1
|
Pepe S, Aprile D, Castroflorio E, Marte A, Giubbolini S, Hopestone S, Parsons A, Soares T, Benfenati F, Oliver PL, Fassio A. TBC1D24 interacts with the v-ATPase and regulates intraorganellar pH in neurons. iScience 2025; 28:111515. [PMID: 39758816 PMCID: PMC11699390 DOI: 10.1016/j.isci.2024.111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 09/29/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
The vacuolar ATPase (v-ATPase) is essential for acidification of intracellular organelles, including synaptic vesicles. Its activity is controlled by cycles of association and dissociation of the ATP hydrolysis (V1) and proton transport (V0) multi-protein subunits. Mutations in genes coding for both v-ATPase subunits and TBC1D24 cause neurodevelopmental disorders with overlapping syndromes; therefore, it is important to investigate their potentially interrelated functions. Here, we reveal that TBC1D24 interacts with the v-ATPase in the brain. Using a constitutive Tbc1d24 knockout mouse model, we observed accumulation of lysosomes and non-degraded lipid materials in neuronal tissue. In Tbc1d24 knockout neurons, we detected V1 mis-localization with increased pH at endo-lysosomal compartments and autophagy impairment. Furthermore, synaptic vesicles endocytosis and reacidification were impaired. Thus, we demonstrate that TBC1D24 is a positive regulator of v-ATPase activity in neurons suggesting that alteration of pH homeostasis could underlie disorders associated with TBC1D24 and the v-ATPase.
Collapse
Affiliation(s)
- Sara Pepe
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Davide Aprile
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Enrico Castroflorio
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Antonella Marte
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
| | - Simone Giubbolini
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
| | - Samir Hopestone
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Anna Parsons
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Tânia Soares
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Fabio Benfenati
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Peter L. Oliver
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Didcot, OX11 0RD, UK
| | - Anna Fassio
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
2
|
Lin B, Jin Z, Park G, Ge Q, Singh K, Ryan V WG, Imami AS, Naghavi F, Miller OA, Khan S, Lu H, McCullumsmith RE, Du J. Mice lacking acid-sensing ion channel 2 in the medial prefrontal cortex exhibit social dominance. SCIENCE ADVANCES 2024; 10:eadn7573. [PMID: 39453995 PMCID: PMC11506137 DOI: 10.1126/sciadv.adn7573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
Social dominance is essential for maintaining a stable society and has both positive and negative impacts on social animals, including humans. However, the regulatory mechanisms governing social dominance, as well as the crucial regulators and biomarkers involved, remain poorly understood. We discover that mice lacking acid-sensing ion channel 2 (ASIC2) exhibit persistently higher social dominance than their wild-type cagemates. Conversely, overexpression of ASIC2 in the medial prefrontal cortex reverses the dominance hierarchy observed in ASIC2 knockout (Asic2-/-) mice. Asic2-/- neurons exhibit increased synaptic transmission and plasticity, potentially mediated by protein kinase A signaling pathway. Furthermore, ASIC2 plays distinct functional roles in excitatory and inhibitory neurons, thereby modulating the balance of neuronal activities underlying social dominance behaviors-a phenomenon suggestive of a cell subtype-specific mechanism. This research lays the groundwork for understanding the mechanisms of social dominance, offering potential insights for managing social disorders, such as depression and anxiety.
Collapse
Affiliation(s)
- Boren Lin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Zhen Jin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qian Ge
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kritika Singh
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - William G. Ryan V
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Ali Sajid Imami
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Farzaneh Naghavi
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Olivia Ann Miller
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Saira Khan
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Hui Lu
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Robert E. McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43614, USA
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Yamaguchi J, Andrade MA, Truong TT, Toney GM. Glutamate Spillover Dynamically Strengthens Gabaergic Synaptic Inhibition of the Hypothalamic Paraventricular Nucleus. J Neurosci 2024; 44:e1851222023. [PMID: 38154957 PMCID: PMC10869154 DOI: 10.1523/jneurosci.1851-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
The hypothalamic paraventricular nucleus (PVN) is strongly inhibited by γ-aminobutyric acid (GABA) from the surrounding peri-nuclear zone (PNZ). Because glutamate mediates fast excitatory transmission and is substrate for GABA synthesis, we tested its capacity to dynamically strengthen GABA inhibition. In PVN slices from male mice, bath glutamate applied during ionotropic glutamate receptor blockade increased PNZ-evoked inhibitory postsynaptic currents (eIPSCs) without affecting GABA-A receptor agonist currents or single-channel conductance, implicating a presynaptic mechanism(s). Consistent with this interpretation, bath glutamate failed to strengthen IPSCs during pharmacological saturation of GABA-A receptors. Presynaptic analyses revealed that glutamate did not affect paired-pulse ratio, peak eIPSC variability, GABA vesicle recycling speed, or readily releasable pool (RRP) size. Notably, glutamate-GABA strengthening (GGS) was unaffected by metabotropic glutamate receptor blockade and graded external Ca2+ when normalized to baseline amplitude. GGS was prevented by pan- but not glial-specific inhibition of glutamate uptake and by inhibition of glutamic acid decarboxylase (GAD), indicating reliance on glutamate uptake by neuronal excitatory amino acid transporter 3 (EAAT3) and enzymatic conversion of glutamate to GABA. EAAT3 immunoreactivity was strongly localized to presumptive PVN GABA terminals. High bath K+ also induced GGS, which was prevented by glutamate vesicle depletion, indicating that synaptic glutamate release strengthens PVN GABA inhibition. GGS suppressed PVN cell firing, indicating its functional significance. In sum, PVN GGS buffers neuronal excitation by apparent "over-filling" of vesicles with GABA synthesized from synaptically released glutamate. We posit that GGS protects against sustained PVN excitation and excitotoxicity while potentially aiding stress adaptation and habituation.
Collapse
Affiliation(s)
- Junya Yamaguchi
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Mary Ann Andrade
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Tamara T Truong
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| | - Glenn M Toney
- Department of Cellular & Integrative Physiology, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
- Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio 78229-3900, Texas
| |
Collapse
|
4
|
Yakovlev A, Gritskova A, Manzhurtsev A, Ublinskiy M, Menshchikov P, Vanin A, Kupriyanov D, Akhadov T, Semenova N. Dynamics of γ-aminobutyric acid concentration in the human brain in response to short visual stimulation. MAGMA (NEW YORK, N.Y.) 2024; 37:39-51. [PMID: 37715877 DOI: 10.1007/s10334-023-01118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE To find a possible quantitative relation between activation-induced fast (< 10 s) changes in the γ-aminobutyric acid (GABA) level and the amplitude of a blood oxygen level-dependent contrast (BOLD) response (according to magnetic resonance spectroscopy [MRS] and functional magnetic resonance imaging [fMRI]). MATERIALS AND METHODS fMRI data and MEGA-PRESS magnetic resonance spectra [echo time (TE)/repetition time (TR) = 68 ms/1500 ms] of an activated area in the visual cortex of 33 subjects were acquired using a 3 T MR scanner. Stimulation was performed by presenting an image of a flickering checkerboard for 3 s, repeated with an interval of 13.5 s. The time course of GABA and creatine (Cr) concentrations and the width and height of resonance lines were obtained with a nominal time resolution of 1.5 s. Changes in the linewidth and height of n-acetylaspartate (NAA) and Cr signals were used to determine the BOLD effect. RESULTS In response to the activation, the BOLD-corrected GABA + /Cr ratio increased by 5.0% (q = 0.027) and 3.8% (q = 0.048) at 1.6 and 3.1 s, respectively, after the start of the stimulus. Time courses of Cr and NAA signal width and height reached a maximum change at the 6th second (~ 1.2-1.5%, q < 0.05). CONCLUSION The quick response of the observed GABA concentration to the short stimulus is most likely due to a release of GABA from vesicles followed by its packaging back into vesicles.
Collapse
Affiliation(s)
- Alexey Yakovlev
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation.
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation.
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation.
| | - Alexandra Gritskova
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| | - Andrei Manzhurtsev
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| | - Maxim Ublinskiy
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| | - Petr Menshchikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- LLC Philips Healthcare, 13 Sergeya Makeeva Str., Moscow, 123022, Russian Federation
| | - Anatoly Vanin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
| | - Dmitriy Kupriyanov
- LLC Philips Healthcare, 13 Sergeya Makeeva Str., Moscow, 123022, Russian Federation
| | - Tolib Akhadov
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| | - Natalia Semenova
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| |
Collapse
|
5
|
Bian X, Zhu J, Jia X, Liang W, Yu S, Li Z, Zhang W, Rao Y. Suggestion of creatine as a new neurotransmitter by approaches ranging from chemical analysis and biochemistry to electrophysiology. eLife 2023; 12:RP89317. [PMID: 38126335 PMCID: PMC10735228 DOI: 10.7554/elife.89317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The discovery of a new neurotransmitter, especially one in the central nervous system, is both important and difficult. We have been searching for new neurotransmitters for 12 y. We detected creatine (Cr) in synaptic vesicles (SVs) at a level lower than glutamate and gamma-aminobutyric acid but higher than acetylcholine and 5-hydroxytryptamine. SV Cr was reduced in mice lacking either arginine:glycine amidinotransferase (a Cr synthetase) or SLC6A8, a Cr transporter with mutations among the most common causes of intellectual disability in men. Calcium-dependent release of Cr was detected after stimulation in brain slices. Cr release was reduced in Slc6a8 and Agat mutants. Cr inhibited neocortical pyramidal neurons. SLC6A8 was necessary for Cr uptake into synaptosomes. Cr was found by us to be taken up into SVs in an ATP-dependent manner. Our biochemical, chemical, genetic, and electrophysiological results are consistent with the possibility of Cr as a neurotransmitter, though not yet reaching the level of proof for the now classic transmitters. Our novel approach to discover neurotransmitters is to begin with analysis of contents in SVs before defining their function and physiology.
Collapse
Affiliation(s)
- Xiling Bian
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Jiemin Zhu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Xiaobo Jia
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Wenjun Liang
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
| | - Sihan Yu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
| | - Zhiqiang Li
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
| | - Wenxia Zhang
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Yi Rao
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
6
|
Fasham J, Huebner AK, Liebmann L, Khalaf-Nazzal R, Maroofian R, Kryeziu N, Wortmann SB, Leslie JS, Ubeyratna N, Mancini GMS, van Slegtenhorst M, Wilke M, Haack TB, Shamseldin HE, Gleeson JG, Almuhaizea M, Dweikat I, Abu-Libdeh B, Daana M, Zaki MS, Wakeling MN, McGavin L, Turnpenny PD, Alkuraya FS, Houlden H, Schlattmann P, Kaila K, Crosby AH, Baple EL, Hübner CA. SLC4A10 mutation causes a neurological disorder associated with impaired GABAergic transmission. Brain 2023; 146:4547-4561. [PMID: 37459438 PMCID: PMC10629776 DOI: 10.1093/brain/awad235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 11/09/2023] Open
Abstract
SLC4A10 is a plasma-membrane bound transporter that utilizes the Na+ gradient to drive cellular HCO3- uptake, thus mediating acid extrusion. In the mammalian brain, SLC4A10 is expressed in principal neurons and interneurons, as well as in epithelial cells of the choroid plexus, the organ regulating the production of CSF. Using next generation sequencing on samples from five unrelated families encompassing nine affected individuals, we show that biallelic SLC4A10 loss-of-function variants cause a clinically recognizable neurodevelopmental disorder in humans. The cardinal clinical features of the condition include hypotonia in infancy, delayed psychomotor development across all domains and intellectual impairment. Affected individuals commonly display traits associated with autistic spectrum disorder including anxiety, hyperactivity and stereotyped movements. In two cases isolated episodes of seizures were reported in the first few years of life, and a further affected child displayed bitemporal epileptogenic discharges on EEG without overt clinical seizures. While occipitofrontal circumference was reported to be normal at birth, progressive postnatal microcephaly evolved in 7 out of 10 affected individuals. Neuroradiological features included a relative preservation of brain volume compared to occipitofrontal circumference, characteristic narrow sometimes 'slit-like' lateral ventricles and corpus callosum abnormalities. Slc4a10 -/- mice, deficient for SLC4A10, also display small lateral brain ventricles and mild behavioural abnormalities including delayed habituation and alterations in the two-object novel object recognition task. Collapsed brain ventricles in both Slc4a10-/- mice and affected individuals suggest an important role of SLC4A10 in the production of the CSF. However, it is notable that despite diverse roles of the CSF in the developing and adult brain, the cortex of Slc4a10-/- mice appears grossly intact. Co-staining with synaptic markers revealed that in neurons, SLC4A10 localizes to inhibitory, but not excitatory, presynapses. These findings are supported by our functional studies, which show the release of the inhibitory neurotransmitter GABA is compromised in Slc4a10-/- mice, while the release of the excitatory neurotransmitter glutamate is preserved. Manipulation of intracellular pH partially rescues GABA release. Together our studies define a novel neurodevelopmental disorder associated with biallelic pathogenic variants in SLC4A10 and highlight the importance of further analyses of the consequences of SLC4A10 loss-of-function for brain development, synaptic transmission and network properties.
Collapse
Affiliation(s)
- James Fasham
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Antje K Huebner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| | - Reham Khalaf-Nazzal
- Department of Biomedical Sciences, Faculty of Medicine, Arab American University of Palestine, Jenin, P227, Palestine
| | - Reza Maroofian
- Molecular and Clinical Sciences Institute, St. George’s University of London, London SW17 0RE, UK
| | - Nderim Kryeziu
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| | - Saskia B Wortmann
- University Children’s Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
- Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Institute of Human Genetics, Technische Universität München, 80333 Munich, Germany
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Nishanka Ubeyratna
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Martina Wilke
- Department of Clinical Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tübingen, Germany
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Joseph G Gleeson
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mohamed Almuhaizea
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Imad Dweikat
- Department of Biomedical Sciences, Faculty of Medicine, Arab American University of Palestine, Jenin, P227, Palestine
| | - Bassam Abu-Libdeh
- Department of Pediatrics and Genetics, Makassed Hospital and Al-Quds University, East Jerusalem, 95908, Palestine
| | - Muhannad Daana
- Department of Pediatrics, Arab Women’s Union Hospital, Nablus, P400, Palestine
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Matthew N Wakeling
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Lucy McGavin
- Department of Radiology, Derriford Hospital, Plymouth PL6 8DH, UK
| | - Peter D Turnpenny
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Henry Houlden
- Molecular and Clinical Sciences Institute, St. George’s University of London, London SW17 0RE, UK
| | - Peter Schlattmann
- Institute for Medical Statistics, Computer Science and Data Science, Jena University Hospital, 07747 Jena, Germany
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany
| |
Collapse
|
7
|
Wallace ML, Sabatini BL. Synaptic and circuit functions of multitransmitter neurons in the mammalian brain. Neuron 2023; 111:2969-2983. [PMID: 37463580 PMCID: PMC10592565 DOI: 10.1016/j.neuron.2023.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023]
Abstract
Neurons in the mammalian brain are not limited to releasing a single neurotransmitter but often release multiple neurotransmitters onto postsynaptic cells. Here, we review recent findings of multitransmitter neurons found throughout the mammalian central nervous system. We highlight recent technological innovations that have made the identification of new multitransmitter neurons and the study of their synaptic properties possible. We also focus on mechanisms and molecular constituents required for neurotransmitter corelease at the axon terminal and synaptic vesicle, as well as some possible functions of multitransmitter neurons in diverse brain circuits. We expect that these approaches will lead to new insights into the mechanism and function of multitransmitter neurons, their role in circuits, and their contribution to normal and pathological brain function.
Collapse
Affiliation(s)
- Michael L Wallace
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Koh W, Kwak H, Cheong E, Lee CJ. GABA tone regulation and its cognitive functions in the brain. Nat Rev Neurosci 2023; 24:523-539. [PMID: 37495761 DOI: 10.1038/s41583-023-00724-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter released at GABAergic synapses, mediating fast-acting phasic inhibition. Emerging lines of evidence unequivocally indicate that a small amount of extracellular GABA - GABA tone - exists in the brain and induces a tonic GABA current that controls neuronal activity on a slow timescale relative to that of phasic inhibition. Surprisingly, studies indicate that glial cells that synthesize GABA, such as astrocytes, release GABA through non-vesicular mechanisms, such as channel-mediated release, and thereby act as the source of GABA tone in the brain. In this Review, we first provide an overview of major advances in our understanding of the cell-specific molecular and cellular mechanisms of GABA synthesis, release and clearance that regulate GABA tone in various brain regions. We next examine the diverse ways in which the tonic GABA current regulates synaptic transmission and synaptic plasticity through extrasynaptic GABAA-receptor-mediated mechanisms. Last, we discuss the physiological mechanisms through which tonic inhibition modulates cognitive function on a slow timescale. In this Review, we emphasize that the cognitive functions of tonic GABA current extend beyond mere inhibition, laying a foundation for future research on the physiological and pathophysiological roles of GABA tone regulation in normal and abnormal psychiatric conditions.
Collapse
Affiliation(s)
- Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Hankyul Kwak
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
9
|
Li M, Larsen PA. Single-cell sequencing of entorhinal cortex reveals widespread disruption of neuropeptide networks in Alzheimer's disease. Alzheimers Dement 2023; 19:3575-3592. [PMID: 36825405 DOI: 10.1002/alz.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 02/25/2023]
Abstract
INTRODUCTION Abnormalities of neuropeptides (NPs) that play important roles in modulating neuronal activities are commonly observed in Alzheimer's disease (AD). We hypothesize that NP network disruption is widespread in AD brains. METHODS Single-cell transcriptomic data from the entorhinal cortex (EC) were used to investigate the NP network disruption in AD. Bulk RNA-sequencing data generated from the temporal cortex by independent groups and machine learning were employed to identify key NPs involved in AD. The relationship between aging and AD-associated NP (ADNP) expression was studied using GTEx data. RESULTS The proportion of cells expressing NPs but not their receptors decreased significantly in AD. Neurons expressing higher level and greater diversity of NPs were disproportionately absent in AD. Increased age coincides with decreased ADNP expression in the hippocampus. DISCUSSION NP network disruption is widespread in AD EC. Neurons expressing more NPs may be selectively vulnerable to AD. Decreased expression of NPs participates in early AD pathogenesis. We predict that the NP network can be harnessed for treatment and/or early diagnosis of AD.
Collapse
Affiliation(s)
- Manci Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter A Larsen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
10
|
Cember ATJ, Nanga RPR, Reddy R. Glutamate-weighted CEST (gluCEST) imaging for mapping neurometabolism: An update on the state of the art and emerging findings from in vivo applications. NMR IN BIOMEDICINE 2023; 36:e4780. [PMID: 35642353 DOI: 10.1002/nbm.4780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 05/23/2023]
Abstract
Glutamate is the primary excitatory neurotransmitter in the mammalian central nervous system. As such, its proper regulation is essential to the healthy function of the human brain, and dysregulation of glutamate metabolism and compartmentalization underlies numerous neurological and neuropsychiatric pathologies. Glutamate-weighted chemical exchange saturation transfer (gluCEST) MRI is one of the only ways to non-invasively observe the relative concentration and spatial distribution of glutamate in the human brain. In the past 10 years, gluCEST has developed from a proof-of-concept experiment carried out in imaging phantoms and model systems to an increasingly sophisticated technique applied to reveal deviations from baseline neural metabolism in human beings, most notably in patients experiencing seizures of various origins or those on the psychosis spectrum. This article traces that progress, including in-depth discussion of the technical specifics of gluCEST and potential challenges to performing these experiments rigorously. We discuss the neurobiological context of glutamate, including the widely accepted hypotheses and models in the literature regarding its involvement in neurodegenerative diseases and other pathology. We then review the state of the art of in vivo glutamate detection by magnetic resonance imaging and the limitations on this front of in vivo MR spectroscopy. The gluCEST experiment is introduced and its advantages, challenges and limitations are thoroughly explored, beginning with the phantom experiment results demonstrated in the initial publication, through the latest approaches to correcting human brain images for B1 inhomogeneity. We then give a comprehensive overview of preclinical applications demonstrated to date, including Alzheimer's disease, Parkinson's disease, Huntington's disease, Traumatic brain injury and cancer, followed by a similar discussion of human studies. Finally, we highlight emerging applications, and discuss technical improvements on the horizon that hold promise for improving the robustness and versatility of gluCEST and its increasing presence in the arena of translational and precision medicine.
Collapse
Affiliation(s)
- Abigail T J Cember
- Center for Advanced Metabolic Imaging in Precision Medicine (CAMIPM), Department of Radiology, University of Pennsylvania
| | - Ravi Prakash Reddy Nanga
- Center for Advanced Metabolic Imaging in Precision Medicine (CAMIPM), Department of Radiology, University of Pennsylvania
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine (CAMIPM), Department of Radiology, University of Pennsylvania
| |
Collapse
|
11
|
Ping Y, Ohata K, Kikushima K, Sakamoto T, Islam A, Xu L, Zhang H, Chen B, Yan J, Eto F, Nakane C, Takao K, Miyakawa T, Kabashima K, Watanabe M, Kahyo T, Yao I, Fukuda A, Ikegami K, Konishi Y, Setou M. Tubulin Polyglutamylation by TTLL1 and TTLL7 Regulate Glutamate Concentration in the Mice Brain. Biomolecules 2023; 13:biom13050784. [PMID: 37238654 DOI: 10.3390/biom13050784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
As an important neurotransmitter, glutamate acts in over 90% of excitatory synapses in the human brain. Its metabolic pathway is complicated, and the glutamate pool in neurons has not been fully elucidated. Tubulin polyglutamylation in the brain is mainly mediated by two tubulin tyrosine ligase-like (TTLL) proteins, TTLL1 and TTLL7, which have been indicated to be important for neuronal polarity. In this study, we constructed pure lines of Ttll1 and Ttll7 knockout mice. Ttll knockout mice showed several abnormal behaviors. Matrix-assisted laser desorption/ionization (MALDI) Imaging mass spectrometry (IMS) analyses of these brains showed increases in glutamate, suggesting that tubulin polyglutamylation by these TTLLs acts as a pool of glutamate in neurons and modulates some other amino acids related to glutamate.
Collapse
Affiliation(s)
- Yashuang Ping
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kenji Ohata
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Kikushima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hengsen Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Bin Chen
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Jing Yan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Fumihiro Eto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Chiho Nakane
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
- Genetic Engineering and Functional Genomics Unit, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Miyakawa
- Genetic Engineering and Functional Genomics Unit, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Institute for Comprehensive Medical Science Division of Systems Medicine, Fujita Health University, Aichi 470-1192, Japan
| | - Katsuya Kabashima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ikuko Yao
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Koji Ikegami
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima 734-8553, Japan
| | - Yoshiyuki Konishi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
12
|
Seidenthal M, Jánosi B, Rosenkranz N, Schuh N, Elvers N, Willoughby M, Zhao X, Gottschalk A. pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity. Front Cell Neurosci 2023; 17:1120651. [PMID: 37066081 PMCID: PMC10102542 DOI: 10.3389/fncel.2023.1120651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
pH-sensitive fluorescent proteins are widely used to study synaptic vesicle (SV) fusion and recycling. When targeted to the lumen of SVs, fluorescence of these proteins is quenched by the acidic pH. Following SV fusion, they are exposed to extracellular neutral pH, resulting in a fluorescence increase. SV fusion, recycling and acidification can thus be tracked by tagging integral SV proteins with pH-sensitive proteins. Neurotransmission is generally activated by electrical stimulation, which is not feasible in small, intact animals. Previous in vivo approaches depended on distinct (sensory) stimuli, thus limiting the addressable neuron types. To overcome these limitations, we established an all-optical approach to stimulate and visualize SV fusion and recycling. We combined distinct pH-sensitive fluorescent proteins (inserted into the SV protein synaptogyrin) and light-gated channelrhodopsins (ChRs) for optical stimulation, overcoming optical crosstalk and thus enabling an all-optical approach. We generated two different variants of the pH-sensitive optogenetic reporter of vesicle recycling (pOpsicle) and tested them in cholinergic neurons of intact Caenorhabditis elegans nematodes. First, we combined the red fluorescent protein pHuji with the blue-light gated ChR2(H134R), and second, the green fluorescent pHluorin combined with the novel red-shifted ChR ChrimsonSA. In both cases, fluorescence increases were observed after optical stimulation. Increase and subsequent decline of fluorescence was affected by mutations of proteins involved in SV fusion and endocytosis. These results establish pOpsicle as a non-invasive, all-optical approach to investigate different steps of the SV cycle.
Collapse
Affiliation(s)
- Marius Seidenthal
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Barbara Jánosi
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Nils Rosenkranz
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Noah Schuh
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Nora Elvers
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Miles Willoughby
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Xinda Zhao
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| |
Collapse
|
13
|
Pandey AK, Buchholz CR, Nathan Kochen N, Pomerantz WCK, Braun AR, Sachs JN. pH Effects Can Dominate Chemical Shift Perturbations in 1H, 15N-HSQC NMR Spectroscopy for Studies of Small Molecule/α-Synuclein Interactions. ACS Chem Neurosci 2023; 14:800-808. [PMID: 36749138 DOI: 10.1021/acschemneuro.2c00782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1H,15N-Heteronuclear Single Quantum Coherence (HSQC) NMR is a powerful technique that has been employed to characterize small-molecule interactions with intrinsically disordered monomeric α-Synuclein (aSyn). We report how solution pH can impact the interpretation of aSyn HSQC NMR spectra and demonstrate that small-molecule formulations (e.g., complexation with acidic salts) can lower sample pH and confound interpretation of drug binding and concomitant protein structural changes. Through stringent pH control, we confirm that several previously identified compounds (EGCG, Baicalin, and Dopamine (DOPA)) as well as a series of potent small-molecule inhibitors of aSyn pathology (Demeclocycline, Ro90-7501, and (±)-Bay K 8644) are capable of direct target engagement of aSyn. Previously, DOPA-aSyn interactions have been shown to elicit a dramatic chemical shift perturbation (CSP) localized to aSyn's H50 at low DOPA concentrations then expanding to aSyn's acidic C-terminal residues at increasing DOPA levels. Interestingly, this CSP profile mirrors our pH titration, where a small reduction in pH affects H50 CSP, and large pH changes induce robust C-terminal CSP. In contrast, under tightly controlled pH 5.0, DOPA induces significant CSPs observed at both ionizable and nonionizable residues. These results suggest that previous interpretations of DOPA-aSyn interactions were conflated with pH-induced CSP, highlighting the need for stringent pH control to minimize potential false-positive interpretations of ligand interactions in HSQC NMR experiments. Furthermore, DOPA's preferential interaction with aSyn under acidic pH represents a novel understanding of DOPA-aSyn interactions that may provide insight into the potential gain of toxic function of aSyn misfolding in α-synucleinopathies.
Collapse
Affiliation(s)
- Anil K Pandey
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Caroline R Buchholz
- Dept. of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Noah Nathan Kochen
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Dept. of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Dept. of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anthony R Braun
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jonathan N Sachs
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
14
|
Li F, Eriksen J, Finer-Moore J, Stroud RM, Edwards RH. Diversity of function and mechanism in a family of organic anion transporters. Curr Opin Struct Biol 2022; 75:102399. [PMID: 35660266 PMCID: PMC9884543 DOI: 10.1016/j.sbi.2022.102399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
Originally identified as transporters for inorganic phosphate, solute carrier 17 (SLC17) family proteins subserve diverse physiological roles. The vesicular glutamate transporters (VGLUTs) package the principal excitatory neurotransmitter glutamate into synaptic vesicles (SVs). In contrast, the closely related sialic acid transporter sialin mediates the flux of sialic acid in the opposite direction, from lysosomes to the cytoplasm. The two proteins couple in different ways to the H+ electrochemical gradient driving force, and high-resolution structures of the Escherichia coli homolog d-galactonate transporter (DgoT) and more recently rat VGLUT2 now begin to suggest the mechanisms involved as well as the basis for substrate specificity.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry & Biophysics, UCSF School of Medicine, CA, USA,Departments of Neurology and Physiology, UCSF School of Medicine, CA, USA
| | - Jacob Eriksen
- Departments of Neurology and Physiology, UCSF School of Medicine, CA, USA
| | - Janet Finer-Moore
- Department of Biochemistry & Biophysics, UCSF School of Medicine, CA, USA
| | - Robert M. Stroud
- Department of Biochemistry & Biophysics, UCSF School of Medicine, CA, USA
| | - Robert H. Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, CA, USA
| |
Collapse
|
15
|
Park C, Jung S, Park H. Single vesicle tracking for studying synaptic vesicle dynamics in small central synapses. Curr Opin Neurobiol 2022; 76:102596. [PMID: 35803103 DOI: 10.1016/j.conb.2022.102596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
Sustained neurotransmission is driven by a continuous supply of synaptic vesicles to the release sites and modulated by synaptic vesicle dynamics. However, synaptic vesicle dynamics in synapses remain elusive because of technical limitations. Recent advances in fluorescence imaging techniques have enabled the tracking of single synaptic vesicles in small central synapses in living neurons. Single vesicle tracking has uncovered a wealth of new information about synaptic vesicle dynamics both within and outside presynaptic terminals, showing that single vesicle tracking is an effective tool for studying synaptic vesicle dynamics. Particularly, single vesicle tracking with high spatiotemporal resolution has revealed the dependence of synaptic vesicle dynamics on the location, stages of recycling, and neuronal activity. This review summarizes the recent findings from single synaptic vesicle tracking in small central synapses and their implications in synaptic transmission and pathogenic mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 11 Biopolis Way, 138667, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong; Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong.
| |
Collapse
|
16
|
Egashira Y, Kumade A, Ojida A, Ono F. Spontaneously Recycling Synaptic Vesicles Constitute Readily Releasable Vesicles in Intact Neuromuscular Synapses. J Neurosci 2022; 42:3523-3536. [PMID: 35332083 PMCID: PMC9053852 DOI: 10.1523/jneurosci.2005-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence shows that spontaneous synaptic transmission plays crucial roles on neuronal functions through presynaptic molecular mechanisms distinct from that of action potential (AP)-evoked transmission. However, whether the synaptic vesicle (SV) population undergoing the two forms of transmission is segregated remains controversial due in part to the conflicting results observed in cultured neurons. Here we address this issue in intact neuromuscular synapses using transgenic zebrafish larvae expressing two different indicators targeted in the SVs: a pH-sensitive fluorescent protein, pHluorin, and a tag protein, HaloTag. By establishing a quantitative measure of recycled SV fractions, we found that ∼85% of SVs were mobilized by high-frequency AP firings. In contrast, spontaneously recycling SVs were mobilized only from <8% of SVs with a time constant of 45 min at 25°C, although prolonged AP inhibition mobilized an additional population with a delayed onset. The mobilization of the early-onset population was less temperature-sensitive and resistant to tetanus toxin, whereas that of the late-onset population was more sensitive to temperature and was inhibited by tetanus toxin, indicating that prolonged AP inhibition activated a distinct molecular machinery for spontaneous SV fusion. Therefore, the early-onset population limited to <8% was likely the only source of spontaneous release that occurred physiologically. We further showed that this limited population was independent from those reluctant to fuse during AP firing and was used in both the hypertonic stimulation and the immediate phase of AP-evoked releases, thereby matching the characteristics of the readily releasable pool.SIGNIFICANCE STATEMENT Synaptic vesicles (SVs) are divided into functionally distinct pools depending on how they respond to action potential (AP) firing. The origin of SVs used for spontaneous fusion remains enigmatic despite intensive studies in cultured preparations. We addressed this question in intact neuromuscular synapses and provided two findings. First, prolonged AP inhibition activated a distinct population of fusion, which needs to be distinguished from genuine spontaneous fusion arising from a highly limited fraction. Second, the limited fraction observed early in the AP inhibition period exhibited the characteristics of readily releasable pool in the subsequent round of stimulation. Our study revealed that the origin of spontaneous SV fusion is restricted to the readily releasable pool among the SV pools involved in AP-evoked fusion.
Collapse
Affiliation(s)
- Yoshihiro Egashira
- Department of Physiology, Osaka Medical and Pharmaceutical University, Takatsuki, 569-8686, Japan
| | - Ayane Kumade
- Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Akio Ojida
- Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical and Pharmaceutical University, Takatsuki, 569-8686, Japan
| |
Collapse
|
17
|
Cember ATJ, Deck BL, Kelkar A, Faseyitan O, Zimmerman JP, Erickson B, Elliott MA, Coslett HB, Hamilton RH, Reddy R, Medaglia JD. Glutamate-Weighted Magnetic Resonance Imaging (GluCEST) Detects Effects of Transcranial Magnetic Stimulation to the Motor Cortex. Neuroimage 2022; 256:119191. [PMID: 35413447 DOI: 10.1016/j.neuroimage.2022.119191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/18/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is used in several FDA-approved treatments and, increasingly, to treat neurological disorders in off-label uses. However, the mechanism by which TMS causes physiological change is unclear, as are the origins of response variability in the general population. Ideally, objective in vivo biomarkers could shed light on these unknowns and eventually inform personalized interventions. Continuous theta-burst stimulation (cTBS) is a form of TMS observed to reduce motor evoked potentials (MEPs) for 60 min or longer post-stimulation, although the consistency of this effect and its mechanism continue to be under debate. Here, we use glutamate-weighted chemical exchange saturation transfer (gluCEST) magnetic resonance imaging (MRI) at ultra-high magnetic field (7T) to measure changes in glutamate concentration at the site of cTBS. We find that the gluCEST signal in the ipsilateral hemisphere of the brain generally decreases in response to cTBS, whereas consistent changes were not detected in the contralateral region of interest (ROI) or in subjects receiving sham stimulation.
Collapse
Affiliation(s)
- Abigail T J Cember
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Benjamin L Deck
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Apoorva Kelkar
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Olu Faseyitan
- Department of Neurology, Laboratory for Cognition and Neural Stimulation, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jared P Zimmerman
- Department of Neurology, Laboratory for Cognition and Neural Stimulation, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Erickson
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Mark A Elliott
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - H Branch Coslett
- Department of Neurology, Laboratory for Cognition and Neural Stimulation, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Roy H Hamilton
- Department of Neurology, Laboratory for Cognition and Neural Stimulation, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John D Medaglia
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA; Department of Neurology, Laboratory for Cognition and Neural Stimulation, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
López-Hernández T, Takenaka KI, Mori Y, Kongpracha P, Nagamori S, Haucke V, Takamori S. Clathrin-independent endocytic retrieval of SV proteins mediated by the clathrin adaptor AP-2 at mammalian central synapses. eLife 2022; 11:e71198. [PMID: 35014951 PMCID: PMC8752090 DOI: 10.7554/elife.71198] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
Neurotransmission is based on the exocytic fusion of synaptic vesicles (SVs) followed by endocytic membrane retrieval and the reformation of SVs. Conflicting models have been proposed regarding the mechanisms of SV endocytosis, most notably clathrin/adaptor protein complex 2 (AP-2)-mediated endocytosis and clathrin-independent ultrafast endocytosis. Partitioning between these pathways has been suggested to be controlled by temperature and stimulus paradigm. We report on the comprehensive survey of six major SV proteins to show that SV endocytosis in mouse hippocampal neurons at physiological temperature occurs independent of clathrin while the endocytic retrieval of a subset of SV proteins including the vesicular transporters for glutamate and GABA depend on sorting by the clathrin adaptor AP-2. Our findings highlight a clathrin-independent role of the clathrin adaptor AP-2 in the endocytic retrieval of select SV cargos from the presynaptic cell surface and suggest a revised model for the endocytosis of SV membranes at mammalian central synapses.
Collapse
Affiliation(s)
| | - Koh-ichiro Takenaka
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| | - Yasunori Mori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| | - Pornparn Kongpracha
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| |
Collapse
|
19
|
Egashira Y, Katsurabayashi S, Takamori S. Quantitative Analysis of Presynaptic Vesicle Luminal pH in Cultured Neurons. Methods Mol Biol 2022; 2417:45-58. [PMID: 35099790 DOI: 10.1007/978-1-0716-1916-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Newly generated synaptic vesicles (SVs) are re-acidified by the activity of the vacuolar-type H+-ATPases. Since H+ gradient across SV membrane drives neurotransmitter uptake into SVs, precise measurements of steady-state vesicular pH and dynamics of re-acidification process will provide important information concerning the H+-driven neurotransmitter uptake. Indeed, we recently demonstrated distinct features of steady state and dynamics of vesicular pH between glutamatergic vesicles and GABAergic vesicles in cultured hippocampal neurons. In this article, we focus on an experimental protocol and setup required to determine steady-state luminal pH of SVs in living neurons. This protocol is composed of efficient expression of a pH-sensitive fluorescent protein in the lumen of SVs in cultured neurons, and recordings of its fluorescence changes under a conventional fluorescent microscope during local applications of acidic buffer and ionophores-containing solution at a given pH. The method described here can be easily applied for measuring luminal pH of different types of secretory organelles and other acidic organelles such as lysosomes and endosomes in cultured cell preparations.
Collapse
Affiliation(s)
- Yoshihiro Egashira
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan.
- Department of Physiology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan.
| |
Collapse
|
20
|
Pulido C, Ryan TA. Synaptic vesicle pools are a major hidden resting metabolic burden of nerve terminals. SCIENCE ADVANCES 2021; 7:eabi9027. [PMID: 34860552 PMCID: PMC8641928 DOI: 10.1126/sciadv.abi9027] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/14/2021] [Indexed: 05/15/2023]
Abstract
The brain is a metabolically fragile organ as compromises in fuel availability rapidly degrade cognitive function. Nerve terminals are likely loci of this vulnerability as they do not store sufficient ATP molecules, needing to synthesize them during activity or suffer acute degradation in performance. The ability of on-demand ATP synthesis to satisfy activity-driven ATP hydrolysis will depend additionally on the magnitude of local resting metabolic processes. We show here that synaptic vesicle (SV) pools are a major source of presynaptic basal energy consumption. This basal metabolic processes arises from SV-resident V-ATPases compensating for a hidden resting H+ efflux from the SV lumen. We show that this steady-state H+ efflux (i) is mediated by vesicular neurotransmitter transporters, (ii) is independent of the SV cycle, (iii) accounts for up to 44% of the resting synaptic energy consumption, and (iv) contributes substantially to nerve terminal intolerance of fuel deprivation.
Collapse
Affiliation(s)
- Camila Pulido
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | | |
Collapse
|
21
|
Opponent vesicular transporters regulate the strength of glutamatergic neurotransmission in a C. elegans sensory circuit. Nat Commun 2021; 12:6334. [PMID: 34732711 PMCID: PMC8566550 DOI: 10.1038/s41467-021-26575-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
At chemical synapses, neurotransmitters are packaged into synaptic vesicles that release their contents in response to depolarization. Despite its central role in synaptic function, regulation of the machinery that loads vesicles with neurotransmitters remains poorly understood. We find that synaptic glutamate signaling in a C. elegans chemosensory circuit is regulated by antagonistic interactions between the canonical vesicular glutamate transporter EAT-4/VGLUT and another vesicular transporter, VST-1. Loss of VST-1 strongly potentiates glutamate release from chemosensory BAG neurons and disrupts chemotaxis behavior. Analysis of the circuitry downstream of BAG neurons shows that excess glutamate release disrupts behavior by inappropriately recruiting RIA interneurons to the BAG-associated chemotaxis circuit. Our data indicate that in vivo the strength of glutamatergic synapses is controlled by regulation of neurotransmitter packaging into synaptic vesicles via functional coupling of VGLUT and VST-1. The authors describe a vesicular transporter, VST-1, that is required in glutamatergic chemosensory neurons for chemotactic avoidance behavior in C. elegans. VST-1 antagonizes VGLUT-dependent packaging of glutamate into synaptic vesicles and determines the strength of synaptic glutamate signaling.
Collapse
|
22
|
Tomihara K, Satta K, Matsuzaki S, Yoshitake K, Yamamoto K, Uchiyama H, Yajima S, Futahashi R, Katsuma S, Osanai-Futahashi M, Kiuchi T. Mutations in a β-group of solute carrier gene are responsible for egg and eye coloration of the brown egg 4 (b-4) mutant in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 137:103624. [PMID: 34333110 DOI: 10.1016/j.ibmb.2021.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The brown egg 4 (b-4) is a recessive mutant in the silkworm (Bombyx mori), whose egg and adult compound eyes exhibit a reddish-brown color instead of normal purple and black, respectively. By double digest restriction-site associated DNA sequencing (ddRAD-seq) analysis, we narrowed down a region linked to the b-4 phenotype to approximately 1.1 Mb that contains 69 predicted gene models. RNA-seq analysis in a b-4 strain indicated that one of the candidate genes had a different transcription start site, which generates a short open reading frame. We also found that exon skipping was induced in the same gene due to an insertion of a transposable element in other two b-4 mutant strains. This gene encoded a putative amino acid transporter that belongs to the β-group of solute carrier (SLC) family and is orthologous to Drosophila eye color mutant gene, mahogany (mah). Accordingly, we named this gene Bmmah. We performed CRISPR/Cas9-mediated gene knockout targeting Bmmah. Several adult moths in generation 0 (G0) had totally or partially reddish-brown compound eyes. We also established three Bmmah knockout strains, all of which exhibit reddish-brown eggs and adult compound eyes. Furthermore, eggs from complementation crosses between the b-4 mutants and the Bmmah knockout mutants also exhibited reddish-brown color, which was similar to the b-4 mutant eggs, indicating that Bmmah is responsible for the b-4 phenotypes.
Collapse
Affiliation(s)
- Kenta Tomihara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Katsuya Satta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shohei Matsuzaki
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kimiko Yamamoto
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Science, National Agriculture and Food Research Organization, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shunsuke Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan; Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Susumu Katsuma
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mizuko Osanai-Futahashi
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan.
| | - Takashi Kiuchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
23
|
Mori Y, Takenaka KI, Fukazawa Y, Takamori S. The endosomal Q-SNARE, Syntaxin 7, defines a rapidly replenishing synaptic vesicle recycling pool in hippocampal neurons. Commun Biol 2021; 4:981. [PMID: 34408265 PMCID: PMC8373932 DOI: 10.1038/s42003-021-02512-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Upon the arrival of repetitive stimulation at the presynaptic terminals of neurons, replenishment of readily releasable synaptic vesicles (SVs) with vesicles in the recycling pool is important for sustained neurotransmitter release. Kinetics of replenishment and the available pool size define synaptic performance. However, whether all SVs in the recycling pool are recruited for release with equal probability and speed is unknown. Here, based on comprehensive optical imaging of various presynaptic endosomal SNARE proteins in cultured hippocampal neurons, all of which are implicated in organellar membrane fusion in non-neuronal cells, we show that part of the recycling pool bearing the endosomal Q-SNARE, syntaxin 7 (Stx7), is preferentially mobilized for release during high-frequency repetitive stimulation. Recruitment of the SV pool marked with an Stx7-reporter requires actin polymerization, as well as activation of the Ca2+/calmodulin signaling pathway, reminiscent of rapidly replenishing SVs characterized previously in calyx of Held synapses. Furthermore, disruption of Stx7 function by overexpressing its N-terminal domain selectively abolished this pool. Thus, our data indicate that endosomal membrane fusion involving Stx7 forms rapidly replenishing vesicles essential for synaptic responses to high-frequency repetitive stimulation, and also highlight functional diversities of endosomal SNAREs in generating distinct exocytic vesicles in the presynaptic terminals. Yasunori Mori et al. find that a subset of neurotransmitter-bearing synaptic vesicles are marked for release by the endosomal Q-SNARE protein Stx7. They show that Stx7 function is necessary for the rapid replenishment of synaptic vesicles that is needed to sustain synaptic transmission during high-frequency stimulation.
Collapse
Affiliation(s)
- Yasunori Mori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan. .,Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Koh-Ichiro Takenaka
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Research Center for Child Mental Development, Life Science Innovation Center, School of Medical Science, University of Fukui, Fukui, Japan
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan.
| |
Collapse
|
24
|
Sydnor VJ, Larsen B, Kohler C, Crow AJD, Rush SL, Calkins ME, Gur RC, Gur RE, Ruparel K, Kable JW, Young JF, Chawla S, Elliott MA, Shinohara RT, Nanga RPR, Reddy R, Wolf DH, Satterthwaite TD, Roalf DR. Diminished reward responsiveness is associated with lower reward network GluCEST: an ultra-high field glutamate imaging study. Mol Psychiatry 2021; 26:2137-2147. [PMID: 33479514 PMCID: PMC8292427 DOI: 10.1038/s41380-020-00986-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/22/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Low reward responsiveness (RR) is associated with poor psychological well-being, psychiatric disorder risk, and psychotropic treatment resistance. Functional MRI studies have reported decreased activity within the brain's reward network in individuals with RR deficits, however the neurochemistry underlying network hypofunction in those with low RR remains unclear. This study employed ultra-high field glutamate chemical exchange saturation transfer (GluCEST) imaging to investigate the hypothesis that glutamatergic deficits within the reward network contribute to low RR. GluCEST images were acquired at 7.0 T from 45 participants (ages 15-29, 30 females) including 15 healthy individuals, 11 with depression, and 19 with psychosis spectrum symptoms. The GluCEST contrast, a measure sensitive to local glutamate concentration, was quantified in a meta-analytically defined reward network comprised of cortical, subcortical, and brainstem regions. Associations between brain GluCEST contrast and Behavioral Activation System Scale RR scores were assessed using multiple linear regressions. Analyses revealed that reward network GluCEST contrast was positively and selectively associated with RR, but not other clinical features. Follow-up investigations identified that this association was driven by the subcortical reward network and network areas that encode the salience of valenced stimuli. We observed no association between RR and the GluCEST contrast within non-reward cortex. This study thus provides new evidence that reward network glutamate levels contribute to individual differences in RR. Decreased reward network excitatory neurotransmission or metabolism may be mechanisms driving reward network hypofunction and RR deficits. These findings provide a framework for understanding the efficacy of glutamate-modulating psychotropics such as ketamine for treating anhedonia.
Collapse
Affiliation(s)
- Valerie J. Sydnor
- Penn Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart Larsen
- Penn Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Kohler
- Penn Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA;,Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew J. D. Crow
- Penn Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sage L. Rush
- Penn Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Monica E. Calkins
- Penn Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA;,Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ruben C. Gur
- Penn Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA;,Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Raquel E. Gur
- Penn Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA;,Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosha Ruparel
- Penn Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA;,Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph W. Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA;,MindCORE, University of Pennsylvania, Philadelphia, PA, USA
| | - Jami F. Young
- Penn Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA;,Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sanjeev Chawla
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A. Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA;,Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ravinder Reddy
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel H. Wolf
- Penn Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA;,Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA, USA;,Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D. Satterthwaite
- Penn Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA;,Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA, USA;,Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David R. Roalf
- Penn Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA;,Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
25
|
Nakakubo Y, Abe S, Yoshida T, Takami C, Isa M, Wojcik SM, Brose N, Takamori S, Hori T. Vesicular Glutamate Transporter Expression Ensures High-Fidelity Synaptic Transmission at the Calyx of Held Synapses. Cell Rep 2021; 32:108040. [PMID: 32814044 DOI: 10.1016/j.celrep.2020.108040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/01/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022] Open
Abstract
Recycling of synaptic vesicles (SVs) at presynaptic terminals is required for sustained neurotransmitter release. Although SV endocytosis is a rate-limiting step for synaptic transmission, it is unclear whether the rate of the subsequent SV refilling with neurotransmitter also influences synaptic transmission. By analyzing vesicular glutamate transporter 1 (VGLUT1)-deficient calyx of Held synapses, in which both VGLUT1 and VGLUT2 are co-expressed in wild-type situation, we found that VGLUT1 loss causes a drastic reduction in SV refilling rate down to ∼25% of wild-type values, with only subtle changes in basic synaptic parameters. Strikingly, VGLUT1-deficient synapses exhibited abnormal synaptic failures within a few seconds during high-frequency repetitive firing, which was recapitulated by manipulating presynaptic Cl- concentrations to retard SV refilling. Our data show that the speed of SV refilling can be rate limiting for synaptic transmission under certain conditions that entail reduced VGLUT levels during development as well as various neuropathological processes.
Collapse
Affiliation(s)
- Yutaro Nakakubo
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Saeka Abe
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Tomofumi Yoshida
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan
| | - Chihiro Takami
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan
| | - Masayuki Isa
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen 37075, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Göttingen 37075, Germany
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan.
| | - Tetsuya Hori
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| |
Collapse
|
26
|
Guo M, Cui C, Song X, Jia L, Li D, Wang X, Dong H, Ma Y, Liu Y, Cui Z, Yi L, Li Z, Bi Y, Li Y, Liu Y, Duan W, Li C. Deletion of FGF9 in GABAergic neurons causes epilepsy. Cell Death Dis 2021; 12:196. [PMID: 33608505 PMCID: PMC7896082 DOI: 10.1038/s41419-021-03478-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor 9 (FGF9) has long been assumed to modulate multiple biological processes, yet very little is known about the impact of FGF9 on neurodevelopment. Herein, we found that loss of Fgf9 in olig1 progenitor cells induced epilepsy in mice, with pathological changes in the cortex. Then depleting Fgf9 in different neural populations revealed that epilepsy was associated with GABAergic neurons. Fgf9 CKO in GABAergic neuron (CKOVGAT) mice exhibited not only the most severe seizures, but also the most severe growth retardation and highest mortality. Fgf9 deletion in CKOVGAT mice caused neuronal apoptosis and decreased GABA expression, leading to a GABA/Glu imbalance and epilepsy. The adenylate cyclase/cyclic AMP and ERK signaling pathways were activated in this process. Recombinant FGF9 proteoliposomes could significantly decrease the number of seizures. Furthermore, the decrease of FGF9 was commonly observed in serum of epileptic patients, especially those with focal seizures. Thus, FGF9 plays essential roles in GABAergic neuron survival and epilepsy pathology, which could serve as a new target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Moran Guo
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Can Cui
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xueqin Song
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Lijing Jia
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Duan Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xiuli Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Hui Dong
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Yanqin Ma
- Jiangsu Nhwa Pharm. Co. Ltd, Nantong, Jiangsu, 210000, China
| | - Yaling Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Zhiqiang Cui
- Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Le Yi
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Zhongyao Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Yue Bi
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Yuanyuan Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Yakun Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Weisong Duan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China.
| | - Chunyan Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
27
|
Comprehensive phenotyping revealed transient startle response reduction and histopathological gadolinium localization to perineuronal nets after gadodiamide administration in rats. Sci Rep 2020; 10:22385. [PMID: 33372182 PMCID: PMC7769977 DOI: 10.1038/s41598-020-79374-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/01/2020] [Indexed: 01/28/2023] Open
Abstract
Gadolinium based contrast agents (GBCAs) are widely used in clinical MRI since the mid-1980s. Recently, concerns have been raised that trace amounts of Gadolinium (Gd), detected in brains even long time after GBCA application, may cause yet unrecognized clinical consequences. We therefore assessed the behavioral phenotype, neuro-histopathology, and Gd localization after repeated administration of linear (gadodiamide) or macrocyclic (gadobutrol) GBCA in rats. While most behavioral tests revealed no difference between treatment groups, we observed a transient and reversible decrease of the startle reflex after gadodiamide application. Residual Gd in the lateral cerebellar nucleus was neither associated with a general gene expression pathway deregulation nor with neuronal cell loss, but in gadodiamide-treated rats Gd was associated with the perineuronal net protein aggrecan and segregated to high molecular weight fractions. Our behavioral finding together with Gd distribution and speciation support a substance class difference for Gd presence in the brain after GBCA application.
Collapse
|
28
|
Pratt EP, Anson KJ, Tapper JK, Simpson DM, Palmer AE. Systematic Comparison of Vesicular Targeting Signals Leads to the Development of Genetically Encoded Vesicular Fluorescent Zn 2+ and pH Sensors. ACS Sens 2020; 5:3879-3891. [PMID: 33305939 DOI: 10.1021/acssensors.0c01231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetically encoded fluorescent sensors have been widely used to illuminate secretory vesicle dynamics and the vesicular lumen, including Zn2+ and pH, in living cells. However, vesicular sensors have a tendency to mislocalize and are susceptible to the acidic intraluminal pH. In this study, we performed a systematic comparison of five different vesicular proteins to target the fluorescent protein mCherry and a Zn2+ Förster resonance energy transfer (FRET) sensor to secretory vesicles. We found that motifs derived from vesicular cargo proteins, including chromogranin A (CgA), target vesicular puncta with greater efficacy than transmembrane proteins. To characterize vesicular Zn2+ levels, we developed CgA-Zn2+ FRET sensor fusions with existing sensors ZapCY1 and eCALWY-4 and characterized subcellular localization and the influence of pH on sensor performance. We simultaneously monitored Zn2+ and pH in individual secretory vesicles by leveraging the acceptor fluorescent protein as a pH sensor and found that pH influenced FRET measurements in situ. While unable to characterize vesicular Zn2+ at the single-vesicle level, we were able to monitor Zn2+ dynamics in populations of vesicles and detected high vesicular Zn2+ in MIN6 cells compared to lower levels in the prostate cancer cell line LnCaP. The combination of CgA-ZapCY1 and CgA-eCALWY-4 allows for measurement of Zn2+ from pM to nM ranges.
Collapse
Affiliation(s)
- Evan P.S. Pratt
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - Kelsie J. Anson
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - Justin K. Tapper
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - David M. Simpson
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| | - Amy E. Palmer
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, UCB 596, Boulder, Colorado 80309-0401, United States
| |
Collapse
|
29
|
Eriksen J, Li F, Edwards RH. The mechanism and regulation of vesicular glutamate transport: Coordination with the synaptic vesicle cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183259. [PMID: 32147354 DOI: 10.1016/j.bbamem.2020.183259] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/30/2023]
Abstract
The transport of classical neurotransmitters into synaptic vesicles generally relies on a H+ electrochemical gradient (∆μH+). Synaptic vesicle uptake of glutamate depends primarily on the electrical component ∆ψ as the driving force, rather than the chemical component ∆pH. However, the vesicular glutamate transporters (VGLUTs) belong to the solute carrier 17 (SLC17) family, which includes closely related members that function as H+ cotransporters. Recent work has also shown that the VGLUTs undergo allosteric regulation by H+ and Cl-, and exhibit an associated Cl- conductance. These properties appear to coordinate VGLUT activity with the large ionic shifts that accompany the rapid recycling of synaptic vesicles driven by neural activity. Recent structural information also suggests common mechanisms that underlie the apparently divergent function of SLC17 family members, and that confer allosteric regulation.
Collapse
Affiliation(s)
- Jacob Eriksen
- Department of Physiology, UCSF School of Medicine, United States of America; Department of Neurology, UCSF School of Medicine, United States of America
| | - Fei Li
- Department of Physiology, UCSF School of Medicine, United States of America; Department of Neurology, UCSF School of Medicine, United States of America
| | - Robert H Edwards
- Department of Physiology, UCSF School of Medicine, United States of America; Department of Neurology, UCSF School of Medicine, United States of America.
| |
Collapse
|
30
|
Liu C, Huang Z, Jiang W, Liu X, Li J, Han X, Tu H, Qiu L, Tan W. Programmable pH-Responsive DNA Nanosensors for Imaging Exocytosis and Retrieval of Synaptic Vesicles. Anal Chem 2020; 92:3620-3626. [DOI: 10.1021/acs.analchem.9b04493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zike Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wei Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Xiaojing Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jin Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Xiaoyan Han
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Haijun Tu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Foundation for Applied Molecular Evolution, 13709 Progress Boulevard, Alachua, Florida 32615, United States
| |
Collapse
|
31
|
Sterlini B, Fruscione F, Baldassari S, Benfenati F, Zara F, Corradi A. Progress of Induced Pluripotent Stem Cell Technologies to Understand Genetic Epilepsy. Int J Mol Sci 2020; 21:ijms21020482. [PMID: 31940887 PMCID: PMC7013950 DOI: 10.3390/ijms21020482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/20/2022] Open
Abstract
The study of the pathomechanisms by which gene mutations lead to neurological diseases has benefit from several cellular and animal models. Recently, induced Pluripotent Stem Cell (iPSC) technologies have made possible the access to human neurons to study nervous system disease-related mechanisms, and are at the forefront of the research into neurological diseases. In this review, we will focalize upon genetic epilepsy, and summarize the most recent studies in which iPSC-based technologies were used to gain insight on the molecular bases of epilepsies. Moreover, we discuss the latest advancements in epilepsy cell modeling. At the two dimensional (2D) level, single-cell models of iPSC-derived neurons lead to a mature neuronal phenotype, and now allow a reliable investigation of synaptic transmission and plasticity. In addition, functional characterization of cerebral organoids enlightens neuronal network dynamics in a three-dimensional (3D) structure. Finally, we discuss the use of iPSCs as the cutting-edge technology for cell therapy in epilepsy.
Collapse
Affiliation(s)
- Bruno Sterlini
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy;
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy;
| | - Floriana Fruscione
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Largo P. Daneo 3, 16132 Genoa, Italy;
| | - Simona Baldassari
- Unità Operativa Complessa Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini, Genova Italy, Via G. Gaslini 5, 16147 Genoa, Italy;
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Largo P. Daneo 3, 16132 Genoa, Italy;
- Unità Operativa Complessa Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini, Genova Italy, Via G. Gaslini 5, 16147 Genoa, Italy;
- Correspondence: (F.Z.); (A.C.)
| | - Anna Corradi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
- Correspondence: (F.Z.); (A.C.)
| |
Collapse
|
32
|
Yamashita M, Kawaguchi SY, Hori T, Takahashi T. Vesicular GABA Uptake Can Be Rate Limiting for Recovery of IPSCs from Synaptic Depression. Cell Rep 2019; 22:3134-3141. [PMID: 29562170 DOI: 10.1016/j.celrep.2018.02.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 11/16/2022] Open
Abstract
Synaptic efficacy plays crucial roles in neuronal circuit operation and synaptic plasticity. Presynaptic determinants of synaptic efficacy are neurotransmitter content in synaptic vesicles and the number of vesicles undergoing exocytosis at a time. Bursts of presynaptic firings depress synaptic efficacy, mainly due to depletion of releasable vesicles, whereas recovery from strong depression is initiated by endocytic vesicle retrieval followed by refilling of vesicles with neurotransmitter. We washed out presynaptic cytosolic GABA to induce a rundown of IPSCs at cerebellar inhibitory cell pairs in slices from rats and then allowed fast recovery by elevating GABA concentration using photo-uncaging. The time course of this recovery coincided with that of IPSCs from activity-dependent depression induced by a train of high-frequency stimulation. We conclude that vesicular GABA uptake can be a limiting step for the recovery of inhibitory neurotransmission from synaptic depression.
Collapse
Affiliation(s)
- Manami Yamashita
- Laboratory of Molecular Synaptic Function, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan; Department of Physiology, Faculty of Medicine, Osaka Medical College, Osaka 569-8686, Japan
| | - Shin-Ya Kawaguchi
- Society-Academia Collaboration for Innovation, Kyoto University, Kyoto 606-8501, Japan
| | - Tetsuya Hori
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan.
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa 904-0495, Japan.
| |
Collapse
|
33
|
Expression of plasma membrane calcium ATPases confers Ca 2+/H + exchange in rodent synaptic vesicles. Sci Rep 2019; 9:4289. [PMID: 30862855 PMCID: PMC6414521 DOI: 10.1038/s41598-019-40557-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Ca2+ transport into synaptic vesicles (SVs) at the presynaptic terminals has been proposed to be an important process for regulating presynaptic [Ca2+] during stimulation as well as at rest. However, the molecular identity of the transport system remains elusive. Previous studies have demonstrated that isolated SVs exhibit two distinct Ca2+ transport systems depending on extra-vesicular (cytosolic) pH; one is mediated by a high affinity Ca2+ transporter which is active at neutral pH and the other is mediated by a low affinity Ca2+/H+ antiporter which is maximally active at alkaline pH of 8.5. In addition, synaptic vesicle glycoprotein 2 s (SV2s), a major SV component, have been proposed to contribute to Ca2+ clearance from the presynaptic cytoplasm. Here, we show that at physiological pH, the plasma membrane Ca2+ ATPases (PMCAs) are responsible for both the Ca2+/H+ exchange activity and Ca2+ uptake into SVs. The Ca2+/H+ exchange activity monitored by acidification assay exhibited high affinity for Ca2+ (Km ~ 400 nM) and characteristic divalent cation selectivity for the PMCAs. Both activities were remarkably reduced by PMCA blockers, but not by a blocker of the ATPase that transfers Ca2+ from the cytosol to the lumen of sarcoplasmic endoplasmic reticulum (SERCA) at physiological pH. Furthermore, we rule out the contribution of SV2s, putative Ca2+ transporters on SVs, since both Ca2+/H+ exchange activity and Ca2+ transport were unaffected in isolated vesicles derived from SV2-deficient brains. Finally, using a PMCA1-pHluorin construct that enabled us to monitor cellular distribution and recycling properties in living neurons, we demonstrated that PMCA1-pHluorin localized to intracellular acidic compartments and recycled at presynaptic terminals in an activity-dependent manner. Collectively, our results imply that vesicular PMCAs may play pivotal roles in both presynaptic Ca2+ homeostasis and the modulation of H+ gradient in SVs.
Collapse
|
34
|
Herman MA, Trimbuch T, Rosenmund C. Differential pH Dynamics in Synaptic Vesicles From Intact Glutamatergic and GABAergic Synapses. Front Synaptic Neurosci 2018; 10:44. [PMID: 30559659 PMCID: PMC6287022 DOI: 10.3389/fnsyn.2018.00044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023] Open
Abstract
Synaptic transmission requires the presynaptic release of neurotransmitter from synaptic vesicles (SVs) onto the postsynaptic neuron. Vesicular neurotransmitter transporter proteins, which use a V-ATPase-generated proton gradient, play a crucial role in packaging neurotransmitter into SVs. Recent work has revealed different proton dynamics in SVs expressing the vesicular glutamate transporter (VGLUT) or the vesicular GABA transporter (VGAT) proteins. At the whole synapse level, this results in different steady-state pH and different reacidification dynamics during SV recycling (Egashira et al., 2016). In isolated SVs, the presence of VGAT causes a higher steady state pH, which is correlated with a faster proton efflux rate (Farsi et al., 2016). To address whether proton efflux from GABAergic and glutamatergic SVs in intact synapses differs, we applied a glutamatergic- or GABAergic neuron-specific expression strategy (Chang et al., 2014) to express a genetically encoded pH sensor (synaptophysin pHluorin; SypHy) and/or light-activated proton pump (pHoenix; (Rost et al., 2015). We confirm, with SypHy post-stimulation fluorescence dynamics, that the pH profile of recycling GABAergic SVs differs from that of recycling glutamatergic SVs (Egashira et al., 2016). Using light-activation of pHoenix in pH-neutral vesicles, we investigated the pH dynamics of actively filling vesicles, and could show that proton efflux from GABAergic SVs is indeed initially faster than glutamatergic SVs in intact synapses. Finally, we compared the filling rate of empty glutamatergic and GABAergic vesicles using pHoenix as a proton source, and find a slightly faster filling of glutamatergic vs. GABAergic SVs.
Collapse
Affiliation(s)
- Melissa A Herman
- Institute of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
35
|
Aubrey KR, Supplisson S. Heterogeneous Signaling at GABA and Glycine Co-releasing Terminals. Front Synaptic Neurosci 2018; 10:40. [PMID: 30524262 PMCID: PMC6232519 DOI: 10.3389/fnsyn.2018.00040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/12/2018] [Indexed: 11/14/2022] Open
Abstract
The corelease of several neurotransmitters from a single synaptic vesicle has been observed at many central synapses. Nevertheless, the signaling synergy offered by cotransmission and the mechanisms that maintain the optimal release and detection of neurotransmitters at mixed synapses remain poorly understood, thus limiting our ability to interpret changes in synaptic signaling and identify molecules important for plasticity. In the brainstem and spinal cord, GABA and glycine cotransmission is facilitated by a shared vesicular transporter VIAAT (also named VGAT), and occurs at many immature inhibitory synapses. As sensory and motor networks mature, GABA/glycine cotransmission is generally replaced by either pure glycinergic or GABAergic transmission, and the functional role for the continued corelease of GABA and glycine is unclear. Whether or not, and how, the GABA/glycine content is balanced in VIAAT-expressing vesicles from the same terminal, and how loading variability effects the strength of inhibitory transmission is not known. Here, we use a combination of loose-patch (LP) and whole-cell (WC) electrophysiology in cultured spinal neurons of GlyT2:eGFP mice to sample miniature inhibitory post synaptic currents (mIPSCs) that originate from individual GABA/glycine co-releasing synapses and develop a modeling approach to illustrate the gradual change in mIPSC phenotypes as glycine replaces GABA in vesicles. As a consistent GABA/glycine balance is predicted if VIAAT has access to both amino-acids, we test whether vesicle exocytosis from a single terminal evokes a homogeneous population of mixed mIPSCs. We recorded mIPSCs from 18 individual synapses and detected glycine-only mIPSCs in 4/18 synapses sampled. The rest (14/18) were co-releasing synapses that had a significant proportion of mixed GABA/glycine mIPSCs with a characteristic biphasic decay. The majority (9/14) of co-releasing synapses did not have a homogenous phenotype, but instead signaled with a combination of mixed and pure mIPSCs, suggesting that there is variability in the loading and/or storage of GABA and glycine at the level of individual vesicles. Our modeling predicts that when glycine replaces GABA in synaptic vesicles, the redistribution between the peak amplitude and charge transfer of mIPSCs acts to maintain the strength of inhibition while increasing the temporal precision of signaling.
Collapse
Affiliation(s)
- Karin R Aubrey
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris Paris, France.,Neurobiology of Pain Laboratory, Kolling Institute, Royal North Shore Hospital St. Leonards, NSW, Australia.,Pain Management Research Institute, Faculty of Medicine and Health, University of Sydney-Northern Clinical School St. Leonards, NSW, Australia
| | - Stéphane Supplisson
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris Paris, France
| |
Collapse
|
36
|
Development of lentiviral vectors for efficient glutamatergic-selective gene expression in cultured hippocampal neurons. Sci Rep 2018; 8:15156. [PMID: 30310105 PMCID: PMC6181963 DOI: 10.1038/s41598-018-33509-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/01/2018] [Indexed: 01/11/2023] Open
Abstract
Targeting gene expression to a particular subset of neurons helps study the cellular function of the nervous system. Although neuron-specific promoters, such as the synapsin I promoter and the α-CaMKII promoter, are known to exhibit selectivity for excitatory glutamatergic neurons in vivo, the cell type-specificity of these promoters has not been thoroughly tested in culture preparations. Here, by using hippocampal culture preparation from the VGAT-Venus transgenic mice, we examined the ability of five putative promoter sequences of glutamatergic-selective markers including synapsin I, α-CaMKII, the vesicular glutamate transporter 1 (VGLUT1), Dock10 and Prox1. Among these, a genomic fragment containing a 2.1 kb segment upstream of the translation start site (TSS) of the VGLUT1 implemented in a lentiviral vector with the Tet-Off inducible system achieved the highest preferential gene expression in glutamatergic neurons. Analysis of various lengths of the VGLUT1 promoter regions identified a segment between −2.1 kb and −1.4 kb from the TSS as a responsible element for the glutamatergic selectivity. Consistently, expression of channelrhodopsin under this promoter sequence allowed for selective light-evoked activation of excitatory neurons. Thus, the lentiviral system carrying the VGLUT1 promoter fragment can be used to effectively target exogenous gene expression to excitatory glutamatergic neurons in cultures.
Collapse
|
37
|
Soto E, Ortega-Ramírez A, Vega R. Protons as Messengers of Intercellular Communication in the Nervous System. Front Cell Neurosci 2018; 12:342. [PMID: 30364044 PMCID: PMC6191491 DOI: 10.3389/fncel.2018.00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022] Open
Abstract
In this review, evidence demonstrating that protons (H+) constitute a complex, regulated intercellular signaling mechanisms are presented. Given that pH is a strictly regulated variable in multicellular organisms, localized extracellular pH changes may constitute significant signals of cellular processes that occur in a cell or a group of cells. Several studies have demonstrated that the low pH of synaptic vesicles implies that neurotransmitter release is always accompanied by the co-release of H+ into the synaptic cleft, leading to transient extracellular pH shifts. Also, evidence has accumulated indicating that extracellular H+ concentration regulation is complex and implies a source of protons in a network of transporters, ion exchangers, and buffer capacity of the media that may finally establish the extracellular proton concentration. The activation of membrane transporters, increased production of CO2 and of metabolites, such as lactate, produce significant extracellular pH shifts in nano- and micro-domains in the central nervous system (CNS), constituting a reliable signal for intercellular communication. The acid sensing ion channels (ASIC) function as specific signal sensors of proton signaling mechanism, detecting subtle variations of extracellular H+ in a range varying from pH 5 to 8. The main question in relation to this signaling system is whether it is only synaptically restricted, or a volume modulator of neuron excitability. This signaling system may have evolved from a metabolic activity detection mechanism to a highly localized extracellular proton dependent communication mechanism. In this study, evidence showing the mechanisms of regulation of extracellular pH shifts and of the ASICs and its function in modulating the excitability in various systems is reviewed, including data and its role in synaptic neurotransmission, volume transmission and even segregated neurotransmission, leading to a reliable extracellular signaling mechanism.
Collapse
Affiliation(s)
- Enrique Soto
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Rosario Vega
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
38
|
Gan Q, Watanabe S. Synaptic Vesicle Endocytosis in Different Model Systems. Front Cell Neurosci 2018; 12:171. [PMID: 30002619 PMCID: PMC6031744 DOI: 10.3389/fncel.2018.00171] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/01/2018] [Indexed: 11/13/2022] Open
Abstract
Neurotransmission in complex animals depends on a choir of functionally distinct synapses releasing neurotransmitters in a highly coordinated manner. During synaptic signaling, vesicles fuse with the plasma membrane to release their contents. The rate of vesicle fusion is high and can exceed the rate at which synaptic vesicles can be re-supplied by distant sources. Thus, local compensatory endocytosis is needed to replenish the synaptic vesicle pools. Over the last four decades, various experimental methods and model systems have been used to study the cellular and molecular mechanisms underlying synaptic vesicle cycle. Clathrin-mediated endocytosis is thought to be the predominant mechanism for synaptic vesicle recycling. However, recent studies suggest significant contribution from other modes of endocytosis, including fast compensatory endocytosis, activity-dependent bulk endocytosis, ultrafast endocytosis, as well as kiss-and-run. Currently, it is not clear whether a universal model of vesicle recycling exist for all types of synapses. It is possible that each synapse type employs a particular mode of endocytosis. Alternatively, multiple modes of endocytosis operate at the same synapse, and the synapse toggles between different modes depending on its activity level. Here we compile review and research articles based on well-characterized model systems: frog neuromuscular junctions, C. elegans neuromuscular junctions, Drosophila neuromuscular junctions, lamprey reticulospinal giant axons, goldfish retinal ribbon synapses, the calyx of Held, and rodent hippocampal synapses. We will compare these systems in terms of their known modes and kinetics of synaptic vesicle endocytosis, as well as the underlying molecular machineries. We will also provide the future development of this field.
Collapse
Affiliation(s)
- Quan Gan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
39
|
Shinoda H, Shannon M, Nagai T. Fluorescent Proteins for Investigating Biological Events in Acidic Environments. Int J Mol Sci 2018; 19:E1548. [PMID: 29789517 PMCID: PMC6032295 DOI: 10.3390/ijms19061548] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 12/11/2022] Open
Abstract
The interior lumen of acidic organelles (e.g., endosomes, secretory granules, lysosomes and plant vacuoles) is an important platform for modification, transport and degradation of biomolecules as well as signal transduction, which remains challenging to investigate using conventional fluorescent proteins (FPs). Due to the highly acidic luminal environment (pH ~ 4.5⁻6.0), most FPs and related sensors are apt to lose their fluorescence. To address the need to image in acidic environments, several research groups have developed acid-tolerant FPs in a wide color range. Furthermore, the engineering of pH insensitive sensors, and their concomitant use with pH sensitive sensors for the purpose of pH-calibration has enabled characterization of the role of luminal ions. In this short review, we summarize the recent development of acid-tolerant FPs and related functional sensors and discuss the future prospects for this field.
Collapse
Affiliation(s)
- Hajime Shinoda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan.
| | - Michael Shannon
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
| | - Takeharu Nagai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan.
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
| |
Collapse
|
40
|
Farsi Z, Jahn R, Woehler A. Proton electrochemical gradient: Driving and regulating neurotransmitter uptake. Bioessays 2017; 39. [PMID: 28383767 DOI: 10.1002/bies.201600240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Accumulation of neurotransmitters in the lumen of synaptic vesicles (SVs) relies on the activity of the vacuolar-type H+ -ATPase. This pump drives protons into the lumen, generating a proton electrochemical gradient (ΔμH+ ) across the membrane. Recent work has demonstrated that the balance between the chemical (ΔpH) and electrical (ΔΨ) components of ΔμH+ is regulated differently by some distinct vesicle types. As different neurotransmitter transporters use ΔpH and ΔΨ with different relative efficiencies, regulation of this gradient balance has the potential to influence neurotransmitter uptake. Nevertheless, the underlying mechanisms responsible for this regulation remain poorly understood. In this review, we provide an overview of current neurotransmitter uptake models, with a particular emphasis on the distinct roles of the electrical and chemical gradients and current hypotheses for regulatory mechanisms.
Collapse
Affiliation(s)
- Zohreh Farsi
- Max-Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andrew Woehler
- Max-Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| |
Collapse
|