1
|
Steensma P, Eisenhut M, Colinas M, Rosado-Souza L, Fernie AR, Weber APM, Fitzpatrick TB. PYRIDOX(AM)INE 5'-PHOSPHATE OXIDASE3 of Arabidopsis thaliana maintains carbon/nitrogen balance in distinct environmental conditions. PLANT PHYSIOLOGY 2023; 193:1433-1455. [PMID: 37453131 PMCID: PMC10517258 DOI: 10.1093/plphys/kiad411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
The identification of factors that regulate C/N utilization in plants can make a substantial contribution to optimization of plant health. Here, we explored the contribution of pyridox(am)ine 5'-phosphate oxidase3 (PDX3), which regulates vitamin B6 homeostasis, in Arabidopsis (Arabidopsis thaliana). Firstly, N fertilization regimes showed that ammonium application rescues the leaf morphological phenotype of pdx3 mutant lines but masks the metabolite perturbance resulting from impairment in utilizing soil nitrate as a source of N. Without fertilization, pdx3 lines suffered a C/N imbalance and accumulated nitrogenous compounds. Surprisingly, exploration of photorespiration as a source of endogenous N driving this metabolic imbalance, by incubation under high CO2, further exacerbated the pdx3 growth phenotype. Interestingly, the amino acid serine, critical for growth and N management, alleviated the growth phenotype of pdx3 plants under high CO2, likely due to the requirement of pyridoxal 5'-phosphate for the phosphorylated pathway of serine biosynthesis under this condition. Triggering of thermomorphogenesis by growth of plants at 28 °C (instead of 22 °C) did not appear to require PDX3 function, and we observed that the consequent drive toward C metabolism counters the C/N imbalance in pdx3. Further, pdx3 lines suffered a salicylic acid-induced defense response, probing of which unraveled that it is a protective strategy mediated by nonexpressor of pathogenesis related1 (NPR1) and improves fitness. Overall, the study demonstrates the importance of vitamin B6 homeostasis as managed by the salvage pathway enzyme PDX3 to growth in diverse environments with varying nutrient availability and insight into how plants reprogram their metabolism under such conditions.
Collapse
Affiliation(s)
- Priscille Steensma
- Department of Plant Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Maite Colinas
- Department of Plant Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Laise Rosado-Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | | |
Collapse
|
2
|
Papageorgiou AC. Structural Characterization of Multienzyme Assemblies: An Overview. Methods Mol Biol 2022; 2487:51-72. [PMID: 35687229 DOI: 10.1007/978-1-0716-2269-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multienzyme assemblies have attracted significant attention in recent years for use in industrial applications instead of single enzymes. Owing to their ability to catalyze cascade reactions, multienzyme assemblies have become inspirational tools for the in vitro construction of multienzyme molecular machines. The use of such molecular machines could offer several advantages such as fewer side reactions, a high product yield, a fast reaction speed, easy product separation, a tolerable toxic environment, and robust system operability compared to current microbial cell catalytic systems. Besides, they can provide all the benefits found in the use of enzymes, including reusability, catalytic efficiency, and specificity. Similar to single enzymes, multienzyme assemblies could offer economical and environmentally friendly alternatives to conventional catalysts and play a central role as biocatalysts in green chemistry applications. However, detailed characterization of multienzyme assemblies and a full understanding of their mechanistic details are required for their efficient use in industrial biotransformations. Since the determination of the first enzyme structure in 1965, structural information has played a pivotal role in the characterization of enzymes and elucidation of their structure-function relationship. Among the structural biology techniques, X-ray crystallography has provided key mechanistic details into multienzyme assemblies. Here, the structural characterization of multienzyme assemblies is reviewed and several examples are provided.
Collapse
|
3
|
Rodrigues MJ, Giri N, Royant A, Zhang Y, Bolton R, Evans G, Ealick SE, Begley T, Tews I. Trapping and structural characterisation of a covalent intermediate in vitamin B6 biosynthesis catalysed by the Pdx1 PLP synthase. RSC Chem Biol 2022; 3:227-230. [PMID: 35360887 PMCID: PMC8827014 DOI: 10.1039/d1cb00160d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/25/2021] [Indexed: 12/01/2022] Open
Abstract
The Pdx1 enzyme catalyses condensation of two carbohydrates and ammonia to form pyridoxal 5-phosphate (PLP) via an imine relay mechanism of carbonyl intermediates. The I333 intermediate characterised here using structural, UV-vis absorption spectroscopy and mass spectrometry analyses rationalises stereoselective deprotonation and subsequent substrate assisted phosphate elimination, central to PLP biosynthesis. Explaining stereoselective deprotonation and phosphate elimination in PLP biosynthesis through crystal structure, UV-vis absorption spectroscopic and mass spectrometric characterisation of a chromophoric intermediate.![]()
Collapse
Affiliation(s)
- Matthew J. Rodrigues
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Nitai Giri
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Antoine Royant
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), CS 10090, Grenoble Cedex 9 38044, France
- European Synchrotron Radiation Facility, CS 40220, Grenoble Cedex 9 38043, France
| | - Yang Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Rachel Bolton
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Steve E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Tadhg Begley
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Ivo Tews
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
4
|
Novikova IV, Zhou M, Evans JE, Du C, Parra M, Kim DN, VanAernum ZL, Shaw JB, Hellmann H, Wysocki VH. Tunable Heteroassembly of a Plant Pseudoenzyme-Enzyme Complex. ACS Chem Biol 2021; 16:2315-2325. [PMID: 34520180 PMCID: PMC9979268 DOI: 10.1021/acschembio.1c00475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudoenzymes have emerged as key regulatory elements in all kingdoms of life despite being catalytically nonactive. Yet many factors defining why one protein is active while its homologue is inactive remain uncertain. For pseudoenzyme-enzyme pairs, the similarity of both subunits can often hinder conventional characterization approaches. In plants, a pseudoenzyme, PDX1.2, positively regulates vitamin B6 production by association with its active catalytic homologues such as PDX1.3 through an unknown assembly mechanism. Here we used an integrative experimental approach to learn that such pseudoenzyme-enzyme pair associations result in heterocomplexes of variable stoichiometry, which are unexpectedly tunable. We also present the atomic structure of the PDX1.2 pseudoenzyme as well as the population averaged PDX1.2-PDX1.3 pseudoenzyme-enzyme pair. Finally, we dissected hetero-dodecamers of each stoichiometry to understand the arrangement of monomers in the heterocomplexes and identified symmetry-imposed preferences in PDX1.2-PDX1.3 interactions. Our results provide a new model of pseudoenzyme-enzyme interactions and their native heterogeneity.
Collapse
Affiliation(s)
- Irina V. Novikova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - James E. Evans
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; School of Biological Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Chen Du
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States; Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Marcelina Parra
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Doo Nam Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States; Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jared B. Shaw
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States; Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Barra ALC, Ullah N, Morão LG, Wrenger C, Betzel C, Nascimento AS. Structural Dynamics and Perspectives of Vitamin B6 Biosynthesis Enzymes in Plasmodium: Advances and Open Questions. Front Cell Infect Microbiol 2021; 11:688380. [PMID: 34327152 PMCID: PMC8313854 DOI: 10.3389/fcimb.2021.688380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is still today one of the most concerning diseases, with 219 million infections in 2019, most of them in Sub-Saharan Africa and Latin America, causing approx. 409,000 deaths per year. Despite the tremendous advances in malaria treatment and prevention, there is still no vaccine for this disease yet available and the increasing parasite resistance to already existing drugs is becoming an alarming issue globally. In this context, several potential targets for the development of new drug candidates have been proposed and, among those, the de novo biosynthesis pathway for the B6 vitamin was identified to be a promising candidate. The reason behind its significance is the absence of the pathway in humans and its essential presence in the metabolism of major pathogenic organisms. The pathway consists of two enzymes i.e. Pdx1 (PLP synthase domain) and Pdx2 (glutaminase domain), the last constituting a transient and dynamic complex with Pdx1 as the prime player and harboring the catalytic center. In this review, we discuss the structural biology of Pdx1 and Pdx2, together with and the understanding of the PLP biosynthesis provided by the crystallographic data. We also highlight the existing evidence of the effect of PLP synthesis inhibition on parasite proliferation. The existing data provide a flourishing environment for the structure-based design and optimization of new substrate analogs that could serve as inhibitors or even suicide inhibitors.
Collapse
Affiliation(s)
- Angélica Luana C Barra
- Pólo TerRa, São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.,Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | - Najeeb Ullah
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | - Luana G Morão
- Pólo TerRa, São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, Hamburg, Germany
| | | |
Collapse
|
6
|
|
7
|
Neugart S, Hideg É, Czégény G, Schreiner M, Strid Å. Ultraviolet-B radiation exposure lowers the antioxidant capacity in the Arabidopsis thaliana pdx1.3-1 mutant and leads to glucosinolate biosynthesis alteration in both wild type and mutant. Photochem Photobiol Sci 2020; 19:217-228. [PMID: 31961357 DOI: 10.1039/c9pp00342h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pyridoxine (vitamin B6) and its vitamers are used by living organisms both as enzymatic cofactors and as antioxidants. We used Arabidopsis pyridoxine biosynthesis mutant pdx1.3-1 to study the involvement of the PLP-synthase main polypeptide PDX1 in plant responses to ultraviolet radiation of two different qualities, one containing primarily UV-A (315-400 nm) and the other containing both UV-A and UV-B (280-315 nm). The antioxidant capacity and the flavonoid and glucosinolate (GS) profiles were examined. As an indicator of stress, Fv/Fm of photosystem II reaction centers was used. In pdx1.3-1, UV-A + B exposure led to a significant 5% decrease in Fv/Fm on the last day (day 15), indicating mild stress at this time point. The antioxidant capacity of Col-0 wildtype increased significantly (50-73%) after 1 and 3 days of UV-A + B. Instead, in pdx1.3-1, the antioxidant capacity significantly decreased by 44-52% over the same time period, proving the importance of a full complement of functional PDX1 genes for the detoxification of reactive oxygen species. There were no significant changes in the flavonoid glycoside profile under any light condition. However, the GS profile was significantly altered, both with respect to Arabidopsis accession and exposure to UV. The difference in flavonoid and GS profiles reflects that the GS biosynthesis pathway contains at least one pyridoxine-dependent enzyme, whereas no such enzyme is used in flavonoid biosynthesis. Also, there was strong correlation between the antioxidant capacity and the content of some GS compounds. Our results show that vitamin B6 vitamers, functioning both as antioxidants and co-factors, are of importance for the physiological fitness of plants.
Collapse
Affiliation(s)
- Susanne Neugart
- Division of Quality and Sensory of Plant Products, University of Göttingen, Göttingen, Germany
| | | | | | | | | |
Collapse
|
8
|
Dell'Aglio E, Dalvit I, Loubéry S, Fitzpatrick TB. Clarification of the dispensability of PDX1.2 for Arabidopsis viability using CRISPR/Cas9. BMC PLANT BIOLOGY 2019; 19:464. [PMID: 31684863 PMCID: PMC6829848 DOI: 10.1186/s12870-019-2071-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/09/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND PDX1.2 has recently been shown to be a regulator of vitamin B6 biosynthesis in plants and is implicated in biotic and abiotic stress resistance. PDX1.2 expression is strongly and rapidly induced by heat stress. Interestingly, PDX1.2 is restricted to eudicota, wherein it behaves as a non-catalytic pseudoenzyme and is suggested to provide an adaptive advantage to this clade. A first report on an Arabidopsis insertion mutant claims that PDX1.2 is indispensable for viability, being essential for embryogenesis. However, a later study using an independent insertion allele suggests that knockout mutants of pdx1.2 are viable. Therefore, the essentiality of PDX1.2 for Arabidopsis viability is a matter of debate. Given the important implications of PDX1.2 in stress responses, it is imperative to clarify if it is essential for plant viability. RESULTS We have studied the previously reported insertion alleles of PDX1.2, one of which is claimed to be essential for embryogenesis (pdx1.2-1), whereas the other is viable (pdx1.2-2). Our study shows that pdx1.2-1 carries multiple T-DNA insertions, but the T-DNA insertion in PDX1.2 is not responsible for the loss of embryogenesis. By contrast, the pdx1.2-2 allele is an overexpressor of PDX1.2 under standard growth conditions and not a null allele as previously reported. Nonetheless, upregulation of PDX1.2 expression under heat stress is impaired in this mutant line. In wild type Arabidopsis, studies of PDX1.2-YFP fusion proteins show that the protein is enhanced under heat stress conditions. To clarify if PDX1.2 is essential for Arabidopsis viability, we generated several independent mutant lines using the CRISPR-Cas9 gene editing technology. All of these lines are viable and behave similar to wild type under standard growth conditions. Reciprocal crosses of a subset of the CRISPR lines with pdx1.2-1 recovers viability of the latter line and demonstrates that knocking out the functionality of PDX1.2 does not impair embryogenesis. CONCLUSIONS Gene editing reveals that PDX1.2 is dispensable for Arabidopsis viability and resolves conflicting reports in the literature on its function.
Collapse
Affiliation(s)
- Elisa Dell'Aglio
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
- Present Address: Biologie Fonctionnelle, Insectes et Interactions, Institut National des Sciences Appliquées de Lyon, Institut National de la Recherche Agronomique, University of Lyon, F-69621, Villeurbanne, France
| | - Ivan Dalvit
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Sylvain Loubéry
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
9
|
Robinson GC, Kaufmann M, Roux C, Martinez-Font J, Hothorn M, Thore S, Fitzpatrick TB. Crystal structure of the pseudoenzyme PDX1.2 in complex with its cognate enzyme PDX1.3: a total eclipse. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:400-415. [PMID: 30988257 DOI: 10.1107/s2059798319002912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/25/2019] [Indexed: 11/10/2022]
Abstract
Pseudoenzymes have burst into the limelight recently as they provide another dimension to regulation of cellular protein activity. In the eudicot plant lineage, the pseudoenzyme PDX1.2 and its cognate enzyme PDX1.3 interact to regulate vitamin B6 biosynthesis. This partnership is important for plant fitness during environmental stress, in particular heat stress. PDX1.2 increases the catalytic activity of PDX1.3, with an overall increase in vitamin B6 biosynthesis. However, the mechanism by which this is achieved is not known. In this study, the Arabidopsis thaliana PDX1.2-PDX1.3 complex was crystallized in the absence and presence of ligands, and attempts were made to solve the X-ray structures. Three PDX1.2-PDX1.3 complex structures are presented: the PDX1.2-PDX1.3 complex as isolated, PDX1.2-PDX1.3-intermediate (in the presence of substrates) and a catalytically inactive complex, PDX1.2-PDX1.3-K97A. Data were also collected from a crystal of a selenomethionine-substituted complex, PDX1.2-PDX1.3-SeMet. In all cases the protein complexes assemble as dodecamers, similar to the recently reported individual PDX1.3 homomer. Intriguingly, the crystals of the protein complex are statistically disordered owing to the high degree of structural similarity of the individual PDX1 proteins, such that the resulting configuration is a composite of both proteins. Despite the differential methionine content, selenomethionine substitution of the PDX1.2-PDX1.3 complex did not resolve the problem. Furthermore, a comparison of the catalytically competent complex with a noncatalytic complex did not facilitate the resolution of the individual proteins. Interestingly, another catalytic lysine in PDX1.3 (Lys165) that pivots between the two active sites in PDX1 (P1 and P2), and the corresponding glutamine (Gln169) in PDX1.2, point towards P1, which is distinctive to the initial priming for catalytic action. This state was previously only observed upon trapping PDX1.3 in a catalytically operational state, as Lys165 points towards P2 in the resting state. Overall, the study shows that the integration of PDX1.2 into a heteromeric dodecamer assembly with PDX1.3 does not cause a major structural deviation from the overall architecture of the homomeric complex. Nonetheless, the structure of the PDX1.2-PDX1.3 complex highlights enhanced flexibility in key catalytic regions for the initial steps of vitamin B6 biosynthesis. This report highlights what may be an intrinsic limitation of X-ray crystallography in the structural investigation of pseudoenzymes.
Collapse
Affiliation(s)
- Graham C Robinson
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| | - Markus Kaufmann
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| | - Céline Roux
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| | - Jacobo Martinez-Font
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| | - Michael Hothorn
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| | - Stéphane Thore
- Department of Molecular Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
10
|
SNZ3 Encodes a PLP Synthase Involved in Thiamine Synthesis in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:335-344. [PMID: 30498136 PMCID: PMC6385983 DOI: 10.1534/g3.118.200831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyridoxal 5′-phosphate (the active form of vitamin B6) is a cofactor that is important for a broad number of biochemical reactions and is essential for all forms of life. Organisms that can synthesize pyridoxal 5′-phosphate use either the deoxyxylulose phosphate-dependent or -independent pathway, the latter is encoded by a two-component pyridoxal 5′-phosphate synthase. Saccharomyces cerevisiae contains three paralogs of the two-component SNZ/SNO pyridoxal 5′-phosphate synthase. Past work identified the biochemical activity of Snz1p, Sno1p and provided in vivo data that SNZ1 was involved in pyridoxal 5′-phosphate biosynthesis. Snz2p and Snz3p were considered redundant isozymes and no growth condition requiring their activity was reported. Genetic data herein showed that either SNZ2 or SNZ3 are required for efficient thiamine biosynthesis in Saccharomyces cerevisiae. Further, SNZ2 or SNZ3 alone could satisfy the cellular requirement for pyridoxal 5′-phosphate (and thiamine), while SNZ1 was sufficient for pyridoxal 5′-phosphate synthesis only if thiamine was provided. qRT-PCR analysis determined that SNZ2,3 are repressed ten-fold by the presence thiamine. In total, the data were consistent with a requirement for PLP in thiamine synthesis, perhaps in the Thi5p enzyme, that could only be satisfied by SNZ2 or SNZ3. Additional data showed that Snz3p is a pyridoxal 5′-phosphate synthase in vitro and is sufficient to satisfy the pyridoxal 5′-phosphate requirement in Salmonella enterica when the medium has excess ammonia.
Collapse
|
11
|
Parra M, Stahl S, Hellmann H. Vitamin B₆ and Its Role in Cell Metabolism and Physiology. Cells 2018; 7:cells7070084. [PMID: 30037155 PMCID: PMC6071262 DOI: 10.3390/cells7070084] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
Vitamin B6 is one of the most central molecules in cells of living organisms. It is a critical co-factor for a diverse range of biochemical reactions that regulate basic cellular metabolism, which impact overall physiology. In the last several years, major progress has been accomplished on various aspects of vitamin B6 biology. Consequently, this review goes beyond the classical role of vitamin B6 as a cofactor to highlight new structural and regulatory information that further defines how the vitamin is synthesized and controlled in the cell. We also discuss broader applications of the vitamin related to human health, pathogen resistance, and abiotic stress tolerance. Overall, the information assembled shall provide helpful insight on top of what is currently known about the vitamin, along with addressing currently open questions in the field to highlight possible approaches vitamin B6 research may take in the future.
Collapse
Affiliation(s)
- Marcelina Parra
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| | - Seth Stahl
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| | - Hanjo Hellmann
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| |
Collapse
|
12
|
Dell'Aglio E, Boycheva S, Fitzpatrick TB. The Pseudoenzyme PDX1.2 Sustains Vitamin B 6 Biosynthesis as a Function of Heat Stress. PLANT PHYSIOLOGY 2017; 174:2098-2112. [PMID: 28550206 PMCID: PMC5543961 DOI: 10.1104/pp.17.00531] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/23/2017] [Indexed: 05/06/2023]
Abstract
Plants sense temperature changes and respond by altering growth and metabolic activity to acclimate to the altered environmental conditions. The B vitamins give rise to vital coenzymes that are indispensable for growth and development but their inherent reactive nature renders them prone to destruction especially under stress conditions. Therefore, plant survival strategies would be expected to include mechanisms to sustain B vitamin supply under demanding circumstances. Here, using the example of vitamin B6, we investigate the regulation of biosynthesis across eudicot and monocot species under heat stress. Most eudicots carry a pseudoenzyme PDX1.2 that is a noncatalytic homolog of the PDX1 subunit of the vitamin B6 biosynthesis protein machinery, PYRIDOXINE BIOSYNTHESIS PROTEIN1. Using Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) as models, we show that PDX12 is transcriptionally regulated by the HSFA1 transcription factor family. Monocots only carry catalytic PDX1 homologs that do not respond to heat stress as demonstrated for rice (Oryza sativa) and maize (Zea mays), suggesting fundamental differences in the regulation of vitamin B6 biosynthesis across the two lineages. Investigation of the molecular mechanism of PDX12 transcription reveals two alternative transcriptional start sites, one of which is exclusive to heat stress. Further data suggest that PDX1.2 leads to stabilization of the catalytic PDX1s under heat stress conditions, which would serve to maintain vitamin B6 homeostasis in times of need in eudicots that carry this gene. Our analyses indicate an important abiotic stress tolerance strategy in several eudicots, which has not been evolutionarily adapted (or is not required) by monocots such as grasses.
Collapse
Affiliation(s)
- Elisa Dell'Aglio
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Svetlana Boycheva
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
13
|
Rodrigues MJ, Windeisen V, Zhang Y, Guédez G, Weber S, Strohmeier M, Hanes JW, Royant A, Evans G, Sinning I, Ealick SE, Begley TP, Tews I. Lysine relay mechanism coordinates intermediate transfer in vitamin B6 biosynthesis. Nat Chem Biol 2017; 13:290-294. [PMID: 28092359 PMCID: PMC6078385 DOI: 10.1038/nchembio.2273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/11/2016] [Indexed: 11/08/2022]
Abstract
Substrate channeling has emerged as a common mechanism for enzymatic intermediate transfer. A conspicuous gap in knowledge concerns the use of covalent lysine imines in the transfer of carbonyl-group-containing intermediates, despite their wideuse in enzymatic catalysis. Here we show how imine chemistry operates in the transfer of covalent intermediates in pyridoxal 5'-phosphate biosynthesis by the Arabidopsis thaliana enzyme Pdx1. An initial ribose 5-phosphate lysine imine is converted to the chromophoric I320 intermediate, simultaneously bound to two lysine residues and partially vacating the active site, which creates space for glyceraldehyde 3-phosphate to bind. Crystal structures show how substrate binding, catalysis and shuttling are coupled to conformational changes around strand β6 of the Pdx1 (βα)8-barrel. The dual-specificity active site and imine relay mechanism for migration of carbonyl intermediates provide elegant solutions to the challenge of coordinating a complex sequence of reactions that follow a path of over 20 Å between substrate- and product-binding sites.
Collapse
Affiliation(s)
- Matthew J Rodrigues
- Biological Sciences, University of Southampton, Southampton, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Volker Windeisen
- Biological Sciences, University of Southampton, Southampton, UK
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Yang Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Gabriela Guédez
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Stefan Weber
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Marco Strohmeier
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Jeremiah W Hanes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
- Pacific Biosciences, Menlo Park, California, USA
| | - Antoine Royant
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
- European Synchrotron Radiation Facility, Grenoble, France
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Tadhg P Begley
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Ivo Tews
- Biological Sciences, University of Southampton, Southampton, UK
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| |
Collapse
|