1
|
Zhu D, Wozniak KJ, Midani F, Wang S, Sun X, Britton RA. Control of Clostridioides difficile virulence and physiology by the flagellin homeostasis checkpoint FliC-FliW-CsrA in the absence of motility. mBio 2025; 16:e0380124. [PMID: 39882902 PMCID: PMC11898703 DOI: 10.1128/mbio.03801-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Mutations affecting Clostridioides difficile flagellin (FliC) have been shown to be hypervirulent in animal models and display increased toxin production and alterations in central metabolism. The regulation of flagellin levels in bacteria is governed by a tripartite regulatory network involving fliC, fliW, and csrA, which creates a feedback system to regulate flagella production. Through genomic analysis of C. difficile clade 5 strains (non-motile), we identified they have jettisoned many of the genes required for flagellum biosynthesis yet retain the major flagellin gene fliC and regulatory gene fliW. We therefore investigated the roles of fliC, fliW, and csrA in the clade 5 ribotype 078 strain C. difficile 1015, which lacks flagella and is non-motile. Analysis of mutations in fliC, fliW, and csrA (and all combinations) on C. difficile pathogenesis indicated that FliW plays a central role in C. difficile virulence as animals infected with strains carrying a deletion of fliW showed decreased survival and increased disease severity. These in vivo findings were supported by in vitro studies showing that mutations impacting the activity of FliW showed increased toxin production. We further identified that FliW can interact with the toxin-positive regulator TcdR, indicating that modulation of toxin production via FliW occurs by sequestering TcdR from activating toxin transcription. Furthermore, disruption of the fliC-fliW-csrA network results in significant changes in carbon source utilization and sporulation. This work highlights that key proteins involved in flagellar biosynthesis retain their regulatory roles in C. difficile pathogenesis and physiology independent of their functions in motility. IMPORTANCE Clostridioides difficile is a leading cause of nosocomial antibiotic-associated diarrhea in developed countries with many known virulence factors. In several pathogens, motility and virulence are intimately linked by regulatory networks that allow coordination of these processes in pathogenesis and physiology. Regulation of C. difficile toxin production by FliC has been demonstrated in vitro and in vivo and has been proposed to link motility and virulence. Here, we show that clinically important, non-motile C. difficile strains have conserved FliC and regulatory partners FliW and CsrA, despite lacking the rest of the machinery to produce functional flagella. Our work highlights a novel role for flagellin outside of its role in motility and FliW in the pathogenesis and physiology of C. difficile.
Collapse
Affiliation(s)
- Duolong Zhu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Katherine J. Wozniak
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Firas Midani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Hernández-Eligio A, Vega-Alvarado L, Liu X, Cholula-Calixto J, Huerta-Miranda G, Juárez K. The role of CsrA in controls the extracellular electron transfer and biofilm production in Geobacter sulfurreducens. Front Microbiol 2025; 16:1534446. [PMID: 40135057 PMCID: PMC11934962 DOI: 10.3389/fmicb.2025.1534446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
CsrA is a post-transcriptional regulator that controls biofilm formation, virulence, carbon metabolism, and motility, among other phenotypes in bacteria. CsrA has been extensively studied in γ-proteobacteria and firmicutes, However the cellular processes controlled for regulation in δ-proteobacteria remain unknown. In this work, we constructed and characterized the ΔcsrA mutant strain in Geobacter sulfurreducens to determine the involvement of the CsrA protein in the regulation of biofilm and extracellular electron transfer. The ΔcsrA mutant strain shows higher rates of insoluble Fe(III) reduction than the wild type using acetate as electron donor and the growth with fumarate and soluble (Fe(III)) was similar to wild type. Biofilm quantification and characterization by confocal laser scanning microscopy, showed that the ΔcsrA mutant produces up to twice as much biofilm as the wild type strain and more than 95% viable cells. Transcriptome analysis by RNA-seq showed that in ΔcsrA biofilms developed on an inert support, differentially expressed 244 genes (103 upregulated and 141 downregulated), including those related to extracellular electron transfer, exopolysaccharide synthesis, c-di-GMP synthesis and degradation. To validate the transcriptome data, RT-qPCR confirmed the differential expression of several selected genes in the ΔcsrA strain. Also, current production in microbial fuel cells was performed and the ΔcsrA strain produced 45-50% more current than the wild type. To identify the genes that changed expression in the ΔcsrA strain in the graphite electrodes in an MFC, a transcriptome analysis was performed 181 genes changed their expression in the ΔcsrA biofilms, of which 113 genes were differentially expressed only in MFC and 68 genes changed their expression as well as the transcriptome of biofilms grown on glass. In silico analysis of the 5'-UTR regions revealed that 76 genes that changed expression in the RNA-seq analysis have a consensus sequence for CsrA binding. To our knowledge this is the first report describing the involvement of CsrA in the regulation of extracellular electron transfer and biofilm in a member of the δ-proteobacteria.
Collapse
Affiliation(s)
- Alberto Hernández-Eligio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Investigador por México, Consejo Nacional de Humanidades Ciencia y Tecnologías, Ciudad de México, México
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Jessica Cholula-Calixto
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Guillermo Huerta-Miranda
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Katy Juárez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
3
|
Su MS, Dickins B, Kiang FY, Tsai W, Chen Y, Chen J, Wang S, Tsai P, Wu J. Flagellar Assembly Factor FliW2 De-Represses Helicobacter pylori FlaA-Mediated Motility by Allosteric Obstruction of Global Regulator CsrA. Helicobacter 2025; 30:e70019. [PMID: 40079448 PMCID: PMC11905337 DOI: 10.1111/hel.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Helicobacter pylori colonizes the human stomach as a dominant member of the gastric microbiota and constitutively expresses flagellar motility for survival. Carbon storage regulator A (CsrA) is a posttranscriptional global regulator and a critical determinant of H. pylori's motility and pathogenicity. The regulation of H. pylori CsrA is still uncertain although in other species CsrA is reported to be antagonized by small RNAs and proteins. In this study, we attempted to unveil how CsrA is regulated and hypothesized that H. pylori CsrA activity is antagonized by a flagellar assembly factor, FliW2, via protein allosteric obstruction. MATERIALS AND METHODS Multiple sequence comparisons indicated that, along its length and in contrast to fliW1, the fliW2 of H. pylori J99 is conserved. We then generated an isogenic ΔfliW2 strain whose function was characterized using phenotypic and biochemical approaches. We also applied a machine learning approach (AlphaFold2) to predict FliW2-CsrA binding domains and investigated the FliW2-CsrA interaction using pull-down assays and in vivo bacterial two-hybrid systems. RESULTS We observed the reduced expression of major flagellin FlaA and impaired flagellar filaments that attenuated the motility of the ΔfliW2 strain. Furthermore, a direct interaction between FliW2 and CsrA was demonstrated, and a novel region of the C-terminal extension of CsrA was suggested to be crucial for CsrA interacting with FliW2. Based on our AlphaFold2 prediction, this C-terminal region of FliW2-CsrA interaction does not overlap with CsrA's N-terminal RNA binding domain, implying that FliW2 allosterically antagonizes CsrA activity and restricts CsrA's binding to flaA mRNAs. CONCLUSIONS Our data points to novel regulatory roles that the H. pylori flagellar assembly factor FliW2 has in obstructing CsrA activity, and thus FliW2 may indirectly antagonize CsrA's regulation of flaA mRNA processing and translation. Our findings reveal a new regulatory mechanism of flagellar motility in H. pylori.
Collapse
Affiliation(s)
- Marcia Shu‐Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health SciencesAsia UniversityTaichungTaiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and EngineeringNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Benjamin Dickins
- Department of BiosciencesNottingham Trent UniversityNottinghamUK
| | - Fang Yie Kiang
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and EngineeringNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Wei‐Jiun Tsai
- Institute of Basic Medical SciencesCollege of Medicine, National Cheng‐Kung UniversityTainanTaiwan
| | - Yueh‐Lin Chen
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and EngineeringNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Jenn‐Wei Chen
- Department of Microbiology and ImmunologyCollege of Medicine, National Cheng‐Kung UniversityTainanTaiwan
| | - Shuying Wang
- Department of Microbiology and ImmunologyCollege of Medicine, National Cheng‐Kung UniversityTainanTaiwan
| | - Pei‐Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Jiunn‐Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health SciencesAsia UniversityTaichungTaiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and EngineeringNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Medical ResearchChina Medical University Hospital, China Medical UniversityTaichungTaiwan
| |
Collapse
|
4
|
Waller AA, Ribardo DA, Hendrixson DR. FlaG competes with FliS-flagellin complexes for access to FlhA in the flagellar T3SS to control Campylobacter jejuni filament length. Proc Natl Acad Sci U S A 2024; 121:e2414393121. [PMID: 39441631 PMCID: PMC11536152 DOI: 10.1073/pnas.2414393121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Bacteria power rotation of an extracellular flagellar filament for swimming motility. Thousands of flagellin subunits compose the flagellar filament, which extends several microns from the bacterial surface. It is unclear whether bacteria actively control filament length. Many polarly flagellated bacteria produce shorter flagellar filaments than peritrichous bacteria, and FlaG has been reported to limit flagellar filament length in polar flagellates. However, a mechanism for how FlaG may function is unknown. We observed that deletion of flaG in the polarly flagellated pathogens Vibrio cholerae, Pseudomonas aeruginosa, and Campylobacter jejuni caused extension of flagellar filaments to lengths comparable to peritrichous bacteria. Using C. jejuni as a model to understand how FlaG controls flagellar filament length, we found that FlaG and FliS chaperone-flagellin complexes antagonize each other for interactions with FlhA in the flagellar type III secretion system (fT3SS) export gate. FlaG interacted with an understudied region of FlhA, and this interaction appeared to be enhanced in ΔfliS and FlhA FliS-binding mutants. Our data support that FlaG evolved in polarly flagellated bacteria as an antagonist to interfere with the ability of FliS to interact with and deliver flagellins to FlhA in the fT3SS export gate to control flagellar filament length so that these bacteria produce relatively shorter flagella than peritrichous counterparts. This mechanism is similar to how some gatekeepers in injectisome T3SSs prevent chaperones from delivering effector proteins until completion of the T3SS and host contact occurs. Thus, flagellar and injectisome T3SSs have convergently evolved protein antagonists to negatively impact respective T3SSs to secrete their major terminal substrates.
Collapse
Affiliation(s)
- Alexis A. Waller
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390-9048
| | - Deborah A. Ribardo
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390-9048
| | - David R. Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX75390-9048
| |
Collapse
|
5
|
Unay J, Kint N, Viollier PH. Evolution of paralogous multicomponent systems for site-specific O-sialylation of flagellin in Gram-negative and Gram-positive bacteria. Curr Biol 2024; 34:2932-2947.e7. [PMID: 38897200 DOI: 10.1016/j.cub.2024.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Many bacteria glycosylate flagellin on serine or threonine residues using pseudaminic acid (Pse) or other sialic acid-like donor sugars. Successful reconstitution of Pse-dependent sialylation by the conserved Maf-type flagellin glycosyltransferase (fGT) may require (a) missing component(s). Here, we characterize both Maf paralogs in the Gram-negative bacterium Shewanella oneidensis MR-1 and reconstitute Pse-dependent glycosylation in heterologous hosts. Remarkably, we uncovered distinct acceptor determinants and target specificities for each Maf. Whereas Maf-1 uses its C-terminal tetratricopeptide repeat (TPR) domain to confer flagellin acceptor and O-glycosylation specificity, Maf-2 requires the newly identified conserved specificity factor, glycosylation factor for Maf (GlfM), to form a ternary complex with flagellin. GlfM orthologs are co-encoded with Maf-2 in Gram-negative and Gram-positive bacteria and require an invariant aspartate in their four-helix bundle to function with Maf-2. Thus, convergent fGT evolution underlies distinct flagellin-binding modes in tripartite versus bipartite systems and, consequently, distinct O-glycosylation preferences of acceptor serine residues with Pse.
Collapse
Affiliation(s)
- Jovelyn Unay
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Kint
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, 75006 Paris, France
| | - Patrick H Viollier
- Department of Microbiology & Molecular Medicine and Geneva Center for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
6
|
Brantl S, Ul Haq I. Small proteins in Gram-positive bacteria. FEMS Microbiol Rev 2023; 47:fuad064. [PMID: 38052429 PMCID: PMC10730256 DOI: 10.1093/femsre/fuad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Small proteins comprising less than 100 amino acids have been often ignored in bacterial genome annotations. About 10 years ago, focused efforts started to investigate whole peptidomes, which resulted in the discovery of a multitude of small proteins, but only a number of them have been characterized in detail. Generally, small proteins can be either membrane or cytosolic proteins. The latter interact with larger proteins, RNA or even metal ions. Here, we summarize our current knowledge on small proteins from Gram-positive bacteria with a special emphasis on the model organism Bacillus subtilis. Our examples include membrane-bound toxins of type I toxin-antitoxin systems, proteins that block the assembly of higher order structures, regulate sporulation or modulate the RNA degradosome. We do not consider antimicrobial peptides. Furthermore, we present methods for the identification and investigation of small proteins.
Collapse
Affiliation(s)
- Sabine Brantl
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| | - Inam Ul Haq
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| |
Collapse
|
7
|
E. coli Toxin YjjJ (HipH) Is a Ser/Thr Protein Kinase That Impacts Cell Division, Carbon Metabolism, and Ribosome Assembly. mSystems 2023; 8:e0104322. [PMID: 36537800 PMCID: PMC9948734 DOI: 10.1128/msystems.01043-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Protein Ser/Thr kinases are posttranslational regulators of key molecular processes in bacteria, such as cell division and antibiotic tolerance. Here, we characterize the E. coli toxin YjjJ (HipH), a putative protein kinase annotated as a member of the family of HipA-like Ser/Thr kinases, which are involved in antibiotic tolerance. Using SILAC-based phosphoproteomics we provide experimental evidence that YjjJ is a Ser/Thr protein kinase and its primary protein substrates are the ribosomal protein RpmE (L31) and the carbon storage regulator CsrA. YjjJ activity impacts ribosome assembly, cell division, and central carbon metabolism but it does not increase antibiotic tolerance as does its homologue HipA. Intriguingly, overproduction of YjjJ and its kinase-deficient variant can activate HipA and other kinases, pointing to a cross talk between Ser/Thr kinases in E. coli. IMPORTANCE Adaptation to growth condition is the key for bacterial survival, and protein phosphorylation is one of the strategies adopted to transduce extracellular signal in physiological response. In a previous work, we identified YjjJ, a putative kinase, as target of the persistence-related HipA kinase. Here, we performed the characterization of this putative kinase, complementing phenotypical analysis with SILAC-based phosphoproteomics and proteomics. We provide the first experimental evidence that YjjJ is a Ser/Thr protein kinase, having as primary protein substrates the ribosomal protein RpmE (L31) and the carbon storage regulator CsrA. We show that overproduction of YjjJ has a major influence on bacterial physiology, impacting DNA segregation, cell division, glycogen production, and ribosome assembly.
Collapse
|
8
|
Phoka T, Fule L, Da Fonseca JP, Cokelaer T, Picardeau M, Patarakul K. Investigating the role of the carbon storage regulator A (CsrA) in Leptospira spp. PLoS One 2021; 16:e0260981. [PMID: 34898610 PMCID: PMC8668096 DOI: 10.1371/journal.pone.0260981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
Carbon Storage Regulator A (CsrA) is a well-characterized post-transcriptional global regulator that plays a critical role in response to environmental changes in many bacteria. CsrA has been reported to regulate several metabolic pathways, motility, biofilm formation, and virulence-associated genes. The role of csrA in Leptospira spp., which are able to survive in different environmental niches and infect a wide variety of reservoir hosts, has not been characterized. To investigate the role of csrA as a gene regulator in Leptospira, we generated a L. biflexa csrA deletion mutant (ΔcsrA) and csrA overexpressing Leptospira strains. The ΔcsrA L. biflexa displayed poor growth under starvation conditions. RNA sequencing revealed that in rich medium only a few genes, including the gene encoding the flagellar filament protein FlaB3, were differentially expressed in the ΔcsrA mutant. In contrast, 575 transcripts were differentially expressed when csrA was overexpressed in L. biflexa. Electrophoretic mobility shift assay (EMSA) confirmed the RNA-seq data in the ΔcsrA mutant, showing direct binding of recombinant CsrA to flaB3 mRNA. In the pathogen L. interrogans, we were not able to generate a csrA mutant. We therefore decided to overexpress csrA in L. interrogans. In contrast to the overexpressing strain of L. biflexa, the overexpressing L. interrogans strain had poor motility on soft agar. The overexpressing strain of L. interrogans also showed significant upregulation of the flagellin flaB1, flaB2, and flaB4. The interaction of L. interrogans rCsrA and flaB4 was confirmed by EMSA. Our results demonstrated that CsrA may function as a global regulator in Leptospira spp. under certain conditions that cause csrA overexpression. Interestingly, the mechanisms of action and gene targets of CsrA may be different between non-pathogenic and pathogenic Leptospira strains.
Collapse
Affiliation(s)
- Theerapat Phoka
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Lenka Fule
- Institut Pasteur, Biology of Spirochetes Unit, French National Reference Centre for Leptospirosis, Paris, France
| | - Juliana Pipoli Da Fonseca
- Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Thomas Cokelaer
- Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique – Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Mathieu Picardeau
- Institut Pasteur, Biology of Spirochetes Unit, French National Reference Centre for Leptospirosis, Paris, France
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Bangkok, Thailand
- * E-mail: ,
| |
Collapse
|
9
|
Zhu D, Wang S, Sun X. FliW and CsrA Govern Flagellin (FliC) Synthesis and Play Pleiotropic Roles in Virulence and Physiology of Clostridioides difficile R20291. Front Microbiol 2021; 12:735616. [PMID: 34675903 PMCID: PMC8523840 DOI: 10.3389/fmicb.2021.735616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/13/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile flagellin FliC is associated with toxin gene expression, bacterial colonization, and virulence, and is also involved in pleiotropic gene regulation during in vivo infection. However, how fliC expression is regulated in C. difficile remains unclear. In Bacillus subtilis, flagellin homeostasis and motility are coregulated by flagellar assembly factor (FliW), flagellin Hag (FliC homolog), and Carbon storage regulator A (CsrA), which is referred to as partner-switching mechanism "FliW-CsrA-Hag." In this study, we characterized FliW and CsrA functions by deleting or overexpressing fliW, csrA, and fliW-csrA in C. difficile R20291. We showed that fliW deletion, csrA overexpression in R20291, and csrA complementation in R20291ΔWA (fliW-csrA codeletion mutant) dramatically decreased FliC production, but not fliC gene transcription. Suppression of fliC translation by csrA overexpression can be relieved mostly when fliW was coexpressed, and no significant difference in FliC production was detected when only fliW was complemented in R20291ΔWA. Further, loss of fliW led to increased biofilm formation, cell adhesion, toxin production, and pathogenicity in a mouse model of C. difficile infection (CDI), while fliW-csrA codeletion decreased toxin production and mortality in vivo. Our data suggest that CsrA negatively modulates fliC expression and FliW indirectly affects fliC expression through inhibition of CsrA post-transcriptional regulation. In light of "FliW-CsrA-Hag" switch coregulation mechanism reported in B. subtilis, our data also suggest that "FliW-CsrA-fliC/FliC" can regulate many facets of C. difficile R20291 pathogenicity. These findings further aid us in understanding the virulence regulation in C. difficile.
Collapse
Affiliation(s)
| | | | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
10
|
Mandell ZF, Oshiro RT, Yakhnin AV, Vishwakarma R, Kashlev M, Kearns DB, Babitzke P. NusG is an intrinsic transcription termination factor that stimulates motility and coordinates gene expression with NusA. eLife 2021; 10:e61880. [PMID: 33835023 PMCID: PMC8060035 DOI: 10.7554/elife.61880] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
NusA and NusG are transcription factors that stimulate RNA polymerase pausing in Bacillus subtilis. While NusA was known to function as an intrinsic termination factor in B. subtilis, the role of NusG in this process was unknown. To examine the individual and combinatorial roles that NusA and NusG play in intrinsic termination, Term-seq was conducted in wild type, NusA depletion, ΔnusG, and NusA depletion ΔnusG strains. We determined that NusG functions as an intrinsic termination factor that works alone and cooperatively with NusA to facilitate termination at 88% of the 1400 identified intrinsic terminators. Our results indicate that NusG stimulates a sequence-specific pause that assists in the completion of suboptimal terminator hairpins with weak terminal A-U and G-U base pairs at the bottom of the stem. Loss of NusA and NusG leads to global misregulation of gene expression and loss of NusG results in flagella and swimming motility defects.
Collapse
Affiliation(s)
- Zachary F Mandell
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Reid T Oshiro
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Alexander V Yakhnin
- NCI RNA Biology Laboratory, Center for Cancer Research, NCIFrederickUnited States
| | - Rishi Vishwakarma
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Mikhail Kashlev
- NCI RNA Biology Laboratory, Center for Cancer Research, NCIFrederickUnited States
| | - Daniel B Kearns
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
11
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
12
|
Christopoulou N, Granneman S. The role of RNA-binding proteins in mediating adaptive responses in Gram-positive bacteria. FEBS J 2021; 289:1746-1764. [PMID: 33690958 DOI: 10.1111/febs.15810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Bacteria are constantly subjected to stressful conditions, such as antibiotic exposure, nutrient limitation and oxidative stress. For pathogenic bacteria, adapting to the host environment, escaping defence mechanisms and coping with antibiotic stress are crucial for their survival and the establishment of a successful infection. Stress adaptation relies heavily on the rate at which the organism can remodel its gene expression programme to counteract the stress. RNA-binding proteins mediating co- and post-transcriptional regulation have recently emerged as important players in regulating gene expression during adaptive responses. Most of the research on these layers of gene expression regulation has been done in Gram-negative model organisms where, thanks to a wide variety of global studies, large post-transcriptional regulatory networks have been uncovered. Unfortunately, our understanding of post-transcriptional regulation in Gram-positive bacteria is lagging behind. One possible explanation for this is that many proteins employed by Gram-negative bacteria are not well conserved in Gram-positives. And even if they are conserved, they do not always play similar roles as in Gram-negative bacteria. This raises the important question whether Gram-positive bacteria regulate gene expression in a significantly different way. The goal of this review was to discuss this in more detail by reviewing the role of well-known RNA-binding proteins in Gram-positive bacteria and by highlighting their different behaviours with respect to some of their Gram-negative counterparts. Finally, the second part of this review introduces several unusual RNA-binding proteins of Gram-positive species that we believe could also play an important role in adaptive responses.
Collapse
Affiliation(s)
- Niki Christopoulou
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, UK
| | - Sander Granneman
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, UK
| |
Collapse
|
13
|
Bogacz M, El Abbar FM, Cox CA, Li J, Fiedler JS, Tran LKH, Tran PMH, Daugherty CL, Blake KH, Wang Z, Azadi P, Thompson SA. Binding of Campylobacter jejuni FliW Adjacent to the CsrA RNA-Binding Pockets Modulates CsrA Regulatory Activity. Front Microbiol 2021; 11:531596. [PMID: 33505360 PMCID: PMC7829508 DOI: 10.3389/fmicb.2020.531596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni CsrA is an mRNA-binding, post-transcriptional regulator that controls many metabolic- and virulence-related characteristics of this important pathogen. In contrast to E. coli CsrA, whose activity is modulated by binding to small non-coding RNAs (sRNAs), C. jejuni CsrA activity is controlled by binding to the CsrA antagonist FliW. In this study, we identified the FliW binding site on CsrA. Deletion of the C-terminus of C. jejuni CsrA, which is extended relative to sRNA-binding CsrA proteins, abrogated FliW binding. Bacterial two-hybrid experiments were used to assess the interaction of FliW with wild-type CsrA and mutants thereof, in which every amino acid was individually mutated. Two CsrA mutations (V51A and N55A) resulted in a significant decrease in FliW binding. The V51A and N55A mutants also showed a decrease in CsrA-FliW complex formation, as assessed by size-exclusion chromatography and surface plasmon resonance. These residues were highly conserved in bacterial species containing CsrA orthologs whose activities are predicted to be regulated by FliW. The location of FliW binding was immediately adjacent to the two RNA-binding sites of the CsrA homodimer, suggesting the model that FliW binding to CsrA modulates its ability to bind to its mRNA targets either by steric hindrance, electrostatic repulsion, or by altering the overall structure of the RNA-binding sites.
Collapse
Affiliation(s)
- Marek Bogacz
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Faiha M El Abbar
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Claudia A Cox
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jiaqi Li
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jarred S Fiedler
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Lynn K H Tran
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Paul M H Tran
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - C Luke Daugherty
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kate H Blake
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zhirui Wang
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, United States
| | - Stuart A Thompson
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
14
|
Contact with the CsrA Core Is Required for Allosteric Inhibition by FliW in Bacillus subtilis. J Bacteriol 2020; 203:JB.00574-20. [PMID: 33106347 DOI: 10.1128/jb.00574-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 11/20/2022] Open
Abstract
The RNA-binding protein CsrA is a posttranscriptional regulator encoded by genomes throughout the bacterial phylogeny. In the gammaproteobacteria, the activity of CsrA is inhibited by small RNAs that competitively sequester CsrA binding. In contrast, the firmicute Bacillus subtilis encodes a protein inhibitor of CsrA called FliW, which noncompetitively inhibits CsrA activity but for which the precise mechanism of antagonism is unclear. Here, we take an unbiased genetic approach to identify residues of FliW important for CsrA inhibition and these residues fall into two distinct spatial and functional classes. Most loss-of-function alleles mutated FliW residues surrounding the critical regulatory CsrA residue N55 and abolished interaction between the two proteins. Two loss-of-function alleles, however, mutated FliW residues near the CsrA core dimerization domain and maintained interaction with CsrA. One of the FliW alleles reversed a residue charge to disrupt a salt bridge with the CsrA core, and a compensatory charge reversal in the CsrA partner residue restored both the salt bridge and antagonism. We propose a model in which the initial interaction between FliW and CsrA is necessary but not sufficient for antagonism, and for which salt bridge formation with, and deformation of, the CsrA core domain is likely required to allosterically abolish RNA-binding activity.IMPORTANCE CsrA is a small dimeric protein that binds RNA and is one of the few known examples of transcript-specific protein regulators of translation in bacteria. A protein called FliW binds to and antagonizes CsrA to govern flagellin homeostasis and flagellar assembly. Despite having a high-resolution three-dimensional structure of the FliW-CsrA complex, the mechanism of noncompetitive inhibition remains unresolved. Here, we identify FliW residues required for antagonism and we find that the residues make a linear connection in the complex from initial binding interaction with CsrA to a critical salt bridge near the core of the CsrA dimer. We propose that the salt bridge represents an allosteric contact that distorts the CsrA core to prevent RNA binding.
Collapse
|
15
|
Ardissone S, Kint N, Petrignani B, Panis G, Viollier PH. Secretion Relieves Translational Co-repression by a Specialized Flagellin Paralog. Dev Cell 2020; 55:500-513.e4. [DOI: 10.1016/j.devcel.2020.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/28/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
|
16
|
Pourciau C, Lai YJ, Gorelik M, Babitzke P, Romeo T. Diverse Mechanisms and Circuitry for Global Regulation by the RNA-Binding Protein CsrA. Front Microbiol 2020; 11:601352. [PMID: 33193284 PMCID: PMC7652899 DOI: 10.3389/fmicb.2020.601352] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
The carbon storage regulator (Csr) or repressor of stationary phase metabolites (Rsm) system of Gammaproteobacteria is among the most complex and best-studied posttranscriptional regulatory systems. Based on a small RNA-binding protein, CsrA and homologs, it controls metabolism, physiology, and bacterial lifestyle decisions by regulating gene expression on a vast scale. Binding of CsrA to sequences containing conserved GGA motifs in mRNAs can regulate translation, RNA stability, riboswitch function, and transcript elongation. CsrA governs the expression of dozens of transcription factors and other regulators, further expanding its influence on cellular physiology, and these factors can participate in feedback to the Csr system. Expression of csrA itself is subject to autoregulation via translational inhibition and indirect transcriptional activation. CsrA activity is controlled by small noncoding RNAs (sRNAs), CsrB and CsrC in Escherichia coli, which contain multiple high affinity CsrA binding sites that compete with those of mRNA targets. Transcription of CsrB/C is induced by certain nutrient limitations, cellular stresses, and metabolites, while these RNAs are targeted for degradation by the presence of a preferred carbon source. Consistent with these findings, CsrA tends to activate pathways and processes that are associated with robust growth and repress stationary phase metabolism and stress responses. Regulatory loops between Csr components affect the signaling dynamics of the Csr system. Recently, systems-based approaches have greatly expanded our understanding of the roles played by CsrA, while reinforcing the notion that much remains to be learned about the Csr system.
Collapse
Affiliation(s)
- Christine Pourciau
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Ying-Jung Lai
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Mark Gorelik
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Ul Haq I, Müller P, Brantl S. Intermolecular Communication in Bacillus subtilis: RNA-RNA, RNA-Protein and Small Protein-Protein Interactions. Front Mol Biosci 2020; 7:178. [PMID: 32850966 PMCID: PMC7430163 DOI: 10.3389/fmolb.2020.00178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022] Open
Abstract
In bacterial cells we find a variety of interacting macromolecules, among them RNAs and proteins. Not only small regulatory RNAs (sRNAs), but also small proteins have been increasingly recognized as regulators of bacterial gene expression. An average bacterial genome encodes between 200 and 300 sRNAs, but an unknown number of small proteins. sRNAs can be cis- or trans-encoded. Whereas cis-encoded sRNAs interact only with their single completely complementary mRNA target transcribed from the opposite DNA strand, trans-encoded sRNAs are only partially complementary to their numerous mRNA targets, resulting in huge regulatory networks. In addition to sRNAs, uncharged tRNAs can interact with mRNAs in T-box attenuation mechanisms. For a number of sRNA-mRNA interactions, the stability of sRNAs or translatability of mRNAs, RNA chaperones are required. In Gram-negative bacteria, the well-studied abundant RNA-chaperone Hfq fulfils this role, and recently another chaperone, ProQ, has been discovered and analyzed in this respect. By contrast, evidence for RNA chaperones or their role in Gram-positive bacteria is still scarce, but CsrA might be such a candidate. Other RNA-protein interactions involve tmRNA/SmpB, 6S RNA/RNA polymerase, the dual-function aconitase and protein-bound transcriptional terminators and antiterminators. Furthermore, small proteins, often missed in genome annotations and long ignored as potential regulators, can interact with individual regulatory proteins, large protein complexes, RNA or the membrane. Here, we review recent advances on biological role and regulatory principles of the currently known sRNA-mRNA interactions, sRNA-protein interactions and small protein-protein interactions in the Gram-positive model organism Bacillus subtilis. We do not discuss RNases, ribosomal proteins, RNA helicases or riboswitches.
Collapse
Affiliation(s)
| | | | - Sabine Brantl
- Matthias-Schleiden-Institut, AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
18
|
Sobrero PM, Valverde C. Comparative Genomics and Evolutionary Analysis of RNA-Binding Proteins of the CsrA Family in the Genus Pseudomonas. Front Mol Biosci 2020; 7:127. [PMID: 32754614 PMCID: PMC7366521 DOI: 10.3389/fmolb.2020.00127] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
Gene expression is adjusted according to cellular needs through a combination of mechanisms acting at different layers of the flow of genetic information. At the posttranscriptional level, RNA-binding proteins are key factors controlling the fate of nascent and mature mRNAs. Among them, the members of the CsrA family are small dimeric proteins with heterogeneous distribution across the bacterial tree of life, that act as global regulators of gene expression because they recognize characteristic sequence/structural motifs (short hairpins with GGA triplets in the loop) present in hundreds of mRNAs. The regulatory output of CsrA binding to mRNAs is counteracted in most cases by molecular mimic, non-protein coding RNAs that titrate the CsrA dimers away from the target mRNAs. In γ-proteobacteria, the regulatory modules composed by CsrA homologs and the corresponding antagonistic sRNAs, are mastered by two-component systems of the GacS-GacA type, which control the transcription and the abundance of the sRNAs, thus constituting the rather linear cascade Gac-Rsm that responds to environmental or cellular signals to adjust and coordinate the expression of a set of target genes posttranscriptionally. Within the γ-proteobacteria, the genus Pseudomonas has been shown to contain species with different number of active CsrA (RsmA) homologs and of molecular mimic sRNAs. Here, with the help of the increasing availability of genomic data we provide a comprehensive state-of-the-art picture of the remarkable multiplicity of CsrA lineages, including novel yet uncharacterized paralogues, and discuss evolutionary aspects of the CsrA subfamilies of the genus Pseudomonas, and implications of the striking presence of csrA alleles in natural mobile genetic elements (phages and plasmids).
Collapse
Affiliation(s)
- Patricio Martín Sobrero
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| |
Collapse
|
19
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
20
|
Babitzke P, Lai YJ, Renda AJ, Romeo T. Posttranscription Initiation Control of Gene Expression Mediated by Bacterial RNA-Binding Proteins. Annu Rev Microbiol 2019; 73:43-67. [PMID: 31100987 PMCID: PMC9404307 DOI: 10.1146/annurev-micro-020518-115907] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA-binding proteins play vital roles in regulating gene expression and cellular physiology in all organisms. Bacterial RNA-binding proteins can regulate transcription termination via attenuation or antitermination mechanisms, while others can repress or activate translation initiation by affecting ribosome binding. The RNA targets for these proteins include short repeated sequences, longer single-stranded sequences, RNA secondary or tertiary structure, and a combination of these features. The activity of these proteins can be influenced by binding of metabolites, small RNAs, or other proteins, as well as by phosphorylation events. Some of these proteins regulate specific genes, while others function as global regulators. As the regulatory mechanisms, components, targets, and signaling circuitry surrounding RNA-binding proteins have become better understood, in part through rapid advances provided by systems approaches, a sense of the true nature of biological complexity is becoming apparent, which we attempt to capture for the reader of this review.
Collapse
Affiliation(s)
- Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| | - Ying-Jung Lai
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA; ,
| | - Andrew J Renda
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA; ,
| |
Collapse
|
21
|
El Abbar FM, Li J, Owen HC, Daugherty CL, Fulmer CA, Bogacz M, Thompson SA. RNA Binding by the Campylobacter jejuni Post-transcriptional Regulator CsrA. Front Microbiol 2019; 10:1776. [PMID: 31447808 PMCID: PMC6692469 DOI: 10.3389/fmicb.2019.01776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023] Open
Abstract
Campylobacter jejuni is a Gram-negative rod-shaped bacterium that commensally inhabits the intestinal tracts of livestock and birds, and which also persists in surface waters. C. jejuni is a leading cause of foodborne gastroenteritis, and these infections are sometimes associated with the development of post-infection sequelae such as Guillain-Barré Syndrome. Flagella are considered a primary virulence factor in C. jejuni, as these organelles are required for pathogenicity-related phenotypes including motility, biofilm formation, host cell interactions, and host colonization. The post-transcriptional regulator CsrA regulates the expression of the major flagellin FlaA by binding to flaA mRNA and repressing its translation. Additionally, CsrA has previously been shown to regulate 120–150 proteins involved in diverse cellular processes. The amino acid sequence of C. jejuni CsrA is significantly different from that of Escherichia coli CsrA, and no previous research has defined the amino acids of C. jejuni CsrA that are critical for RNA binding. In this study, we used in vitro SELEX to identify the consensus RNA sequence mAwGGAs to which C. jejuni CsrA binds with high affinity. We performed saturating site-directed mutagenesis on C. jejuni CsrA and assessed the regulatory activity of these mutant proteins, using a reporter system encoding the 5′ untranslated region (5′ UTR) upstream of flaA linked translationally to the C. jejuni astA gene. These assays allowed us to identify 19 amino acids that were involved in RNA binding by CsrA, with many but not all of these amino acids clustered in predicted beta strands that are involved in RNA binding by E. coli CsrA. Decreased flaA mRNA binding by mutant CsrA proteins L2A and A36V was confirmed by electrophoretic mobility shift assays. The majority of the amino acids implicated in RNA binding were conserved among diverse Campylobacter species.
Collapse
Affiliation(s)
- Faiha M El Abbar
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Jiaqi Li
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Harry C Owen
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - C Luke Daugherty
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Claudia A Fulmer
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Marek Bogacz
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| | - Stuart A Thompson
- Division of Infectious Diseases, Department of Medicine, Augusta University, Augusta, GA, United States
| |
Collapse
|
22
|
Robust Stoichiometry of FliW-CsrA Governs Flagellin Homeostasis and Cytoplasmic Organization in Bacillus subtilis. mBio 2019; 10:mBio.00533-19. [PMID: 31113895 PMCID: PMC6529632 DOI: 10.1128/mbio.00533-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular concentration of flagellar filament protein Hag is restricted by the Hag-FliW-CsrA system in B. subtilis. Here we show that the Hag-FliW-CsrAdimer system functions at nearly 1:1:1 stoichiometry and that the system is both robust with respect to perturbation and hypersensitive to the Hag intracellular concentration. Moreover, restriction of cytoplasmic Hag levels is important for maintaining proper intracellular architecture, as artificial Hag hyperaccumulation led to generalized spatial defects and a high frequency of minicell production. The Hag-FliW-CsrA system is conserved in the deeper branches of bacterial phylogeny, and we note that the Hag-FliW-CsrA “homeostasis module” resembles a toxin-antitoxin system where, by analogy, CsrA is the “toxin,” FliW is the “antitoxin,” and Hag is the target. Flagellin (Hag) is one of the most abundant proteins in Bacillus subtilis. Here we show that each flagellar filament is assembled from ∼12,000 Hag monomers and that there is a cytoplasmic pool of Hag that is restricted to 5% of the total. Hag is thought to be restricted at the level of translation by a partner-switching mechanism involving FliW and the homodimeric RNA-binding protein CsrA (CsrAdimer). We further show that the mechanism of translation inhibition is hypersensitive due to a 1:1 ratio of Hag to FliW, a 1:1 inhibitory ratio of FliW to CsrAdimer, and a nearly 1:1 ratio of CsrAdimer to hag transcripts. Equimolarity of all components couples single-molecule detection of Hag export to compensatory translation and causes cytoplasmic Hag concentrations to oscillate around the level of FliW. We found that stoichiometry is ensured by genetic architecture, translational coupling, and the ability of CsrAdimer to restrict hag transcript accumulation. We further show that homeostasis prevents Hag hyperaccumulation that would otherwise cause severe defects in intracellular architecture, perhaps due to increased molecular crowding. We note that FliW-CsrA-mediated structural homeostasis has similarities to that seen with some toxin-antitoxin systems.
Collapse
|
23
|
Müller P, Gimpel M, Wildenhain T, Brantl S. A new role for CsrA: promotion of complex formation between an sRNA and its mRNA target in Bacillus subtilis. RNA Biol 2019; 16:972-987. [PMID: 31043113 PMCID: PMC6546359 DOI: 10.1080/15476286.2019.1605811] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
CsrA is a widely conserved, abundant small RNA binding protein that has been found in E. coli and other Gram-negative bacteria where it is involved in the regulation of carbon metabolism, biofilm formation and virulence. CsrA binds to single-stranded GGA motifs around the SD sequence of target mRNAs where it inhibits or activates translation or influences RNA processing. Small RNAs like CsrB or CsrC containing 13–22 GGA motifs can sequester CsrA, thereby abrogating the effect of CsrA on its target mRNAs. In B. subtilis, CsrA has so far only been found to regulate one target, hag mRNA and to be sequestered by a protein (FliW) and not by an sRNA. Here, we employ a combination of in vitro and in vivo methods to investigate the effect of CsrA on the small regulatory RNA SR1 from B. subtilis, its primary target ahrC mRNA and its downstream targets, the rocABC and rocDEF operons. We demonstrate that CsrA can promote the base-pairing interactions between SR1 and ahrC mRNA, a function that has so far only been found for Hfq or ProQ. Abbreviations: aa, amino acid; bp, basepair; nt, nucleotide; PAA, polyacrylamide; SD, Shine Dalgarno.
Collapse
Affiliation(s)
- Peter Müller
- a Matthias-Schleiden-Institut für Genetik, Bioinformatik und Molekulare Botanik, AG Bakteriengenetik , Friedrich-Schiller-Universität Jena , Jena , Germany
| | - Matthias Gimpel
- a Matthias-Schleiden-Institut für Genetik, Bioinformatik und Molekulare Botanik, AG Bakteriengenetik , Friedrich-Schiller-Universität Jena , Jena , Germany.,b Institut für Biotechnologie , Fachgebiet Bioverfahrenstechnik , Berlin , Germany
| | - Theresa Wildenhain
- a Matthias-Schleiden-Institut für Genetik, Bioinformatik und Molekulare Botanik, AG Bakteriengenetik , Friedrich-Schiller-Universität Jena , Jena , Germany
| | - Sabine Brantl
- a Matthias-Schleiden-Institut für Genetik, Bioinformatik und Molekulare Botanik, AG Bakteriengenetik , Friedrich-Schiller-Universität Jena , Jena , Germany
| |
Collapse
|
24
|
Abstract
The sequence-specific RNA binding protein CsrA is employed by diverse bacteria in the posttranscriptional regulation of gene expression. Its binding interactions with RNA have been documented at atomic resolution and shown to alter RNA secondary structure, RNA stability, translation, and/or Rho-mediated transcription termination through a growing number of molecular mechanisms. In Gammaproteobacteria, small regulatory RNAs (sRNAs) that contain multiple CsrA binding sites compete with mRNA for binding to CsrA, thereby sequestering and antagonizing this protein. Both the synthesis and turnover of these sRNAs are regulated, allowing CsrA activity to be rapidly and efficiently adjusted in response to nutritional conditions and stresses. Feedback loops between the Csr regulatory components improve the dynamics of signal response by the Csr system. The Csr system of Escherichia coli is intimately interconnected with other global regulatory systems, permitting it to contribute to regulation by those systems. In some species, a protein antagonist of CsrA functions as part of a checkpoint for flagellum biosynthesis. In other species, a protein antagonist participates in a mechanism in which a type III secretion system is used for sensing interactions with host cells. Recent transcriptomics studies reveal vast effects of CsrA on gene expression through direct binding to hundreds of mRNAs, and indirectly through its effects on the expression of dozens of transcription factors. CsrA binding to base-pairing sRNAs and novel mRNA segments, such as the 3' untranslated region and deep within coding regions, predict its participation in yet-to-be-discovered regulatory mechanisms.
Collapse
|
25
|
Altegoer F, Mukherjee S, Steinchen W, Bedrunka P, Linne U, Kearns DB, Bange G. FliS/flagellin/FliW heterotrimer couples type III secretion and flagellin homeostasis. Sci Rep 2018; 8:11552. [PMID: 30068950 PMCID: PMC6070490 DOI: 10.1038/s41598-018-29884-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023] Open
Abstract
Flagellin is amongst the most abundant proteins in flagellated bacterial species and constitutes the major building block of the flagellar filament. The proteins FliW and FliS serve in the post-transcriptional control of flagellin and guide the protein to the flagellar type III secretion system (fT3SS), respectively. Here, we present the high-resolution structure of FliS/flagellin heterodimer and show that FliS and FliW bind to opposing interfaces located at the N- and C-termini of flagellin. The FliS/flagellin/FliW heterotrimer is able to interact with FlhA-C suggesting that FliW and FliS are released during flagellin export. After release, FliW and FliS are recycled to execute a new round of post-transcriptional regulation and targeting. Taken together, our study provides a mechanism explaining how FliW and FliS synchronize the production of flagellin with the capacity of the fT3SS to secrete flagellin.
Collapse
Affiliation(s)
- Florian Altegoer
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany
| | - Sampriti Mukherjee
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN, 47405, USA
| | - Wieland Steinchen
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany
| | - Patricia Bedrunka
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany
| | - Uwe Linne
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany
| | - Daniel B Kearns
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN, 47405, USA
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany.
| |
Collapse
|
26
|
Gu H, Qi H, Chen S, Shi K, Wang H, Wang J. Carbon storage regulator CsrA plays important roles in multiple virulence-associated processes of Clostridium difficile. Microb Pathog 2018; 121:303-309. [PMID: 29859293 DOI: 10.1016/j.micpath.2018.05.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022]
Abstract
The carbon storage regulator CsrA is a global regulator that controls multiple virulence-associated processes including host cell invasion, virulence secretion, quorum sensing, biofilm formation, and motility in many pathogenic bacteria. However, the roles of CsrA in Clostridium difficile still remain unclear. In this study, a C. difficile strain overexpressing csrA was constructed to investigate its effects on multiple virulence associated processes. Overexpression of csrA resulted in flagella defect and poor motility in C. difficile 630Δerm, suggesting that CsrA involves in the regulation of flagellum synthesis. The levels of toxin production were increased in the C. difficile 630Δerm overexpressing of csrA. Moreover, csrA overexpression enhanced the adherence ability to Caco-2 cells and solvent production of C. difficile 630Δerm. Altogether, CsrA of C. difficile participates in multiple virulence processes including toxin production, motility, and adherence, and in the regulation of carbon metabolism. These results enhance our understanding of the regulatory functions of CsrA and reveal that CsrA is an important regulator in C. difficile contributing to virulence regulation.
Collapse
Affiliation(s)
- Huawei Gu
- School of Biology and Biological Engineering, South China University of Technology (SCUT), Guangzhou, 510006, China
| | - Haonan Qi
- School of Biology and Biological Engineering, South China University of Technology (SCUT), Guangzhou, 510006, China
| | - Shuyi Chen
- School of Biology and Biological Engineering, South China University of Technology (SCUT), Guangzhou, 510006, China
| | - Kan Shi
- School of Biology and Biological Engineering, South China University of Technology (SCUT), Guangzhou, 510006, China
| | - Haiying Wang
- School of Biology and Biological Engineering, South China University of Technology (SCUT), Guangzhou, 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology (SCUT), Guangzhou, 510006, China.
| |
Collapse
|
27
|
Regulation of host–pathogen interactions via the post-transcriptional Csr/Rsm system. Curr Opin Microbiol 2018; 41:58-67. [DOI: 10.1016/j.mib.2017.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022]
|
28
|
Radomska KA, Wösten MMSM, Ordoñez SR, Wagenaar JA, van Putten JPM. Importance of Campylobacter jejuni FliS and FliW in Flagella Biogenesis and Flagellin Secretion. Front Microbiol 2017; 8:1060. [PMID: 28659885 PMCID: PMC5466977 DOI: 10.3389/fmicb.2017.01060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/29/2017] [Indexed: 12/11/2022] Open
Abstract
Flagella-driven motility enables bacteria to reach their favorable niche within the host. The human foodborne pathogen Campylobacter jejuni produces two heavily glycosylated structural flagellins (FlaA and FlaB) that form the flagellar filament. It also encodes the non-structural FlaC flagellin which is secreted through the flagellum and has been implicated in host cell invasion. The mechanisms that regulate C. jejuni flagellin biogenesis and guide the proteins to the export apparatus are different from those in most other enteropathogens and are not fully understood. This work demonstrates the importance of the putative flagellar protein FliS in C. jejuni flagella assembly. A constructed fliS knockout strain was non-motile, displayed reduced levels of FlaA/B and FlaC flagellin, and carried severely truncated flagella. Pull-down and Far Western blot assays showed direct interaction of FliS with all three C. jejuni flagellins (FlaA, FlaB, and FlaC). This is in contrast to, the sensor and regulator of intracellular flagellin levels, FliW, which bound to FlaA and FlaB but not to FlaC. The FliS protein but not FliW preferred binding to glycosylated C. jejuni flagellins rather than to their non-glycosylated recombinant counterparts. Mapping of the binding region of FliS and FliW using a set of flagellin fragments showed that the C-terminal subdomain of the flagellin was required for FliS binding, whereas the N-terminal subdomain was essential for FliW binding. The separate binding subdomains required for FliS and FliW, the different substrate specificity, and the differential preference for binding of glycosylated flagellins ensure optimal processing and assembly of the C. jejuni flagellins.
Collapse
Affiliation(s)
- Katarzyna A Radomska
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands
| | - Marc M S M Wösten
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands
| | - Soledad R Ordoñez
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands.,Wageningen Bioveterinary ResearchLelystad, Netherlands.,WHO Collaborating Centre for Campylobacter/OIE Reference Laboratory for CampylobacteriosisUtrecht, Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands.,WHO Collaborating Centre for Campylobacter/OIE Reference Laboratory for CampylobacteriosisUtrecht, Netherlands
| |
Collapse
|
29
|
Regulation of Gene and Protein Expression in the Lyme Disease Spirochete. Curr Top Microbiol Immunol 2017; 415:83-112. [PMID: 29064060 DOI: 10.1007/82_2017_49] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The infectious cycle of Borrelia burgdorferi necessitates persistent infection of both vertebrates and ticks, and efficient means of transmission between those two very different types of hosts. The Lyme disease spirochete has evolved mechanisms to sense its location in the infectious cycle, and use that information to control production of the proteins and other factors required for each step. Numerous components of borrelial regulatory pathways have been characterized to date. Their effects are being pieced together, thereby providing glimpses into a complex web of cooperative and antagonistic interactions. In this chapter, we present a broad overview of B. burgdorferi gene and protein regulation during the natural infectious cycle, discussions of culture-based methods for elucidating regulatory mechanisms, and summaries of many of the known regulatory proteins and small molecules. We also highlight areas that are in need of substantially more research.
Collapse
|