to affect trait size and scaling, especially for traits that are sexually dimorphic and environmentally plastic. We find that compromised developmental niche construction indeed shapes sexual dimorphism in overall body size and the absolute sizes of male-limited exaggerated head horns, the strongly sexually dimorphic fore tibia length and width, as well as the weakly dimorphic elytron length and width. This suggests that environmental modifications affect sex-specific phenotypic variation in functional traits. However, most of these effects can be attributed to nutrition-dependent plasticity in size and non-isometric trait scaling rather than body-size-independent effects on the developmental regulation of trait size. Our findings suggest that the reciprocal relationship between developing organisms, their symbionts, and their environment can have considerable impacts on sexual dimorphism and functional morphology.
Collapse
Affiliation(s)
- Patrick T. Rohner
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
- Department of Ecology, Behavior and EvolutionUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Armin P. Moczek
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| |
Collapse
|
7
|
Rohner PT, Casasa S, Moczek AP. Assessing the evolutionary lability of insulin signalling in the regulation of nutritional plasticity across traits and species of horned dung beetles. J Evol Biol 2023; 36:1641-1648. [PMID: 37885148 DOI: 10.1111/jeb.14240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 10/28/2023]
Abstract
Nutrition-dependent growth of sexual traits is a major contributor to phenotypic diversity, and a large body of research documents insulin signalling as a major regulator of nutritional plasticity. However, findings across studies raise the possibility that the role of individual components within the insulin signalling pathway diverges in function among traits and taxa. Here, we use RNAi-mediated transcript depletion in the gazelle dung beetle to investigate the functions of forkhead box O (Foxo) and two paralogs of the insulin receptor (InR1 and InR2) in shaping nutritional plasticity in polyphenic male head horns, exaggerated fore legs, and weakly nutrition-responsive genitalia. Our functional genetic manipulations led to three main findings: FoxoRNAi reduced the length of exaggerated head horns in large males, while neither InR1 nor InR2 knock-downs resulted in measurable horn phenotypes. These results are similar to those documented previously for another dung beetle (Onthophagus taurus), but in stark contrast to findings in rhinoceros beetles. Secondly, knockdown of Foxo, InR1, and InR2 led to an increase in the intercept or slope of the scaling relationship of genitalia size. These findings are in contrast even to results documented previously for O. taurus. Lastly, while FoxoRNAi reduces male forelegs in D. gazella and O. taurus, the effects of InR1 and InR2 knockdowns diverged across dung beetle species. Our results add to the growing body of literature indicating that despite insulin signalling's conserved role as a regulator of nutritional plasticity, the functions of its components may diversify among traits and species, potentially fuelling the evolution of scaling relationships.
Collapse
Affiliation(s)
- Patrick T Rohner
- Department of Ecology, Behavior, and Evolution, University of California San Diego, San Diego, California, USA
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Sofia Casasa
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Armin P Moczek
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
8
|
Casasa S, Katsougia E, Ragsdale EJ. A Mediator subunit imparts robustness to a polyphenism decision. Proc Natl Acad Sci U S A 2023; 120:e2308816120. [PMID: 37527340 PMCID: PMC10410750 DOI: 10.1073/pnas.2308816120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 08/03/2023] Open
Abstract
Polyphenism is a type of developmental plasticity that translates continuous environmental variability into discontinuous phenotypes. Such discontinuity likely requires a switch between alternative gene-regulatory networks, a principle that has been borne out by mechanisms found to promote morph-specific gene expression. However, whether robustness is required to execute a polyphenism decision has awaited testing at the molecular level. Here, we used a nematode model for polyphenism, Pristionchus pacificus, to identify the molecular regulatory factors that ensure the development of alternative forms. This species has a dimorphism in its adult feeding structures, specifically teeth, which are a morphological novelty that allows predation on other nematodes. Through a forward genetic screen, we determined that a duplicate homolog of the Mediator subunit MDT-15/MED15, P. pacificus MDT-15.1, is necessary for the polyphenism and the robustness of the resulting phenotypes. This transcriptional coregulator, which has a conserved role in metabolic responses to nutritional stress, coordinates these processes with its effects on this diet-induced polyphenism. Moreover, this MED15 homolog genetically interacts with two nuclear receptors, NHR-1 and NHR-40, to achieve dimorphism: Single and double mutants for these three factors result in morphologies that together produce a continuum of forms between the extremes of the polyphenism. In summary, we have identified a molecular regulator that confers discontinuity to a morphological polyphenism, while also identifying a role for MED15 as a plasticity effector.
Collapse
Affiliation(s)
- Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN47405
| | - Eleni Katsougia
- Department of Biology, Indiana University, Bloomington, IN47405
| | | |
Collapse
|
9
|
Favreau E, Cini A, Taylor D, Câmara Ferreira F, Bentley MA, Cappa F, Cervo R, Privman E, Schneider J, Thiéry D, Mashoodh R, Wyatt CDR, Brown RL, Bodrug-Schepers A, Stralis-Pavese N, Dohm JC, Mead D, Himmelbauer H, Guigo R, Sumner S. Putting hornets on the genomic map. Sci Rep 2023; 13:6232. [PMID: 37085574 PMCID: PMC10121689 DOI: 10.1038/s41598-023-31932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/20/2023] [Indexed: 04/23/2023] Open
Abstract
Hornets are the largest of the social wasps, and are important regulators of insect populations in their native ranges. Hornets are also very successful as invasive species, with often devastating economic, ecological and societal effects. Understanding why these wasps are such successful invaders is critical to managing future introductions and minimising impact on native biodiversity. Critical to the management toolkit is a comprehensive genomic resource for these insects. Here we provide the annotated genomes for two hornets, Vespa crabro and Vespa velutina. We compare their genomes with those of other social Hymenoptera, including the northern giant hornet Vespa mandarinia. The three hornet genomes show evidence of selection pressure on genes associated with reproduction, which might facilitate the transition into invasive ranges. Vespa crabro has experienced positive selection on the highest number of genes, including those putatively associated with molecular binding and olfactory systems. Caste-specific brain transcriptomic analysis also revealed 133 differentially expressed genes, some of which are associated with olfactory functions. This report provides a spring-board for advancing our understanding of the evolution and ecology of hornets, and opens up opportunities for using molecular methods in the future management of both native and invasive populations of these over-looked insects.
Collapse
Affiliation(s)
- Emeline Favreau
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Alessandro Cini
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Biology, Università di Pisa, Via Volta 6, 56126, Pisa, Italy
| | - Daisy Taylor
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Michael A Bentley
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Federico Cappa
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Rita Cervo
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Eyal Privman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Abba Hushi 199, 3498838, Haifa, Israel
| | - Jadesada Schneider
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Denis Thiéry
- INRAe, UMR 1065 Santé et Agroécologie du Vignoble, Bordeaux Sciences Agro, ISVV, Université de Bordeaux, 33883, Villenave d'Ornon, France
| | - Rahia Mashoodh
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Christopher D R Wyatt
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Robert L Brown
- Manaaki Whenua - Landcare Research, 54 Gerald Street, Lincoln, 7608, New Zealand
| | - Alexandrina Bodrug-Schepers
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Nancy Stralis-Pavese
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Juliane C Dohm
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Daniel Mead
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Heinz Himmelbauer
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Roderic Guigo
- Centre for Genomic Regulation, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Seirian Sumner
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
10
|
Li ZZ, Zhou XW, Chen LJ. Transcriptomic analysis of cadmium toxicity and molecular response in the spiderling of Pirata subpiraticus. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109441. [PMID: 35981662 DOI: 10.1016/j.cbpc.2022.109441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is a kind of toxic heavy metal widely distributed in the environment, posing life-threatening challenges to organisms. The paddy field spider is a natural enemy of pests and an essential component of rice biodiversity. Nonetheless, the effects of Cd stress on the postembryonic development of spiders and its detailed mechanism remain to be investigated. In the present study, we found that Cd stress posed adverse impacts on the growth indicators (e.g., carapace length, development duration, and survival rate) and increased the levels of three antioxidants (i.e., superoxide dismutase, glutathione S-transferase, and glutathione peroxidase) in the spiderlings of Pirata subpiraticus. An in-depth transcriptome analysis was employed in the study, and the results displayed that differentially expressed genes (DEGs) involved in postembryonic morphogenesis, development involved in symbiotic interaction, postembryonic development, and growth were distinctively altered under Cd stress. Further enrichment analysis showed that Cd exposure could activate the apoptosis pathway in the spider via the up-regulation of several key factors, including caspase-10, α-tubulin, actin, etc. In addition, we demonstrated that the increased level of glutathione-related enzymes in spiderlings was caused by the activation of glutathione metabolic pathway. The altered hedgehog signaling pathway might affect cell proliferation, tissue patterning, and development of spiderlings. Further protein interaction network displayed that Cd stress could affect multiple biological processes in spiderlings, particularly cellular response to stimulus and system development. To sum up, this study can provide multi-level perspectives to understand the toxicity of Cd on the growth and development of spiders.
Collapse
Affiliation(s)
- Zhe-Zhi Li
- College of Urban and Rural Construction, Shaoyang University, 422099 Shaoyang, China
| | - Xuan-Wei Zhou
- School of Life Sciences, Southwest University, 400715, Beibei, Chongqing, China
| | - Li-Jun Chen
- College of Urban and Rural Construction, Shaoyang University, 422099 Shaoyang, China.
| |
Collapse
|
11
|
Mateus ARA, Beldade P. Developmental Plasticity in Butterfly Eyespot Mutants: Variation in Thermal Reaction Norms Across Genotypes and Pigmentation Traits. INSECTS 2022; 13:1000. [PMID: 36354827 PMCID: PMC9699518 DOI: 10.3390/insects13111000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Developmental plasticity refers to the property by which a genotype corresponds to distinct phenotypes depending on the environmental conditions experienced during development. This dependence of phenotype expression on environment is graphically represented by reaction norms, which can differ between traits and between genotypes. Even though genetic variation for reaction norms provides the basis for the evolution of plasticity, we know little about the genes that contribute to that variation. This includes understanding to what extent those are the same genes that contribute to inter-individual variation in a fixed environment. Here, we quantified thermal plasticity in butterfly lines that differ in pigmentation phenotype to test the hypothesis that alleles affecting pigmentation also affect plasticity therein. We characterized thermal reaction norms for eyespot color rings of distinct Bicyclus anynana genetic backgrounds, corresponding to allelic variants affecting eyespot size and color composition. Our results reveal genetic variation for the slope and curvature of reaction norms, with differences between eyespots and between eyespot color rings, as well as between sexes. Our report of prevalent temperature-dependent and compartment-specific allelic effects underscores the complexity of genotype-by-environment interactions and their consequence for the evolution of developmental plasticity.
Collapse
Affiliation(s)
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência (IGC), 2780-156 Oeiras, Portugal
- CNRS—UMR 5174, Evolution et Diversité Biologique (EDB), Université Paul Sabatier (UPS), 31077 Toulouse, France
- Center for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences, University of Lisbon (FCUL), 1749-016 Lisbon, Portugal
| |
Collapse
|
12
|
Hanna L, Lamouret T, Poças GM, Mirth CK, Moczek AP, Nijhout F, Abouheif E. Evaluating old truths: Final adult size in holometabolous insects is set by the end of larval development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B: MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 340:270-276. [PMID: 35676886 DOI: 10.1002/jez.b.23165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
For centuries, it has been understood that the final size of adult holometabolous insects is determined by the end of the larval stage, and that once they transform to adults, holometabolous insects do not grow. Despite this, no previous study has directly tested these "old truths" across holometabolous insects. Here, we demonstrate that final adult size is set at the end of the last larval stage in species representing each of the four orders of holometabolous insects: the fruit fly Drosophila melanogaster (Diptera), the tobacco hornworm Manduca sexta (Lepidoptera), the dung beetle Onthophagus taurus (Coleoptera), and the Florida carpenter ant Camponotus floridanus (Hymenoptera). Furthermore, in both D. melanogaster and C. floridanus, we show that the size of adult individuals fluctuates but does not significantly change. Therefore, our study finally confirms these two basic assumptions in the biology of insects, which have for centuries served as the foundation for studies of insect growth, size, and allometry.
Collapse
Affiliation(s)
- Lisa Hanna
- Department of Biology McGill University Montreal Quebec Canada
| | - Tom Lamouret
- Department of Biology McGill University Montreal Quebec Canada
| | - Gonçalo M. Poças
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa (ITQB NOVA) Oeiras Lisbon Portugal
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Christen K. Mirth
- School of Biological Sciences Monash University Clayton Victoria Australia
| | - Armin P. Moczek
- Department of Biology Indiana University Bloomington Indiana USA
| | | | - Ehab Abouheif
- Department of Biology McGill University Montreal Quebec Canada
| |
Collapse
|
13
|
Sex-specific regulation of development, growth and metabolism. Semin Cell Dev Biol 2022; 138:117-127. [PMID: 35469676 DOI: 10.1016/j.semcdb.2022.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
Adult females and males of most species differ in many aspects of their morphology, physiology and behavior, in response to sex-specific selective pressures that maximize fitness. While we have an increasingly good understanding of the genetic mechanisms that initiate these differences, the sex-specific developmental trajectories that generate them are much less well understood. Here we review recent advances in the sex-specific regulation of development focusing on two models where this development is increasingly well understood: Sexual dimorphism of body size in the fruit fly Drosophila melanogaster and sexual dimorphism of horns in the horned beetle Onthophagus taurus. Because growth and development are also supported by metabolism, the regulation of sex-specific metabolism during and after development is an important aspect of the generation of female and male phenotypes. Hitherto, the study of sex-specific development has largely been independent of the study of sex-specific metabolism. Nevertheless, as we discuss in this review, recent research has begun to reveal considerable overlap in the cellular and physiological mechanisms that regulate sex-specific development and metabolism.
Collapse
|
14
|
Williamson NG, Walsh CM, Kijimoto T. Comparative metabolomic analysis of polyphenic horn development in the dung beetle Onthophagus taurus. PLoS One 2022; 17:e0265222. [PMID: 35298496 PMCID: PMC8929603 DOI: 10.1371/journal.pone.0265222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
Organisms alter their phenotypes in response to changing environmental conditions. The developmental basis of this phenomenon, phenotypic plasticity, is a topic of broad interest in many fields of biology. While insects provide a suitable model for studying the genetic basis of phenotypic plasticity, the physiological aspects of plasticity are not fully understood. Here, we report the physiological basis of polyphenism, an extreme form of phenotypic plasticity by utilizing a dung beetle species, Onthophagus taurus. We highlighted the metabolome between sexes as well as two distinct male morphs—large and small horns. Unlike results from previous transcriptomic studies, the comparative metabolomic study revealed that differences in metabolite level were more prominent between animals with different body sizes than different sexes. Our results also indicate that specific metabolites and biochemical pathways may be active during horn size determination.
Collapse
Affiliation(s)
- Naomi G. Williamson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, United States of America
| | - Callee M. Walsh
- Shared Research Facilities, West Virginia University, Morgantown, West Virginia, United States of America
| | - Teiya Kijimoto
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chen X, Liu Y, Zhu X, Lv Q. Comparative Proteome Analysis Indicates The Divergence between The Head and Tail Regeneration in Planarian. CELL JOURNAL 2021; 23:640-649. [PMID: 34939757 PMCID: PMC8665983 DOI: 10.22074/cellj.2021.7689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/06/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Even a small fragment from the body of planarian can regenerate an entire animal, implying that the different fragments from this flatworm eventually reach the same solution. In this study, our aim was to reveal the differences and similarities in mechanisms between different regenerating fragments from this worm. MATERIALS AND METHODS In this experimental study, we profiled the dynamic proteome of regenerating head and tail to reveal the differences and similarities between different regenerating fragments using 2-DE combined with MALDITOF/ TOF MS. RESULTS Proteomic profiles of head and tail regeneration identified a total of 516 differential expressed proteins (DEPs) and showed a great difference in quantity and fold changes of proteome profiles between the two scenarios. Briefly, out of the 516 DEPs, 314 were identified to be specific for anterior regeneration, while 165 were specific for posterior regeneration. Bioinformatics analysis showed a wide discrepancy in biological activities between two regenerative processes; especially, differentiation and development and signal transduction in head regeneration were much more complex than that in tail regeneration. Protein functional analysis combined with protein-protein interaction (PPI) analysis showed a significant contribution of both Wnt and BMP signaling pathways to head regeneration not but tail regeneration. Additionally, several novel proteins showed completely opposite expression between head and tail regeneration. CONCLUSION Proteomic profiles of head and tail regeneration identified a total of 516 differential expressed proteins (DEPs) and showed a great difference in quantity and fold changes of proteome profiles between the two scenarios. Briefly, out of the 516 DEPs, 314 were identified to be specific for anterior regeneration, while 165 were specific for posterior regeneration. Bioinformatics analysis showed a wide discrepancy in biological activities between two regenerative processes; especially, differentiation and development and signal transduction in head regeneration were much more complex than that in tail regeneration. Protein functional analysis combined with protein-protein interaction (PPI) analysis showed a significant contribution of both Wnt and BMP signaling pathways to head regeneration not but tail regeneration. Additionally, several novel proteins showed completely opposite expression between head and tail regeneration.
Collapse
Affiliation(s)
- Xiaoguang Chen
- Animal Science and Technology SchoolHenan University of Science and TechnologyLuoyangChina
| | | | | | | |
Collapse
|
16
|
Casasa S, Biddle JF, Koutsovoulos GD, Ragsdale EJ. Polyphenism of a Novel Trait Integrated Rapidly Evolving Genes into Ancestrally Plastic Networks. Mol Biol Evol 2021; 38:331-343. [PMID: 32931588 PMCID: PMC7826178 DOI: 10.1093/molbev/msaa235] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Developmental polyphenism, the ability to switch between phenotypes in response to environmental variation, involves the alternating activation of environmentally sensitive genes. Consequently, to understand how a polyphenic response evolves requires a comparative analysis of the components that make up environmentally sensitive networks. Here, we inferred coexpression networks for a morphological polyphenism, the feeding-structure dimorphism of the nematode Pristionchus pacificus. In this species, individuals produce alternative forms of a novel trait—moveable teeth, which in one morph enable predatory feeding—in response to environmental cues. To identify the origins of polyphenism network components, we independently inferred coexpression modules for more conserved transcriptional responses, including in an ancestrally nonpolyphenic nematode species. Further, through genome-wide analyses of these components across the nematode family (Diplogastridae) in which the polyphenism arose, we reconstructed how network components have changed. To achieve this, we assembled and resolved the phylogenetic context for five genomes of species representing the breadth of Diplogastridae and a hypothesized outgroup. We found that gene networks instructing alternative forms arose from ancestral plastic responses to environment, specifically starvation-induced metabolism and the formation of a conserved diapause (dauer) stage. Moreover, loci from rapidly evolving gene families were integrated into these networks with higher connectivity than throughout the rest of the P. pacificus transcriptome. In summary, we show that the modular regulatory outputs of a polyphenic response evolved through the integration of conserved plastic responses into networks with genes of high evolutionary turnover.
Collapse
Affiliation(s)
- Sofia Casasa
- Department of Biology, Indiana University, Bloomington, Bloomington, IN
| | - Joseph F Biddle
- Department of Biology, Indiana University, Bloomington, Bloomington, IN
| | | | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, Bloomington, IN
| |
Collapse
|
17
|
Toubiana W, Armisén D, Dechaud C, Arbore R, Khila A. Impact of male trait exaggeration on sex-biased gene expression and genome architecture in a water strider. BMC Biol 2021; 19:89. [PMID: 33931057 PMCID: PMC8088084 DOI: 10.1186/s12915-021-01021-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/01/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Exaggerated secondary sexual traits are widespread in nature and often evolve under strong directional sexual selection. Although heavily studied from both theoretical and empirical viewpoints, we have little understanding of how sexual selection influences sex-biased gene regulation during the development of exaggerated secondary sexual phenotypes, and how these changes are reflected in genomic architecture. This is primarily due to the limited availability of representative genomes and associated tissue and sex transcriptomes to study the development of these traits. Here we present the genome and developmental transcriptomes, focused on the legs, of the water strider Microvelia longipes, a species where males exhibit strikingly long third legs compared to females, which they use as weapons. RESULTS We generated a high-quality genome assembly with 90% of the sequence captured in 13 scaffolds. The most exaggerated legs in males were particularly enriched in both sex-biased and leg-biased genes, indicating a specific signature of gene expression in association with trait exaggeration. We also found that male-biased genes showed patterns of fast evolution compared to non-biased and female-biased genes, indicative of directional or relaxed purifying selection. By contrast to male-biased genes, female-biased genes that are expressed in the third legs, but not the other legs, are over-represented in the X chromosome compared to the autosomes. An enrichment analysis for sex-biased genes along the chromosomes revealed also that they arrange in large genomic regions or in small clusters of two to four consecutive genes. The number and expression of these enriched regions were often associated with the exaggerated legs of males, suggesting a pattern of common regulation through genomic proximity in association with trait exaggeration. CONCLUSION Our findings indicate how directional sexual selection may drive sex-biased gene expression and genome architecture along the path to trait exaggeration and sexual dimorphism.
Collapse
Affiliation(s)
- William Toubiana
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France
- Present address: Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France
| | - Roberto Arbore
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France
- Present address: Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon Cedex 07, France.
| |
Collapse
|
18
|
Gotoh H, Adachi H, Matsuda K, Lavine LC. Epithelial folding determines the final shape of beetle horns. Curr Opin Genet Dev 2021; 69:122-128. [PMID: 33848957 DOI: 10.1016/j.gde.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 11/18/2022]
Abstract
The elaborate ornaments and weapons of sexual selection, such as the vast array of horns observed in scarab beetles, are some of the most striking outcomes of evolution. How these novel traits have arisen, develop, and respond to condition is governed by a complex suite of interactions that require coordination between the environment, whole-animal signals, cell-cell signals, and within-cell signals. Endocrine factors, developmental patterning genes, and sex-specific gene expression have been shown to regulate beetle horn size, shape, and location, yet no overarching mechanism of horn shape has been described. Recent advances in microscopy and computational analyses combined with a functional genetic approach have revealed that patterning genes combined with intricate epithelial folding and movement are responsible for the final shape of a beetle head horn.
Collapse
Affiliation(s)
- Hiroki Gotoh
- Ecological Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, 401-8540, Japan
| | - Haruhiko Adachi
- Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Keisuke Matsuda
- Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka, 565-0871, Japan; Osaka University Hospital, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Laura C Lavine
- Department of Entomology, Washington State University, Pullman, WA, 99163 USA.
| |
Collapse
|
19
|
Hu Y, Moczek AP. Wing serial homologues and the diversification of insect outgrowths: insights from the pupae of scarab beetles. Proc Biol Sci 2021; 288:20202828. [PMID: 33467999 DOI: 10.1098/rspb.2020.2828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modification of serially homologous structures is a common avenue towards functional innovation in developmental evolution, yet ancestral affinities among serial homologues may be obscured as structure-specific modifications accumulate over time. We sought to assess the degree of homology to wings of three types of body wall projections commonly observed in scarab beetles: (i) the dorsomedial support structures found on the second and third thoracic segments of pupae, (ii) the abdominal support structures found bilaterally in most abdominal segments of pupae, and (iii) the prothoracic horns which depending on species and sex may be restricted to pupae or also found in adults. We functionally investigated 14 genes within, as well as two genes outside, the canonical wing gene regulatory network to compare and contrast their role in the formation of each of the three presumed wing serial homologues. We found 11 of 14 wing genes to be functionally required for the proper formation of lateral and dorsal support structures, respectively, and nine for the formation of prothoracic horns. At the same time, we document multiple instances of divergence in gene function across our focal structures. Collectively, our results support the hypothesis that dorsal and lateral support structures as well as prothoracic horns share a developmental origin with insect wings. Our findings suggest that the morphological and underlying gene regulatory diversification of wing serial homologues across species, life stages and segments has contributed significantly to the extraordinary diversity of arthropod appendages and outgrowths.
Collapse
Affiliation(s)
- Yonggang Hu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
20
|
Computational analyses decipher the primordial folding coding the 3D structure of the beetle horn. Sci Rep 2021; 11:1017. [PMID: 33441712 PMCID: PMC7806817 DOI: 10.1038/s41598-020-79757-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023] Open
Abstract
The beetle horn primordium is a complex and compactly folded epithelial sheet located beneath the larval cuticle. Only by unfolding the primordium can the complete 3D shape of the horn appear, suggesting that the morphology of beetle horns is encoded in the primordial folding pattern. To decipher the folding pattern, we developed a method to manipulate the primordial local folding on a computer and clarified the contribution of the folding of each primordium region to transformation. We found that the three major morphological changes (branching of distal tips, proximodistal elongation, and angular change) were caused by the folding of different regions, and that the folding mechanism also differs according to the region. The computational methods we used are applicable to the morphological study of other exoskeletal animals.
Collapse
|
21
|
Wan X, Jiang Y, Cao Y, Sun B, Xiang X. Divergence in Gut Bacterial Community Structure between Male and Female Stag Beetles Odontolabis fallaciosa (Coleoptera, Lucanidae). Animals (Basel) 2020; 10:ani10122352. [PMID: 33317133 PMCID: PMC7764088 DOI: 10.3390/ani10122352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Intestinal microbiota play crucial roles for their hosts. Odontolabis fallaciosa shows striking sexual dimorphism and male trimorphism, which represents an interesting system to study their gut microbiota. We have compared the intestinal bacterial community structure between the two sexes and among three male morphs of O. fallaciosa. The gut bacterial community structure was significantly different between males and females. The females were associated with higher bacterial alpha-diversity relative to males. Large males had a higher relative abundance of Firmicutes and Firmicutes/Bacteroides (F/B) ratio, which contributed to nutritional efficiency. The results increased our understanding of beetle–bacterial interactions of O. fallaciosa between the two sexes, and among three male morphs, which might reveal the relationship among the gut microbiota, nutrition level, and phenotypic evolution of the stag beetle. Abstract Odontolabis fallaciosa (Coleoptera: Lucanidae) is a giant and popular stag beetle with striking sexual dimorphism and male trimorphism. However, little is known about their intestinal microbiota, which might play an indispensable role in shaping the health of their hosts. The aim of this study was to investigate the intestinal bacterial community structure between the two sexes and among three male morphs of O. fallaciosa from China using high-throughput sequencing (Illumina MiSeq). The gut bacterial community structure was significantly different between males and females, suggesting that sex appeared to be the crucial factor shaping the intestinal bacterial community. Females had higher bacterial alpha-diversity than males. There was little difference in gut bacterial community structure among the three male morphs. However, compared to medium and small males, large individuals were associated with the higher relative abundance of Firmicutes and Firmicutes/Bacteroides (F/B) ratio, which might contribute to nutritional efficiency. Overall, these results might help to further our understanding of beetle–bacterial interactions of O. fallaciosa between the two sexes, and among the three male morphs.
Collapse
|
22
|
Schwab DB, Newsom KD, Moczek AP. Serotonin signaling suppresses the nutrition-responsive induction of an alternate male morph in horn polyphenic beetles. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:660-669. [PMID: 32959988 DOI: 10.1002/jez.2413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/31/2022]
Abstract
Environment-responsive development contributes significantly to the phenotypic variation visible to selection and as such possesses the potential to shape evolutionary trajectories. However, evaluation of the contributions of developmental plasticity to evolutionary diversification necessitates an understanding of the developmental mechanisms underpinning plastic trait expression. We investigated the role of serotonin signaling in the regulation and evolution of horn polyphenism in the beetle genus Onthophagus. Specifically, we assessed the role of serotonin in development by determining whether manipulating serotonin biosynthesis during the larval stage alters body size, developmental rate, and the formation of relative adult trait size in traits characterized by minimal (genitalia), moderate (elytra), and pronounced (horns) nutrition-responsive development in O. taurus. Second, we assessed serotonin's role in evolution by replicating a subset of our approaches across four species reflecting ancestral as well as derived conditions. Lastly, we employed immunohistochemical approaches to begin assessing whether serotonin may be acting via the endocrine or nervous system. Our results show that pharmacological manipulation of serotonin signaling affects overall size, developmental rate, and the body size threshold separating alternate male morphs. Threshold body sizes were affected across species, regardless of the severity of horn polyphenism, and independent of the precise morphological location of horns. However, histological assessments suggest it is unlikely serotonin functions as a neurotransmitter and instead may rely on other mechanisms that remain to be identified. We discuss the most important implications of our results for our understanding of the evolution of and through plasticity in horned beetles and beyond.
Collapse
Affiliation(s)
- Daniel B Schwab
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Keeley D Newsom
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
23
|
Hedgehog signaling is necessary and sufficient to mediate craniofacial plasticity in teleosts. Proc Natl Acad Sci U S A 2020; 117:19321-19327. [PMID: 32719137 PMCID: PMC7431006 DOI: 10.1073/pnas.1921856117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phenotypic plasticity has emerged as an important concept in evolutionary biology. It is thought to contribute to an organism’s ability to adapt to environmental change within a single generation, which may facilitate survival and increase fitness. Furthermore, plasticity has the potential to bias the direction and/or speed of evolution by changing patterns of phenotypic variation and exposing new genetic variation to selection (i.e., flexible stem evolution). Our understanding of this important phenomenon is incomplete owing to limited knowledge of the molecular underpinnings of reaction norm evolution. Using the teleost feeding apparatus as a model, we explore this open question and show that the Hh signaling pathway underlies the ability of this structure to respond plastically to alternate feeding regimes. Phenotypic plasticity, the ability of a single genotype to produce multiple phenotypes under different environmental conditions, is critical for the origins and maintenance of biodiversity; however, the genetic mechanisms underlying plasticity as well as how variation in those mechanisms can drive evolutionary change remain poorly understood. Here, we examine the cichlid feeding apparatus, an icon of both prodigious evolutionary divergence and adaptive phenotypic plasticity. We first provide a tissue-level mechanism for plasticity in craniofacial shape by measuring rates of bone deposition within functionally salient elements of the feeding apparatus in fishes forced to employ alternate foraging modes. We show that levels and patterns of phenotypic plasticity are distinct among closely related cichlid species, underscoring the evolutionary potential of this trait. Next, we demonstrate that hedgehog (Hh) signaling, which has been implicated in the evolutionary divergence of cichlid feeding architecture, is associated with environmentally induced rates of bone deposition. Finally, to demonstrate that Hh levels are the cause of the plastic response and not simply the consequence of producing more bone, we use transgenic zebrafish in which Hh levels could be experimentally manipulated under different foraging conditions. Notably, we find that the ability to modulate bone deposition rates in different environments is dampened when Hh levels are reduced, whereas the sensitivity of bone deposition to different mechanical demands increases with elevated Hh levels. These data advance a mechanistic understanding of phenotypic plasticity in the teleost feeding apparatus and in doing so contribute key insights into the origins of adaptive morphological radiations.
Collapse
|
24
|
Casasa S, Zattara EE, Moczek AP. Nutrition-responsive gene expression and the developmental evolution of insect polyphenism. Nat Ecol Evol 2020; 4:970-978. [PMID: 32424280 DOI: 10.1038/s41559-020-1202-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/09/2020] [Indexed: 01/05/2023]
Abstract
Nutrition-responsive development is a ubiquitous and highly diversified example of phenotypic plasticity, yet its underlying molecular and developmental mechanisms and modes of evolutionary diversification remain poorly understood. We measured genome-wide transcription in three closely related species of horned beetles exhibiting strikingly diverse degrees of nutrition responsiveness in the development of male weaponry. We show that (1) counts of differentially expressed genes between low- and high-nutritional backgrounds mirror species-specific degrees of morphological nutrition responsiveness; (2) evolutionary exaggeration of morphological responsiveness is underlain by both amplification of ancestral nutrition-responsive gene expression and recruitment of formerly low nutritionally responsive genes; and (3) secondary loss of morphological responsiveness to nutrition coincides with a dramatic reduction in gene expression plasticity. Our results further implicate genetic accommodation of ancestrally high variability of gene expression plasticity in both exaggeration and loss of nutritional plasticity, yet reject a major role of taxon-restricted genes in the developmental regulation and evolution of nutritional plasticity.
Collapse
Affiliation(s)
- Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN, USA.
| | - Eduardo E Zattara
- Department of Biology, Indiana University, Bloomington, IN, USA. .,INIBIOMA, Universidad Nacional del Comahue - CONICET, Bariloche, Argentina.
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
25
|
Linz DM, Moczek AP. Integrating evolutionarily novel horns within the deeply conserved insect head. BMC Biol 2020; 18:41. [PMID: 32312271 PMCID: PMC7171871 DOI: 10.1186/s12915-020-00773-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND How novel traits integrate within ancient trait complexes without compromising ancestral functions is a foundational challenge in evo-devo. The insect head represents an ancient body region patterned by a deeply conserved developmental genetic network, yet at the same time constitutes a hot spot for morphological innovation. However, the mechanisms that facilitate the repeated emergence, integration, and diversification of morphological novelties within this body region are virtually unknown. Using horned Onthophagus beetles, we investigated the mechanisms that instruct the development of the dorsal adult head and the formation and integration of head horns, one of the most elaborate classes of secondary sexual weapons in the animal kingdom. RESULTS Using region-specific RNAseq and gene knockdowns, we (i) show that the head is compartmentalized along multiple axes, (ii) identify striking parallels between morphological and transcriptional complexity across regions, yet (iii) fail to identify a horn-forming gene module. Instead, (iv) our results support that sex-biased regulation of a shared transcriptional repertoire underpins the formation of horned and hornless heads. Furthermore, (v) we show that embryonic head patterning genes frequently maintain expression within the dorsal head well into late post-embryonic development, thereby possibly facilitating the repurposing of such genes within novel developmental contexts. Lastly, (vi) we identify novel functions for several genes including three embryonic head patterning genes in the integration of both posterior and anterior head horns. CONCLUSIONS Our results illuminate how the adult insect head is patterned and suggest mechanisms capable of integrating novel traits within ancient trait complexes in a sex- and species-specific manner. More generally, our work underscores how significant morphological innovation in developmental evolution need not require the recruitment of new genes, pathways, or gene networks but instead may be scaffolded by pre-existing developmental machinery.
Collapse
Affiliation(s)
- David M Linz
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
26
|
Crabtree JR, Macagno ALM, Moczek AP, Rohner PT, Hu Y. Notch signaling patterns head horn shape in the bull-headed dung beetle Onthophagus taurus. Dev Genes Evol 2020; 230:213-225. [PMID: 31960122 DOI: 10.1007/s00427-020-00645-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Size and shape constitute fundamental aspects in the description of morphology. Yet while the developmental-genetic underpinnings of trait size, in particular with regard to scaling relationships, are increasingly well understood, those of shape remain largely elusive. Here we investigate the potential function of the Notch signaling pathway in instructing the shape of beetle horns, a highly diversified and evolutionarily novel morphological structure. We focused on the bull-headed dung beetle Onthophagus taurus due to the wide range of horn sizes and shapes present among males in this species, in order to assess the potential function of Notch signaling in the specification of horn shape alongside the regulation of shape changes with allometry. Using RNA interference-mediated transcript depletion of Notch and its ligands, we document a highly conserved role of Notch signaling in general appendage formation. By integrating our functional genetic approach with a geometric morphometric analysis, we find that Notch signaling moderately but consistently affects horn shape, and does so differently for the horns of minor, intermediate-sized, and major males. Our results suggest that the function of Notch signaling during head horn formation may vary in a complex manner across male morphs, and highlights the power of integrating functional genetic and geometric morphometric approaches in analyzing subtle but nevertheless biologically important phenotypes in the face of significant allometric variation.
Collapse
Affiliation(s)
- Jordan R Crabtree
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Anna L M Macagno
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Patrick T Rohner
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Yonggang Hu
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
27
|
Hu Y, Linz DM, Moczek AP. Beetle horns evolved from wing serial homologs. Science 2019; 366:1004-1007. [DOI: 10.1126/science.aaw2980] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
Understanding how novel complex traits originate is a foundational challenge in evolutionary biology. We investigated the origin of prothoracic horns in scarabaeine beetles, one of the most pronounced examples of secondary sexual traits in the animal kingdom. We show that prothoracic horns derive from bilateral source tissues; that diverse wing genes are functionally required for instructing this process; and that, in the absence of Hox input, prothoracic horn primordia transform to contribute to ectopic wings. Once induced, however, the transcriptional profile of prothoracic horns diverges markedly from that of wings and other wing serial homologs. Our results substantiate the serial homology between prothoracic horns and insects wings and suggest that other insect innovations may derive similarly from wing serial homologs and the concomitant establishment of structure-specific transcriptional landscapes.
Collapse
|
28
|
Casasa S, Moczek AP. Evolution of, and via, Developmental Plasticity: Insights through the Study of Scaling Relationships. Integr Comp Biol 2019; 59:1346-1355. [PMID: 31147701 DOI: 10.1093/icb/icz086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Scaling relationships emerge from differential growth of body parts relative to each other. As such, scaling relationships are at least in part the product of developmental plasticity. While some of the developmental genetic mechanisms underlying scaling relationships are starting to be elucidated, how these mechanisms evolve and give rise to the enormous diversity of allometric scaling observed in nature is less understood. Furthermore, developmental plasticity has itself been proposed as a mechanism that facilitates adaptation and diversification, yet its role in the developmental evolution of scaling relationships remains largely unknown. In this review, we first explore how the mechanisms of scaling relationships have evolved. We primarily focus on insect development and review how pathway components and pathway interactions have evolved across taxa to regulate scaling relationships across diverse traits. We then discuss the potential role of developmental plasticity in the evolution of scaling relationships. Specifically, we address the potential role of allometric plasticity and cryptic genetic variation in allometry in facilitating divergence via genetic accommodation. Collectively, in this article, we aim to bring together two aspects of developmental plasticity: the mechanistic underpinnings of scaling relationships and their evolution, and the potential role that plasticity plays in the evolutionary diversification of scaling relationships.
Collapse
Affiliation(s)
- Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
29
|
Little CM, Chapman TW, Hillier NK. Considerations for Insect Learning in Integrated Pest Management. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:6. [PMID: 31313814 PMCID: PMC6635889 DOI: 10.1093/jisesa/iez064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 06/10/2023]
Abstract
The past 100 yr have seen dramatic philosophical shifts in our approach to controlling or managing pest species. The introduction of integrated pest management in the 1970s resulted in the incorporation of biological and behavioral approaches to preserve ecosystems and reduce reliance on synthetic chemical pesticides. Increased understanding of the local ecosystem, including its structure and the biology of its species, can improve efficacy of integrated pest management strategies. Pest management strategies incorporating insect learning paradigms to control insect pests or to use insects to control other pests can mediate risk to nontarget insects, including pollinators. Although our understanding of insect learning is in its early stages, efforts to integrate insect learning into pest management strategies have been promising. Due to considerable differences in cognitive abilities among insect species, a case-by-case assessment is needed for each potential application of insect learning within a pest management strategy.
Collapse
Affiliation(s)
- Catherine M Little
- Department of Biology, Acadia University, Wolfville, NS, Canada
- Department of Biology, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
| | - Thomas W Chapman
- Department of Biology, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
| | - N Kirk Hillier
- Department of Biology, Acadia University, Wolfville, NS, Canada
| |
Collapse
|
30
|
Linz DM, Hu Y, Moczek AP. The origins of novelty from within the confines of homology: the developmental evolution of the digging tibia of dung beetles. Proc Biol Sci 2019; 286:20182427. [PMID: 30963933 PMCID: PMC6408602 DOI: 10.1098/rspb.2018.2427] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/23/2019] [Indexed: 11/12/2022] Open
Abstract
Understanding the origin of novel complex traits is among the most fundamental goals in evolutionary biology. The most widely used definition of novelty in evolution assumes the absence of homology, yet where homology ends and novelty begins is increasingly difficult to parse as evo devo continuously revises our understanding of what constitutes homology. Here, we executed a case study to explore the earliest stages of innovation by examining the tibial teeth of tunnelling dung beetles. Tibial teeth are a morphologically modest innovation, composed of relatively simple body wall projections and contained fully within the fore tibia, a leg segment whose own homology status is unambiguous. We first demonstrate that tibial teeth aid in multiple digging behaviours. We then show that the developmental evolution of tibial teeth was dominated by the redeployment of locally pre-existing gene networks. At the same time, we find that even at this very early stage of innovation, at least two genes that ancestrally function in embryonic patterning and thus entirely outside the spatial and temporal context of leg formation, have already become recruited to help shape the formation of tibial teeth. Our results suggest a testable model for how developmental evolution scaffolds innovation.
Collapse
|
31
|
Sanger TJ, Rajakumar R. How a growing organismal perspective is adding new depth to integrative studies of morphological evolution. Biol Rev Camb Philos Soc 2019; 94:184-198. [PMID: 30009397 DOI: 10.1111/brv.12442] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 01/24/2023]
Abstract
Over the past half century, the field of Evolutionary Developmental Biology, or Evo-devo, has integrated diverse fields of biology into a more synthetic understanding of morphological diversity. This has resulted in numerous insights into how development can evolve and reciprocally influence morphological evolution, as well as generated several novel theoretical areas. Although comparative by default, there remains a great gap in our understanding of adaptive morphological diversification and how developmental mechanisms influence the shape and pattern of phenotypic variation. Herein we highlight areas of research that are in the process of filling this void, and areas, if investigated more fully, that will add new insights into the diversification of morphology. At the centre of our discussion is an explicit awareness of organismal biology. Here we discuss an organismal framework that is supported by three distinct pillars. First, there is a need for Evo-devo to adopt a high-resolution phylogenetic approach in the study of morphological variation and its developmental underpinnings. Secondly, we propose that to understand the dynamic nature of morphological evolution, investigators need to give more explicit attention to the processes that generate evolutionarily relevant variation at the population level. Finally, we emphasize the need to address more thoroughly the processes that structure variation at micro- and macroevolutionary scales including modularity, morphological integration, constraint, and plasticity. We illustrate the power of these three pillars using numerous examples from both invertebrates and vertebrates to emphasize that many of these approaches are already present within the field, but have yet to be formally integrated into many research programs. We feel that the most exciting new insights will come where the traditional experimental approaches to Evo-devo are integrated more thoroughly with the principles of this organismal framework.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, U.S.A
| | | |
Collapse
|
32
|
Casasa S, Moczek AP. Insulin signalling's role in mediating tissue-specific nutritional plasticity and robustness in the horn-polyphenic beetle Onthophagus taurus. Proc Biol Sci 2018; 285:20181631. [PMID: 30963895 PMCID: PMC6304051 DOI: 10.1098/rspb.2018.1631] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Organisms cope with nutritional variation via developmental plasticity, adjusting trait size to nutrient availability for some traits while enabling others to develop in a nutritionally robust manner. Yet, the developmental mechanisms that regulate organ-specific growth across nutritional gradients remain poorly understood. We assessed the functions of members of the insulin/insulin-like signalling pathway (IIS) in the regulation of nutrition sensitivity and robustness in males of the horn-polyphenic beetle Onthophagus taurus, as well as potential regulatory interactions between IIS and two other growth-regulating pathways: Doublesex and Hedgehog signalling. Using RNA interference (RNAi), we experimentally knocked down both insulin receptors ( InR1 and InR2) and Foxo, a growth inhibitor. We then performed morphometric measurements on horns, a highly nutrition-sensitive trait, and genitalia, a largely nutrition-insensitive trait. Finally, we used quantitative real-time polymerase chain reaction to assess expression levels of doublesex and the Hedgehog signalling gene smoothened following IIS-RNAi. Our results suggest that nutrition responsiveness of both traits is regulated by different IIS components, which transduce nutritional conditions to both Doublesex and Hedgehog pathways, albeit via different IIS pathway members. Combined with previous studies, our findings suggest that separate origins of trait exaggeration among insect lineages were enabled through the independent co-option of IIS, yet via reliance on different components therein.
Collapse
Affiliation(s)
- Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
33
|
Zinna R, Emlen D, Lavine LC, Johns A, Gotoh H, Niimi T, Dworkin I. Sexual dimorphism and heightened conditional expression in a sexually selected weapon in the Asian rhinoceros beetle. Mol Ecol 2018; 27:5049-5072. [PMID: 30357984 DOI: 10.1111/mec.14907] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Among the most dramatic examples of sexual selection are the weapons used in battles between rival males over access to females. As with ornaments of female choice, the most "exaggerated" sexually selected weapons vary from male to male more widely than other body parts (hypervariability), and their growth tends to be more sensitive to nutritional state or physiological condition compared with growth of other body parts ("heightened" conditional expression). Here, we use RNAseq analysis to build on recent work exploring these mechanisms in the exaggerated weapons of beetles, by examining patterns of differential gene expression in exaggerated (head and thorax horns) and non-exaggerated (wings, genitalia) traits in the Asian rhinoceros beetle, Trypoxylus dichotomus. Our results suggest that sexually dimorphic expression of weaponry involves large-scale changes in gene expression, relative to other traits, while nutrition-driven changes in gene expression in these same weapons are less pronounced. However, although fewer genes overall were differentially expressed in high- vs. low-nutrition individuals, the number of differentially expressed genes varied predictably according to a trait's degree of condition dependence (head horn > thorax horn > wings > genitalia). Finally, we observed a high degree of similarity in direction of effects (vectors) for subsets of differentially expressed genes across both sexually dimorphic and nutritionally responsive growth. Our results are consistent with a common set of mechanisms governing sexual size dimorphism and condition dependence.
Collapse
Affiliation(s)
- Robert Zinna
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Douglas Emlen
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Laura C Lavine
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Annika Johns
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Hiroki Gotoh
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Teruyuki Niimi
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
34
|
|
35
|
Fawcett MM, Parks MC, Tibbetts AE, Swart JS, Richards EM, Vanegas JC, Cenzer M, Crowley L, Simmons WR, Hou WS, Angelini DR. Manipulation of insulin signaling phenocopies evolution of a host-associated polyphenism. Nat Commun 2018; 9:1699. [PMID: 29703888 PMCID: PMC5923257 DOI: 10.1038/s41467-018-04102-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 03/29/2018] [Indexed: 12/17/2022] Open
Abstract
Plasticity, the capacity of an organism to respond to its environment, is thought to evolve through changes in development altering the integration of environmental cues. In polyphenism, a discontinuous plastic response produces two or more phenotypic morphs. Here we describe evolutionary change in wing polyphenism and its underlying developmental regulation in natural populations of the red-shouldered soapberry bug, Jadera haematoloma (Insecta: Hemiptera: Rhopalidae) that have adapted to a novel host plant. We find differences in the fecundity of morphs in both sexes and in adult expression of insulin signaling components in the gonads. Further, the plastic response of ancestral-state bugs can be shifted to resemble the reaction norm of derived bugs by the introduction of exogenous insulin or RNA interference targeting the insulin signaling component encoded by FoxO. These results suggest that insulin signaling may be one pathway involved in the evolution of this polyphenism, allowing adaptation to a novel nutritional environment.
Collapse
Affiliation(s)
- Meghan M Fawcett
- Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME, 04901, USA
| | - Mary C Parks
- Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME, 04901, USA
| | - Alice E Tibbetts
- Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME, 04901, USA
| | - Jane S Swart
- Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME, 04901, USA
| | - Elizabeth M Richards
- Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME, 04901, USA
| | - Juan Camilo Vanegas
- Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME, 04901, USA
| | - Meredith Cenzer
- Department of Entomology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura Crowley
- Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME, 04901, USA
- Department of Genetics and Development, Columbia University Medical Center, 1130 Street Nicholas Avenue, Room 208B, New York, NY, 10032, USA
| | - William R Simmons
- Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME, 04901, USA
- National Human Genome Research Institute, 49 Convent Drive, Bethesda, MD, 20892, USA
| | - Wenzhen Stacey Hou
- Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME, 04901, USA
| | - David R Angelini
- Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME, 04901, USA.
| |
Collapse
|
36
|
Zinna RA, Gotoh H, Kojima T, Niimi T. Recent advances in understanding the mechanisms of sexually dimorphic plasticity: insights from beetle weapons and future directions. CURRENT OPINION IN INSECT SCIENCE 2018; 25:35-41. [PMID: 29602360 PMCID: PMC5880310 DOI: 10.1016/j.cois.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 05/08/2023]
Abstract
Many traits that are sexually dimorphic, appearing either differently or uniquely in one sex, are also sensitive to an organism's condition. This phenomenon seems to have evolved to limit genetic conflict between traits that are under different selective pressures in each sex. Recent work has shed light on the molecular and developmental mechanisms that govern this condition sensitive growth, and this work has now expanded to encompass both sexual dimorphism as well as conditionally plastic growth, as it seems the two phenomena are linked on a molecular level. In all cases studied the gene doublesex, a conserved regulator of sex differentiation, controls both sexual dimorphism as well as the condition-dependent plastic responses common to these traits. However, the advent of next-generation -omics technologies has allowed researchers to decipher the common and diverged mechanisms of sexually dimorphic plasticity and expand investigations beyond the foundation laid by studies utilizing beetle weapons.
Collapse
Affiliation(s)
- Robert A Zinna
- Center for Insect Science, University of Arizona, Tucson, AZ 85721-0106, United States.
| | - Hiroki Gotoh
- Lab of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takaaki Kojima
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan
| |
Collapse
|
37
|
Trible W, Kronauer DJC. Caste development and evolution in ants: it's all about size. ACTA ACUST UNITED AC 2017; 220:53-62. [PMID: 28057828 DOI: 10.1242/jeb.145292] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Female ants display a wide variety of morphological castes, including workers, soldiers, ergatoid (worker-like) queens and queens. Alternative caste development within a species arises from a variable array of genetic and environmental factors. Castes themselves are also variable across species and have been repeatedly gained and lost throughout the evolutionary history of ants. Here, we propose a simple theory of caste development and evolution. We propose that female morphology varies as a function of size, such that larger individuals possess more queen-like traits. Thus, the diverse mechanisms that influence caste development are simply mechanisms that affect size in ants. Each caste-associated trait has a unique relationship with size, producing a phenotypic space that permits some combinations of worker- and queen-like traits, but not others. We propose that castes are gained and lost by modifying the regions of this phenotypic space that are realized within a species. These modifications can result from changing the size-frequency distribution of individuals within a species, or by changing the association of tissue growth and size. We hope this synthesis will help unify the literature on caste in ants, and facilitate the discovery of molecular mechanisms underlying caste development and evolution.
Collapse
Affiliation(s)
- Waring Trible
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
38
|
Projecto-Garcia J, Biddle JF, Ragsdale EJ. Decoding the architecture and origins of mechanisms for developmental polyphenism. Curr Opin Genet Dev 2017; 47:1-8. [PMID: 28810163 DOI: 10.1016/j.gde.2017.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023]
Abstract
Developmental polyphenism affords a single genotype multiple solutions to match an organism to its environment. Because polyphenism is the extreme example of how development deviates from a linear genetic blueprint, it demands a genetic explanation for how environmental cues shunt development to hypothetically alternative modules. We highlight several recent advances that have begun to illuminate genetic mechanisms for polyphenism and how this recurring developmental novelty may arise. An emerging genetic knowledge of polyphenism is providing precise targets for testing hypotheses of how switch mechanisms are built-out of olfactory, nutrient-sensing, hormone-reception, and developmental and genetic buffering systems-to accommodate plasticity. Moreover, classic and new model systems are testing the genetic basis of polyphenism's proposed causal roles in evolutionary change.
Collapse
Affiliation(s)
- Joana Projecto-Garcia
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States
| | - Joseph F Biddle
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States
| | - Erik J Ragsdale
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States.
| |
Collapse
|
39
|
Ledón-Rettig CC, Zattara EE, Moczek AP. Asymmetric interactions between doublesex and tissue- and sex-specific target genes mediate sexual dimorphism in beetles. Nat Commun 2017; 8:14593. [PMID: 28239147 PMCID: PMC5333360 DOI: 10.1038/ncomms14593] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/11/2017] [Indexed: 12/29/2022] Open
Abstract
Sexual dimorphisms fuel significant intraspecific variation and evolutionary diversification. Yet the developmental-genetic mechanisms underlying sex-specific development remain poorly understood. Here, we focus on the conserved sex-determination gene doublesex (dsx) and the mechanisms by which it mediates sex-specific development in a horned beetle species by combining systemic dsx knockdown, high-throughput sequencing of diverse tissues and a genome-wide analysis of Dsx-binding sites. We find that Dsx regulates sex-biased expression predominantly in males, that Dsx's target repertoires are highly sex- and tissue-specific and that Dsx can exercise its regulatory role via two distinct mechanisms: as a sex-specific modulator by regulating strictly sex-specific targets, or as a switch by regulating the same genes in males and females in opposite directions. More generally, our results suggest Dsx can rapidly acquire new target gene repertoires to accommodate evolutionarily novel traits, evidenced by the large and unique repertoire identified in head horns, a recent morphological innovation.
Collapse
Affiliation(s)
- C. C. Ledón-Rettig
- Department of Biology, Indiana University, 915 E. Third Street, Myers Hall 150, Bloomington, Indiana 47405-7107, USA
| | - E. E. Zattara
- Department of Biology, Indiana University, 915 E. Third Street, Myers Hall 150, Bloomington, Indiana 47405-7107, USA
| | - A. P. Moczek
- Department of Biology, Indiana University, 915 E. Third Street, Myers Hall 150, Bloomington, Indiana 47405-7107, USA
| |
Collapse
|
40
|
Casasa S, Schwab DB, Moczek AP. Developmental regulation and evolution of scaling: novel insights through the study of Onthophagus beetles. CURRENT OPINION IN INSECT SCIENCE 2017; 19:52-60. [PMID: 28521943 DOI: 10.1016/j.cois.2016.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 06/07/2023]
Abstract
Scaling relationships play critical roles in defining biological shape, trait functionality, and species characteristics, yet the developmental basis of scaling and its evolution remain poorly resolved in most taxa. In the horned beetle genus Onthophagus, scaling relationships of most traits are largely comparable across many species, however, the morphology and scaling of horns, a recent evolutionary invention, has diversified dramatically, ranging from modestly to highly positively linear to more complex sigmoidal allometries. Through a series of transcriptomic screens and gene function assays, the doublesex, hedgehog, insulin, and serotonin signaling pathways have recently been implicated in the regulation of amplitude, slope, and threshold location of the highly sigmoidal horn allometry in O. taurus. These and other findings suggest that co-option of these pathways into the regulation of horn development may have been critical in the evolutionary transitions from isometric to positively allometric to sigmoidal allometries in Onthophagus, thereby contributing to the extraordinary diversification of one of the most species-rich genera in the animal kingdom.
Collapse
Affiliation(s)
- Sofia Casasa
- Department of Biology, Indiana University, 915 East 3(rd) Street, Bloomington, IN 47405, United States.
| | - Daniel B Schwab
- Department of Biology, Indiana University, 915 East 3(rd) Street, Bloomington, IN 47405, United States
| | - Armin P Moczek
- Department of Biology, Indiana University, 915 East 3(rd) Street, Bloomington, IN 47405, United States
| |
Collapse
|
41
|
Toubiana W, Khila A. The benefits of expanding studies of trait exaggeration to hemimetabolous insects and beyond morphology. Curr Opin Genet Dev 2016; 39:14-20. [PMID: 27318690 DOI: 10.1016/j.gde.2016.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 12/01/2022]
Abstract
Trait exaggeration, well known to naturalists and evolutionary biologists, has recently become a prominent research subject in the modern field of Evolutionary Developmental Biology. A large number of traits that can be considered as cases of exaggeration exist in nature. Yet, the field has almost exclusively focused on the study of growth-related exaggerated traits in a selection of holometabolous insects. The absence of the hemimetabola from studies of exaggeration leaves a significant gap in our understanding of the development and evolution of such traits. Here we argue that efforts to understand the mechanisms of trait exaggeration would benefit from expanding the study subjects to include other kinds of exaggeration and other model species.
Collapse
Affiliation(s)
- William Toubiana
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon - CNRS UMR 5242 - Université Claude Bernard Lyon-1, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon - CNRS UMR 5242 - Université Claude Bernard Lyon-1, 46 allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|