1
|
Cyriaque V, Ibarra-Chávez R, Kuchina A, Seelig G, Nesme J, Madsen JS. Single-cell RNA sequencing reveals plasmid constrains bacterial population heterogeneity and identifies a non-conjugating subpopulation. Nat Commun 2024; 15:5853. [PMID: 38997267 PMCID: PMC11245611 DOI: 10.1038/s41467-024-49793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Transcriptional heterogeneity in isogenic bacterial populations can play various roles in bacterial evolution, but its detection remains technically challenging. Here, we use microbial split-pool ligation transcriptomics to study the relationship between bacterial subpopulation formation and plasmid-host interactions at the single-cell level. We find that single-cell transcript abundances are influenced by bacterial growth state and plasmid carriage. Moreover, plasmid carriage constrains the formation of bacterial subpopulations. Plasmid genes, including those with core functions such as replication and maintenance, exhibit transcriptional heterogeneity associated with cell activity. Notably, we identify a cell subpopulation that does not transcribe conjugal plasmid transfer genes, which may help reduce plasmid burden on a subset of cells. Our study advances the understanding of plasmid-mediated subpopulation dynamics and provides insights into the plasmid-bacteria interplay.
Collapse
Affiliation(s)
- Valentine Cyriaque
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, Mons, Belgium.
| | | | - Anna Kuchina
- Institute for Systems Biology, Seattle, WA, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Georg Seelig
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
- Paul G. Allen School for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
2
|
Parisutham V, Chhabra S, Ali MZ, Brewster RC. Tunable transcription factor library for robust quantification of regulatory properties in Escherichia coli. Mol Syst Biol 2022; 18:e10843. [PMID: 35694815 PMCID: PMC9189660 DOI: 10.15252/msb.202110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/12/2022] Open
Abstract
Predicting the quantitative regulatory function of transcription factors (TFs) based on factors such as binding sequence, binding location, and promoter type is not possible. The interconnected nature of gene networks and the difficulty in tuning individual TF concentrations make the isolated study of TF function challenging. Here, we present a library of Escherichia coli strains designed to allow for precise control of the concentration of individual TFs enabling the study of the role of TF concentration on physiology and regulation. We demonstrate the usefulness of this resource by measuring the regulatory function of the zinc-responsive TF, ZntR, and the paralogous TF pair, GalR/GalS. For ZntR, we find that zinc alters ZntR regulatory function in a way that enables activation of the regulated gene to be robust with respect to ZntR concentration. For GalR and GalS, we are able to demonstrate that these paralogous TFs have fundamentally distinct regulatory roles beyond differences in binding affinity.
Collapse
Affiliation(s)
- Vinuselvi Parisutham
- Department of Systems BiologyUniversity of Massachusetts Chan Medical SchoolWorcesterMAUSA
| | - Shivani Chhabra
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Md Zulfikar Ali
- Department of Systems BiologyUniversity of Massachusetts Chan Medical SchoolWorcesterMAUSA
| | - Robert C Brewster
- Department of Systems BiologyUniversity of Massachusetts Chan Medical SchoolWorcesterMAUSA
- Department of Microbiology and Physiological SystemsUniversity of Massachusetts Chan Medical SchoolWorcesterMAUSA
| |
Collapse
|
3
|
Gelber I. Variance reducing and noise correction in protein quantification by measuring fluctuations in fluorescence due to photobleaching. Phys Biol 2022; 19. [PMID: 35290963 DOI: 10.1088/1478-3975/ac5e0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/15/2022] [Indexed: 11/11/2022]
Abstract
Quantifying the absolute protein number using the ratio between the variance and the mean of the protein Fluorescence intensity is a straightforward method for microscopy imaging. Recently, this method has been expanded to fluorescence decaying processes due to photobleaching with binomial distribution. The article examines the method proposed and shows how it can be adapted to the case of variance in the initial number of proteins between the cells. The article shows that the method can be improved by the implementation of the information processing of each frame independently from other frames. By doing so, the variance in determining the protein number can be reduced. In addition, the article examines the management of unwanted noises in the measurement, offers a solution for the shot noise and background noise, examines the expected error caused by the decay constant inaccuracy, and analyzes the expected difficulties in conducting a practical experiment, which includes a non-exponential decay and variance in the photobleaching rate of the cells. The method can be applied to any superposition of n_0 discrete decaying processes. However, the evaluation of expected errors in quantification is essential for early planning of the experimental conditions and evaluation of the error.
Collapse
Affiliation(s)
- Itay Gelber
- Department of Physics, Ben-Gurion University of the Negev, beer sheva, Beer-Sheva, 84105, ISRAEL
| |
Collapse
|
4
|
Liu J, Hansen D, Eck E, Kim YJ, Turner M, Alamos S, Garcia HG. Real-time single-cell characterization of the eukaryotic transcription cycle reveals correlations between RNA initiation, elongation, and cleavage. PLoS Comput Biol 2021; 17:e1008999. [PMID: 34003867 PMCID: PMC8162642 DOI: 10.1371/journal.pcbi.1008999] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/28/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022] Open
Abstract
The eukaryotic transcription cycle consists of three main steps: initiation, elongation, and cleavage of the nascent RNA transcript. Although each of these steps can be regulated as well as coupled with each other, their in vivo dissection has remained challenging because available experimental readouts lack sufficient spatiotemporal resolution to separate the contributions from each of these steps. Here, we describe a novel application of Bayesian inference techniques to simultaneously infer the effective parameters of the transcription cycle in real time and at the single-cell level using a two-color MS2/PP7 reporter gene and the developing fruit fly embryo as a case study. Our method enables detailed investigations into cell-to-cell variability in transcription-cycle parameters as well as single-cell correlations between these parameters. These measurements, combined with theoretical modeling, suggest a substantial variability in the elongation rate of individual RNA polymerase molecules. We further illustrate the power of this technique by uncovering a novel mechanistic connection between RNA polymerase density and nascent RNA cleavage efficiency. Thus, our approach makes it possible to shed light on the regulatory mechanisms in play during each step of the transcription cycle in individual, living cells at high spatiotemporal resolution.
Collapse
Affiliation(s)
- Jonathan Liu
- Department of Physics, University of California at Berkeley, Berkeley, California, United States of America
| | - Donald Hansen
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Elizabeth Eck
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Yang Joon Kim
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Meghan Turner
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
| | - Simon Alamos
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California, United States of America
| | - Hernan G. Garcia
- Department of Physics, University of California at Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, United States of America
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, California, United States of America
| |
Collapse
|
5
|
Butler CL, Bell EA, Taylor MI. Removal of beneficial insertion effects prevent the long-term persistence of transposable elements within simulated asexual populations. BMC Genomics 2021; 22:241. [PMID: 33827443 PMCID: PMC8025564 DOI: 10.1186/s12864-021-07569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/30/2021] [Indexed: 01/20/2023] Open
Abstract
Background Transposable elements are significant components of most organism’s genomes, yet the reasons why their abundances vary significantly among species is poorly understood. A recent study has suggested that even in the absence of traditional molecular evolutionary explanations, transposon proliferation may occur through a process known as ‘transposon engineering’. However, their model used a fixed beneficial transposon insertion frequency of 20%, which we believe to be unrealistically high. Results Reducing this beneficial insertion frequency, while keeping all other parameters identical, prevented transposon proliferation. Conclusions We conclude that the author’s original findings are better explained through the action of positive selection rather than ‘transposon engineering’, with beneficial insertion effects remaining important during transposon proliferation events.
Collapse
Affiliation(s)
- Christopher L Butler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Ellen A Bell
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Martin I Taylor
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
6
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
7
|
Estimating numbers of intracellular molecules through analysing fluctuations in photobleaching. Sci Rep 2019; 9:15238. [PMID: 31645577 PMCID: PMC6811640 DOI: 10.1038/s41598-019-50921-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/18/2019] [Indexed: 01/18/2023] Open
Abstract
The impact of fluorescence microscopy has been limited by the difficulties of expressing measurements of fluorescent proteins in numbers of molecules. Absolute numbers enable the integration of results from different laboratories, empower mathematical modelling, and are the bedrock for a quantitative, predictive biology. Here we propose an estimator to infer numbers of molecules from fluctuations in the photobleaching of proteins tagged with Green Fluorescent Protein. Performing experiments in budding yeast, we show that our estimates of numbers agree, within an order of magnitude, with published biochemical measurements, for all six proteins tested. The experiments we require are straightforward and use only a wide-field fluorescence microscope. As such, our approach has the potential to become standard for those practising quantitative fluorescence microscopy.
Collapse
|
8
|
Taneja S, Rutenberg AD. Photobleaching of randomly rotating fluorescently decorated particles. J Chem Phys 2018; 147:104105. [PMID: 28915751 DOI: 10.1063/1.4989673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Randomly rotating particles that have been isotropically labeled with rigidly linked fluorophores will undergo non-isotropic (patchy) photobleaching under illumination due to the dipole coupling of fluorophores with light. For a rotational diffusion rate D of the particle and a photobleaching time scale τ of the fluorophores, the dynamics of this process are characterized by the dimensionless combination Dτ. We find significant interparticle fluctuations at intermediate Dτ. These fluctuations vanish at both large and small Dτ or at small or large elapsed times t. Associated with these fluctuations between particles, we also observe transient non-monotonicities of the brightness of individual particles. These non-monotonicities can be as much as 20% of the original brightness. We show that these novel photobleach-fluctuations dominate over variability of single-fluorophore orientation when there are at least 103 fluorophores on individual particles.
Collapse
Affiliation(s)
- Swadhin Taneja
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Andrew D Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
9
|
Oxygen and RNA in stress-induced mutation. Curr Genet 2018; 64:769-776. [PMID: 29294174 PMCID: PMC6028306 DOI: 10.1007/s00294-017-0801-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 01/29/2023]
Abstract
Mechanisms of mutation upregulated by stress responses have been described in several organisms from bacteria to human. These mechanisms might accelerate genetic change specifically when cells are maladapted to their environment. Stress-induced mutation mechanisms differ in their genetic requirements from mutation in growing cells, occurring by different mechanisms in different assay systems, but having in common a requirement for the induction of stress-responses. Here, we review progress in two areas relevant to stress-response-dependent mutagenic DNA break repair mechanisms in Escherichia coli. First, we review evidence that relates mutation to transcription. This connection might allow mutagenesis in transcribed regions, including those relevant to any stress being experienced, opening the possibility that mutations could be targeted to regions where mutation might be advantageous under conditions of a specific stress. We review the mechanisms by which replication initiated by transcription can lead to mutation. Second, we review recent findings that, although stress-induced mutation does not require exogenous DNA-damaging agents, it does require the presence of damaged bases in DNA. For starved E. coli, endogenous oxygen radicals cause these altered bases. We postulate that damaged bases stall the replisome, which, we suggest, is required for DNA-polymerase exchange, allowing the action of low-fidelity DNA polymerases that promote mutation.
Collapse
|
10
|
Xue C, Goldenfeld N. Coevolution Maintains Diversity in the Stochastic "Kill the Winner" Model. PHYSICAL REVIEW LETTERS 2017; 119:268101. [PMID: 29328693 DOI: 10.1103/physrevlett.119.268101] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 06/07/2023]
Abstract
The "kill the winner" hypothesis is an attempt to address the problem of diversity in biology. It argues that host-specific predators control the population of each prey, preventing a winner from emerging and thus maintaining the coexistence of all species in the system. We develop a stochastic model for the kill the winner paradigm and show that the stable coexistence state of the deterministic kill the winner model is destroyed by demographic stochasticity, through a cascade of extinction events. We formulate an individual-level stochastic model in which predator-prey coevolution promotes the high diversity of the ecosystem by generating a persistent population flux of species.
Collapse
Affiliation(s)
- Chi Xue
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois 61801-3080, USA and Carl R. Woese Institute for Genomic Biology and Institute for Universal Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Nigel Goldenfeld
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois 61801-3080, USA and Carl R. Woese Institute for Genomic Biology and Institute for Universal Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
11
|
Bohn-Wippert K, Tevonian EN, Megaridis MR, Dar RD. Similarity in viral and host promoters couples viral reactivation with host cell migration. Nat Commun 2017; 8:15006. [PMID: 28462923 PMCID: PMC5418578 DOI: 10.1038/ncomms15006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/20/2017] [Indexed: 11/29/2022] Open
Abstract
Viral–host interactomes map the complex architecture of an evolved arms race during host cell invasion. mRNA and protein interactomes reveal elaborate targeting schemes, yet evidence is lacking for genetic coupling that results in the co-regulation of promoters. Here we compare viral and human promoter sequences and expression to test whether genetic coupling exists and investigate its phenotypic consequences. We show that viral–host co-evolution is imprinted within promoter gene sequences before transcript or protein interactions. Co-regulation of human immunodeficiency virus (HIV) and human C-X-C chemokine receptor-4 (CXCR4) facilitates migration of infected cells. Upon infection, HIV can actively replicate or remain dormant. Migrating infected cells reactivate from dormancy more than non-migrating cells and exhibit differential migration–reactivation responses to drugs. Cells producing virus pose a risk for reinitiating infection within niches inaccessible to drugs, and tuning viral control of migration and reactivation improves strategies to eliminate latent HIV. Viral–host genetic coupling establishes a mechanism for synchronizing transcription and guiding potential therapies. The coevolution of viruses and host cells can be mapped with interactomics. Here the authors identify coupling of human and viral promoters, and show that HIV-reactivation from dormancy is coincident with migration of HIV-infected cells owing to coupling of human CXCR4 and HIV LTR promoters.
Collapse
Affiliation(s)
- Kathrin Bohn-Wippert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA
| | - Erin N Tevonian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA
| | - Melina R Megaridis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA
| | - Roy D Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1270 Digital Computer Lab, MC-278, 1304W Springfield Avenue, Urbana, Illinois 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206W Gregory Drive, Urbana, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA
| |
Collapse
|
12
|
Xue C, Goldenfeld N. Stochastic Predator-Prey Dynamics of Transposons in the Human Genome. PHYSICAL REVIEW LETTERS 2016; 117:208101. [PMID: 27886494 DOI: 10.1103/physrevlett.117.208101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Transposable elements, or transposons, are DNA sequences that can jump from site to site in the genome during the life cycle of a cell, usually encoding the very enzymes which perform their excision. However, some transposons are parasitic, relying on the enzymes produced by the regular transposons. In this case, we show that a stochastic model, which takes into account the small copy numbers of the active transposons in a cell, predicts noise-induced predator-prey oscillations with a characteristic time scale that is much longer than the cell replication time, indicating that the state of the predator-prey oscillator is stored in the genome and transmitted to successive generations. Our work demonstrates the important role of the number fluctuations in the expression of mobile genetic elements, and shows explicitly how ecological concepts can be applied to the dynamics and fluctuations of living genomes.
Collapse
Affiliation(s)
- Chi Xue
- Department of Physics, and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
- Institute for Universal Biology, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Nigel Goldenfeld
- Department of Physics, and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
- Institute for Universal Biology, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|