1
|
Dunce JM, Davies OR. BRCA2 stabilises RAD51 and DMC1 nucleoprotein filaments through a conserved interaction mode. Nat Commun 2024; 15:8292. [PMID: 39333100 PMCID: PMC11436757 DOI: 10.1038/s41467-024-52699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
BRCA2 is essential for DNA repair by homologous recombination in mitosis and meiosis. It interacts with recombinases RAD51 and DMC1 to facilitate the formation of nucleoprotein filaments on resected DNA ends that catalyse recombination-mediated repair. BRCA2's BRC repeats bind and disrupt RAD51 and DMC1 filaments, whereas its PhePP motifs bind recombinases and stabilise their nucleoprotein filaments. However, the mechanism of filament stabilisation has hitherto remained unknown. Here, we report the crystal structure of a BRCA2-DMC1 complex, revealing how core interaction sites of PhePP motifs bind to recombinases. The interaction mode is conserved for RAD51 and DMC1, which selectively bind to BRCA2's two distinct PhePP motifs via subtly divergent binding pockets. PhePP motif sequences surrounding their core interaction sites protect nucleoprotein filaments from BRC-mediated disruption. Hence, we report the structural basis of how BRCA2's PhePP motifs stabilise RAD51 and DMC1 nucleoprotein filaments for their essential roles in mitotic and meiotic recombination.
Collapse
Affiliation(s)
- James M Dunce
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK.
| |
Collapse
|
2
|
Gurusaran M, Zhang J, Zhang K, Shibuya H, Davies OR. MEILB2-BRME1 forms a V-shaped DNA clamp upon BRCA2-binding in meiotic recombination. Nat Commun 2024; 15:6552. [PMID: 39095423 PMCID: PMC11297322 DOI: 10.1038/s41467-024-50920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
DNA double-strand break repair by homologous recombination has a specialised role in meiosis by generating crossovers that enable the formation of haploid germ cells. This requires meiosis-specific MEILB2-BRME1, which interacts with BRCA2 to facilitate loading of recombinases onto resected DNA ends. Here, we report the crystal structure of the MEILB2-BRME1 2:2 core complex, revealing a parallel four-helical assembly that recruits BRME1 to meiotic double-strand breaks in vivo. It forms an N-terminal β-cap that binds to DNA, and a MEILB2 coiled-coil that bridges to C-terminal ARM domains. Upon BRCA2-binding, MEILB2-BRME1 2:2 complexes dimerize into a V-shaped 2:4:4 complex, with rod-like MEILB2-BRME1 components arranged at right-angles. The β-caps located at the tips of the MEILB2-BRME1 limbs are separated by 25 nm, allowing them to bridge between DNA molecules. Thus, we propose that BRCA2 induces MEILB2-BRME1 to function as a DNA clamp, connecting resected DNA ends or homologous chromosomes to facilitate meiotic recombination.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Kexin Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Miron S, Legrand P, Dupaigne P, van Rossum-Fikkert SE, Ristic D, Majeed A, Kanaar R, Zinn-Justin S, Zelensky A. DMC1 and RAD51 bind FxxA and FxPP motifs of BRCA2 via two separate interfaces. Nucleic Acids Res 2024; 52:7337-7353. [PMID: 38828772 PMCID: PMC11229353 DOI: 10.1093/nar/gkae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
In vertebrates, the BRCA2 protein is essential for meiotic and somatic homologous recombination due to its interaction with the RAD51 and DMC1 recombinases through FxxA and FxPP motifs (here named A- and P-motifs, respectively). The A-motifs present in the eight BRC repeats of BRCA2 compete with the A-motif of RAD51, which is responsible for its self-oligomerization. BRCs thus disrupt RAD51 nucleoprotein filaments in vitro. The role of the P-motifs is less studied. We recently found that deletion of Brca2 exons 12-14 encoding one of them (the prototypical 'PhePP' motif), disrupts DMC1 but not RAD51 function in mouse meiosis. Here we provide a mechanistic explanation for this phenotype by solving the crystal structure of the complex between a BRCA2 fragment containing the PhePP motif and DMC1. Our structure reveals that, despite sharing a conserved phenylalanine, the A- and P-motifs bind to distinct sites on the ATPase domain of the recombinases. The P-motif interacts with a site that is accessible in DMC1 octamers and nucleoprotein filaments. Moreover, we show that this interaction also involves the adjacent protomer and thus increases the stability of the DMC1 nucleoprotein filaments. We extend our analysis to other P-motifs from RAD51AP1 and FIGNL1.
Collapse
Affiliation(s)
- Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette, France
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Dejan Ristic
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Atifa Majeed
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Alex N Zelensky
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Ahmad RM, Ali BR, Al-Jasmi F, Sinnott RO, Al Dhaheri N, Mohamad MS. A review of genetic variant databases and machine learning tools for predicting the pathogenicity of breast cancer. Brief Bioinform 2023; 25:bbad479. [PMID: 38149678 PMCID: PMC10782903 DOI: 10.1093/bib/bbad479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023] Open
Abstract
Studies continue to uncover contributing risk factors for breast cancer (BC) development including genetic variants. Advances in machine learning and big data generated from genetic sequencing can now be used for predicting BC pathogenicity. However, it is unclear which tool developed for pathogenicity prediction is most suited for predicting the impact and pathogenicity of variant effects. A significant challenge is to determine the most suitable data source for each tool since different tools can yield different prediction results with different data inputs. To this end, this work reviews genetic variant databases and tools used specifically for the prediction of BC pathogenicity. We provide a description of existing genetic variants databases and, where appropriate, the diseases for which they have been established. Through example, we illustrate how they can be used for prediction of BC pathogenicity and discuss their associated advantages and disadvantages. We conclude that the tools that are specialized by training on multiple diverse datasets from different databases for the same disease have enhanced accuracy and specificity and are thereby more helpful to the clinicians in predicting and diagnosing BC as early as possible.
Collapse
Affiliation(s)
- Rahaf M Ahmad
- Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Tawam road, Al Maqam district, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bassam R Ali
- Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Tawam road, Al Maqam district, Al Ain, Abu Dhabi, United Arab Emirates
| | - Fatma Al-Jasmi
- Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Tawam road, Al Maqam district, Al Ain, Abu Dhabi, United Arab Emirates
- Division of Metabolic Genetics, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Richard O Sinnott
- School of Computing and Information System, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Noura Al Dhaheri
- Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Tawam road, Al Maqam district, Al Ain, Abu Dhabi, United Arab Emirates
- Division of Metabolic Genetics, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Mohd Saberi Mohamad
- Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Tawam road, Al Maqam district, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Trouillard O, Dupaigne P, Dunoyer M, Doulazmi M, Herlin MK, Frismand S, Riou A, Legros V, Chevreux G, Veaute X, Busso D, Fouquet C, Saint-Martin C, Méneret A, Trembleau A, Dusart I, Dubacq C, Roze E. Congenital mirror movements are associated with defective polymerisation of RAD51. J Med Genet 2023; 60:1116-1126. [PMID: 37308287 DOI: 10.1136/jmg-2023-109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/21/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mirror movements are involuntary movements of one hand that mirror intentional movements of the other hand. Congenital mirror movements (CMM) is a rare genetic disorder with autosomal dominant inheritance, in which mirror movements are the main neurological manifestation. CMM is associated with an abnormal decussation of the corticospinal tract, a major motor tract for voluntary movements. RAD51 is known to play a key role in homologous recombination with a critical function in DNA repair. While RAD51 haploinsufficiency was first proposed to explain CMM, other mechanisms could be involved. METHODS We performed Sanger sequencing of RAD51 in five newly identified CMM families to identify new pathogenic variants. We further investigated the expression of wild-type and mutant RAD51 in the patients' lymphoblasts at mRNA and protein levels. We then characterised the functions of RAD51 altered by non-truncating variants using biochemical approaches. RESULTS The level of wild-type RAD51 protein was lower in the cells of all patients with CMM compared with their non-carrier relatives. The reduction was less pronounced in asymptomatic carriers. In vitro, mutant RAD51 proteins showed loss-of-function for polymerisation, DNA binding and strand exchange activity. CONCLUSION Our study demonstrates that RAD51 haploinsufficiency, including loss-of-function of non-truncating variants, results in CMM. The incomplete penetrance likely results from post-transcriptional compensation. Changes in RAD51 levels and/or polymerisation properties could influence guidance of the corticospinal axons during development. Our findings open up new perspectives to understand the role of RAD51 in neurodevelopment.
Collapse
Affiliation(s)
- Oriane Trouillard
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex, France
| | - Margaux Dunoyer
- Hôpital Pitié-Salpêtrière, Département de Neurologie, AP-HP, Paris, France
| | - Mohamed Doulazmi
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Biological Adaptation and Ageing, B2A, Sorbonne Université, F-75005 Paris, France
| | - Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Audrey Riou
- Service de génétique clinique & Service de neurologie, CHU Rennes, Rennes, France
| | - Véronique Legros
- CNRS, Institut Jacques Monod, Université Paris Cité, F-75013 Paris, France
| | - Guillaume Chevreux
- CNRS, Institut Jacques Monod, Université Paris Cité, F-75013 Paris, France
| | - Xavier Veaute
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, CIGEx/iRCM/IBFJ, Université Paris Cité, F-92260 Fontenay-aux-Roses, France
| | - Didier Busso
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, CIGEx/iRCM/IBFJ, Université Paris Cité, F-92260 Fontenay-aux-Roses, France
| | - Coralie Fouquet
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Cécile Saint-Martin
- AP-HP, Hôpital Pitié-Salpêtrière, Département de Génétique Médicale, Sorbonne Université, Paris, France
| | - Aurélie Méneret
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Hôpital Pitié-Salpêtrière, DMU Neuroscience 6, AP-HP, Paris, France
| | - Alain Trembleau
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Isabelle Dusart
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Caroline Dubacq
- INSERM, CNRS, Institut de Biologie Paris Seine, IBPS, Neuroscience Paris Seine, NPS, Sorbonne Université, F-75005 Paris, France
| | - Emmanuel Roze
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Hôpital Pitié-Salpêtrière, DMU Neuroscience 6, AP-HP, Paris, France
| |
Collapse
|
7
|
Ghouil R, Miron S, Sato K, Ristic D, van Rossum-Fikkert SE, Legrand P, Ouldali M, Winter JM, Ropars V, David G, Arteni AA, Wyman C, Knipscheer P, Kanaar R, Zelensky AN, Zinn-Justin S. BRCA2-HSF2BP oligomeric ring disassembly by BRME1 promotes homologous recombination. SCIENCE ADVANCES 2023; 9:eadi7352. [PMID: 37889963 PMCID: PMC10610910 DOI: 10.1126/sciadv.adi7352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
In meiotic homologous recombination (HR), BRCA2 facilitates loading of the recombinases RAD51 and DMC1 at the sites of double-strand breaks (DSBs). The HSF2BP-BRME1 complex interacts with BRCA2. Its absence causes a severe reduction in recombinase loading at meiotic DSB. We previously showed that, in somatic cancer cells ectopically producing HSF2BP, DNA damage can trigger HSF2BP-dependent degradation of BRCA2, which prevents HR. Here, we report that, upon binding to BRCA2, HSF2BP forms octameric rings that are able to interlock into a large ring-shaped 24-mer. Addition of BRME1 leads to dissociation of both of these ring structures and cancels the disruptive effect of HSF2BP on cancer cell resistance to DNA damage. It also prevents BRCA2 degradation during interstrand DNA crosslink repair in Xenopus egg extracts. We propose that, during meiosis, the control of HSF2BPBRCA2 oligomerization by BRME1 ensures timely assembly of the ring complex that concentrates BRCA2 and controls its turnover, thus promoting HR.
Collapse
Affiliation(s)
- Rania Ghouil
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Simona Miron
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute–KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Dejan Ristic
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Sari E. van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gabriel David
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette, France
| | - Ana-Andreea Arteni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Claire Wyman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute–KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Alex N. Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Sophie Zinn-Justin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Zhang T, Zhao SH, Wang Y, He Y. FIGL1 coordinates with dosage-sensitive BRCA2 in modulating meiotic recombination in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2107-2121. [PMID: 37293848 DOI: 10.1111/jipb.13541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Meiotic crossover (CO) formation between homologous chromosomes ensures their subsequent proper segregation and generates genetic diversity among offspring. In maize, however, the mechanisms that modulate CO formation remain poorly characterized. Here, we found that both maize BREAST CANCER SUSCEPTIBILITY PROTEIN 2 (BRCA2) and AAA-ATPase FIDGETIN-LIKE-1 (FIGL1) act as positive factors of CO formation by controlling the assembly or/and stability of two conserved DNA recombinases RAD51 and DMC1 filaments. Our results revealed that ZmBRCA2 is not only involved in the repair of DNA double-stranded breaks (DSBs), but also regulates CO formation in a dosage-dependent manner. In addition, ZmFIGL1 interacts with RAD51 and DMC1, and Zmfigl1 mutants had a significantly reduced number of RAD51/DMC1 foci and COs. Further, simultaneous loss of ZmFIGL1 and ZmBRCA2 abolished RAD51/DMC1 foci and exacerbated meiotic defects compared with the single mutant Zmbrca2 or Zmfigl1. Together, our data demonstrate that ZmBRCA2 and ZmFIGL1 act coordinately to regulate the dynamics of RAD51/DMC1-dependent DSB repair to promote CO formation in maize. This conclusion is surprisingly different from the antagonistic roles of BRCA2 and FIGL1 in Arabidopsis, implying that, although key factors that control CO formation are evolutionarily conserved, specific characteristics have been adopted in diverse plant species.
Collapse
Affiliation(s)
- Ting Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shuang-Hui Zhao
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Liu C, Wang L, Li Y, Guo M, Hu J, Wang T, Li M, Yang Z, Lin R, Xu W, Chen Y, Luo M, Gao F, Chen JY, Sun Q, Liu H, Sun B, Li W. RNase H1 facilitates recombinase recruitment by degrading DNA-RNA hybrids during meiosis. Nucleic Acids Res 2023; 51:7357-7375. [PMID: 37378420 PMCID: PMC10415156 DOI: 10.1093/nar/gkad524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
DNA-RNA hybrids play various roles in many physiological progresses, but how this chromatin structure is dynamically regulated during spermatogenesis remains largely unknown. Here, we show that germ cell-specific knockout of Rnaseh1, a specialized enzyme that degrades the RNA within DNA-RNA hybrids, impairs spermatogenesis and causes male infertility. Notably, Rnaseh1 knockout results in incomplete DNA repair and meiotic prophase I arrest. These defects arise from the altered RAD51 and DMC1 recruitment in zygotene spermatocytes. Furthermore, single-molecule experiments show that RNase H1 promotes recombinase recruitment to DNA by degrading RNA within DNA-RNA hybrids and allows nucleoprotein filaments formation. Overall, we uncover a function of RNase H1 in meiotic recombination, during which it processes DNA-RNA hybrids and facilitates recombinase recruitment.
Collapse
Affiliation(s)
- Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
| | - Liying Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yanan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengmeng Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Teng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengjing Li
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China
| | - Zhuo Yang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruoyao Lin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Wei Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengcheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430072, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan 250012, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Hasan AK, Babaei E, Al-Khafaji ASK. Hesperetin effect on MLH1 and MSH2 expression on breast cancer cells BT-549. J Adv Pharm Technol Res 2023; 14:241-247. [PMID: 37692022 PMCID: PMC10483912 DOI: 10.4103/japtr.japtr_277_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 09/12/2023] Open
Abstract
Due to its genetic and phenotypic heterogeneity, breast cancer is very difficult to eliminate. The harmful consequences of conventional therapies like radiation and chemotherapy have prompted the search for organic-based alternatives. Hesperetin (HSP), a flavonoid, has been discovered to possess the ability to hinder the proliferation of cell associated with breast cancer by acting as an epigenetic agent and modifying gene expression. In this investigation, breast cancer cells (BT-549) and normal cells (MCF-10a) were subjected to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test and three different doses (200, 400, and 600 μM/mL) of HSP for real-time polymerase chain reaction and flow cytometry to examine its cytotoxic and anti-malignant potential. HSP was shown to be cytotoxic to both normal and breast cancer cells, but had a more pronounced effect on the cancer cell lines. After 48 h of treatment, the half-maximal inhibitory concentration (IC50) for BT-549 was 279.2 μM/mL, whereas the IC50 for MCF-10a was 855.4 μM/mL. At high HSP concentrations, upregulation of the MLH1 and MSH2 genes was observed in both cell lines. The influence of HSP on MLH1 gene expression was concentration dependent. Moreover, HSP had a concentration-dependent effect on MSH2 gene expression in the BT-549 cell line but not in the MCF-10a cell line. Cell death and early apoptosis were shown to be concentration dependent upon the application of HSP, as determined by flow cytometric analysis. HSP's capacity to cause apoptosis and its stronger impact on the malignant cell line when analyzed with the normal cell line imply that it might be useful as an effective therapeutic approach for combating breast cancer.
Collapse
Affiliation(s)
- Assim Khattab Hasan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
11
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
12
|
Vugic D, Dumoulin I, Martin C, Minello A, Alvaro-Aranda L, Gomez-Escudero J, Chaaban R, Lebdy R, von Nicolai C, Boucherit V, Ribeyre C, Constantinou A, Carreira A. Replication gap suppression depends on the double-strand DNA binding activity of BRCA2. Nat Commun 2023; 14:446. [PMID: 36707518 PMCID: PMC9883520 DOI: 10.1038/s41467-023-36149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Replication stress (RS) is a major source of genomic instability and is intrinsic to cancer cells. RS is also the consequence of chemotherapeutic drugs for treating cancer. However, adaptation to RS is also a mechanism of resistance to chemotherapy. BRCA2 deficiency results in replication stress in human cells. BRCA2 protein's main functions include DNA repair by homologous recombination (HR) both at induced DNA double-strand breaks (DSB) and spontaneous replicative lesions. At stalled replication forks, BRCA2 protects the DNA from aberrant nucleolytic degradation and is thought to limit the appearance of ssDNA gaps by arresting replication and via post-replicative HR. However, whether and how BRCA2 acts to limit the formation of ssDNA gaps or mediate their repair, remains ill-defined. Here, we use breast cancer variants affecting different domains of BRCA2 to shed light on this function. We demonstrate that the N-terminal DNA binding domain (NTD), and specifically, its dsDNA binding activity, is required to prevent and repair/fill-in ssDNA gaps upon nucleotide depletion but not to limit PARPi-induced ssDNA gaps. Thus, these findings suggest that nucleotide depletion and PARPi trigger gaps via distinct mechanisms and that the NTD of BRCA2 prevents nucleotide depletion-induced ssDNA gaps.
Collapse
Affiliation(s)
- Domagoj Vugic
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Isaac Dumoulin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Charlotte Martin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Anna Minello
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Lucia Alvaro-Aranda
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain
| | - Jesus Gomez-Escudero
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain
| | - Rady Chaaban
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain
| | - Rana Lebdy
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Catharina von Nicolai
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Virginie Boucherit
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Cyril Ribeyre
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France.
- Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France.
- Genome Instability and Cancer Predisposition lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, 28049, Spain.
| |
Collapse
|
13
|
Franca MM, Condezo YB, Elzaiat M, Felipe-Medina N, Sánchez-Sáez F, Muñoz S, Sainz-Urruela R, Martín-Hervás MR, García-Valiente R, Sánchez-Martín MA, Astudillo A, Mendez J, Llano E, Veitia RA, Mendonca BB, Pendás AM. A truncating variant of RAD51B associated with primary ovarian insufficiency provides insights into its meiotic and somatic functions. Cell Death Differ 2022; 29:2347-2361. [PMID: 35624308 PMCID: PMC9751091 DOI: 10.1038/s41418-022-01021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/31/2023] Open
Abstract
Primary ovarian insufficiency (POI) causes female infertility by abolishing normal ovarian function. Although its genetic etiology has been extensively investigated, most POI cases remain unexplained. Using whole-exome sequencing, we identified a homozygous variant in RAD51B -(c.92delT) in two sisters with POI. In vitro studies revealed that this variant leads to translation reinitiation at methionine 64. Here, we show that this is a pathogenic hypomorphic variant in a mouse model. Rad51bc.92delT/c.92delT mice exhibited meiotic DNA repair defects due to RAD51 and HSF2BP/BMRE1 accumulation in the chromosome axes leading to a reduction in the number of crossovers. Interestingly, the interaction of RAD51B-c.92delT with RAD51C and with its newly identified interactors RAD51 and HELQ was abrogated or diminished. Repair of mitomycin-C-induced chromosomal aberrations was impaired in RAD51B/Rad51b-c.92delT human and mouse somatic cells in vitro and in explanted mouse bone marrow cells. Accordingly, Rad51b-c.92delT variant reduced replication fork progression of patient-derived lymphoblastoid cell lines and pluripotent reprogramming efficiency of primary mouse embryonic fibroblasts. Finally, Rad51bc.92delT/c.92delT mice displayed increased incidence of pituitary gland hyperplasia. These results provide new mechanistic insights into the role of RAD51B not only in meiosis but in the maintenance of somatic genome stability.
Collapse
Affiliation(s)
- Monica M Franca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 and SELA, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil
- Section of Endocrinology Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Yazmine B Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Maëva Elzaiat
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Raquel Sainz-Urruela
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - M Rosario Martín-Hervás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Rodrigo García-Valiente
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Manuel A Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus platform, Universidad de Salamanca, Salamanca, Spain
| | | | - Juan Mendez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Reiner A Veitia
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
- Université Paris-Saclay and Institut François Jacob, Comissariat à l'Energie Atomique, Gif-sur-Yvette, France.
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 and SELA, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil.
| | - Alberto M Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain.
| |
Collapse
|
14
|
Britton BM, London JA, Martin-Lopez J, Jones ND, Liu J, Lee JB, Fishel R. Exploiting the distinctive properties of the bacterial and human MutS homolog sliding clamps on mismatched DNA. J Biol Chem 2022; 298:102505. [PMID: 36126773 PMCID: PMC9597889 DOI: 10.1016/j.jbc.2022.102505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/30/2022] Open
Abstract
MutS homologs (MSHs) are highly conserved core components of DNA mismatch repair. Mismatch recognition provokes ATP-binding by MSH proteins that drives a conformational transition from a short-lived lesion-searching clamp to an extremely stable sliding clamp on the DNA. Here, we have expanded on previous bulk biochemical studies to examine the stability, lifetime, and kinetics of bacterial and human MSH sliding clamps on mismatched DNA using surface plasmon resonance and single-molecule analysis of fluorescently labeled proteins. We found that ATP-bound MSH complexes bound to blocked-end or very long mismatched DNAs were extremely stable over a range of ionic conditions. These observations underpinned the development of a high-throughput Förster resonance energy transfer system that specifically detects the formation of MSH sliding clamps on mismatched DNA. The Förster resonance energy transfer system is capable of distinguishing between HsMSH2-HsMSH3 and HsMSH2-HsMSH6 and appears suitable for chemical inhibitor screens. Taken together, our results provide additional insight into MSH sliding clamps as well as methods to distinguish their functions in mismatch repair.
Collapse
Affiliation(s)
- Brooke M Britton
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - James A London
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Juana Martin-Lopez
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nathan D Jones
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jiaquan Liu
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Korea; Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Korea
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
15
|
Integration of Transcriptome and Epigenome to Identify and Develop Prognostic Markers for Ovarian Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3744466. [PMID: 36081667 PMCID: PMC9448543 DOI: 10.1155/2022/3744466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022]
Abstract
DNA methylation is a widely researched epigenetic modification. It is associated with the occurrence and development of cancer and has helped evaluate patients' prognoses. However, most existing DNA methylation prognosis models have not simultaneously considered the changes of the downstream transcriptome. Methods. The RNA-Sequencing data and DNA methylation omics data of ovarian cancer patients were downloaded from The Cancer Genome Atlas (TCGA) database. The Consensus Cluster Plus algorithm was used to construct the methylated molecular subtypes of the ovary. Lasso regression was employed to build a multi-gene signature. An independent data set was applied to verify the prognostic value of the signature. The Gene Set Variation Analysis (GSVA) was used to carry out the enrichment analysis of the pathways linked to the gene signature. The IMvigor 210 cohort was used to explore the predictive efficacy of the gene signature for immunotherapy response. Results. We distinguished ovarian cancer samples into two subtypes with different prognosis, based on the omics data of DNA methylation. Differentially expressed genes and enrichment analysis among subtypes indicated that DNA methylation was related to fatty acid metabolism and the extracellular matrix (ECM)-receptor. Furthermore, we constructed an 8-gene signature, which proved to be efficient and stable in predicting prognostics in ovarian cancer patients with different data sets and distinctive pathological characteristics. Finally, the 8-gene signature could predict patients' responses to immunotherapy. The polymerase chain reaction experiment was further used to verify the expression of 8 genes. Conclusion. We analyzed the prognostic value of the related genes of methylation in ovarian cancer. The 8-gene signature predicted the prognosis and immunotherapy response of ovarian cancer patients well and is expected to be valuable in clinical application.
Collapse
|
16
|
Song Q, Hu Y, Yin A, Wang H, Yin Q. DNA Holliday Junction: History, Regulation and Bioactivity. Int J Mol Sci 2022; 23:9730. [PMID: 36077130 PMCID: PMC9456528 DOI: 10.3390/ijms23179730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
DNA Holliday junction (HJ) is a four-way stranded DNA intermediate that formed in replication fork regression, homology-dependent repair and mitosis, performing a significant role in genomic stability. Failure to remove HJ can induce an acceptable replication fork stalling and DNA damage in normal cells, leading to a serious chromosomal aberration and even cell death in HJ nuclease-deficient tumor cells. Thus, HJ is becoming an attractive target in cancer therapy. However, the development of HJ-targeting ligand faces great challenges because of flexile cavities on the center of HJs. This review introduces the discovery history of HJ, elucidates the formation and dissociation procedures of HJ in corresponding bio-events, emphasizes the importance of prompt HJ-removing in genome stability, and summarizes recent advances in HJ-based ligand discovery. Our review indicate that target HJ is a promising approach in oncotherapy.
Collapse
Affiliation(s)
- Qinqin Song
- State/Key Laboratory of Microbial Technology, Shandong University, 72 Jimo Binhai Road, Qingdao 266237, China
| | - Yuemiao Hu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Anqi Yin
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Qikun Yin
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
- Bohai Rim Advanced Research Institute for Drug Discovery, 198 Binhai East Road, Yantai 264005, China
| |
Collapse
|
17
|
Yoshikawa Y, Kimura S, Soga A, Sugiyama M, Ueno A, Kondo H, Zhu Z, Ochiai K, Nakayama K, Hakozaki J, Kusakisako K, Haraguchi A, Kitano T, Orino K, Fukumoto S, Ikadai H. Plasmodium berghei Brca2 is required for normal development and differentiation in mice and mosquitoes. Parasit Vectors 2022; 15:244. [PMID: 35804459 PMCID: PMC9270840 DOI: 10.1186/s13071-022-05357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a major global parasitic disease caused by species of the genus Plasmodium. Zygotes of Plasmodium spp. undergo meiosis and develop into tetraploid ookinetes, which differentiate into oocysts that undergo sporogony. Homologous recombination (HR) occurs during meiosis and introduces genetic variation. However, the mechanisms of HR in Plasmodium are unclear. In humans, the recombinases DNA repair protein Rad51 homolog 1 (Rad51) and DNA meiotic recombinase 1 (Dmc1) are required for HR and are regulated by breast cancer susceptibility protein 2 (BRCA2). Most eukaryotes harbor BRCA2 homologs. Nevertheless, these have not been reported for Plasmodium. METHODS A Brca2 candidate was salvaged from a database to identify Brca2 homologs in Plasmodium. To confirm that the candidate protein was Brca2, interaction activity between Plasmodium berghei (Pb) Brca2 (PbBrca2) and Rad51 (PbRad51) was investigated using a mammalian two-hybrid assay. To elucidate the functions of PbBrca2, PbBrca2 was knocked out and parasite proliferation and differentiation were assessed in mice and mosquitoes. Transmission electron microscopy was used to identify sporogony. RESULTS The candidate protein was conserved among Plasmodium species, and it was indicated that it harbors critical BRCA2 domains including BRC repeats, tower, and oligonucleotide/oligosaccharide-binding-fold domains. The P. berghei BRC repeats interacted with PbRad51. Hence, the candidate was considered a Brca2 homolog. PbBrca2 knockout parasites were associated with reduced parasitemia with increased ring stage and decreased trophozoite stage counts, gametocytemia, female gametocyte ratio, oocyst number, and ookinete development in both mice and mosquitoes. Nevertheless, the morphology of the blood stages in mice and the ookinete stage was comparable to those of the wild type parasites. Transmission electron microscopy results showed that sporogony never progressed in Brca2-knockout parasites. CONCLUSIONS Brca2 is implicated in nearly all Plasmodium life cycle stages, and especially in sporogony. PbBrca2 contributes to HR during meiosis.
Collapse
Affiliation(s)
- Yasunaga Yoshikawa
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan.
| | - Shunta Kimura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Akira Soga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, 080-8555, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Aki Ueno
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Hiroki Kondo
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Zida Zhu
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Kazuhiko Ochiai
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Kazuhiko Nakayama
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Jun Hakozaki
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Kodai Kusakisako
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Asako Haraguchi
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Taisuke Kitano
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Koichi Orino
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, 080-8555, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| |
Collapse
|
18
|
Costanza A, Guaragnella N, Bobba A, Manzari C, L'Abbate A, Giudice CL, Picardi E, D'Erchia AM, Pesole G, Giannattasio S. Yeast as a Model to Unravel New BRCA2 Functions in Cell Metabolism. Front Oncol 2022; 12:908442. [PMID: 35734584 PMCID: PMC9207209 DOI: 10.3389/fonc.2022.908442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in BRCA2 gene increase the risk for breast cancer and for other cancer types, including pancreatic and prostate cancer. Since its first identification as an oncosupressor in 1995, the best-characterized function of BRCA2 is in the repair of DNA double-strand breaks (DSBs) by homologous recombination. BRCA2 directly interacts with both RAD51 and single-stranded DNA, mediating loading of RAD51 recombinase to sites of single-stranded DNA. In the absence of an efficient homologous recombination pathway, DSBs accumulate resulting in genome instability, thus supporting tumorigenesis. Yet the precise mechanism by which BRCA2 exerts its tumor suppressor function remains unclear. BRCA2 has also been involved in other biological functions including protection of telomere integrity and stalled replication forks, cell cycle progression, transcriptional control and mitophagy. Recently, we and others have reported a role of BRCA2 in modulating cell death programs through a molecular mechanism conserved in yeast and mammals. Here we hypothesize that BRCA2 is a multifunctional protein which exerts specific functions depending on cell stress response pathway. Based on a differential RNA sequencing analysis carried out on yeast cells either growing or undergoing a regulated cell death process, either in the absence or in the presence of BRCA2, we suggest that BRCA2 causes central carbon metabolism reprogramming in response to death stimuli and encourage further investigation on the role of metabolic reprogramming in BRCA2 oncosuppressive function.
Collapse
Affiliation(s)
- Alessandra Costanza
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Bobba
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Alberto L'Abbate
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Claudio Lo Giudice
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Maria D'Erchia
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| |
Collapse
|
19
|
Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, Lu LY, Tan YQ. OUP accepted manuscript. Hum Reprod Update 2022; 28:763-797. [PMID: 35613017 DOI: 10.1093/humupd/dmac024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chunbo Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanlan Meng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
20
|
Li W, Zhang L, Shinohara A, Keeney S. Editorial: Meiosis: From Molecular Basis to Medicine. Front Cell Dev Biol 2021; 9:812292. [PMID: 34926477 PMCID: PMC8671932 DOI: 10.3389/fcell.2021.812292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, Howard Hughes Medical Institute, New York, NY, United States
| |
Collapse
|
21
|
Lindenburg LH, Pantelejevs T, Gielen F, Zuazua-Villar P, Butz M, Rees E, Kaminski CF, Downs JA, Hyvönen M, Hollfelder F. Improved RAD51 binders through motif shuffling based on the modularity of BRC repeats. Proc Natl Acad Sci U S A 2021; 118:e2017708118. [PMID: 34772801 PMCID: PMC8727024 DOI: 10.1073/pnas.2017708118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 01/20/2023] Open
Abstract
Exchanges of protein sequence modules support leaps in function unavailable through point mutations during evolution. Here we study the role of the two RAD51-interacting modules within the eight binding BRC repeats of BRCA2. We created 64 chimeric repeats by shuffling these modules and measured their binding to RAD51. We found that certain shuffled module combinations were stronger binders than any of the module combinations in the natural repeats. Surprisingly, the contribution from the two modules was poorly correlated with affinities of natural repeats, with a weak BRC8 repeat containing the most effective N-terminal module. The binding of the strongest chimera, BRC8-2, to RAD51 was improved by -2.4 kCal/mol compared to the strongest natural repeat, BRC4. A crystal structure of RAD51:BRC8-2 complex shows an improved interface fit and an extended β-hairpin in this repeat. BRC8-2 was shown to function in human cells, preventing the formation of nuclear RAD51 foci after ionizing radiation.
Collapse
Affiliation(s)
- Laurens H Lindenburg
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Fabrice Gielen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Pedro Zuazua-Villar
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Maren Butz
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Jessica A Downs
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;
| |
Collapse
|
22
|
Zhang J, Nandakumar J, Shibuya H. BRCA2 in mammalian meiosis. Trends Cell Biol 2021; 32:281-284. [PMID: 34625364 DOI: 10.1016/j.tcb.2021.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Breast cancer type 2 susceptibility protein (BRCA2) is a central regulator of homologous recombination in somatic cells and safeguards genomic integrity against DNA double-strand breaks (DSBs). Recent evidence suggests that association with unique meiosis-specific cofactors allows BRCA2 to facilitate homologous recombination in germ cells.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-40530, Sweden
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-40530, Sweden.
| |
Collapse
|
23
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
24
|
Ghouil R, Miron S, Koornneef L, Veerman J, Paul MW, Le Du MH, Sleddens-Linkels E, van Rossum-Fikkert SE, van Loon Y, Felipe-Medina N, Pendas AM, Maas A, Essers J, Legrand P, Baarends WM, Kanaar R, Zinn-Justin S, Zelensky AN. BRCA2 binding through a cryptic repeated motif to HSF2BP oligomers does not impact meiotic recombination. Nat Commun 2021; 12:4605. [PMID: 34326328 PMCID: PMC8322138 DOI: 10.1038/s41467-021-24871-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
BRCA2 and its interactors are required for meiotic homologous recombination (HR) and fertility. Loss of HSF2BP, a BRCA2 interactor, disrupts HR during spermatogenesis. We test the model postulating that HSF2BP localizes BRCA2 to meiotic HR sites, by solving the crystal structure of the BRCA2 fragment in complex with dimeric armadillo domain (ARM) of HSF2BP and disrupting this interaction in a mouse model. This reveals a repeated 23 amino acid motif in BRCA2, each binding the same conserved surface of one ARM domain. In the complex, two BRCA2 fragments hold together two ARM dimers, through a large interface responsible for the nanomolar affinity - the strongest interaction involving BRCA2 measured so far. Deleting exon 12, encoding the first repeat, from mBrca2 disrupts BRCA2 binding to HSF2BP, but does not phenocopy HSF2BP loss. Thus, results herein suggest that the high-affinity oligomerization-inducing BRCA2-HSF2BP interaction is not required for RAD51 and DMC1 recombinase localization in meiotic HR.
Collapse
Affiliation(s)
- Rania Ghouil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Lieke Koornneef
- Department of Developmental Biology, Oncode Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Jasper Veerman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Marie-Hélène Le Du
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Yvette van Loon
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Alberto M Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Alex Maas
- Department of Cell Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, France
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France.
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Julien M, Ghouil R, Petitalot A, Caputo SM, Carreira A, Zinn-Justin S. Intrinsic Disorder and Phosphorylation in BRCA2 Facilitate Tight Regulation of Multiple Conserved Binding Events. Biomolecules 2021; 11:1060. [PMID: 34356684 PMCID: PMC8301801 DOI: 10.3390/biom11071060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
The maintenance of genome integrity in the cell is an essential process for the accurate transmission of the genetic material. BRCA2 participates in this process at several levels, including DNA repair by homologous recombination, protection of stalled replication forks, and cell division. These activities are regulated and coordinated via cell-cycle dependent modifications. Pathogenic variants in BRCA2 cause genome instability and are associated with breast and/or ovarian cancers. BRCA2 is a very large protein of 3418 amino acids. Most well-characterized variants causing a strong predisposition to cancer are mutated in the C-terminal 700 residues DNA binding domain of BRCA2. The rest of the BRCA2 protein is predicted to be disordered. Interactions involving intrinsically disordered regions (IDRs) remain difficult to identify both using bioinformatics tools and performing experimental assays. However, the lack of well-structured binding sites provides unique functional opportunities for BRCA2 to bind to a large set of partners in a tightly regulated manner. We here summarize the predictive and experimental arguments that support the presence of disorder in BRCA2. We describe how BRCA2 IDRs mediate self-assembly and binding to partners during DNA double-strand break repair, mitosis, and meiosis. We highlight how phosphorylation by DNA repair and cell-cycle kinases regulate these interactions. We finally discuss the impact of cancer-associated variants on the function of BRCA2 IDRs and more generally on genome stability and cancer risk.
Collapse
Affiliation(s)
- Manon Julien
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Rania Ghouil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Ambre Petitalot
- Service de Génétique, Unité de Génétique Constitutionnelle, Institut Curie, 75005 Paris, France; (A.P.); (S.M.C.)
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
| | - Sandrine M. Caputo
- Service de Génétique, Unité de Génétique Constitutionnelle, Institut Curie, 75005 Paris, France; (A.P.); (S.M.C.)
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
| | - Aura Carreira
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
- Unité Intégrité du Génome, ARN et Cancer, Institut Curie, CNRS UMR3348, 91405 Orsay, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
26
|
Robert N, Yan C, Si-Jiu Y, Bo L, He H, Pengfei Z, Hongwei X, Jian Z, Shijie L, Qian Z. Expression of Rad51 and the histo-morphological evaluation of testis of the sterile male cattle-yak. Theriogenology 2021; 172:239-254. [PMID: 34298284 DOI: 10.1016/j.theriogenology.2021.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022]
Abstract
Meiotic recombination is key to the repair of DNA double-strand break damage, provide a link between homologs for proper chromosome segregation as well as ensure genetic diversity in organisms. Defects in recombination often lead to sterility. The ubiquitously expressed Rad51 and the meiosis-specific DMC1 are two closely related recombinases that catalyze the key strand invasion and exchange step of meiotic recombination. This study cloned and sequenced the coding region of cattle-yak Rad51 and determined its mRNA and protein expression levels, evaluated its molecular and evolutionary relationship as well as evaluated the histo-morphological structure of testes in the yellow cattle, yak and the sterile cattle-yak hybrid. The Rad51 gene was amplified using PCR, cloned and sequenced using testicular cDNA from yak and cattle-yak. Real-time PCR was used to examine the expression levels of Rad51/DMC1 mRNA in the cattle, yak and cattle-yak testis while western blotting, immunofluorescence and immunohistochemistry were used to assess the protein expression and localization of Rad51/DMC1 protein in the testicular tissue sections. The results revealed that the mRNA and protein expression of Rad51 and DMC1 are extremely low in the male cattle-yak testis with a corresponding higher incidence of germ cell apoptosis. There was also thinning of the germinal epithelium possibly due to the depletion of the germ cells leading to the widening of the lumen area of the cattle-yak seminiferous tubule. Our findings provide support for the hypothesis that the low expression of Rad51 and DMC1 may contribute to the male hybrid sterility in the cattle-yak.
Collapse
Affiliation(s)
- Niayale Robert
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Cui Yan
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China.
| | - Yu Si-Jiu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China
| | - Liao Bo
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China
| | - Zhao Pengfei
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xu Hongwei
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhang Jian
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Li Shijie
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhang Qian
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
27
|
Mhaskar AN, Koornneef L, Zelensky AN, Houtsmuller AB, Baarends WM. High Resolution View on the Regulation of Recombinase Accumulation in Mammalian Meiosis. Front Cell Dev Biol 2021; 9:672191. [PMID: 34109178 PMCID: PMC8181746 DOI: 10.3389/fcell.2021.672191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
A distinguishing feature of meiotic DNA double-strand breaks (DSBs), compared to DSBs in somatic cells, is the fact that they are induced in a programmed and specifically orchestrated manner, which includes chromatin remodeling prior to DSB induction. In addition, the meiotic homologous recombination (HR) repair process that follows, is different from HR repair of accidental DSBs in somatic cells. For instance, meiotic HR involves preferred use of the homolog instead of the sister chromatid as a repair template and subsequent formation of crossovers and non-crossovers in a tightly regulated manner. An important outcome of this distinct repair pathway is the pairing of homologous chromosomes. Central to the initial steps in homology recognition during meiotic HR is the cooperation between the strand exchange proteins (recombinases) RAD51 and its meiosis-specific paralog DMC1. Despite our understanding of their enzymatic activity, details on the regulation of their assembly and subsequent molecular organization at meiotic DSBs in mammals have remained largely enigmatic. In this review, we summarize recent mouse data on recombinase regulation via meiosis-specific factors. Also, we reflect on bulk “omics” studies of initial meiotic DSB processing, compare these with studies using super-resolution microscopy in single cells, at single DSB sites, and explore the implications of these findings for our understanding of the molecular mechanisms underlying meiotic HR regulation.
Collapse
Affiliation(s)
- Aditya N Mhaskar
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands
| | - Lieke Koornneef
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Alex N Zelensky
- Department of Molecular Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC, Rotterdam, Netherlands.,Department of Pathology, Erasmus MC, Rotterdam, Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
28
|
Edogbanya J, Tejada-Martinez D, Jones NJ, Jaiswal A, Bell S, Cordeiro R, van Dam S, Rigden DJ, de Magalhães JP. Evolution, structure and emerging roles of C1ORF112 in DNA replication, DNA damage responses, and cancer. Cell Mol Life Sci 2021; 78:4365-4376. [PMID: 33625522 PMCID: PMC8164572 DOI: 10.1007/s00018-021-03789-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023]
Abstract
The C1ORF112 gene initially drew attention when it was found to be strongly co-expressed with several genes previously associated with cancer and implicated in DNA repair and cell cycle regulation, such as RAD51 and the BRCA genes. The molecular functions of C1ORF112 remain poorly understood, yet several studies have uncovered clues as to its potential functions. Here, we review the current knowledge on C1ORF112 biology, its evolutionary history, possible functions, and its potential relevance to cancer. C1ORF112 is conserved throughout eukaryotes, from plants to humans, and is very highly conserved in primates. Protein models suggest that C1ORF112 is an alpha-helical protein. Interestingly, homozygous knockout mice are not viable, suggesting an essential role for C1ORF112 in mammalian development. Gene expression data show that, among human tissues, C1ORF112 is highly expressed in the testes and overexpressed in various cancers when compared to healthy tissues. C1ORF112 has also been shown to have altered levels of expression in some tumours with mutant TP53. Recent screens associate C1ORF112 with DNA replication and reveal possible links to DNA damage repair pathways, including the Fanconi anaemia pathway and homologous recombination. These insights provide important avenues for future research in our efforts to understand the functions and potential disease relevance of C1ORF112.
Collapse
Affiliation(s)
- Jacob Edogbanya
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Daniela Tejada-Martinez
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
- Programa de Doctorado en Ciencias mención Ecología Y Evolución, Facultad de Ciencias, Instituto de Ciencias Ambientales Y Evolutivas, Universidad Austral de Chile, Valdivia, 5090000, Chile
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Nigel J Jones
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Amit Jaiswal
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Sarah Bell
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Rui Cordeiro
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Sipko van Dam
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Ancora Health, Herestraat 106, 9711 LM, Groningen, The Netherlands
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
29
|
Li Q, Engebrecht J. BRCA1 and BRCA2 Tumor Suppressor Function in Meiosis. Front Cell Dev Biol 2021; 9:668309. [PMID: 33996823 PMCID: PMC8121103 DOI: 10.3389/fcell.2021.668309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Meiosis is a specialized cell cycle that results in the production of haploid gametes for sexual reproduction. During meiosis, homologous chromosomes are connected by chiasmata, the physical manifestation of crossovers. Crossovers are formed by the repair of intentionally induced double strand breaks by homologous recombination and facilitate chromosome alignment on the meiotic spindle and proper chromosome segregation. While it is well established that the tumor suppressors BRCA1 and BRCA2 function in DNA repair and homologous recombination in somatic cells, the functions of BRCA1 and BRCA2 in meiosis have received less attention. Recent studies in both mice and the nematode Caenorhabditis elegans have provided insight into the roles of these tumor suppressors in a number of meiotic processes, revealing both conserved and organism-specific functions. BRCA1 forms an E3 ubiquitin ligase as a heterodimer with BARD1 and appears to have regulatory roles in a number of key meiotic processes. BRCA2 is a very large protein that plays an intimate role in homologous recombination. As women with no indication of cancer but carrying BRCA mutations show decreased ovarian reserve and accumulated oocyte DNA damage, studies in these systems may provide insight into why BRCA mutations impact reproductive success in addition to their established roles in cancer.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| |
Collapse
|
30
|
Elucidating Recombination Mediator Function Using Biophysical Tools. BIOLOGY 2021; 10:biology10040288. [PMID: 33916151 PMCID: PMC8066028 DOI: 10.3390/biology10040288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This review recapitulates the initial knowledge acquired with genetics and biochemical experiments on Recombination mediator proteins in different domains of life. We further address how recent in vivo and in vitro biophysical tools were critical to deepen the understanding of RMPs molecular mechanisms in DNA and replication repair, and unveiled unexpected features. For instance, in bacteria, genetic and biochemical studies suggest a close proximity and coordination of action of the RecF, RecR and RecO proteins in order to ensure their RMP function, which is to overcome the single-strand binding protein (SSB) and facilitate the loading of the recombinase RecA onto ssDNA. In contrary to this expectation, using single-molecule fluorescent imaging in living cells, we showed recently that RecO and RecF do not colocalize and moreover harbor different spatiotemporal behavior relative to the replication machinery, suggesting distinct functions. Finally, we address how new biophysics tools could be used to answer outstanding questions about RMP function. Abstract The recombination mediator proteins (RMPs) are ubiquitous and play a crucial role in genome stability. RMPs facilitate the loading of recombinases like RecA onto single-stranded (ss) DNA coated by single-strand binding proteins like SSB. Despite sharing a common function, RMPs are the products of a convergent evolution and differ in (1) structure, (2) interaction partners and (3) molecular mechanisms. The RMP function is usually realized by a single protein in bacteriophages and eukaryotes, respectively UvsY or Orf, and RAD52 or BRCA2, while in bacteria three proteins RecF, RecO and RecR act cooperatively to displace SSB and load RecA onto a ssDNA region. Proteins working alongside to the RMPs in homologous recombination and DNA repair notably belongs to the RAD52 epistasis group in eukaryote and the RecF epistasis group in bacteria. Although RMPs have been studied for several decades, molecular mechanisms at the single-cell level are still not fully understood. Here, we summarize the current knowledge acquired on RMPs and review the crucial role of biophysical tools to investigate molecular mechanisms at the single-cell level in the physiological context.
Collapse
|
31
|
Baughan S, Tainsky MA. K3326X and Other C-Terminal BRCA2 Variants Implicated in Hereditary Cancer Syndromes: A Review. Cancers (Basel) 2021; 13:447. [PMID: 33503928 PMCID: PMC7865497 DOI: 10.3390/cancers13030447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Whole genome analysis and the search for mutations in germline and tumor DNAs is becoming a major tool in the evaluation of risk as well as the management of hereditary cancer syndromes. Because of the identification of cancer predisposition gene panels, thousands of such variants have been catalogued yet many remain unclassified, presenting a clinical challenge for the management of hereditary cancer syndromes. Although algorithms exist to estimate the likelihood of a variant being deleterious, these tools are rarely used for clinical decision-making. Here, we review the progress in classifying K3326X, a rare truncating variant on the C-terminus of BRCA2 and review recent literature on other novel single nucleotide polymorphisms, SNPs, on the C-terminus of the protein, defined in this review as the portion after the final BRC repeat (amino acids 2058-3418).
Collapse
Affiliation(s)
- Scott Baughan
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael A. Tainsky
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
32
|
Yoshikawa Y, Kozuma H, Morimatsu M, Sugawara K, Orino K. Reduced translation efficiency due to novel splicing variants in 5' untranslated region and identification of novel cis-regulatory elements in canine and human BRCA2. BMC Mol Cell Biol 2021; 22:2. [PMID: 33407082 PMCID: PMC7788759 DOI: 10.1186/s12860-020-00336-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
Background Breast cancer 2, early onset (BRCA2) is a tumor suppressor gene. The protein encoded by this gene plays an important role in homologous recombination (HR)-mediated DNA repair. Deleterious mutations in BRCA2 and downregulation of its expression have been associated with tumorigenesis in dogs and humans. Thus, regulation of BRCA2 expression level is important for maintaining homeostasis in homologous recombination. Results In this study, the mechanisms that regulate the expression of BRCA2 were proposed. Novel splicing variants were identified in the 5′ untranslated region (UTR) of canine and human BRCA2 in canine testis, canine ovary, and canine and human cultured cell lines. In cultured cells, the ratio of BRCA2 splicing variants at the 5′ UTR was altered by serum starvation. These novel splicing variants, excluding one of the canine splicing variants, were found to reduce the translational efficiency. Additionally, the DNA sequence in human BRCA2 intron 1 harbored novel cis-regulatory elements. Three silencer and two enhancer cis-regulatory elements were identified in human BRCA2 intron 1. Conclusions This study demonstrates that BRCA2 expression level is regulated via 5′ UTR splicing variants and that the BRCA2 intron 1 region harbors cis-regulatory elements.
Collapse
Affiliation(s)
- Yasunaga Yoshikawa
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan.
| | - Hajime Kozuma
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan
| | - Masami Morimatsu
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kaori Sugawara
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan
| | - Koichi Orino
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan
| |
Collapse
|
33
|
Fu R, Wang C, Shen H, Zhang J, Higgins JD, Liang W. Rice OsBRCA2 Is Required for DNA Double-Strand Break Repair in Meiotic Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:600820. [PMID: 33304374 PMCID: PMC7701097 DOI: 10.3389/fpls.2020.600820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 06/06/2023]
Abstract
The mammalian BREAST CANCER 2 (BRCA2) gene is a tumor suppressor that plays a crucial role in DNA repair and homologous recombination (HR). Here, we report the identification and characterization of OsBRCA2, the rice orthologue of human BRCA2. Osbrca2 mutant plants exhibit normal vegetative growth but experience complete male and female sterility as a consequence of severe meiotic defects. Pairing, synapsis and recombination are impaired in osbrca2 male meiocytes, leading to chromosome entanglements and fragmentation. In the absence of OsBRCA2, localization to the meiotic chromosome axes of the strand-invasion proteins OsRAD51 and OsDMC1 is severely reduced and in vitro OsBRCA2 directly interacts with OsRAD51 and OsDMC1. These results indicate that OsBRCA2 is essential for facilitating the loading of OsRAD51 and OsDMC1 onto resected ends of programmed double-strand breaks (DSB) during meiosis to promote single-end invasions of homologous chromosomes and accurate recombination. In addition, treatment of osbrca2-1 seedlings with mitomycin C (MMC) led to hypersensitivity. As MMC is a genotoxic agent that creates DNA lesions in the somatic cells that can only be repaired by HR, these results suggest that OsBRCA2 has a conserved role in DSB repair and HR in rice.
Collapse
Affiliation(s)
- Ruifeng Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Shen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester,Leicester, United Kingdom
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Sidhu A, Grosbart M, Sánchez H, Verhagen B, van der Zon NLL, Ristić D, van Rossum-Fikkert SE, Wyman C. Conformational flexibility and oligomerization of BRCA2 regions induced by RAD51 interaction. Nucleic Acids Res 2020; 48:9649-9659. [PMID: 32785644 PMCID: PMC7515699 DOI: 10.1093/nar/gkaa648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 12/01/2022] Open
Abstract
BRCA2 is a key breast cancer associated protein that is predicted to have interspersed regions of intrinsic disorder. Intrinsic disorder coupled with large size likely allows BRCA2 to sample a broad range of conformational space. We expect that the resulting dynamic arrangements of BRCA2 domains are a functionally important aspect of its role in homologous recombination DNA repair. To determine the architectural organization and the associated conformational landscape of BRCA2, we used scanning force microscopy based single molecule analyses to map the flexible regions of the protein and characterize which regions influence oligomerization. We show that the N- and the C-terminal regions are the main flexible regions. Both of these regions also influence BRCA2 oligomerization and interaction with RAD51. In the central Brc repeat region, Brc 1–4 and Brc 5–8 contribute synergistically to BRCA2 interaction with RAD51. We also analysed several single amino acid changes that are potentially clinically relevant and found one, the variant of F1524V, which disrupts key interactions and alters the conformational landscape of the protein. We describe the overall conformation spectrum of BRCA2, which suggests that dynamic structural transitions are key features of its biological function, maintaining genomic stability.
Collapse
Affiliation(s)
- Arshdeep Sidhu
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.,Department of Radiation Oncology and Cancer Genomics Center, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Małgorzata Grosbart
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Humberto Sánchez
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Bram Verhagen
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Nick L L van der Zon
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Dejan Ristić
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | - Claire Wyman
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.,Department of Radiation Oncology and Cancer Genomics Center, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
35
|
Shinoyama H, Ichikawa H, Nishizawa-Yokoi A, Skaptsov M, Toki S. Simultaneous TALEN-mediated knockout of chrysanthemum DMC1 genes confers male and female sterility. Sci Rep 2020; 10:16165. [PMID: 32999297 PMCID: PMC7527520 DOI: 10.1038/s41598-020-72356-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 08/30/2020] [Indexed: 02/06/2023] Open
Abstract
Genome editing has become one of the key technologies for plant breeding. However, in polyploid species such as chrysanthemum, knockout of all loci of multiple genes is needed to eliminate functional redundancies. We identified six cDNAs for the CmDMC1 genes involved in meiotic homologous recombination in chrysanthemum. Since all six cDNAs harbored a homologous core region, simultaneous knockout via TALEN-mediated genome editing should be possible. We isolated the CmDMC1 loci corresponding to the six cDNAs and constructed a TALEN-expression vector bearing a CmDMC1 target site containing the homologous core region. After transforming two chrysanthemum cultivars with the TALEN-expression vector, seven lines exhibited disruption of all six CmDMC1 loci at the target site as well as stable male and female sterility at 10–30 °C. This strategy to produce completely sterile plants could be widely applicable to prevent the risk of transgene flow from transgenic plants to their wild relatives.
Collapse
Affiliation(s)
- Harue Shinoyama
- Fukui Agricultural Experiment Station, Fukui, 918-8215, Japan. .,Department of Bioscience, Fukui Prefectural University, Awara, 910-4103, Japan.
| | - Hiroaki Ichikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604, Japan
| | - Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Mikhail Skaptsov
- South Siberian Botanical Garden, Altai State University, Barnaul, Russia, 656049
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604, Japan.,Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
| |
Collapse
|
36
|
Shang Y, Huang T, Liu H, Liu Y, Liang H, Yu X, Li M, Zhai B, Yang X, Wei Y, Wang G, Chen Z, Wang S, Zhang L. MEIOK21: a new component of meiotic recombination bridges required for spermatogenesis. Nucleic Acids Res 2020; 48:6624-6639. [PMID: 32463460 PMCID: PMC7337969 DOI: 10.1093/nar/gkaa406] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Repair of DNA double-strand breaks (DSBs) with homologous chromosomes is a hallmark of meiosis that is mediated by recombination ‘bridges’ between homolog axes. This process requires cooperation of DMC1 and RAD51 to promote homology search and strand exchange. The mechanism(s) regulating DMC1/RAD51-ssDNA nucleoprotein filament and the components of ‘bridges’ remain to be investigated. Here we show that MEIOK21 is a newly identified component of meiotic recombination bridges and is required for efficient formation of DMC1/RAD51 foci. MEIOK21 dynamically localizes on chromosomes from on-axis foci to ‘hanging foci’, then to ‘bridges’, and finally to ‘fused foci’ between homolog axes. Its chromosome localization depends on DSBs. Knockout of Meiok21 decreases the numbers of HSF2BP and DMC1/RAD51 foci, disrupting DSB repair, synapsis and crossover recombination and finally causing male infertility. Therefore, MEIOK21 is a novel recombination factor and probably mediates DMC1/RAD51 recruitment to ssDNA or their stability on chromosomes through physical interaction with HSF2BP.
Collapse
Affiliation(s)
- Yongliang Shang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Hongbin Liu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Yanlei Liu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Heng Liang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Xiaoxia Yu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China.,Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China
| | - Xiao Yang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Yudong Wei
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Guoqiang Wang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Zijiang Chen
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Shunxin Wang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Liangran Zhang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China.,Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
37
|
Felipe-Medina N, Caburet S, Sánchez-Sáez F, Condezo YB, de Rooij DG, Gómez-H L, Garcia-Valiente R, Todeschini AL, Duque P, Sánchez-Martin MA, Shalev SA, Llano E, Veitia RA, Pendás AM. A missense in HSF2BP causing primary ovarian insufficiency affects meiotic recombination by its novel interactor C19ORF57/BRME1. eLife 2020; 9:e56996. [PMID: 32845237 PMCID: PMC7498267 DOI: 10.7554/elife.56996] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Primary Ovarian Insufficiency (POI) is a major cause of infertility, but its etiology remains poorly understood. Using whole-exome sequencing in a family with three cases of POI, we identified the candidate missense variant S167L in HSF2BP, an essential meiotic gene. Functional analysis of the HSF2BP-S167L variant in mouse showed that it behaves as a hypomorphic allele compared to a new loss-of-function (knock-out) mouse model. Hsf2bpS167L/S167L females show reduced fertility with smaller litter sizes. To obtain mechanistic insights, we identified C19ORF57/BRME1 as a strong interactor and stabilizer of HSF2BP and showed that the BRME1/HSF2BP protein complex co-immunoprecipitates with BRCA2, RAD51, RPA and PALB2. Meiocytes bearing the HSF2BP-S167L variant showed a strongly decreased staining of both HSF2BP and BRME1 at the recombination nodules and a reduced number of the foci formed by the recombinases RAD51/DMC1, thus leading to a lower frequency of crossovers. Our results provide insights into the molecular mechanism of HSF2BP-S167L in human ovarian insufficiency and sub(in)fertility.
Collapse
Affiliation(s)
- Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Sandrine Caburet
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Yazmine B Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Laura Gómez-H
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Rodrigo Garcia-Valiente
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Anne Laure Todeschini
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
| | - Paloma Duque
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Manuel Adolfo Sánchez-Martin
- Transgenic Facility, Nucleus platform, Universidad de SalamancaSalamancaSpain
- Departamento de Medicina, Universidad de SalamancaSalamancaSpain
| | - Stavit A Shalev
- The Genetic Institute, "Emek" Medical CenterAfulaIsrael
- Bruce and Ruth Rappaport Faculty of Medicine, TechnionHaifaIsrael
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
- Departamento de Fisiología y Farmacología, Universidad de SalamancaSalamancaSpain
| | - Reiner A Veitia
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
- Université Paris-Saclay, Institut de Biologie F. Jacob, Commissariat à l’Energie AtomiqueFontenay aux RosesFrance
| | - Alberto M Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| |
Collapse
|
38
|
Brandsma I, Sato K, van Rossum-Fikkert SE, van Vliet N, Sleddens E, Reuter M, Odijk H, van den Tempel N, Dekkers DHW, Bezstarosti K, Demmers JAA, Maas A, Lebbink J, Wyman C, Essers J, van Gent DC, Baarends WM, Knipscheer P, Kanaar R, Zelensky AN. HSF2BP Interacts with a Conserved Domain of BRCA2 and Is Required for Mouse Spermatogenesis. Cell Rep 2020; 27:3790-3798.e7. [PMID: 31242413 DOI: 10.1016/j.celrep.2019.05.096] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/01/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor BRCA2 is essential for homologous recombination (HR), replication fork stability, and DNA interstrand crosslink repair in vertebrates. We identify HSF2BP, a protein previously described as testis specific and not characterized functionally, as an interactor of BRCA2 in mouse embryonic stem cells, where the 2 proteins form a constitutive complex. HSF2BP is transcribed in all cultured human cancer cell lines tested and elevated in some tumor samples. Inactivation of the mouse Hsf2bp gene results in male infertility due to a severe HR defect during spermatogenesis. The BRCA2-HSF2BP interaction is highly evolutionarily conserved and maps to armadillo repeats in HSF2BP and a 68-amino acid region between the BRC repeats and the DNA binding domain of human BRCA2 (Gly2270-Thr2337) encoded by exons 12 and 13. This region of BRCA2 does not harbor known cancer-associated missense mutations and may be involved in the reproductive rather than the tumor-suppressing function of BRCA2.
Collapse
Affiliation(s)
- Inger Brandsma
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Nicole van Vliet
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Esther Sleddens
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Marcel Reuter
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Hanny Odijk
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Nathalie van den Tempel
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Dick H W Dekkers
- Proteomics Center, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Joyce Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Claire Wyman
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Dik C van Gent
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands.
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands.
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
39
|
Caburet S, Heddar A, Dardillac E, Creux H, Lambert M, Messiaen S, Tourpin S, Livera G, Lopez BS, Misrahi M. Homozygous hypomorphic BRCA2 variant in primary ovarian insufficiency without cancer or Fanconi anaemia trait. J Med Genet 2020; 58:jmedgenet-2019-106672. [PMID: 32482800 DOI: 10.1136/jmedgenet-2019-106672] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Primary ovarian insufficiency (POI) affects 1% of women under 40 years and is a public health problem. The genetic causes of POI are highly heterogeneous with isolated or syndromic forms. Recently, variants in genes involved in DNA repair have been shown to cause POI. Notably, syndromic POI with Fanconi anaemia (FA) traits related to biallelic BRCA2 truncated variants has been reported. Here, we report a novel phenotype of isolated POI with a BRCA2 variant in a consanguineous Turkish family. METHODS Exome sequencing (ES) was performed in the patient. We also performed functional studies, including a homologous recombination (HR) test, cell proliferation, radiation-induced RAD51 foci formation assays and chromosome breakage studies in primary and lymphoblastoid immortalised cells. The expression of BRCA2 in human foetal ovaries was studied. RESULTS ES identified a homozygous missense c.8524C>T/p.R2842C-BRCA2 variant. BRCA2 defects induce cancer predisposition and FA. Remarkably, neither the patient nor her family exhibited somatic pathologies. The patient's cells showed intermediate levels of chromosomal breaks, cell proliferation and radiation-induced RAD51 foci formation compared with controls and FA cells. R2842C-BRCA2 only partially complemented HR efficiency compared with wild type-BRCA2. BRCA2 is expressed in human foetal ovaries in pachytene stage oocytes, when meiotic HR occurs. CONCLUSION We describe the functional assessment of a homozygous hypomorphic BRCA2 variant in a patient with POI without cancer or FA trait. Our findings extend the phenotype of BRCA2 biallelic alterations to fully isolated POI. This study has a major impact on the management and genetic counselling of patients with POI.
Collapse
Affiliation(s)
- Sandrine Caburet
- Institut Jacques Monod, Université de Paris, Paris, Île-de-France, France
| | - Abdelkader Heddar
- Faculte de Medecine, Universite Paris Saclay, Hopital Bicêtre APHP, Le Kremlin-Bicetre, France
| | - Elodie Dardillac
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Université de Paris, Paris, Île-de-France, France
| | - Héléne Creux
- Service de Gynécologie et Médecine de la Reproduction, CHU de Bordeaux, Bordeaux, Aquitaine, France
| | - Marie Lambert
- Service de Gynécologie et Médecine de la Reproduction, CHU de Bordeaux, Bordeaux, Aquitaine, France
| | - Sébastien Messiaen
- UMR Stabilité Génétique, Cellules Souches et Radiations, Université Paris-Saclay, Fontenay aux Roses, Île-de-France, France
| | - Sophie Tourpin
- UMR Stabilité Génétique, Cellules Souches et Radiations, Université Paris-Saclay, Fontenay aux Roses, Île-de-France, France
| | - Gabriel Livera
- UMR Stabilité Génétique, Cellules Souches et Radiations, Université Paris-Saclay, Fontenay aux Roses, Île-de-France, France
| | - Bernard S Lopez
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Université de Paris, Paris, Île-de-France, France
| | - Micheline Misrahi
- Faculte de Medecine, Universite Paris Saclay, Hopital Bicêtre APHP, Le Kremlin-Bicetre, France
| |
Collapse
|
40
|
Sato K, Brandsma I, van Rossum-Fikkert SE, Verkaik N, Oostra AB, Dorsman JC, van Gent DC, Knipscheer P, Kanaar R, Zelensky AN. HSF2BP negatively regulates homologous recombination in DNA interstrand crosslink repair. Nucleic Acids Res 2020; 48:2442-2456. [PMID: 31960047 PMCID: PMC7049687 DOI: 10.1093/nar/gkz1219] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor BRCA2 is essential for homologous recombination (HR), replication fork stability and DNA interstrand crosslink (ICL) repair in vertebrates. We show that ectopic production of HSF2BP, a BRCA2-interacting protein required for meiotic HR during mouse spermatogenesis, in non-germline human cells acutely sensitize them to ICL-inducing agents (mitomycin C and cisplatin) and PARP inhibitors, resulting in a phenotype characteristic of cells from Fanconi anemia (FA) patients. We biochemically recapitulate the suppression of ICL repair and establish that excess HSF2BP compromises HR by triggering the removal of BRCA2 from the ICL site and thereby preventing the loading of RAD51. This establishes ectopic expression of a wild-type meiotic protein in the absence of any other protein-coding mutations as a new mechanism that can lead to an FA-like cellular phenotype. Naturally occurring elevated production of HSF2BP in tumors may be a source of cancer-promoting genomic instability and also a targetable vulnerability.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Inger Brandsma
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Nicole Verkaik
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Anneke B Oostra
- Department of Clinical Genetics, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Josephine C Dorsman
- Department of Clinical Genetics, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Dik C van Gent
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
41
|
Zhang J, Gurusaran M, Fujiwara Y, Zhang K, Echbarthi M, Vorontsov E, Guo R, Pendlebury DF, Alam I, Livera G, Emmanuelle M, Wang PJ, Nandakumar J, Davies OR, Shibuya H. The BRCA2-MEILB2-BRME1 complex governs meiotic recombination and impairs the mitotic BRCA2-RAD51 function in cancer cells. Nat Commun 2020; 11:2055. [PMID: 32345962 PMCID: PMC7188823 DOI: 10.1038/s41467-020-15954-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/03/2020] [Indexed: 11/10/2022] Open
Abstract
Breast cancer susceptibility gene II (BRCA2) is central in homologous recombination (HR). In meiosis, BRCA2 binds to MEILB2 to localize to DNA double-strand breaks (DSBs). Here, we identify BRCA2 and MEILB2-associating protein 1 (BRME1), which functions as a stabilizer of MEILB2 by binding to an α-helical N-terminus of MEILB2 and preventing MEILB2 self-association. BRCA2 binds to the C-terminus of MEILB2, resulting in the formation of the BRCA2-MEILB2-BRME1 ternary complex. In Brme1 knockout (Brme1-/-) mice, the BRCA2-MEILB2 complex is destabilized, leading to defects in DSB repair, homolog synapsis, and crossover formation. Persistent DSBs in Brme1-/- reactivate the somatic-like DNA-damage response, which repairs DSBs but cannot complement the crossover formation defects. Further, MEILB2-BRME1 is activated in many human cancers, and somatically expressed MEILB2-BRME1 impairs mitotic HR. Thus, the meiotic BRCA2 complex is central in meiotic HR, and its misregulation is implicated in cancer development.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Manickam Gurusaran
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yasuhiro Fujiwara
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| | - Kexin Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Meriem Echbarthi
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Rui Guo
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Devon F Pendlebury
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Intekhab Alam
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265, Fontenay aux Roses, France
| | - Martini Emmanuelle
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265, Fontenay aux Roses, France
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
42
|
Singh AK, Yu X. Tissue-Specific Carcinogens as Soil to Seed BRCA1/2-Mutant Hereditary Cancers. Trends Cancer 2020; 6:559-568. [PMID: 32336659 DOI: 10.1016/j.trecan.2020.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Despite their ubiquitous expression, the inheritance of monoallelic germline mutations in breast cancer susceptibility gene type 1 or 2 (BRCA1/2) poses tissue-specific variations in cancer risks and primarily associate with familial breast and ovarian cancers. The molecular basis of this tissue-specific tumor incidence remains unknown and intriguing to cancer researchers. A plethora of recent reports support the idea that several nongenetic factors present in the tissue microenvironment could induce tumors in the mutant BRCA1/2 background. This Opinion article summarizes the recent advances on tissue-specific carcinogens and their complex crosstalk with the compromised DNA repair machinery of BRCA1/2-mutant cells. Finally, we present our perspective on the therapeutic and chemopreventive interpretations of these developments.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
43
|
Ehlén Å, Martin C, Miron S, Julien M, Theillet FX, Ropars V, Sessa G, Beaurepere R, Boucherit V, Duchambon P, El Marjou A, Zinn-Justin S, Carreira A. Proper chromosome alignment depends on BRCA2 phosphorylation by PLK1. Nat Commun 2020; 11:1819. [PMID: 32286328 PMCID: PMC7156385 DOI: 10.1038/s41467-020-15689-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
The BRCA2 tumor suppressor protein is involved in the maintenance of genome integrity through its role in homologous recombination. In mitosis, BRCA2 is phosphorylated by Polo-like kinase 1 (PLK1). Here we describe how this phosphorylation contributes to the control of mitosis. We identify a conserved phosphorylation site at T207 of BRCA2 that constitutes a bona fide docking site for PLK1 and is phosphorylated in mitotic cells. We show that BRCA2 bound to PLK1 forms a complex with the phosphatase PP2A and phosphorylated-BUBR1. Reducing BRCA2 binding to PLK1, as observed in BRCA2 breast cancer variants S206C and T207A, alters the tetrameric complex resulting in unstable kinetochore-microtubule interactions, misaligned chromosomes, faulty chromosome segregation and aneuploidy. We thus reveal a role of BRCA2 in the alignment of chromosomes, distinct from its DNA repair function, with important consequences on chromosome stability. These findings may explain in part the aneuploidy observed in BRCA2-mutated tumors.
Collapse
Affiliation(s)
- Åsa Ehlén
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Charlotte Martin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Manon Julien
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
- Department of Biology, École Normale Supérieure, 94230, Cachan, France
| | - François-Xavier Theillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Gaetana Sessa
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Romane Beaurepere
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Virginie Boucherit
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Patricia Duchambon
- Protein Expression and Purification Core Facility, Institut Curie, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
- INSERM U1196, 91405, Orsay, Cedex, France
| | - Ahmed El Marjou
- Protein Expression and Purification Core Facility, Institut Curie, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
- CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France.
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France.
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France.
| |
Collapse
|
44
|
Zhao L, He X, Shang Y, Bao C, Peng A, Lei X, Han P, Mi D, Sun Y. Identification of potential radiation-responsive biomarkers based on human orthologous genes with possible roles in DNA repair pathways by comparison between Arabidopsis thaliana and homo sapiens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:135076. [PMID: 31734608 DOI: 10.1016/j.scitotenv.2019.135076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Rapid and reliable ionization radiation (IR) exposure estimation has become increasingly important in environment due to the urgent requirement of medical evaluation and treatment in the event of nuclear accident emergency. Human DNA repair genes can be identified as important candidate biomarkers to assess IR exposure, while how to find the enough sensitive and specific biomarkers in the DNA repair networks is still challenged and not fully determined. The conserved features of DNA repair pathways may facilitate interdisciplinary studies that cross the traditional boundaries between animal and plant biology, with the aim of identifying undiscovered human DNA repair genes for potential radiation-responsive biomarkers. In this work, an in silico method of homologous comparison was performed to identify the human orthologues of A. thaliana DNA repair genes, and thereby to explore the sensitive and specific human radiation-responsive genes to evaluate the IR exposure levels. The results showed that a total of 16 putative candidate genes were involved in the human DNA repair pathways of homologous recombination (HR) and non-homologous end joining (NHEJ), and most of them were confirmed by previous experiments. Additionally, we analyzed the gene expression patterns of these 16 candidate genes in several human transcript microarray datasets with different IR treatments. The results indicated that most of the gene expression levels for these candidate genes were significantly changed under different radiation treatments. Based on these results, we integrated these putative human DNA repair genes into the DNA repair pathways to propose new insights of the HR and NHEJ pathways, which can also provide the potential targets for the development of radiation biomarkers. Notably, two putative DNA repair genes, named ERCC1 and ESCO2, were identified and were considered to be the sensitive and specific biomarkers in response to γ-ray exposures.
Collapse
Affiliation(s)
- Lei Zhao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Xinye He
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Yuxuan Shang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Chengyu Bao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Ailin Peng
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Pei Han
- Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, China
| | - Dong Mi
- College of Science, Dalian Maritime University, Dalian, Liaoning, China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China.
| |
Collapse
|
45
|
Sun H, Cao D, Ma X, Yang J, Peng P, Yu M, Zhou H, Zhang Y, Li L, Huo X, Shen K. Identification of a Prognostic Signature Associated With DNA Repair Genes in Ovarian Cancer. Front Genet 2019; 10:839. [PMID: 31572446 PMCID: PMC6751318 DOI: 10.3389/fgene.2019.00839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
Introduction: Ovarian cancer is a highly malignant cancer with a poor prognosis. At present, there is no accurate strategy for predicting the prognosis of ovarian cancer. A prognosis prediction signature associated with DNA repair genes in ovarian cancer was explored in this study. Methods: Gene expression profiles of ovarian cancer were downloaded from the GEO, UCSC, and TCGA databases. Cluster analysis, univariate analysis, and stepwise regression were used to identify DNA repair genes as potential targets and a prognostic signature for ovarian cancer survival prediction. The top genes were evaluated by immunohistochemical staining of ovarian cancer tissues, and external data were used to assess the signature. Results: A total of 28 DNA repair genes were identified as being significantly associated with overall survival (OS) among patients with ovarian cancer. The results showed that high expression of XPC and RECQL and low expression of DMC1 were associated with poor prognosis in ovarian cancer patients. The prognostic signature combining 14 DNA repair genes was able to separate ovarian cancer samples associated with different OS times and showed robust performance for predicting survival (Training set: p < 0.0001, AUC = 0.759; Testing set: p < 0.0001, AUC = 0.76). Conclusion: Our study identified 28 DNA repair genes related to the prognosis of ovarian cancer. Using some of these potential biomarkers, we constructed a prognostic signature to effectively stratify ovarian cancer patients with different OS rates, which may also serve as a potential therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Hengzi Sun
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangwen Ma
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huimei Zhou
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Huo
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Venkitaraman AR. How do mutations affecting the breast cancer genes BRCA1 and BRCA2 cause cancer susceptibility? DNA Repair (Amst) 2019; 81:102668. [PMID: 31337537 PMCID: PMC6765401 DOI: 10.1016/j.dnarep.2019.102668] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The inheritance of monoallelic germline mutations affecting BRCA1 or BRCA2 predisposes with a high penetrance to several forms of epithelial malignancy. The large, nuclear-localized BRCA proteins act as custodians of chromosome integrity through distinct functions in the assembly and activity of macromolecular complexes that mediate DNA repair, replication reactivation and mitotic progression. The loss of these tumour suppressive functions following biallelic BRCA gene inactivation has long been thought to provoke genomic instability and carcinogenesis. However, recent studies not only identify new functions for BRCA1 and BRCA2 in the regulation of transcription and RNA processing potentially relevant to their tumour suppressive activity, but also suggest that monoallelic BRCA2 gene mutations suffice for carcinogenesis. This emerging evidence opens fresh lines of enquiry concerning tissue-specific cancer evolution in BRCA mutation carriers. Collectively, these insights engender new models to explain how BRCA gene mutations cause cancer susceptibility in specific tissues.
Collapse
Affiliation(s)
- Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Box 197, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XZ, United Kingdom.
| |
Collapse
|
47
|
Jung M, Wells D, Rusch J, Ahmad S, Marchini J, Myers SR, Conrad DF. Unified single-cell analysis of testis gene regulation and pathology in five mouse strains. eLife 2019; 8:e43966. [PMID: 31237565 PMCID: PMC6615865 DOI: 10.7554/elife.43966] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
To fully exploit the potential of single-cell functional genomics in the study of development and disease, robust methods are needed to simplify the analysis of data across samples, time-points and individuals. Here we introduce a model-based factor analysis method, SDA, to analyze a novel 57,600 cell dataset from the testes of wild-type mice and mice with gonadal defects due to disruption of the genes Mlh3, Hormad1, Cul4a or Cnp. By jointly analyzing mutant and wild-type cells we decomposed our data into 46 components that identify novel meiotic gene-regulatory programs, mutant-specific pathological processes, and technical effects, and provide a framework for imputation. We identify, de novo, DNA sequence motifs associated with individual components that define temporally varying modes of gene expression control. Analysis of SDA components also led us to identify a rare population of macrophages within the seminiferous tubules of Mlh3-/- and Hormad1-/- mice, an area typically associated with immune privilege.
Collapse
Affiliation(s)
- Min Jung
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
| | - Daniel Wells
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Department of StatisticsUniversity of OxfordOxfordUnited Kingdom
| | - Jannette Rusch
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
| | - Suhaira Ahmad
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
| | - Jonathan Marchini
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Department of StatisticsUniversity of OxfordOxfordUnited Kingdom
| | - Simon R Myers
- The Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
- Department of StatisticsUniversity of OxfordOxfordUnited Kingdom
| | - Donald F Conrad
- Department of GeneticsWashington University School of MedicineSt. LouisUnited States
- Division of Genetics, Oregon National Primate Research CenterOregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
48
|
Kumar R, Duhamel M, Coutant E, Ben-Nahia E, Mercier R. Antagonism between BRCA2 and FIGL1 regulates homologous recombination. Nucleic Acids Res 2019; 47:5170-5180. [PMID: 30941419 PMCID: PMC6547764 DOI: 10.1093/nar/gkz225] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
Homologous recombination (HR) maintains genome stability by promoting accurate DNA repair. Two recombinases, RAD51 and DMC1, are central to HR repair and form dynamic nucleoprotein filaments in vivo under tight regulation. However, the interplay between positive and negative regulators to control the dynamic assembly/disassembly of RAD51/DMC1 filaments in multicellular eukaryotes remains poorly characterized. Here, we report an antagonism between BRCA2, a well-studied positive mediator of RAD51/DMC1, and FIDGETIN-LIKE-1 (FIGL1), which we previously proposed as a negative regulator of RAD51/DMC1. Through forward genetic screen, we identified a mutation in one of the two Arabidopsis BRCA2 paralogs that suppresses the meiotic phenotypes of figl1. Consistent with the antagonistic roles of BRCA2 and FIGL1, the figl1 mutation in the brca2 background restores RAD51/DMC1 focus formation and homologous chromosome interaction at meiosis, and RAD51 focus formation in somatic cells. This study shows that BRCA2 and FIGL1 have antagonistic effects on the dynamics of RAD51/DMC1-dependent DNA transactions to promote accurate HR repair.
Collapse
Affiliation(s)
- Rajeev Kumar
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Marine Duhamel
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Eve Coutant
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Emna Ben-Nahia
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Raphael Mercier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
49
|
The Fanconi Anemia Pathway and Fertility. Trends Genet 2019; 35:199-214. [DOI: 10.1016/j.tig.2018.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
|
50
|
Zhang J, Fujiwara Y, Yamamoto S, Shibuya H. A meiosis-specific BRCA2 binding protein recruits recombinases to DNA double-strand breaks to ensure homologous recombination. Nat Commun 2019; 10:722. [PMID: 30760716 PMCID: PMC6374363 DOI: 10.1038/s41467-019-08676-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/22/2019] [Indexed: 02/04/2023] Open
Abstract
Homologous recombination (HR) repairs DNA double-strand breaks (DSBs) to maintain genomic integrity. Recombinase recruited to the DSBs by the mediator protein BRCA2 catalyzes the homology-directed repair. During meiotic HR, programmed DSBs are introduced genome-wide but their repair mechanisms, including the regulation of BRCA2, have remained largely elusive. Here we identify a meiotic localizer of BRCA2, MEILB2/HSF2BP, that localizes to the site of meiotic DSBs in mice. Disruption of Meilb2 abolishes the localization of RAD51 and DMC1 recombinases in spermatocytes, leading to errors in DSB repair and male sterility. MEILB2 directly binds to BRCA2 and regulates its association to meiotic DSBs. We map the MEILB2-binding domain within BRCA2 that is distinct from the canonical DNA-binding domain but is sufficient to localize to meiotic DSBs in a MEILB2-dependent manner. We conclude that localization of BRCA2 to meiotic DSBs is mediated by MEILB2, which is an integral mechanism to repair abundant meiotic DSBs. Homology directed repair of meiotic double-strand breaks functions via recruitment and assembly of strand-exchange proteins called recombinases. Here the authors reveal and characterize a BRCA2 interactor regulating meiotic recombinases that localizes to chromosomal axes and facilitates the repair of meiotic DSBs.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Yasuhiro Fujiwara
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| | - Shohei Yamamoto
- Graduate Program in Bioscience, Graduate School of Science, University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| |
Collapse
|