1
|
Guerriere TB, Fraaije MW, Mattevi A. Biochemical and structural insights into pinoresinol hydroxylase from Pseudomonas sp. Arch Biochem Biophys 2025; 764:110247. [PMID: 39613284 DOI: 10.1016/j.abb.2024.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
The vanillyl alcohol oxidase/p-cresol methylhydroxylase (VAO/PCMH) flavoprotein family comprises a broad spectrum of enzymes capable of catalyzing the oxidative bioconversions of various substrates. Among them, pinoresinol hydroxylase (PinH) from the 4-alkylphenol oxidizing subgroup initiates the oxidative degradation of (+)-pinoresinol, a lignan important for both lignin structure and plant defense. In this study, we present a detailed biochemical and structural characterization of PinH from Pseudomonas sp., with focus on its substrate specificity and product formation. PinH was expressed in E. coli and purified as FAD-containing, soluble protein. The flavoenzyme catalyzes the hydroxylation of both (+)-pinoresinol and eugenol. Structural analysis reveals its dimeric form, non-covalent flavin binding, and a large active site. AlphaFold models of the PinH-cytochrome complex demonstrate cytochrome's dual role in electron transfer and modulating PinH's conformation. A distinctive feature of PinH is a large cavity that hosts its multi-ring (+)-pinoresinol substrate. The capability of converting bulky lignans is particularly attractive for biotechnological applications aimed at producing high-value compounds from phenolic precursors. These insights expand our knowledge on the structure and mechanism of the VAO/PCMH flavoenzyme family members.
Collapse
Affiliation(s)
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, the Netherlands.
| | - Andrea Mattevi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
2
|
Weindorf N, Eggerichs D, Weddeling HG, Tischler D. Sequence-function relation for the prediction of enzyme properties: A case study on flavin-dependent oxidases. Methods Enzymol 2025; 714:83-96. [PMID: 40288856 DOI: 10.1016/bs.mie.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
The discovery of enzymes (biocatalysts) can sometimes be challenging. Herein, we describe an approach for connecting phylogenetic information and multiple sequence alignments (MSA), via the use of a small computational tool called A2CA, for the discovery of new enzymes and how it can be used to find sequence-function relationships within a protein family. We chose 4-phenol oxidases of the VAO/PCMH flavoprotein family to demonstrate this approach, as there were already three crystal structures of this enzyme family known, which allows for an easier narrowing of residues to look at during the process. Focusing on first shell amino acids of the active site, we selected eight bacterial members of the 4-phenol oxidases. Characterizations of their substrate scopes revealed clear differences that could be linked to in key residues in the active sites. Information gained on key residues were used to perform site-saturation mutagenesis, resulting in mutants that either showed improved activities towards specific substrates or even allowed for the acceptance of non-natural substrates.
Collapse
Affiliation(s)
- Nils Weindorf
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Eggerichs
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Heiner Gerald Weddeling
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Guerriere TB, Vancheri A, Ricotti I, Serapian SA, Eggerichs D, Tischler D, Colombo G, Mascotti ML, Fraaije MW, Mattevi A. Dehydrogenase versus oxidase function: the interplay between substrate binding and flavin microenvironment. ACS Catal 2025; 15:1046-1060. [PMID: 39781101 PMCID: PMC7617285 DOI: 10.1021/acscatal.4c05944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Redox enzymes, mostly equipped with metal or organic cofactors, can vary their reactivity with oxygen by orders of magnitudes. Understanding how oxygen reactivity is controlled by the protein milieu remains an open issue with broad implications for mechanistic enzymology and enzyme design. Here, we address this problem by focusing on a widespread group of flavoenzymes that oxidize phenolic compounds derived from microbial lignin degradation, using either oxygen or a cytochrome c as electron acceptors. A comprehensive phylogenetic analysis revealed conserved amino acid motifs in their flavin-binding site. Using a combination of kinetics, mutagenesis, structural, and computational methods, we examined the role of these residues. Our results demonstrate that subtle and localized changes in the flavin environment can drastically impact on oxygen reactivity. These effects are afforded through the creation or blockade of pathways for oxygen diffusion. Substrate binding plays a crucial role by potentially obstructing oxygen access to the flavin, thus influencing the enzyme's reactivity. The switch between oxidase and dehydrogenase functionalities is thereby achieved through targeted, site-specific amino acid replacements that finely tune the microenvironment around the flavin. Our findings explain how very similar enzymes can exhibit distinct functional properties, operating as oxidases or dehydrogenases. They further provide valuable insights for the rational design and engineering of enzymes with tailored functions.
Collapse
Affiliation(s)
| | | | - Ilaria Ricotti
- Department of Chemistry, University of Pavia, 27100Pavia, Italy
| | | | - Daniel Eggerichs
- Microbial Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, 27100Pavia, Italy
| | - Maria L. Mascotti
- IHEM CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina, M5502JMA
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands, 9747AG
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy27100
| |
Collapse
|
4
|
Zhou SP, Xue YP, Zheng YG. Maximizing the potential of nitrilase: Unveiling their diversity, catalytic proficiency, and versatile applications. Biotechnol Adv 2024; 72:108352. [PMID: 38574900 DOI: 10.1016/j.biotechadv.2024.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/10/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Nitrilases represent a distinct class of enzymes that play a pivotal role in catalyzing the hydrolysis of nitrile compounds, leading to the formation of corresponding carboxylic acids. These enzymatic entities have garnered significant attention across a spectrum of industries, encompassing pharmaceuticals, agrochemicals, and fine chemicals. Moreover, their significance has been accentuated by mounting environmental pressures, propelling them into the forefront of biodegradation and bioremediation endeavors. Nevertheless, the natural nitrilases exhibit intrinsic limitations such as low thermal stability, narrow substrate selectivity, and inadaptability to varying environmental conditions. In the past decade, substantial efforts have been made in elucidating the structural underpinnings and catalytic mechanisms of nitrilase, providing basis for engineering of nitrilases. Significant breakthroughs have been made in the regulation of nitrilases with ideal catalytic properties and application of the enzymes for industrial productions. This review endeavors to provide a comprehensive discourse and summary of recent research advancements related to nitrilases, with a particular emphasis on the elucidation of the structural attributes, catalytic mechanisms, catalytic characteristics, and strategies for improving catalytic performance of nitrilases. Moreover, the exploration extends to the domain of process engineering and the multifarious applications of nitrilases. Furthermore, the future development trend of nitrilases is prospected, providing important guidance for research and application in the related fields.
Collapse
Affiliation(s)
- Shi-Peng Zhou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
5
|
Eggerichs D, Weindorf N, Mascotti ML, Welzel N, Fraaije MW, Tischler D. Vanillyl alcohol oxidase from Diplodia corticola: Residues Ala420 and Glu466 allow for efficient catalysis of syringyl derivatives. J Biol Chem 2023; 299:104898. [PMID: 37295774 PMCID: PMC10404669 DOI: 10.1016/j.jbc.2023.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Vanillyl alcohol oxidases (VAOs) belong to the 4-phenol oxidases family and are found predominantly in lignin-degrading ascomycetes. Systematical investigation of the enzyme family at the sequence level resulted in discovery and characterization of the second recombinantly produced VAO member, DcVAO, from Diplodia corticola. Remarkably high activities for 2,6-substituted substrates like 4-allyl-2,6-dimethoxy-phenol (3.5 ± 0.02 U mg-1) or 4-(hydroxymethyl)-2,6-dimethoxyphenol (6.3 ± 0.5 U mg-1) were observed, which could be attributed to a Phe to Ala exchange in the catalytic center. In order to rationalize this rare substrate preference among VAOs, we resurrected and characterized three ancestral enzymes and performed mutagenesis analyses. The results indicate that a Cys/Glu exchange was required to retain activity for ɣ-hydroxylations and shifted the acceptance towards benzyl ethers (up to 4.0 ± 0.1 U mg-1). Our findings contribute to the understanding of the functionality of VAO enzyme group, and with DcVAO, we add a new enzyme to the repertoire of ether cleaving biocatalysts.
Collapse
Affiliation(s)
- Daniel Eggerichs
- Department of Microbial Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Nils Weindorf
- Department of Microbial Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Maria Laura Mascotti
- Department of Molecular Enzymology, University of Groningen, Groningen, The Netherlands; Facultad de Química Bioquímica y Farmacia, IMIBIO-SL CONICET, Universidad Nacional de San Luis, San Luis, Argentina
| | - Natalie Welzel
- Department of Microbial Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Marco W Fraaije
- Department of Molecular Enzymology, University of Groningen, Groningen, The Netherlands
| | - Dirk Tischler
- Department of Microbial Biotechnology, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
6
|
Alvigini L, Gran‐Scheuch A, Guo Y, Trajkovic M, Saifuddin M, Fraaije MW, Mattevi A. Discovery, Biocatalytic Exploration and Structural Analysis of a 4-Ethylphenol Oxidase from Gulosibacter chungangensis. Chembiochem 2021; 22:3225-3233. [PMID: 34523783 PMCID: PMC9293466 DOI: 10.1002/cbic.202100457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/14/2021] [Indexed: 11/21/2022]
Abstract
The vanillyl-alcohol oxidase (VAO) family is a rich source of biocatalysts for the oxidative bioconversion of phenolic compounds. Through genome mining and sequence comparisons, we found that several family members lack a generally conserved catalytic aspartate. This finding led us to study a VAO-homolog featuring a glutamate residue in place of the common aspartate. This 4-ethylphenol oxidase from Gulosibacter chungangensis (Gc4EO) shares 42 % sequence identity with VAO from Penicillium simplicissimum, contains the same 8α-N3 -histidyl-bound FAD and uses oxygen as electron acceptor. However, Gc4EO features a distinct substrate scope and product specificity as it is primarily effective in the dehydrogenation of para-substituted phenols with little generation of hydroxylated products. The three-dimensional structure shows that the characteristic glutamate side chain creates a closely packed environment that may limit water accessibility and thereby protect from hydroxylation. With its high thermal stability, well defined structural properties and high expression yields, Gc4EO may become a catalyst of choice for the specific dehydrogenation of phenolic compounds bearing small substituents.
Collapse
Affiliation(s)
- Laura Alvigini
- Department of Biology and Biotechnology “Lazzaro Spallanzani”University of PaviaVia Ferrata 927100PaviaItaly
| | - Alejandro Gran‐Scheuch
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Yiming Guo
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Milos Trajkovic
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Mohammad Saifuddin
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”University of PaviaVia Ferrata 927100PaviaItaly
| |
Collapse
|
7
|
Revolutionizing enzyme engineering through artificial intelligence and machine learning. Emerg Top Life Sci 2021; 5:113-125. [PMID: 33835131 DOI: 10.1042/etls20200257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022]
Abstract
The combinatorial space of an enzyme sequence has astronomical possibilities and exploring it with contemporary experimental techniques is arduous and often ineffective. Multi-target objectives such as concomitantly achieving improved selectivity, solubility and activity of an enzyme have narrow plausibility under approaches of restricted mutagenesis and combinatorial search. Traditional enzyme engineering approaches have a limited scope for complex optimization due to the requirement of a priori knowledge or experimental burden of screening huge protein libraries. The recent surge in high-throughput experimental methods including Next Generation Sequencing and automated screening has flooded the field of molecular biology with big-data, which requires us to re-think our concurrent approaches towards enzyme engineering. Artificial Intelligence (AI) and Machine Learning (ML) have great potential to revolutionize smart enzyme engineering without the explicit need for a complete understanding of the underlying molecular system. Here, we portray the role and position of AI techniques in the field of enzyme engineering along with their scope and limitations. In addition, we explain how the traditional approaches of directed evolution and rational design can be extended through AI tools. Recent successful examples of AI-assisted enzyme engineering projects and their deviation from traditional approaches are highlighted. A comprehensive picture of current challenges and future avenues for AI in enzyme engineering are also discussed.
Collapse
|
8
|
Yu S, Li J, Yao P, Feng J, Cui Y, Li J, Liu X, Wu Q, Lin J, Zhu D. Inverting the Enantiopreference of Nitrilase‐Catalyzed Desymmetric Hydrolysis of Prochiral Dinitriles by Reshaping the Binding Pocket with a Mirror‐Image Strategy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shanshan Yu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jinlong Li
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Peiyuan Yao
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jinhui Feng
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Yunfeng Cui
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jianjiong Li
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Xiangtao Liu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jianping Lin
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| |
Collapse
|
9
|
Yu S, Li J, Yao P, Feng J, Cui Y, Li J, Liu X, Wu Q, Lin J, Zhu D. Inverting the Enantiopreference of Nitrilase‐Catalyzed Desymmetric Hydrolysis of Prochiral Dinitriles by Reshaping the Binding Pocket with a Mirror‐Image Strategy. Angew Chem Int Ed Engl 2020; 60:3679-3684. [DOI: 10.1002/anie.202012243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Shanshan Yu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jinlong Li
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Peiyuan Yao
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jinhui Feng
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Yunfeng Cui
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jianjiong Li
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Xiangtao Liu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Jianping Lin
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| |
Collapse
|
10
|
Abstract
Enzymatic methods for the oxidation of alcohols are critically reviewed. Dehydrogenases and oxidases are the most prominent biocatalysts, enabling the selective oxidation of primary alcohols into aldehydes or acids. In the case of secondary alcohols, region and/or enantioselective oxidation is possible. In this contribution, we outline the current state-of-the-art and discuss current limitations and promising solutions.
Collapse
|
11
|
Abstract
This review presents a historical outline of the research on vanillyl alcohol oxidase (VAO) from Penicillium simplicissimum, one of the canonical members of the VAO/PCMH flavoprotein family. After describing its discovery and initial biochemical characterization, we discuss the physiological role, substrate scope, and catalytic mechanism of VAO, and review its three-dimensional structure and mechanism of covalent flavinylation. We also explain how protein engineering provided a deeper insight into the role of certain amino acid residues in determining the substrate specificity and enantioselectivity of the enzyme. Finally, we summarize recent computational studies about the migration of substrates and products through the enzyme's structure and the phylogenetic distribution of VAO and related enzymes.
Collapse
Affiliation(s)
- Tom A Ewing
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Gudrun Gygli
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Lubbers RJM, Dilokpimol A, Visser J, Mäkelä MR, Hildén KS, de Vries RP. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnol Adv 2019; 37:107396. [PMID: 31075306 DOI: 10.1016/j.biotechadv.2019.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.
Collapse
Affiliation(s)
- Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Kristiina S Hildén
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| |
Collapse
|
13
|
Scholtissek A, Gädke E, Paul CE, Westphal AH, van Berkel WJH, Tischler D. Catalytic Performance of a Class III Old Yellow Enzyme and Its Cysteine Variants. Front Microbiol 2018; 9:2410. [PMID: 30369915 PMCID: PMC6194350 DOI: 10.3389/fmicb.2018.02410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/20/2018] [Indexed: 11/21/2022] Open
Abstract
Class III old yellow enzymes (OYEs) contain a conserved cysteine in their active sites. To address the role of this cysteine in OYE-mediated asymmetric synthesis, we have studied the biocatalytic properties of OYERo2a from Rhodococcus opacus 1CP (WT) as well as its engineered variants C25A, C25S and C25G. OYERo2a in its redox resting state (oxidized form) is irreversibly inactivated by N-methylmaleimide. As anticipated, inactivation does not occur with the Cys variants. Steady-state kinetics with this maleimide substrate revealed that C25S and C25G doubled the turnover frequency (k cat) while showing increased K M values compared to WT, and that C25A performed more similar to WT. Applying the substrate 2-cyclohexen-1-one, the Cys variants were less active and less efficient than WT. OYERo2a and its Cys variants showed different activities with NADPH, the natural reductant. The variants did bind NADPH less well but k cat was significantly increased. The most efficient variant was C25G. Replacement of NADPH with the cost-effective synthetic cofactor 1-benzyl-1,4-dihydronicotinamide (BNAH) drastically changed the catalytic behavior. Again C25G was most active and showed a similar efficiency as WT. Biocatalysis experiments showed that OYERo2a, C25S, and C25G converted N-phenyl-2-methylmaleimide equally well (81-84%) with an enantiomeric excess (ee) of more than 99% for the R-product. With cyclic ketones, the highest conversion (89%) and ee (>99%) was observed for the reaction of WT with R-carvone. A remarkable poor conversion of cyclic ketones occurred with C25G. In summary, we established that the generation of a cysteine-free enzyme and cofactor optimization allows the development of more robust class III OYEs.
Collapse
Affiliation(s)
- Anika Scholtissek
- Environmental Microbiology Group, Interdisciplinary Ecological Center, Institute of Biosciences, Technical University Bergakademie Freiberg, Freiberg, Germany
| | - Eric Gädke
- Environmental Microbiology Group, Interdisciplinary Ecological Center, Institute of Biosciences, Technical University Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Department of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Caroline E. Paul
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, Netherlands
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Adrie H. Westphal
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | | | - Dirk Tischler
- Microbial Biotechnology, Department of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Gygli G, de Vries RP, van Berkel WJ. On the origin of vanillyl alcohol oxidases. Fungal Genet Biol 2018; 116:24-32. [DOI: 10.1016/j.fgb.2018.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
|
15
|
Ewing TA, Kühn J, Segarra S, Tortajada M, Zuhse R, van Berkel WJH. Multigram Scale Enzymatic Synthesis of (R)-1-(4′-Hydroxyphenyl)ethanol Using Vanillyl Alcohol Oxidase. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tom A. Ewing
- Laboratory of Biochemistry; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Jasmin Kühn
- Chiracon GmbH; Biotechnologiepark 14943 Luckenwalde Germany
| | - Silvia Segarra
- Biopolis S. L.; Parc Científic de la Universitat de València; Edificio 2, C/Catedrático Agustín Escardino 9 46980 Paterna Spain
| | - Marta Tortajada
- Biopolis S. L.; Parc Científic de la Universitat de València; Edificio 2, C/Catedrático Agustín Escardino 9 46980 Paterna Spain
| | - Ralf Zuhse
- Chiracon GmbH; Biotechnologiepark 14943 Luckenwalde Germany
| | - Willem J. H. van Berkel
- Laboratory of Biochemistry; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| |
Collapse
|
16
|
Gygli G, Lucas MF, Guallar V, van Berkel WJH. The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths. PLoS Comput Biol 2017; 13:e1005787. [PMID: 28985219 PMCID: PMC5646868 DOI: 10.1371/journal.pcbi.1005787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/18/2017] [Accepted: 09/21/2017] [Indexed: 01/03/2023] Open
Abstract
Vanillyl alcohol oxidase (VAO) is a homo-octameric flavoenzyme belonging to the VAO/PCMH family. Each VAO subunit consists of two domains, the FAD-binding and the cap domain. VAO catalyses, among other reactions, the two-step conversion of p-creosol (2-methoxy-4-methylphenol) to vanillin (4-hydroxy-3-methoxybenzaldehyde). To elucidate how different ligands enter and exit the secluded active site, Monte Carlo based simulations have been performed. One entry/exit path via the subunit interface and two additional exit paths have been identified for phenolic ligands, all leading to the si side of FAD. We argue that the entry/exit path is the most probable route for these ligands. A fourth path leading to the re side of FAD has been found for the co-ligands dioxygen and hydrogen peroxide. Based on binding energies and on the behaviour of ligands in these four paths, we propose a sequence of events for ligand and co-ligand migration during catalysis. We have also identified two residues, His466 and Tyr503, which could act as concierges of the active site for phenolic ligands, as well as two other residues, Tyr51 and Tyr408, which could act as a gateway to the re side of FAD for dioxygen. Most of the residues in the four paths are also present in VAO’s closest relatives, eugenol oxidase and p-cresol methylhydroxylase. Key path residues show movements in our simulations that correspond well to conformations observed in crystal structures of these enzymes. Preservation of other path residues can be linked to the electron acceptor specificity and oligomerisation state of the three enzymes. This study is the first comprehensive overview of ligand and co-ligand migration in a member of the VAO/PCMH family, and provides a proof of concept for the use of an unbiased method to sample this process. Enzymes are bionanomachines, which speed up chemical reactions in organisms. To understand how they achieve that, we need to study their mechanisms. Computational enzymology can show us what happens in the enzyme’s active site during a reaction. But molecules need first to reach the active site before a reaction can start. The process of substrate entry and product exit to the active site is often neglected when studying enzymes. However, these two events are of fundamental importance to the proper functioning of any enzyme. We are interested in these dynamic processes to complete our understanding of the mode of action of enzymes. In our work, we have studied substrate and product migration in vanillyl alcohol oxidase. This enzyme can produce the flavour vanillin and enantiopure alcohols, but also catalyses other reactions. The named products are of interest to the flavour- and fine-chemical industries.
Collapse
Affiliation(s)
- Gudrun Gygli
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, WE Wageningen, The Netherlands
| | - Maria Fátima Lucas
- Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, Barcelona, Spain
| | - Victor Guallar
- Joint BSC-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain
| | - Willem J. H. van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, WE Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
17
|
Ishikawa F, Shirahashi M, Hayakawa H, Yamaguchi A, Hirokawa T, Tsumuraya T, Fujii I. Site-Directed Chemical Mutations on Abzymes: Large Rate Accelerations in the Catalysis by Exchanging the Functionalized Small Nonprotein Components. ACS Chem Biol 2016; 11:2803-2811. [PMID: 27552288 DOI: 10.1021/acschembio.6b00574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Taking advantage of antibody molecules to generate tailor-made binding sites, we propose a new class of protein modifications, termed as "site-directed chemical mutation." In this modification, chemically synthesized catalytic components with a variety of steric and electronic properties can be noncovalently and nongenetically incorporated into specific sites in antibody molecules to induce enzymatic activity. Two catalytic antibodies, 25E2 and 27C1, possess antigen-combining sites which bind catalytic components and act as apoproteins in catalytic reactions. By simply exchanging these components, antibodies 25E2 and 27C1 can catalyze a wide range of chemical transformations including acyl-transfer, β-elimination, aldol, and decarboxylation reactions. Although both antibodies were generated with the same hapten, phosphonate diester 1, they showed different catalytic activity. When phenylacetic acid 4 was used as the catalytic component, 25E2 efficiently catalyzed the elimination reaction of β-haloketone 2, whereas 27C1 showed no catalytic activity. In this work, we focused on the β-elimination reaction and examined the site-directed chemical mutation of 27C1 to induce activity and elucidate the catalytic mechanism. Molecular models showed that the cationic guanidyl group of ArgH52 in 27C1 makes a hydrogen bond with the P═O oxygen in the hapten. This suggested that during β-elimination, ArgH52 of 27C1 would form a salt bridge with the carboxylate of 4, thus destroying reactivity. Therefore, we utilized site-directed chemical mutation to change the charge properties of the catalytic components. When amine components 7-10 were used, 27C1 efficiently catalyzed the β-elimination reaction. It is noteworthy that chemical mutation with secondary amine 8 provided extremely high activity, with a rate acceleration [(kcat/Km 2)/kuncat] of 1 000 000. This catalytic activity likely arises from the proximity effect, plus general-base catalysis associated the electrostatic interactions. In 27C1, the cationic guanidyl group of ArgH52 is spatially close to the nitrogen of the amine components. In this microenvironment, the intrinsic pKa of the amine is perturbed and shifts to a lower pKa, which efficiently abstracts the α-proton during the reaction. This mechanism is consistent with the observed kinetic isotope effect (E2 or E1cB mechanism). Thus, site-directed chemical mutation provides a better understanding of enzyme functions and opens new avenues in biocatalyst research.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Masato Shirahashi
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hiroshi Hayakawa
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Asako Yamaguchi
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Takatsugu Hirokawa
- Molecular
Profiling Research Center for Drug Discovery (molprof), Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Takeshi Tsumuraya
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ikuo Fujii
- Department
of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
18
|
Bendl J, Stourac J, Sebestova E, Vavra O, Musil M, Brezovsky J, Damborsky J. HotSpot Wizard 2.0: automated design of site-specific mutations and smart libraries in protein engineering. Nucleic Acids Res 2016; 44:W479-87. [PMID: 27174934 PMCID: PMC4987947 DOI: 10.1093/nar/gkw416] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/03/2016] [Indexed: 01/13/2023] Open
Abstract
HotSpot Wizard 2.0 is a web server for automated identification of hot spots and design of smart libraries for engineering proteins' stability, catalytic activity, substrate specificity and enantioselectivity. The server integrates sequence, structural and evolutionary information obtained from 3 databases and 20 computational tools. Users are guided through the processes of selecting hot spots using four different protein engineering strategies and optimizing the resulting library's size by narrowing down a set of substitutions at individual randomized positions. The only required input is a query protein structure. The results of the calculations are mapped onto the protein's structure and visualized with a JSmol applet. HotSpot Wizard lists annotated residues suitable for mutagenesis and can automatically design appropriate codons for each implemented strategy. Overall, HotSpot Wizard provides comprehensive annotations of protein structures and assists protein engineers with the rational design of site-specific mutations and focused libraries. It is freely available at http://loschmidt.chemi.muni.cz/hotspotwizard.
Collapse
Affiliation(s)
- Jaroslav Bendl
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, 625 00 Brno, Czech Republic Department of Information Systems, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, 625 00 Brno, Czech Republic
| | - Eva Sebestova
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, 625 00 Brno, Czech Republic
| | - Ondrej Vavra
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, 625 00 Brno, Czech Republic
| | - Milos Musil
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, 625 00 Brno, Czech Republic Department of Information Systems, Faculty of Information Technology, Brno University of Technology, 612 66 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, 625 00 Brno, Czech Republic International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Masaryk University, 625 00 Brno, Czech Republic International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
19
|
Kameshwar AKS, Qin W. Lignin Degrading Fungal Enzymes. PRODUCTION OF BIOFUELS AND CHEMICALS FROM LIGNIN 2016. [DOI: 10.1007/978-981-10-1965-4_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Wechsler C, Meyer D, Loschonsky S, Funk LM, Neumann P, Ficner R, Brodhun F, Müller M, Tittmann K. Tuning and Switching Enantioselectivity of Asymmetric Carboligation in an Enzyme through Mutational Analysis of a Single Hot Spot. Chembiochem 2015; 16:2580-4. [DOI: 10.1002/cbic.201500529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Cindy Wechsler
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Danilo Meyer
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Sabrina Loschonsky
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg im Breisgau Germany
| | - Lisa-Marie Funk
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Piotr Neumann
- Abt. Molekulare Strukturbiologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Ralf Ficner
- Abt. Molekulare Strukturbiologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Florian Brodhun
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Michael Müller
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg im Breisgau Germany
| | - Kai Tittmann
- Abt. Molekulare Enzymologie; Georg-August-Universität Göttingen; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| |
Collapse
|
21
|
Pickl M, Fuchs M, Glueck SM, Faber K. The substrate tolerance of alcohol oxidases. Appl Microbiol Biotechnol 2015; 99:6617-42. [PMID: 26153139 PMCID: PMC4513209 DOI: 10.1007/s00253-015-6699-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/10/2015] [Accepted: 05/15/2015] [Indexed: 11/29/2022]
Abstract
Alcohols are a rich source of compounds from renewable sources, but they have to be activated in order to allow the modification of their carbon backbone. The latter can be achieved via oxidation to the corresponding aldehydes or ketones. As an alternative to (thermodynamically disfavoured) nicotinamide-dependent alcohol dehydrogenases, alcohol oxidases make use of molecular oxygen but their application is under-represented in synthetic biotransformations. In this review, the mechanism of copper-containing and flavoprotein alcohol oxidases is discussed in view of their ability to accept electronically activated or non-activated alcohols and their propensity towards over-oxidation of aldehydes yielding carboxylic acids. In order to facilitate the selection of the optimal enzyme for a given biocatalytic application, the substrate tolerance of alcohol oxidases is compiled and discussed: Substrates are classified into groups (non-activated prim- and sec-alcohols; activated allylic, cinnamic and benzylic alcohols; hydroxy acids; sugar alcohols; nucleotide alcohols; sterols) together with suitable alcohol oxidases, their microbial source, relative activities and (stereo)selectivities.
Collapse
Affiliation(s)
- Mathias Pickl
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010, Graz, Austria
| | | | | | | |
Collapse
|
22
|
Isayev O, Crespo-Hernández CE, Gorb L, Hill FC, Leszczynski J. In silico structure-function analysis of E. cloacae nitroreductase. Proteins 2012; 80:2728-41. [PMID: 22865652 DOI: 10.1002/prot.24157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/26/2012] [Accepted: 07/05/2012] [Indexed: 01/18/2023]
Abstract
Reduction, catalyzed by the bacterial nitroreductases, is the quintessential first step in the biodegradation of a variety of nitroaromatic compounds from contaminated waters and soil. The Enterobacter cloacae nitroreductase (EcNR) enzyme is considered as a prospective biotechnological tool for bioremediation of hazardous nitroaromatic compounds. Using diverse computational methods, we obtain insights into the structural basis of activity and mechanism of its function. We have performed molecular dynamics simulation of EcNR in three different states (free EcNR in oxidized form, fully reduced EcNR with benzoate inhibitor and fully reduced EcNR with nitrobenzene) in explicit solvent and with full electrostatics. Principal Component Analysis (PCA) of the variance-covariance matrix showed that the complexed nitroreductase becomes more flexible overall upon complexation, particularly helix H6, in the vicinity of the binding site. A multiple sequence alignment was also constructed in order to examine positional constraints on substitution in EcNR. Five regions which are highly conserved within the flavin mononucleotide (FMN) binding site were identified. Obtained results and their implications for EcNR functioning are discussed, and new plausible mechanism has been proposed.
Collapse
Affiliation(s)
- Olexandr Isayev
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
23
|
Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 2012; 93:1395-410. [DOI: 10.1007/s00253-011-3836-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 11/30/2022]
|
24
|
Wongnate T, Sucharitakul J, Chaiyen P. Identification of a Catalytic Base for Sugar Oxidation in the Pyranose 2-Oxidase Reaction. Chembiochem 2011; 12:2577-86. [DOI: 10.1002/cbic.201100564] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Indexed: 11/10/2022]
|
25
|
Urano N, Fukui S, Kumashiro S, Ishige T, Kita S, Sakamoto K, Kataoka M, Shimizu S. Directed evolution of an aminoalcohol dehydrogenase for efficient production of double chiral aminoalcohols. J Biosci Bioeng 2011; 111:266-71. [DOI: 10.1016/j.jbiosc.2010.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/02/2010] [Accepted: 11/12/2010] [Indexed: 10/18/2022]
|
26
|
Jez JM. Toward protein engineering for phytoremediation: possibilities and challenges. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2011; 13 Suppl 1:77-89. [PMID: 22046752 DOI: 10.1080/15226514.2011.568537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The combination of rational protein engineering and directed evolution techniques allow for the redesign of enzymes with tailored properties for use in environmental remediation. This review summarizes current molecular methods for either altering or improving protein function and highlights examples of how these methods can address bioremediation problems. Although much of the protein engineering applied to environmental clean-up employs microbial systems, there is great potential for and significant challenges to translating these approaches to plant systems for phytoremediation purposes. Protein engineering technologies combined with genomic information and metabolic engineering strategies hold promise for the design of plants and microbes to remediate organic and inorganic pollutants.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| |
Collapse
|
27
|
Obata R, Nakasako M. Structural basis for inverting the enantioselectivity of arylmalonate decarboxylase revealed by the structural analysis of the Gly74Cys/Cys188Ser mutant in the liganded form. Biochemistry 2010; 49:1963-9. [PMID: 20136121 DOI: 10.1021/bi9015605] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arylmalonate decarboxylase catalyzes the enantioselective decarboxylation of alpha-aryl-alpha-methylmalonate to produce optically pure alpha-arylpropionate. The enzyme is comprised of two alpha/beta domains and contains an active site situated between the two domains. The site is formed by Tyr48, Gly74-Thr75-Ser76, Tyr126, and Cys188-Gly189-Gly190 residues. Since it has been observed that the Gly74Cys/Cys188Ser mutation inverts the enantioselectivity of the enzyme, we determined the crystal structure of the Gly74Cys/Cys188Ser mutant in the liganded form at a resolution of 1.45 A to understand the structural basis for this inversion. The overall structure of the enzyme overlapped well with that of the benzylphosphonate-associated wild-type enzyme, and the mutations had little effect on the structure of the active site. A ligand molecule bound to the active site in an unusual semiplanar conformation resembling the planar enediolate reaction intermediate could be assigned as phenyl acetate. The inversion in enantioselectivity by the paired mutation is explained by the mirror symmetry between Cys74 in the mutant and Cys188 of the wild type with respect to the carbon atom in the ligand to be protonated. Comparison of the wild-type and Gly74Cys mutant crystal structures suggested that ligand binding induces a positional shift of the Cys188-Gly189-Gly190 region toward the Gly74-Thr75 pair which provides two oxyanion holes necessary to stabilize the negatively charged enediolate reaction intermediate. The ligand binding also simultaneously induces the formation of a hydrophobic cluster over the active site cleft. Thus, AMDase is proposed to have "open" and "closed" conformations of the active site that are regulated by ligand binding. These results may provide an effective strategy for the rational design to invert the enantioselectivity of enzymes.
Collapse
Affiliation(s)
- Rika Obata
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | | |
Collapse
|
28
|
Melzer M, Chen JCH, Heidenreich A, Gäb J, Koller M, Kehe K, Blum MM. Reversed enantioselectivity of diisopropyl fluorophosphatase against organophosphorus nerve agents by rational design. J Am Chem Soc 2010; 131:17226-32. [PMID: 19894712 DOI: 10.1021/ja905444g] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris is an efficient and robust biocatalyst for the hydrolysis of a range of highly toxic organophosphorus compounds including the nerve agents sarin, soman, and cyclosarin. In contrast to the substrate diisopropyl fluorophosphate (DFP) the nerve agents possess an asymmetric phosphorus atom, which leads to pairs of enantiomers that display markedly different toxicities. Wild-type DFPase prefers the less toxic stereoisomers of the substrates which leads to slower detoxification despite rapid hydrolysis. Enzyme engineering efforts based on rational design yielded two quadruple enzyme mutants with reversed enantioselectivity and overall enhanced activity against tested nerve agents. The reversed stereochemical preference is explained through modeling studies and the crystal structures of the two mutants. Using the engineered mutants in combination with wild-type DFPase leads to significantly enhanced activity and detoxification, which is especially important for personal decontamination. Our findings may also be of relevance for the structurally related enzyme human paraoxonase (PON), which is of considerable interest as a potential catalytic in vivo scavenger in case of organophosphorus poisoning.
Collapse
Affiliation(s)
- Marco Melzer
- Blum-Scientific Services, Ledererstrasse 23, 80331 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Tang WL, Li Z, Zhao H. Inverting the enantioselectivity of P450pyr monooxygenase by directed evolution. Chem Commun (Camb) 2010; 46:5461-3. [DOI: 10.1039/c0cc00735h] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Musa M, Lott N, Laivenieks M, Watanabe L, Vieille C, Phillips R. A Single Point Mutation Reverses the Enantiopreference ofThermoanaerobacter ethanolicusSecondary Alcohol Dehydrogenase. ChemCatChem 2009. [DOI: 10.1002/cctc.200900033] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Machielsen R, Looger LL, Raedts J, Dijkhuizen S, Hummel W, Hennemann HG, Daussmann T, van der Oost J. Cofactor engineering ofLactobacillus brevisalcohol dehydrogenase by computational design. Eng Life Sci 2009. [DOI: 10.1002/elsc.200800046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
32
|
Mugford P, Wagner UG, Jiang Y, Faber K, Kazlauskas R. Enantiocomplementary Enzymes: Classification, Molecular Basis for Their Enantiopreference, and Prospects for Mirror-Image Biotransformations. Angew Chem Int Ed Engl 2008; 47:8782-93. [DOI: 10.1002/anie.200705159] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Mugford P, Wagner U, Jiang Y, Faber K, Kazlauskas R. Enantiokomplementäre Enzyme: Klassifizierung, molekulare Grundlage der Enantiopräferenz und Prognosen für spiegelbildliche Biotransformationen. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705159] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Kallio P, Liu Z, Mäntsälä P, Niemi J, Metsä-Ketelä M. Sequential action of two flavoenzymes, PgaE and PgaM, in angucycline biosynthesis: chemoenzymatic synthesis of gaudimycin C. ACTA ACUST UNITED AC 2008; 15:157-66. [PMID: 18291320 DOI: 10.1016/j.chembiol.2007.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 11/24/2007] [Accepted: 12/04/2007] [Indexed: 11/25/2022]
Abstract
Tailoring steps in aromatic polyketide antibiotic biosynthesis are an important source of structural diversity and, consequently, an intriguing focal point for enzymological studies. PgaE and PgaM from Streptomyces sp. PGA64 are representatives of flavoenzymes catalyzing early post-PKS reactions in angucycline biosynthesis. This in vitro study illustrates that the chemoenzymatic conversion of UWM6 into the metabolite, gaudimycin C, requires multiple closely coupled reactions to prevent intermediate degradation. The NMR structure of gaudimycin C confirms that the reaction cascade involves C12- and C12b-hydroxylation, C2,3-dehydration, and stereospecific ketoreduction at C6. Enzymatic 18O incorporation studies verify that the oxygens at C12 and C12b derive from O2 and H2O, respectively. The results indicate that PgaM deviates mechanistically from flavoprotein monooxygenases, and suggest an alternative catalytic mechanism involving a quinone methide intermediate.
Collapse
Affiliation(s)
- Pauli Kallio
- Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | |
Collapse
|
35
|
Bartsch S, Kourist R, Bornscheuer U. Complete Inversion of Enantioselectivity towards Acetylated Tertiary Alcohols by a Double Mutant of aBacillus Subtilis Esterase. Angew Chem Int Ed Engl 2008; 47:1508-11. [DOI: 10.1002/anie.200704606] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Vollständige Umkehrung der Enantioselektivität gegen acetylierte tertiäre Alkohole durch eine Doppelmutation in einer Esterase ausBacillus subtilis. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704606] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Zhu D, Yang Y, Majkowicz S, Pan THY, Kantardjieff K, Hua L. Inverting the Enantioselectivity of a Carbonyl Reductase via Substrate−Enzyme Docking-Guided Point Mutation. Org Lett 2008; 10:525-8. [DOI: 10.1021/ol702638j] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dunming Zhu
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, and W. M. Keck Foundation Center for Molecular Structure and Department of Chemistry and Biochemistry, California State UniversityFullerton, Fullerton, California 92834
| | - Yan Yang
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, and W. M. Keck Foundation Center for Molecular Structure and Department of Chemistry and Biochemistry, California State UniversityFullerton, Fullerton, California 92834
| | - Stephanie Majkowicz
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, and W. M. Keck Foundation Center for Molecular Structure and Department of Chemistry and Biochemistry, California State UniversityFullerton, Fullerton, California 92834
| | - Thoris Hsin-Yuan Pan
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, and W. M. Keck Foundation Center for Molecular Structure and Department of Chemistry and Biochemistry, California State UniversityFullerton, Fullerton, California 92834
| | - Katherine Kantardjieff
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, and W. M. Keck Foundation Center for Molecular Structure and Department of Chemistry and Biochemistry, California State UniversityFullerton, Fullerton, California 92834
| | - Ling Hua
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, and W. M. Keck Foundation Center for Molecular Structure and Department of Chemistry and Biochemistry, California State UniversityFullerton, Fullerton, California 92834
| |
Collapse
|
38
|
Toscano MD, Woycechowsky KJ, Hilvert D. Minimalist active-site redesign: teaching old enzymes new tricks. Angew Chem Int Ed Engl 2007; 46:3212-36. [PMID: 17450624 DOI: 10.1002/anie.200604205] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although nature evolves its catalysts over millions of years, enzyme engineers try to do it a bit faster. Enzyme active sites provide highly optimized microenvironments for the catalysis of biologically useful chemical transformations. Consequently, changes at these centers can have large effects on enzyme activity. The prediction and control of these effects provides a promising way to access new functions. The development of methods and strategies to explore the untapped catalytic potential of natural enzyme scaffolds has been pushed by the increasing demand for industrial biocatalysts. This Review describes the use of minimal modifications at enzyme active sites to expand their catalytic repertoires, including targeted mutagenesis and the addition of new reactive functionalities. Often, a novel activity can be obtained with only a single point mutation. The many successful examples of active-site engineering through minimal mutations give useful insights into enzyme evolution and open new avenues in biocatalyst research.
Collapse
Affiliation(s)
- Miguel D Toscano
- Laboratory of Organic Chemistry, ETH Zürich, Hönggerberg, Switzerland
| | | | | |
Collapse
|
39
|
Pazmiño DT, Snajdrova R, Rial D, Mihovilovic M, Fraaije M. Altering the Substrate Specificity and Enantioselectivity of Phenylacetone Monooxygenase by Structure-Inspired Enzyme Redesign. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200700045] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Toscano M, Woycechowsky K, Hilvert D. Minimale Umgestaltung aktiver Enzymtaschen – wie man alten Enzymen neue Kunststücke beibringt. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604205] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Jin J, Mazon H, van den Heuvel RHH, Janssen DB, Fraaije MW. Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1. FEBS J 2007; 274:2311-21. [PMID: 17419730 DOI: 10.1111/j.1742-4658.2007.05767.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A gene encoding a eugenol oxidase was identified in the genome from Rhodococcus sp. strain RHA1. The bacterial FAD-containing oxidase shares 45% amino acid sequence identity with vanillyl alcohol oxidase from the fungus Penicillium simplicissimum. Eugenol oxidase could be expressed at high levels in Escherichia coli, which allowed purification of 160 mg of eugenol oxidase from 1 L of culture. Gel permeation experiments and macromolecular MS revealed that the enzyme forms homodimers. Eugenol oxidase is partly expressed in the apo form, but can be fully flavinylated by the addition of FAD. Cofactor incorporation involves the formation of a covalent protein-FAD linkage, which is formed autocatalytically. Modeling using the vanillyl alcohol oxidase structure indicates that the FAD cofactor is tethered to His390 in eugenol oxidase. The model also provides a structural explanation for the observation that eugenol oxidase is dimeric whereas vanillyl alcohol oxidase is octameric. The bacterial oxidase efficiently oxidizes eugenol into coniferyl alcohol (KM=1.0 microM, kcat=3.1 s-1). Vanillyl alcohol and 5-indanol are also readily accepted as substrates, whereas other phenolic compounds (vanillylamine, 4-ethylguaiacol) are converted with relatively poor catalytic efficiencies. The catalytic efficiencies with the identified substrates are strikingly different when compared with vanillyl alcohol oxidase. The ability to efficiently convert eugenol may facilitate biotechnological valorization of this natural aromatic compound.
Collapse
Affiliation(s)
- Jianfeng Jin
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Williams GJ, Woodhall T, Farnsworth LM, Nelson A, Berry A. Creation of a pair of stereochemically complementary biocatalysts. J Am Chem Soc 2006; 128:16238-47. [PMID: 17165777 DOI: 10.1021/ja065233q] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acetylneuraminic acid lyase (NAL) exhibits poor facial selectivity during carbon-carbon formation, and as such, its utility as a catalyst for use in synthetic chemistry is limited. For example, the NAL-catalyzed condensation between pyruvate and (2R,3S)-2,3-dihydroxy-4-oxo-N,N-dipropylbutyramide yields ca. 3:1 mixtures of diastereomeric products under either kinetic or thermodynamic control. Engineering the stereochemical course of NAL-catalyzed reactions could remove this limitation. We used directed evolution to create a pair of stereochemically complementary variant NALs for the synthesis of sialic acid mimetics. The E192N variant, a highly efficient catalyst for aldol reactions of (2R,3S)-2,3-dihydroxy-4-oxo-N,N-dialkylbutyramides, was chosen as a starting point. Initially, error-prone PCR identified residues in the active site of NAL that contributed to the stereochemical control of an aldolase-catalyzed reaction. Subsequently, an intense structure-guided program of saturation and site-directed mutagenesis was used to identify a complementary pair of variants, E192N/T167G and E192N/T167V/S208V, which were approximately 50-fold selective toward the cleavage of the alternative 4S- and 4R-configured condensation products, respectively. It was shown that wild-type NAL could not be used for the highly stereoselective synthesis of a 6-dipropylamide sialic acid mimetic because the 4S-configured product was only approximately 3-fold kinetically favored and only approximately 3-fold thermodynamically favored over the alternative 4R-configured product. However, the complementary 4R- and 4S-selective variants allowed the highly (>98:<2) diastereoselective synthesis of both 4S- and 4R-configured products under kinetic control from the same starting materials. Conversion of an essentially nonselective aldolase into a pair of complementary biocatalysts will be of enormous interest to synthetic chemists. Furthermore, since residues identified as critical for stereoselectivity are conserved among members of the NAL superfamily, the approach might be extended to the evolution of other useful biocatalysts for the stereoselective synthesis of biologically active molecules.
Collapse
Affiliation(s)
- Gavin J Williams
- Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Corvini PFX, Schäffer A, Schlosser D. Microbial degradation of nonylphenol and other alkylphenols—our evolving view. Appl Microbiol Biotechnol 2006; 72:223-43. [PMID: 16826376 DOI: 10.1007/s00253-006-0476-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/11/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Because the endocrine disrupting effects of nonylphenol (NP) and octylphenol became evident, the degradation of long-chain alkylphenols (AP) by microorganisms was intensively studied. Most NP-degrading bacteria belong to the sphingomonads and closely related genera, while NP metabolism is not restricted to defined fungal taxa. Growth on NP and its mineralization was demonstrated for bacterial isolates, whereas ultimate degradation by fungi still remains unclear. While both bacterial and fungal degradation of short-chain AP, such as cresols, and the bacterial degradation of long-chain branched AP involves aromatic ring hydroxylation, alkyl chain oxidation and the formation of phenolic polymers seem to be preferential elimination pathways of long-chain branched AP in fungi, whereby both intracellular and extracellular oxidative enzymes may be involved. The degradation of NP by sphingomonads does not proceed via the common degradation mechanisms reported for short-chain AP, rather, via an unusual ipso-substitution mechanism. This fact underlies the peculiarity of long-chain AP such as NP isomers, which possess highly branched alkyl groups mostly containing a quaternary alpha-carbon. In addition to physicochemical parameters influencing degradation rates, this structural characteristic confers to branched isomers of NP a biodegradability different to that of the widely used linear isomer of NP. Potential biotechnological applications for the removal of AP from contaminated media and the difficulties of analysis and application inherent to the hydrophobic NP, in particular, are also discussed. The combination of bacteria and fungi, attacking NP at both the phenolic and alkylic moiety, represents a promising perspective.
Collapse
Affiliation(s)
- P F X Corvini
- Department of Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
| | | | | |
Collapse
|
45
|
Anderson JLR, Chapman SK. Molecular mechanisms of enzyme-catalysed halogenation. MOLECULAR BIOSYSTEMS 2006; 2:350-7. [PMID: 16880954 DOI: 10.1039/b607813c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since their discovery, halogenated metabolites have been somewhat of a biological peculiarity and it is only now that we are beginning to realize the full extent of their medicinal value. With the exception of the well characterized haloperoxidases, most of the biosynthetic enzymes and mechanisms responsible for the halogenations have remained elusive. The crystal structures of two functionally diverse halogenases have been recently solved, providing us with new and exciting mechanistic detail. This new insight has the potential to be used both in the development of biomimetic halogenation catalysts and in engineering halogenases, and related enzymes, to halogenate new substrates. Interestingly, these new structures also illustrate how the evolution of these enzymes mirrors that of the monooxygenases, where the cofactor is selected for its ability to generate a powerful oxygenating species. In this highlight article we will examine the proposed catalytic mechanisms of the halogenases and how these relate to their structures. In addition, we will consider how this chemistry might be harnessed and developed to produce novel enzymatic activity.
Collapse
Affiliation(s)
- J L Ross Anderson
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh, UK.
| | | |
Collapse
|
46
|
Yoshikuni Y, Ferrin TE, Keasling JD. Designed divergent evolution of enzyme function. Nature 2006; 440:1078-82. [PMID: 16495946 DOI: 10.1038/nature04607] [Citation(s) in RCA: 326] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 01/26/2006] [Indexed: 11/08/2022]
Abstract
It is generally believed that proteins with promiscuous functions divergently evolved to acquire higher specificity and activity, and that this process was highly dependent on the ability of proteins to alter their functions with a small number of amino acid substitutions (plasticity). The application of this theory of divergent molecular evolution to promiscuous enzymes may allow us to design enzymes with more specificity and higher activity. Many structural and biochemical analyses have identified the active or binding site residues important for functional plasticity (plasticity residues). To understand how these residues contribute to molecular evolution, and thereby formulate a design methodology, plasticity residues were probed in the active site of the promiscuous sesquiterpene synthase gamma-humulene synthase. Identified plasticity residues were systematically recombined based on a mathematical model in order to construct novel terpene synthases, each catalysing the synthesis of one or a few very different sesquiterpenes. Here we present the construction of seven specific and active synthases that use different reaction pathways to produce the specific and very different products. Creation of these enzymes demonstrates the feasibility of exploiting the underlying evolvability of this scaffold, and provides evidence that rational approaches based on these ideas are useful for enzyme design.
Collapse
Affiliation(s)
- Yasuo Yoshikuni
- UCSF/UCB Joint Graduate Group in Bioengineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, USA
| | | | | |
Collapse
|
47
|
Boldron C, Gamez P, Tooke DM, Spek AL, Reedijk J. Copper-Mediated Selective Oxidation of a CH Bond. Angew Chem Int Ed Engl 2005; 44:3585-7. [PMID: 15880752 DOI: 10.1002/anie.200462946] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christophe Boldron
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Boldron C, Gamez P, Tooke DM, Spek AL, Reedijk J. Copper-Mediated Selective Oxidation of a CH Bond. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200462946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Sheu DS, Lee CY. Altering the substrate specificity of polyhydroxyalkanoate synthase 1 derived from Pseudomonas putida GPo1 by localized semirandom mutagenesis. J Bacteriol 2004; 186:4177-84. [PMID: 15205419 PMCID: PMC421589 DOI: 10.1128/jb.186.13.4177-4184.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The substrate specificity of polyhydroxyalkanoate (PHA) synthase 1 (PhaC1(Pp), class II) from Pseudomonas putida GPo1 (formerly known as Pseudomonas oleovorans GPo1) was successfully altered by localized semirandom mutagenesis. The enzyme evolution system introduces multiple point mutations, designed on the basis of the conserved regions of the PHA synthase family, by using PCR-based gene fragmentation with degenerate primers and a reassembly PCR. According to the opaqueness of the colony, indicating the accumulation of large amounts of PHA granules in the cells, 13 PHA-accumulating candidates were screened from a mutant library, with Pseudomonas putida GPp104 PHA- as the host. The in vivo substrate specificity of five candidates, L1-6, D7-47, PS-A2, PS-C2, and PS-E1, was evaluated by the heterologous expression in Ralstonia eutropha PHB(-)4 supplemented with octanoate. Notably, the amount of 3-hydroxybutyrate (short-chain-length [SCL] 3-hydroxyalkanoate [3-HA] unit) was drastically increased in recombinants that expressed evolved mutant enzymes L1-6, PS-A2, PS-C2, and PS-E1 (up to 60, 36, 50, and 49 mol%, respectively), relative to the amount in the wild type (12 mol%). Evolved enzyme PS-E1, in which 14 amino acids had been changed and which was heterologously expressed in R. eutropha PHB(-)4, not only exhibited broad substrate specificity (49 mol% SCL 3-HA and 51 mol% medium-chain-length [MCL] 3-HA) but also conferred the highest PHA production (45% dry weight) among the candidates. The 3-HA and MCL 3-HA units of the PHA produced by R. eutropha PHB(-)4/pPS-E1 were randomly copolymerized in a single polymer chain, as analytically confirmed by acetone fractionation and the 13C nuclear magnetic resonance spectrum.
Collapse
Affiliation(s)
- Der-Shyan Sheu
- Graduate Institute of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | |
Collapse
|
50
|
van den Heuvel RHH, van den Berg WAM, Rovida S, van Berkel WJH. Laboratory-evolved vanillyl-alcohol oxidase produces natural vanillin. J Biol Chem 2004; 279:33492-500. [PMID: 15169773 DOI: 10.1074/jbc.m312968200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flavoenzyme vanillyl-alcohol oxidase was subjected to random mutagenesis to generate mutants with enhanced reactivity to creosol (2-methoxy-4-methylphenol). The vanillyl-alcohol oxidase-mediated conversion of creosol proceeds via a two-step process in which the initially formed vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol) is oxidized to the widely used flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde). The first step of this reaction is extremely slow due to the formation of a covalent FAD N-5-creosol adduct. After a single round of error-prone PCR, seven mutants were generated with increased reactivity to creosol. The single-point mutants I238T, F454Y, E502G, and T505S showed an up to 40-fold increase in catalytic efficiency (kcat/Km) with creosol compared with the wild-type enzyme. This enhanced reactivity was due to a lower stability of the covalent flavin-substrate adduct, thereby promoting vanillin formation. The catalytic efficiencies of the mutants were also enhanced for other ortho-substituted 4-methylphenols, but not for p-cresol (4-methylphenol). The replaced amino acid residues are not located within a distance of direct interaction with the substrate, and the determined three-dimensional structures of the mutant enzymes are highly similar to that of the wild-type enzyme. These results clearly show the importance of remote residues, not readily predicted by rational design, for the substrate specificity of enzymes.
Collapse
Affiliation(s)
- Robert H H van den Heuvel
- Department of Genetics and Microbiology, University of Pavia, via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | |
Collapse
|